JP4142767B2 - 核医学診断装置 - Google Patents

核医学診断装置 Download PDF

Info

Publication number
JP4142767B2
JP4142767B2 JP14291798A JP14291798A JP4142767B2 JP 4142767 B2 JP4142767 B2 JP 4142767B2 JP 14291798 A JP14291798 A JP 14291798A JP 14291798 A JP14291798 A JP 14291798A JP 4142767 B2 JP4142767 B2 JP 4142767B2
Authority
JP
Japan
Prior art keywords
gamma rays
radioisotope
scintillator
count value
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14291798A
Other languages
English (en)
Other versions
JPH11337647A (ja
Inventor
昭博 古嶋
隆 市原
信篤 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14291798A priority Critical patent/JP4142767B2/ja
Publication of JPH11337647A publication Critical patent/JPH11337647A/ja
Application granted granted Critical
Publication of JP4142767B2 publication Critical patent/JP4142767B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Nuclear Medicine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被検体に投与された放射性同位元素( 以下、RIと略す) の体内分布を画像化するガンマカメラ、SPECT、PET等の核医学診断装置に関する。
【0002】
【従来の技術】
上述したように核医学診断装置には、RIの崩壊時に1個のフォトン(光子)を放出する 201Tl、 99mTc、 123I等のシングルフォトン核種をトレーサに用いるタイプと、陽電子の消滅時にペアのフォトンを逆向きに放出する11Cや13N等のポジトロン核種をトレーサに用いるタイプとがある。
【0003】
さらに、イメージングの手法としても、被検体の近傍に固定したカメラ本体でそこに垂直に入射してくるガンマ線(フォトン)を一定期間計数することによりRIの投影分布(プレーン像)を得るものや、カメラ本体を被検体の周囲を回転させたり又は被検体の周囲に複数台のカメラ本体を設置して、被検体から様々な方向に放出されるガンマ線を多方向から計数し、得られた計数値に基づいてX線コンピュータ断層撮影装置(CTスキャン)のようなRIの断層分布を再構成する手法等多岐に渡っている。
【0004】
ここでガンマ線の検出メカニズムとしては、近年、ガンマ線を直接的に電気信号に変換する半導体を使ったタイプが開発され脚光を浴びているが、その実用化には未だ数々の障害があり、このためガンマ線をNaIのシンチレータで光に変換し、この光を複数本の光電子増倍管(PMT)で電気信号に変換するという旧態のタイプが主流を占めているのが現状である。
【0005】
この検出以降の処理としては、これら複数本の光電子増倍管からの電気信号を加算し、ガンマ線の入射エネルギーを反映しているこの加算信号の波高値を、光電ピークを中心に設定されたエネルギーウインドウに通すことで、対象核種からのガンマ線なのか、外乱線なのかを選別し、これを通ったガンマ線を1個1個のフォトンとして入射位置毎に所定期間継続的に累進的に計数することで、RIの体内分布を生成するようになっている。
【0006】
ところで周知の通り、光電効果は軌道電子の放出現象であり、従って、シンチレータ内で光電効果を生起する確率は、シンチレータが厚くなるほど向上する。しかし、一方で、光電効果を起こす確率だけを考慮してシンチレータをむやみに厚くすると、光電子増倍管間の出力偏差が少なくなって、結果的に位置計算の精度が低下してしまう。このため、シンチレータの厚さは、現在の核医学の分野で使用頻度の高い 201Tl、 99mTc、 123Iからの70乃至160keVという比較的低エネルギーのガンマ線で光電効果が起きる確率が70%程度になるように、シンチレータの厚さが設計されている。
【0007】
しかし、ガンマ線はそのエネルギーが高くなると物質の相互作用のうち光電効果の断面積が低下するので、ガンマ線のエネルギーが比較的高いが、使用頻度の低い核種、例えば 131I(光電ピーク;364keV)でイメージングを行う場合、比較的低エネルギーに合わせて比較的薄く作られているシンチレータでは、検出効率が著しく低下してしまうという事態が不回避であった。
【0008】
【発明が解決しようとする課題】
本発明の目的は、比較的低エネルギーに合わせて比較的薄く作られているシンチレータを使いながら、エネルギーが比較的高いガンマ線の検出効率を格段に向上できる核医学診断装置を提供することである。
【0009】
【課題を解決するための手段】
本発明は、被検体に投与された放射性同位元素から放射されるガンマ線をシンチレータで光に変換してから検出し、この検出したガンマ線を1個1個のフォトンとして計数し、この計数結果に基づいて前記放射性同位元素の体内分布を生成する核医学診断装置において、前記シンチレータ内で光電効果を生起するガンマ線の計数値に、前記シンチレータ内でコンプトン効果を生起するガンマ線の計数値を加えて、前記体内分布を生成する。
(作用)
本発明によると、光電ピーク成分だけでなく、コンプトン成分も使ってイメージングを行うので、シンチレータを使用頻度の高い比較的低エネルギーのガンマ線を放出する核種に合わせて薄く作っているにしても、光電ピーク成分だけを使ってイメージングを行っていた従来よりも、エネルギーが比較的高いガンマ線の検出効率を格段に向上することができる。
【0010】
【発明の実施の形態】
以下、図面を参照して本発明を好ましい実施形態により説明する。なお、核医学診断装置は、上述したように、放射性同位元素(RI)の崩壊時にガンマ線を放出する 201Tl、 99mTc等のシングルフォトン核種をトレーサに用いるタイプと、陽電子の消滅時にペアのフォトンを逆向きに放出する11Cや13N等のポジトロン核種を用いるタイプとがある。また、イメージングの手法についても、被検体の近傍に固定したカメラ本体でそこに垂直に入射してくるガンマ線(フォトン)を一定期間計数することによりRIの投影分布(プレーン像)を得るプレーンイメージング手法や、カメラ本体を被検体の周囲を回転させたり又は被検体の周囲に複数台のカメラ本体を設置して、被検体から様々な方向に放出されるガンマ線を多方向で計数し、得られた計数値に基づいてX線コンピュータ断層撮影装置(CTスキャン)のようなRIの断層分布を再構成するSPECTやPET等の断層イメージング手法等多岐に渡っている。本発明は、いずれのタイプ、いずれの手法にも適用できるものである。ここでは、シングルフォトンの核種を用いて、プレーンイメージングを一例として説明する。
【0011】
図1には、本実施形態による核医学診断装置の構成をブロック図により示している。被検体に投与された放射性同位元素(RI)からは、その核種に固有の半減期に応じてガンマ線(フォトン)が断続的に放射される。このガンマ線を検出するためのカメラ本体11は、略垂直に入射してくるガンマ線だけを通過させ、それ以外の角度で入射してくるガンマ線を通過させないためのコリメータ12がカメラ本体11の前面に設けられている。そのコリメータ12の背面には、NaI等のガンマ線を吸収して発光するシンチレータ13が配置され、さらにこのシンチレータ13の背面に複数本の光電子増倍管14が稠密に配列されている。
【0012】
ここで、シンチレータ13は、その厚さが、現在の核医学診断の分野で使用頻度の高い 201Tl、 99mTc、 123Iといった核種からの70乃至160keVという比較的低エネルギーのガンマ線で光電効果が生起される確率が70%程度を維持するように、比較的薄く設計されている。
【0013】
複数本の光電子増倍管14から出力される数mV乃至数十mV程度の微弱な検出信号は、図示しない前置増幅器を介してそれぞれ個別に位置計算回路15と波高分析器16に供給される。位置計算回路15は、XY各方向に関する信号レベルの偏差に基づいて、ガンマ線の入射位置を計算する。また、波高分析器16は、複数本の光電子増倍管14からの複数の検出信号を加算することで、ガンマ線のエネルギーに比例するエネルギー信号を生成し、このエネルギー信号をノイズレベルで選別し、ガンマ線エネルギーがノイズレベル以上であれば、パルスを発生し、ガンマ線エネルギーがノイズレベル以下であれば、パルスを発生しない。
【0014】
エネルギースペクトラム収集用メモリ回路17は、波高分析器16からパルス信号が供給されたとき、つまりノイズレベル以上のエネルギーを持つガンマ線が入射したとき、その数を、位置計算回路15からのガンマ線の入射位置毎に、且つエネルギーチャンネル毎に計数する。この計数は所定の期間(データ収集期間)、継続的に行われる。つまり、この計数は、エネルギースペクトラムをガンマ線の入射位置毎に収集することに相当する。
【0015】
光電ピーク成分計算回路18は、エネルギースペクトラム収集用メモリ回路17に収集されたエネルギースペクトラムを使ってシンチレータ13内で光電効果を生起したガンマ線の計数値(光電ピーク成分)を散乱線補正をかけて入射位置毎に計算する。コンプトンエッジ成分計算回路19は、エネルギースペクトラム収集用メモリ回路17に収集されたエネルギースペクトラムを使ってシンチレータ13内でコンプトン効果を生起したガンマ線の計数値(コンプトンエッジ成分)を散乱線補正をかけて入射位置毎に計算する。これら計算方法については後述する。
【0016】
光電ピーク成分計算回路18とコンプトンエッジ成分計算回路19は、散乱線補正のために、TEW(triple energy window)法が採用されている。このTEW法は、メインのエネルギーウインドウの両側にそれぞれサブのエネルギーウインドウを設け、これら2つのサブウインドウの計数値とエネルギー軸とで作られ得る台形の面積をメインウインドウ内の散乱線量として推定し、この推定した散乱線量をメインウインドウ内の計数値合計から減算するという散乱線補正に極めて効果的な手法である。これら光電ピーク成分計算回路18とコンプトンエッジ成分計算回路19それぞれのメインとサブのエネルギーウインドウを投与核種に合わせて設定するために、ウインドウ設定回路20が設けられている。
【0017】
加算回路21は、光電ピーク成分とコンプトンエッジ成分とを加算することで結果的にシンチレータ13内で光電効果とコンプトン効果とを生起したガンマ線の合計数を入射位置毎に計算し、次々と画像メモリ22に書き込んでいく。これにより、RIの投影分布、つまりプレーナ像が生成される。このプレーナ像のデータは、図示しないディスプレイに表示され、また光磁気ディスク等の記録媒体に記録される。
【0018】
本発明の特徴は、シンチレータ13内で光電効果を生起したガンマ線の計数値(光電ピーク成分)だけでなく、それに、シンチレータ13内でコンプトン効果を生起したガンマ線の計数値(コンプトンエッジ成分)を加えて、RIの分布をイメージングすることにより、上述したようにシンチレータ13を使用頻度の高い比較的低エネルギーのガンマ線を放出する核種に合わせて薄く作っているにしても、光電ピーク成分だけでRI分布をイメージングしていた従来よりも、 131I(光電ピーク;364keV)等のエネルギーが比較的高いガンマ線を放出する核種の検出効率を格段に向上させようとするものである。
【0019】
このための本実施形態装置によるプレーナ像のイメージング手法の手順を図2に示している。まず、ウインドウ設定回路20から光電ピーク成分計算回路18に対して、光電ピーク成分を計算するために必要なメインとサブのエネルギーウインドウが投与核種に従って設定される(図5参照)。光電ピークは、投与した放射性同位元素に固有であり、例えば 131Iであれば、光電ピークは364keVである。メインウインドウは、この光電ピークを中心として所定のエネルギー幅に設定される。また、メインウインドウの両側にそれぞれ光電ピークの10%程度の幅でサブウインドウが設定される。
【0020】
次に、コンプトンエッジのエネルギーがウインドウ設定回路20で計算され、又は予め核種毎に計算されメモリ等に保管されているコンプトンエッジのエネルギーをウインドウ設定回路20にロードする。この計算方法は次の通りである。周知の通り、シンチレータ13にガンマ線が入射すると、光電効果、コンプトン効果、電子対生成という主に3種類の発光を導く現象を生起する。ここで取り扱うのは光電効果とコンプトン効果である。光電効果は、ガンマ線が入射するとその軌道上にある軌道電子が放出される現象である。また、コンプトン効果は、図3に示すように、ガンマ線1と電子3との弾性衝突により、ガンマ線1の入射エネルギーの一部が電子3に与えられて反跳電子として放出する現象であり、ガンマ線1の入射エネルギー(光電ピーク)を“E”、弾性衝突で散乱したガンマ線2の残留エネルギーを“E′”とすると、反跳電子3にはその損失エネルギーE′′(=E−E′)が与えられる。この反跳電子3のエネルギーE′′に比例した光が発生する。
【0021】
この反跳電子3のエネルギーE′′は、me2 を電子の質量エネルギー、θを散乱角として、
{E/(1+(me2 /E(1− cosθ)))}
で与えられる。このように反跳電子3のエネルギーE′′は、散乱角θが cosできいてくるので、図3に示すように、散乱角θが180゜の後方散乱で、最大波高値を示す。この最大波高値が、一般に、コンプトンエッジと呼ばれている。
【0022】
従って、コンプトンエッジは、
{E/(1+(me2 /2E))}
で与えられる。
【0023】
このコンプトンエッジに基づいて、ウインドウ設定回路20から光電ピーク成分計算回路18に対して、コンプトンエッジ成分を計算するために必要なメインとサブのエネルギーウインドウが投与核種に従って設定される(図6参照)。つまり、光電効果の場合と同様に、メインウインドウは、このコンプトンエッジを中心として所定のエネルギー幅に設定され、また、このメインウインドウの両側にそれぞれコンプトンエッジの8%程度の幅でサブウインドウが設定される。
【0024】
次に、ウインドウ設定回路20で設定されたエネルギーウインドウに従って、光電ピーク成分計算回路18で光電ピーク成分がTEW法で計算され、またコンプトンエッジ成分計算回路19でコンプトンエッジ成分がTEW法で計算される。つまり、まず、2つのサブウインドウの計数値とエネルギー軸とで作られ得る台形の面積がメインウインドウ内の散乱線量として推定され、この推定した散乱線量をメインウインドウ内の計数値合計から減算することにより、散乱線成分ンも除去されたいわゆるプライマリー光子成分として、光電ピーク成分(図5斜線部分)と、コンプトンエッジ成分(図6斜線部分)とがそれぞれ計算される。
【0025】
これら光電ピーク成分とコンプトンエッジ成分とは加算回路21で単純加算、つまり加重をかけないで加算され、それぞれの入射位置毎に対応した画像メモリ22のアドレスに書き込まれる。全ての入射位置で同様の計算が行われて、RIの投影分布、つまりプレーナ像が生成される。
【0026】
このように光電ピーク成分だけでなく、コンプトンエッジ成分も使ってイメージングするので、シンチレータを使用頻度の高い比較的低エネルギーのガンマ線を放出する核種に合わせて薄く作っているにしても、光電ピーク成分だけを使ってイメージングを行っていた従来よりも、エネルギーが比較的高いガンマ線の検出効率を格段に向上することができる。
本発明は、上述した実施形態に限定されることなく、種々変形して実施可能である。
【0027】
【発明の効果】
本発明によると、光電ピーク成分だけでなく、コンプトン成分も使ってイメージングを行うので、シンチレータを使用頻度の高い比較的低エネルギーのガンマ線を放出する核種に合わせて薄く作っているにしても、光電ピーク成分だけを使ってイメージングを行っていた従来よりも、エネルギーが比較的高いガンマ線の検出効率を格段に向上することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る核医学診断装置の主要部の構成を示すブロック図。
【図2】本実施形態の動作フローを示す図。
【図3】シンチレータ内のコンプトン効果の説明図。
【図4】コンプトンエッジの原理説明図。
【図5】図1の光電ピーク成分の計算方法の説明図。
【図6】図1のコンプトン効果成分の計算方法の説明図。
【符号の説明】
11…ガンマカメラ本体、
12…コリメータ、
13…シンチレータ、
14…光電子増倍管、
15…位置計算回路、
16…波高分析回路、
17…エネルギースペクトラム収集用メモリ回路、
18…光電ピーク成分計算回路、
19…コンプトンエッジ成分計算回路、
20…ウインドウ設定回路、
21…加算回路、
22…画像メモリ。

Claims (6)

  1. 被検体に投与された放射性同位元素から放射されるガンマ線をシンチレータで光に変換してから検出し、この検出したガンマ線を計数し、この計数結果に基づいて前記放射性同位元素の体内分布を生成する核医学診断装置において、前記シンチレータ内で光電効果を生起するガンマ線の計数値に、前記シンチレータ内でコンプトン効果を生起するガンマ線の計数値を加えて、前記体内分布を生成することを特徴とする核医学診断装置。
  2. 被検体に投与された放射性同位元素から放射されるガンマ線をシンチレータで光に変換してから検出し、この検出したガンマ線を計数し、この計数結果に基づいて前記放射性同位元素の体内分布を生成する核医学診断装置において、前記シンチレータ内でコンプトン効果を生起するガンマ線の計数値に基づいて前記体内分布を生成することを特徴とする核医学診断装置。
  3. 前記シンチレータ内でコンプトン効果を生起するガンマ線の計数値をTEW法で求めることを特徴とする請求項1又は2に記載の核医学診断装置。
  4. 被検体に投与された放射性同位元素から放射されるガンマ線を検出し、このガンマ線の計数値に基づいて前記放射性同位元素の体内分布を生成する核医学診断装置において、
    ガンマ線を光に変換するガンマ線−光変換手段と、
    前記変換された光を電気信号に変換する光−電気変換手段と、
    前記光−電気変換手段の出力に基づいて、ガンマ線の入射位置情報及びエネルギー値を求める演算手段と、
    前記演算手段の出力するエネルギー値が、前記放射性同位元素から放射されるガンマ線のエネルギーを含むように設定された第1のメインウインドウ内にあるガンマ線の計数値を求める第1の計数手段と、
    前記演算手段の出力するエネルギー値が、前記放射性同位元素から放射されるガンマ線のコンプトンエッジを含むように設定された第2のメインウインドウ内にあるガンマ線の計数値を求める第2の計数手段と、
    前記第1の計数手段の出力する計数値と、前記第2の計数手段の出力する計数値とを加算する手段とを備えることを特徴とする核医学診断装置。
  5. 被検体に投与された放射性同位元素から放射されるガンマ線をシンチレータで光に変換してから検出することにより得られたガンマ線の計数値に基づいて、前記放射性同位元素の体内分布を生成する核医学診断用の画像処理方法において、
    前記シンチレータ内で光電効果を生起するガンマ線の計数値に、前記シンチレータ内でコンプトン効果を生起するガンマ線の計数値を加えて、前記体内分布を生成することを特徴とする核医学診断用の画像処理方法。
  6. 被検体に投与された放射性同位元素から放射されるガンマ線をシンチレータで光に変換してから検出することにより得られたガンマ線のエネルギースペクトラムに基づいて、前記放射性同位元素の体内分布を生成する核医学診断用の画像処理方法において、
    前記エネルギースペクトラムの中で、前記放射性同位元素から放射されるガンマ線のエネルギーを含むように設定された第1のメインウインドウ内の計数値の和を求め、
    前記エネルギースペクトラムの中で、前記放射性同位元素から放射されるガンマ線のコンプトンエッジを含むように設定された第2のメインウインドウ内の計数値の和を求め、
    前記第1のメインウインドウ内の計数値の和と、前記第2のメインウインドウ内の計数値の和とを加算することを特徴とする核医学診断用の画像処理方法。
JP14291798A 1998-05-25 1998-05-25 核医学診断装置 Expired - Lifetime JP4142767B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14291798A JP4142767B2 (ja) 1998-05-25 1998-05-25 核医学診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14291798A JP4142767B2 (ja) 1998-05-25 1998-05-25 核医学診断装置

Publications (2)

Publication Number Publication Date
JPH11337647A JPH11337647A (ja) 1999-12-10
JP4142767B2 true JP4142767B2 (ja) 2008-09-03

Family

ID=15326638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14291798A Expired - Lifetime JP4142767B2 (ja) 1998-05-25 1998-05-25 核医学診断装置

Country Status (1)

Country Link
JP (1) JP4142767B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659962B2 (ja) * 2000-10-04 2011-03-30 株式会社東芝 核医学診断装置
JP2010032214A (ja) * 2007-04-23 2010-02-12 Natl Inst Of Radiological Sciences エネルギーと位置情報を利用した放射線検出方法及び装置

Also Published As

Publication number Publication date
JPH11337647A (ja) 1999-12-10

Similar Documents

Publication Publication Date Title
US8059880B2 (en) Nuclear medicine diagnosis device, form tomography diagnosis device, nuclear medicine data arithmetic processing method, and form tomogram arithmetic processing method
O'Malley et al. Nuclear Medicine and Molecular Imaging: The Requisites E-Book: Nuclear Medicine and Molecular Imaging: The Requisites E-Book
US6603125B1 (en) Event localization and fall-off correction by distance-dependent weighting
Patton et al. Coincidence imaging with a dual-head scintillation camera
US7138634B2 (en) Nuclear medical diagnostic apparatus
JP2008309683A (ja) 核医学診断装置
Garcia et al. Principles of nuclear cardiology imaging
JP2009281816A (ja) 断層撮影装置
US6281504B1 (en) Diagnostic apparatus for nuclear medicine
JP4142767B2 (ja) 核医学診断装置
JP4984963B2 (ja) 核医学診断装置
JP4003978B2 (ja) 陽電子放出断層撮影装置および陽電子放出断層撮影装置におけるエミッションデータの減弱補正の制御方法
US20230375727A1 (en) Combined imaging detector and imaging system
Raylman et al. Evaluation of ion‐implanted‐silicon detectors for use in intraoperative positron‐sensitive probes
JP3763165B2 (ja) Spectの吸収補正方法
JP3563477B2 (ja) シンチレーションカメラ及びspect装置
JP3763159B2 (ja) Spectの吸収補正方法
Wells Principles and instrumentation of SPECT/CT
JP2005114739A (ja) 核医学診断装置
Zanzonico Instrumentation for Single-Photon Emission Computed Tomography (SPECT)
US7323691B1 (en) Methods and apparatus for protecting against X-ray infiltration in a SPECT scanner
Ljungberg Instrumentation, Calibration, Quantitative Imaging, and Quality Control
Jadvar et al. PET physics and instrumentation
Saha et al. Data Acquisition and Corrections
Chang et al. Optimization of the effect of radiation on ASIC chip through detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term