JP4141152B2 - Sealed storage battery - Google Patents

Sealed storage battery Download PDF

Info

Publication number
JP4141152B2
JP4141152B2 JP2002054589A JP2002054589A JP4141152B2 JP 4141152 B2 JP4141152 B2 JP 4141152B2 JP 2002054589 A JP2002054589 A JP 2002054589A JP 2002054589 A JP2002054589 A JP 2002054589A JP 4141152 B2 JP4141152 B2 JP 4141152B2
Authority
JP
Japan
Prior art keywords
negative electrode
battery
electrode plate
electrode mixture
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002054589A
Other languages
Japanese (ja)
Other versions
JP2003257424A (en
Inventor
良貴 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002054589A priority Critical patent/JP4141152B2/en
Publication of JP2003257424A publication Critical patent/JP2003257424A/en
Application granted granted Critical
Publication of JP4141152B2 publication Critical patent/JP4141152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は密閉型蓄電池に関し、更に詳しくは、長寿命である密閉型蓄電池に関する。
【0002】
【従来の技術】
密閉型蓄電池としては、ニッケルカドミウム二次電池やニッケル水素二次電池などがあげられ、例えば、図1に示した構造を有するニッケル水素二次電池Aが知られている。
この二次電池Aは、負極端子を兼ねる上部が開口した有底角筒状の外装缶1を備え、この外装缶1内には電極群2’がアルカリ電解液(図示しない)とともに収納されている。電極群2’は、正極板3と、負極板4と、これら極板3,4の間に介装されたセパレータ5を含み、例えば、3枚の正極板3と4枚の負極板4とを、それら極板3,4間にセパレータ5を介在させながら交互に積層することにより作製されている。
【0003】
正極板3は芯体の両面に正極活物質層が担持されて成り、また負極板4は芯体の両面に負極合剤が担持されて成る。電極群2’において、極板の積層方向にみて両外側には負極板4が配置され、この最外側の負極板4は外装缶1と電気的に接続されている。
外装缶1の開口部には中央に孔6を有する矩形の封口板7が配置され、封口板7の周縁と外装缶1の開口部内面の間には絶縁性ガスケット8が配置されている。絶縁性ガスケット8は底部に開口部を有する有底矩形筒状であって、封口板7は、外装缶1の開口部を内側に縮径するカシメ加工によって、ガスケット8を介して外装缶1に気密に取り付けられている。
【0004】
正極板3の上部には正極リード9の一端が接続され、正極リード9の他端は封口板7の下面に接続されている。封口板7の上面には、孔6を塞ぐようにゴム製の安全弁11が配置され、更に、安全弁11を覆うようにしてキャップ状の正極端子10が配置されている。なお、正極端子10は複数のガス通過孔(図示しない)を有し、外装缶1内でガスが異常に発生した場合、安全弁11と封口体7間に隙間が生じ、孔6及びガス通過孔を介して外装缶1内のガスが電池外部へと排出される。
【0005】
ところで、密閉型蓄電池にあっては、長寿命化とともに高容量化が望まれている。そのため、従来、電池内部の体積効率を向上させることにより電池の高容量化を達成することが試みられている。かかる従来技術の一例として、特開平10−312824号公報は、図4に示したように、電極群2’の最外側に位置する極板において、外装缶1側の芯体4aを露出させた角形電池を開示している。
【0006】
この従来技術の角形電池によれば、電池内部の体積効率が高いことから確かに電池の高容量化が図ることができる。しかしながらこの角形電池の場合、電池内部で発生した水素ガスが最外側の極板と電池外装缶間に滞留することから、充放電サイクルの進行に伴って電池の内圧が上昇する。
特に、この角形電池にハイレート(大電流)で充電を行なった時には、滞留した水素ガスにより電池内圧が異常に高くなり、ガスの排出に伴って封口板7の孔6から電池内部のアルカリ電解液が漏出することがある(図1参照)。このようにアルカリ電解液が漏出した場合、電池に含まれるアルカリ電解液が減少してしまい、電池の長寿命化を図ることが困難であるという問題があった。
【0007】
上記した従来技術において発生する電池内部の異常な圧力上昇を抑制するために、特開平11−97057号公報は、電極群の最外側に位置する極板において、外側と内側の負極合剤(活物質層)の厚みの比率を規定した角形アルカリ二次電池を開示している。
【0008】
【発明が解決しようとする課題】
ところでアルカリ電解液は、充放電サイクルの進行に伴って、電池外部に漏出する以外にも、例えば、電池内部で極板が膨潤することにより徐々に減少する。そのため、特開平11−97057号公報が開示する角形アルカリ二次電池のように、充放電サイクルの進行に伴う電池の内圧上昇を抑制するという観点のみから電極群の外側に位置する負極板の外装缶側の負極合剤の厚みを規定した場合、以下の問題が引き起こされる。
【0009】
すなわち、外装缶と接触する負極合剤は、セパレータを隔てて正極板と向かい合う負極合剤に比べ充放電反応への寄与が少なく、外装缶と接触する負極合剤が厚い電池の場合、そこに吸収されるアルカリ電解液量が多いため、充放電反応に寄与する電解液の量が減少してしまう。そしてそのような電池の場合、製造された時点で既に充放電に寄与する電解液量が少ないため、外装缶と接触する負極合剤が薄い場合に比べ、充放電サイクルの進行に伴って充放電に寄与する電解液量が所定の下限値を早く下回ってしまい、電池の長寿命化を図ることが困難であるという問題である。
【0010】
本発明は上記した問題を解決し、充放電サイクルの進行に伴う電池の内圧上昇が抑制され、高容量かつ長寿命な密閉型蓄電池の提供を目的とする。
【0011】
【課題を解決するための手段】
上記した目的を達成するために、本発明においては、正極板と、芯体の両面に負極合剤が担持されている負極板と、これら極板間に介装されたセパレータとからなる電極群が、負極板を最外側にしてアルカリ電解液と一緒に外装缶に密閉封入された密閉型蓄電池において、
前記最外側の負極板の前記外装缶側の負極合剤の厚みが、他の個所の負極合剤の厚みの1/2以下であることを特徴とする密閉型蓄電池が提供される。
【0012】
そして前記最外側の負極板の前記外装缶側の負極合剤の厚みは、前記負極合剤に含まれる水素吸蔵合金の平均粒径の4倍以下であるのが好ましい。
更に、前記最外側の負極板は、前記外装缶と直接接触しているのが好ましい。
【0013】
【発明の実施の形態】
図1は、本発明の一実施形態に係る密閉型蓄電池B(以下、電池Bという)を示している。
この電池Bは、後述するように電極群2の外側に位置する負極板の外装缶1側の負極合剤の厚みが所定の厚みとなっている以外は、前記した従来の密閉形蓄電池Aと同じ構成を有する。そこで以下では、電池Bを構成する正極板3、負極板4、セパレータ5およびアルカリ電解液について詳細に説明する。
【0014】
1)正極板3
この正極板3は、水酸化ニッケル粒子を含む正極合剤が正極用芯体に担持されたものから形成される。正極板3は、例えば、水酸化ニッケル粒子、導電助剤としてのコバルト系粒子、結着剤および水を含むペーストを調製し、前記ペーストを芯体に充填し、これを乾燥、加圧成形した後、所望のサイズに切断することにより作製される。
【0015】
水酸化ニッケル粒子としては、例えば単一の水酸化ニッケル粒子、または、亜鉛及びコバルトのいずれか一方もしくは両方が金属ニッケルと共沈された水酸化ニッケル粒子を用いることができる。後者の水酸化ニッケル粒子を含む正極板は、高温状態における充電効率を更に向上することが可能になる。
電池Bの充放電効率を向上させる観点から、前記水酸化ニッケル粒子のX線粉末回折法による(101)面のピーク半価幅は、0.8°/28(Cu−Kα)以上にすることが好ましい。より好ましい水酸化ニッケル粉末の粉末X線回折法による(101)面のピークの半価幅は、0.9〜1.0°/2θ(Cu−Kα)である。
【0016】
前記結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン、ゴム系ポリマー(例えば、スチレンブタジエンゴム(SBR)のラテックス、アクリロニトリルブタジエンゴム(NBR)のラテックス、エチレンプロピレンジエンモノマ(EPDM)のラテックス)等の疎水性ポリマー;例えばカルボキシメチルセルロース(CMC)、メチルセルロース(MC)、ヒドロキシプロピルメチルセルロース(HPMC)、ポリアクリル酸塩(例えばポリアクリル酸ナトリウム(SPA))、ポリビニルアルコール(PVA)、ポリエチレンオキシド、COOX基を少なくとも一つ有するモノマーとビニルアルコールとの共重合体(但し、Xは水素、アルカリ金属、アルカリ土類金属から選ばれる元素からなる)等の親水性ポリマー;等を挙げることができる。前記結着剤としては、前述したポリマーから選ばれる1種または2種以上を用いることができる。なお、前記ポリエチレン、前記ポリプロピレン及び前記ポリテトラフルオロエチレンはディスパージョンの形態で用いることができる。
【0017】
前記コバルト系粒子を形成するコバルト化合物としては、例えば三酸化二コバルト(Co23)、コバルト金属(Co)、一酸化コバルト(CoO)、水酸化コバルト{Co(OH)2}等を挙げることができる。
前記正極用芯体としては、例えばニッケル、ステンレス等の金属や、ニッケルメッキが施された樹脂などからなるスポンジ状、繊維状、フェルト状の多孔質構造を有するものを挙げることができる。
【0018】
2)負極板4
負極板4は、図2に示したように、負極活物質を含む負極合剤4bを負極用芯体4aの両面に担特することにより形成される。
本発明においては、負極板4のうち、極板3,4の積層方向にみて電極群2の最外側に位置する負極板(以下、最外側負極板という)では、外側(外装缶1側)の負極合剤4bの厚みが、他の個所の負極合剤4b、すなわち、内側(電極群2の中央側)の負極合剤4bの厚みの1/2以下である。そして、最外側負極板の外装缶1の側壁と対向する個所では、芯体4aは負極合剤4bに覆われて露出していない。
【0019】
このように、最外側負極板の外側の負極合剤4bの厚みが他の負極合剤の厚みの1/2以下であり、かつ、芯体4aが外装缶1の側壁と対向する個所で露出しないようにしたのは次のような理由によるものである。
すなわち、最外側負極板の芯体が外装缶側壁と負極合剤を介さずに対向した場合、体積的な効率は高いものの、電池内部で発生した水素ガスを吸収する負極合剤が不足し、水素ガスが負極板−電池外装缶間で滞留して電池内部の圧力が上昇することとなる。特に電池にハイレート(高電流)で充電を行なった時には、電池内部の圧力が著しく高くなり、電池内のアルカリ電解液が水素ガスとともに孔6及びガス通過孔を介して電池外部に漏出し、電池の充放電サイクル特性が著しく低下することになる。
【0020】
また一方、最外側負極板の外側の負極合剤の厚みが他の負極合剤の1/2を超えた場合、電池の内部圧力に関する問題発生は防止される。しかし、最外側負極板の外側の負極合剤は正極板と対向していないことから充放電反応への寄与が僅かであり、この外側の負極合剤厚みが他の負極合剤に比べ相対的に厚くなってそこに含まれるアルカリ電解液量の割合が大きくなると、電池の充放電サイクル特性が低下することになるからである。
【0021】
負極活物質を含む負極合剤が芯体の両面に把持された負極板は、例えば、負極活物質、導電材及び結着剤を水と共に混練してペーストを調製し、前記ペーストを負極用芯体に充填し、乾燥した後、成形することにより製造される。
本発明で用いられる、表裏で負極合剤の厚さが異なる最外側負極板は、例えば、ペーストの充填量を表裏で変え、プレス成形の際に一方側の負極合剤と厚さが他方側の負極合剤の厚さの1/2になるように加圧することにより作製することができる。或いはまた、前述した表裏で負極合剤の厚さが異なる負極板は、ペーストの充填量を表裏で変えずに、一方側の負極合剤と厚さが他方側の負極合剤の厚さと同じになるようにしたものを作成し、一方側の負極合剤を削り取るといった方法を用いて作製しても良い。
【0022】
なお、本発明においては、最外側負極板は、外装缶1の側壁と直接接触しているのが好ましい。なぜならば、負極端子を兼ねる外装缶側壁と負極板とが直接接触することにより集電性が向上するからである。
前記負極活物質としては、例えば金属カドミウム、水酸化カドミウムなどのカドミウム化合物、水素等を挙げることができる。水素のホスト・マトリックスとしては、例えば、水素吸蔵合金を挙げることができる。
【0023】
中でも、前記水素吸蔵合金は、前記カドミウム化合物を用いた場合よりも二次電池の容量を向上できるため、好ましい。前記水素吸蔵合金は、格別制限されるものではなく、電解液中で電気化学的に発生させた水素を吸蔵でき、かつ放電時にその吸蔵水素を容易に放出できるものであればよい。例えば、LaNi5,MmNi5(Mmはミッシュメタル)、LmNi5(LmはLaを含む希土類元素から選ばれる少なくとも一種)、これら合金のNiの一部をAl,Mn,Co,Ti,Cu,Zn,Zr,Cr,Bのような元素で置換した多元素系のもの、またはTiNi系、TiFe系のものを挙げることができる。特に、一般式LmNiwCoxMnyAlz(原子比w,x,y,zの合計値は5.00≦w+x+y+z≦5.50である)で表される組成の水素吸蔵合金は充放電サイクルの進行に伴う微粉化を抑制して充放電サイクル寿命を向上できるため好適である。
【0024】
なお本発明では、最外側負極板の外側の負極合剤の厚みは、前記水素吸蔵合金の平均粒径の4倍以下であるのが好ましい。なぜならば4倍を超えた場合、外側の負極合剤に配分される余分な電解液が多くなり、充放電サイクル寿命が低下するからである。
前記結着剤としては、前述した正極板で説明したものと同様なポリマーから選ばれる1種または2種以上を用いることができる。前記導電材としては、例えばカーボンブラック、黒鉛等を挙げることができる。
【0025】
前記負極用芯体としては、例えばパンチドメタル、エキスパンデッドメタル、穿孔剛板、ニッケルネットなどの二次元基板を挙げることができる。
3)セパレータ5
セパレータ5としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものを挙げることができる。
【0026】
4)アルカリ電解液
前記アルカリ電解液としては、例えば、水酸化ナトリウム(NaOH)の水溶液、水酸化リチウム(LiOH)の水溶液、水酸化カリウム(KOH)の水溶液、NaOHとLiOHの混合液、KOHとLiOHの混合液、KOHとLiOHとNaOHの混合液等を用いることができる。
【0027】
【実施例】
実施例1〜3,比較例1,2
1.正極板の作製
水酸化ニッケル粉末90重量%および導電助剤としての酸化コバルト粉末10重量%からなる混合粉末にカルボキシメチルセルロース0.3重量%およびポリテトラフルオロエチレン0.5重量%を添加し、水の存在下で混練してペーストを調製した。
【0028】
このペーストを芯体である焼結繊維基板内に充填し、乾燥した後、ローラプレスして圧延成形することにより水酸化ニッケルを含む正極材が芯体に担特された構造の正極板を30枚作製した。各正極板は、前記正極材の厚さが20μm、全体の厚さが0.6mmで、単位面積当りの容量が650mAh/ccであった。
2.負極板の作製
市販のランタン富化したミッシュメタルLm,Ni,Co,Mn及びAlを用いて高周波炉によって、LmNi4.0Co0.4Mn0.3A10.3の組成からなる水素吸蔵合金を作製した。前記水素吸蔵合金を機械粉砕し、これを200メッシュの篩を通過させた。得られた平均粒径50μmの合金粉末100重量部にポリアクリル酸ナトリウム0.5重量部とカルボキシメチルセルロース0.125重量部、ポリテトラフルオロエチレンのディスパージョン(比重1.5、固形分60重量%)を固形分換算で2.5重量部および導電材としてのカーボン粉末1.0重量部を添加し、水50重量部と共に混合することによって、ペーストを調製した。このペーストを芯体であるパンチドメタルの両面にそれぞれ表1に示した厚みで塗布し、乾燥した。ついで、負極合剤の厚さ比が表1に示した値となるようにローラプレスによって加圧成形した。かくして、活物質である水素、あるいは水素のホスト・マトリックスである水素吸蔵合金を含む負極合剤が芯体の両面に担特され、かつ、表1に示した負極合剤の厚さ比を有する最外側負極板を、実施例及び比較例毎に4枚作製した。
【0029】
一方、前記ペーストをパンチドメタルの両面に0.70mmの厚さに塗布し、乾燥した後、ローラプレスによって加圧成形した。これにより、活物質である水素、あるいは水素のホスト・マトリックスである水素吸蔵合金を含む負極合剤が芯体の両面に担特され、かつ、負極合剤の厚さ比が1:1である電極群の内側用の負極板を、実施例及び比較例毎に4枚作製した。
【0030】
3.電池の組立て
得られた各正極板をポリオレフィンを主体とする不織布からなる袋状のセパレータで被包し、これと各負極板とを交互に重ねて、最外側に最外側負極板が、内側には内側用の負極板がそれぞれ配置された電極群を作製した。
このような電極群を、負極端子を兼ねる有底角筒状外装缶内に最外側負極板が外装缶の側壁と直接接触するように収納した後、前記外装缶内に7NのKOH及び1NのLiOHからなるアルカリ電解液を収容し、前述した図1に示す構造を有するF5サイズ(理論容量;665mAh)の角形ニッケル水素二次電池を、実施例及び比較例毎に2セル組み立てた。
【0031】
4.電池のサイクル特性評価
1)内部抵抗及び質量減少
得られた実施例1〜3、比較例1〜2の二次電池について、まず初充放電を施した。次に、これらの電池に1CmAで150%充電した後に、1CmAで電池電圧が1.0Vに達するまで放電する充放電サイクルを行なった。
【0032】
そして、500サイクル目の電池電圧が1.0Vに達した後、各電池についてAC(lkHz)で内部抵抗の測定を行った。また、各電池に対し、1サイクル目の充放電開始前と、500サイクル目の電池電圧が1.0Vに達した後に電池の質量を測定し、充放電サイクルによる電池質量(電解液)の減少量を測定した。これらの結果についても表1に併記する。
【0033】
2)電池内部の圧力
実施例1〜3、比較例1〜2の二次電池について、電池内圧を測定した。電池内圧の測定は、被検体として、外装缶の上部開口に封口板が取り付けられておらず、外装缶上部が開放している各電池を、図に示した圧力測定装置M内に収納して行った。
【0034】
この圧力測定装置Mはアクリル樹脂製の電池収容ケースを備え、収容ケースはケース本体21とキャップ22とを含む。ケース本体21の中央部には、被検体24を構成する電池外装缶の外形と略同一の形状を有する有底孔23が形成され、有底孔23には被検体24が収納されている。ケース本体21上には、キャップ22がパッキング25及びOリング26を介して配置され、ケース本体21とキャップ22はボルト27及びナット28により互いに固定されている。これらケース本体21、キャップ22、キャップ22、パッキング25及びOリング26は気密な空間を規定し、この気密な空間に有底孔23あるいは被検体24は含まれている。そして、キャップ22には有底孔23の圧力を検出するための圧力検出器29が取り付けられている。また、被検体24の負極板及び正極板には、それぞれ、被検体を充放電させるための負極リード線30及び正極リード線31が接続され、これらリード線30,31はパッキング25とOリング26との間を通してケース本体21の外部へと導出されている。
【0035】
このような電池内圧測定装置Mを用いて、実施例1〜3及び比較例1〜2の各被検体について、1CmAで150%充電した後に1CmAで電池電圧が1.0Vに達するまで放電させる充放電サイクルを行ない、各サイクル時の充電時の電池内圧を測定した。200サイクル目の電池内圧測定結果を表1に併せて示す。
【0036】
【表1】

Figure 0004141152
【0037】
表1から明らかなように、実施例1〜3の電池は、比較例1の電池に比べ、電池内圧の上昇が抑制され、電池質量の減少量も小さく、かつ、内部抵抗も小さいことが分かる。このことは、最外側負極板が外側に負極合剤を有し、最外側負極板と電池外装缶間での水素ガスの滞留が抑制され、充放電サイクルによるアルカリ電解液の漏出が防止されたためと考えられる。
【0038】
また、実施例1〜3の電池は、比較例2の電池に比べ、電池内圧及び電池質量減少については同等であるが、内部抵抗は小さいことがわかる。これは、実施例1〜3の電池では、最外側負極板の外側の負極合剤の厚みが内側の負極合剤の厚みの半分以下となっており、外側の負極合剤に吸収される電解液が少なく、アルカリ電解液が有効に充放電反応に寄与しているためと考える。
【0039】
更に、実施例1〜3の電池を比較した場合、最外側負極板の外側の負極合剤の厚みが薄くなるのに伴って、内部抵抗及び質量減少は低下する傾向が認められる。そのため、外側の負極合剤の厚みは薄いほど良い。しかし、比較例1の電池の場合のように電池外装缶の側壁と対向する芯体の個所が露出すると電池内圧、内部抵抗、及び質量減少は高くなるので、最外側負極板の外側の負極合剤の厚みは、他の部分あるいは内側の負極合剤の厚みの3/20(0.15/1.0)以上とすることが好ましい。
【0040】
【発明の効果】
以上詳述したように本発明の密閉形蓄電池は、負極板は芯体の両面に負極合剤が担持されて成り、かつ、極板群の外側に位置する負極板の外側の負極合剤の厚みが内側の負極合剤の厚みの半分以下であることから、充放電サイクルの進行に伴う電池内部の圧力上昇および質量減少が抑制され、電池の長寿命化を達成することができる。
【図面の簡単な説明】
【図1】密閉形蓄電池の一例を示す部分断面図である。
【図2】本願発明に係る電池Bに用いられる電極群の断面図である。
【図3】電池内圧測定装置の概略構成を示す断面図である。
【図4】従来の電池に用いられる電極群の断面図である。
【符号の説明】
B 密閉形蓄電池
1 外装缶
2 電極群
3 正極板
4 負極板
4a 負極用芯体
4b 負極合剤
5 セパレータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed storage battery, and more particularly to a sealed storage battery having a long life.
[0002]
[Prior art]
Examples of the sealed storage battery include a nickel cadmium secondary battery and a nickel hydride secondary battery. For example, a nickel hydride secondary battery A having the structure shown in FIG. 1 is known.
This secondary battery A includes a bottomed rectangular tube-shaped outer can 1 that also serves as a negative electrode terminal, and an electrode group 2 ′ is accommodated in the outer can 1 together with an alkaline electrolyte (not shown). Yes. The electrode group 2 ′ includes a positive electrode plate 3, a negative electrode plate 4, and a separator 5 interposed between these electrode plates 3, 4. For example, three positive electrode plates 3, four negative electrode plates 4, Are manufactured by alternately laminating the separators 5 between the electrode plates 3 and 4.
[0003]
The positive electrode plate 3 is formed by supporting a positive electrode active material layer on both surfaces of the core body, and the negative electrode plate 4 is formed by supporting a negative electrode mixture on both surfaces of the core body. In the electrode group 2 ′, the negative electrode plates 4 are arranged on both outer sides in the electrode stacking direction, and the outermost negative electrode plate 4 is electrically connected to the outer can 1.
A rectangular sealing plate 7 having a hole 6 at the center is disposed at the opening of the outer can 1, and an insulating gasket 8 is disposed between the periphery of the sealing plate 7 and the inner surface of the opening of the outer can 1. The insulating gasket 8 has a bottomed rectangular tube shape having an opening at the bottom, and the sealing plate 7 is formed on the outer can 1 through the gasket 8 by caulking to reduce the diameter of the opening of the outer can 1. It is installed airtight.
[0004]
One end of the positive electrode lead 9 is connected to the upper part of the positive electrode plate 3, and the other end of the positive electrode lead 9 is connected to the lower surface of the sealing plate 7. A rubber safety valve 11 is disposed on the upper surface of the sealing plate 7 so as to close the hole 6, and a cap-shaped positive terminal 10 is disposed so as to cover the safety valve 11. The positive electrode terminal 10 has a plurality of gas passage holes (not shown). When gas is abnormally generated in the outer can 1, a gap is generated between the safety valve 11 and the sealing body 7, and the hole 6 and the gas passage hole are formed. The gas inside the outer can 1 is discharged to the outside of the battery.
[0005]
By the way, in the sealed storage battery, it is desired to increase the capacity as well as prolong the life. Therefore, conventionally, attempts have been made to achieve higher battery capacity by improving the volumetric efficiency inside the battery. As an example of such a prior art, Japanese Patent Laid-Open No. 10-31824 discloses a core 4a on the outer can 1 side on the electrode plate located on the outermost side of the electrode group 2 ′ as shown in FIG. A square battery is disclosed.
[0006]
According to this prior art prismatic battery, since the volume efficiency inside the battery is high, the capacity of the battery can surely be increased. However, in the case of this rectangular battery, the hydrogen gas generated inside the battery stays between the outermost electrode plate and the battery outer can, so that the internal pressure of the battery increases with the progress of the charge / discharge cycle.
In particular, when this square battery is charged at a high rate (large current), the internal pressure of the battery becomes abnormally high due to the retained hydrogen gas, and the alkaline electrolyte in the battery from the hole 6 of the sealing plate 7 is discharged as the gas is discharged. May leak (see FIG. 1). When the alkaline electrolyte is leaked in this way, the alkaline electrolyte contained in the battery is reduced, and there is a problem that it is difficult to extend the life of the battery.
[0007]
In order to suppress the abnormal pressure increase inside the battery that occurs in the above-described prior art, Japanese Patent Application Laid-Open No. 11-97057 discloses an outer and inner negative electrode mixture (active) in an electrode plate located on the outermost side of the electrode group. A prismatic alkaline secondary battery in which the ratio of the thickness of the material layer is defined is disclosed.
[0008]
[Problems to be solved by the invention]
Incidentally, the alkaline electrolyte gradually decreases as the electrode plate swells inside the battery, for example, besides leaking out of the battery as the charge / discharge cycle progresses. Therefore, like the prismatic alkaline secondary battery disclosed in Japanese Patent Application Laid-Open No. 11-97057, the exterior of the negative electrode plate located outside the electrode group only from the viewpoint of suppressing the increase in the internal pressure of the battery accompanying the progress of the charge / discharge cycle When the thickness of the negative electrode mixture on the can side is defined, the following problems are caused.
[0009]
That is, the negative electrode mixture in contact with the outer can has less contribution to the charge / discharge reaction than the negative electrode mixture facing the positive electrode plate across the separator, and in the case of a battery with a thick negative electrode mixture in contact with the outer can, Since the amount of the alkaline electrolyte that is absorbed is large, the amount of the electrolyte that contributes to the charge / discharge reaction is reduced. And in the case of such a battery, since the amount of the electrolyte solution that already contributes to charging / discharging is small at the time of manufacture, charging / discharging with the progress of the charging / discharging cycle compared to the case where the negative electrode mixture in contact with the outer can is thin. This is a problem that the amount of the electrolyte solution that contributes to the battery life quickly falls below a predetermined lower limit, making it difficult to extend the life of the battery.
[0010]
An object of the present invention is to solve the above-described problems, and to provide a sealed storage battery having a high capacity and a long life, in which an increase in the internal pressure of the battery accompanying the progress of a charge / discharge cycle is suppressed.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, an electrode group comprising a positive electrode plate, a negative electrode plate having a negative electrode mixture supported on both surfaces of a core, and a separator interposed between these electrode plates. However, in a sealed storage battery sealed in an outer can together with an alkaline electrolyte with the negative electrode plate as the outermost side,
A sealed storage battery is provided in which the thickness of the negative electrode mixture on the outer can side of the outermost negative electrode plate is ½ or less of the thickness of the negative electrode mixture at other locations.
[0012]
The thickness of the negative electrode mixture on the outer can side of the outermost negative electrode plate is preferably 4 times or less the average particle size of the hydrogen storage alloy contained in the negative electrode mixture.
Further, the outermost negative electrode plate is preferably in direct contact with the outer can.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a sealed storage battery B (hereinafter referred to as battery B) according to an embodiment of the present invention.
As will be described later, this battery B is the same as the conventional sealed storage battery A described above except that the negative electrode mixture on the outer can 1 side of the negative electrode plate located outside the electrode group 2 has a predetermined thickness. Have the same configuration. Therefore, in the following, the positive electrode plate 3, the negative electrode plate 4, the separator 5, and the alkaline electrolyte that constitute the battery B will be described in detail.
[0014]
1) Positive electrode plate 3
The positive electrode plate 3 is formed of a positive electrode mixture containing nickel hydroxide particles supported on a positive electrode core. The positive electrode plate 3 is prepared, for example, by preparing a paste containing nickel hydroxide particles, cobalt-based particles as a conductive additive, a binder and water, filling the paste into a core, and drying and pressure-molding the paste. Thereafter, it is produced by cutting into a desired size.
[0015]
As the nickel hydroxide particles, for example, single nickel hydroxide particles or nickel hydroxide particles in which either one or both of zinc and cobalt are coprecipitated with metallic nickel can be used. The latter positive electrode plate containing nickel hydroxide particles can further improve charging efficiency in a high temperature state.
From the viewpoint of improving the charge / discharge efficiency of the battery B, the peak half-value width of the (101) plane of the nickel hydroxide particles by the X-ray powder diffraction method is 0.8 ° / 28 (Cu-Kα) or more. Is preferred. The half width of the peak of the (101) plane according to the powder X-ray diffraction method of the nickel hydroxide powder is 0.9 to 1.0 ° / 2θ (Cu—Kα).
[0016]
Examples of the binder include polytetrafluoroethylene (PTFE), polyethylene, polypropylene, rubber polymers (for example, latex of styrene butadiene rubber (SBR), latex of acrylonitrile butadiene rubber (NBR), ethylene propylene diene monomer ( EPDM) and other hydrophobic polymers; for example, carboxymethyl cellulose (CMC), methyl cellulose (MC), hydroxypropyl methyl cellulose (HPMC), polyacrylates (for example, sodium polyacrylate (SPA)), polyvinyl alcohol (PVA) , Polyethylene oxide, copolymer of a monomer having at least one COOX group and vinyl alcohol (where X is an element selected from hydrogen, alkali metals, and alkaline earth metals) Ranaru) a hydrophilic polymer such as; and the like. As the binder, one or more selected from the aforementioned polymers can be used. The polyethylene, the polypropylene, and the polytetrafluoroethylene can be used in the form of a dispersion.
[0017]
Examples of the cobalt compound forming the cobalt-based particles include dicobalt trioxide (Co 2 O 3 ), cobalt metal (Co), cobalt monoxide (CoO), and cobalt hydroxide {Co (OH) 2 }. be able to.
Examples of the positive electrode core include those having a sponge-like, fibrous, or felt-like porous structure made of a metal such as nickel or stainless steel or a resin plated with nickel.
[0018]
2) Negative electrode plate 4
As shown in FIG. 2, the negative electrode plate 4 is formed by providing a negative electrode mixture 4b containing a negative electrode active material on both surfaces of the negative electrode core 4a.
In the present invention, out of the negative electrode plate 4, the negative electrode plate (hereinafter referred to as the outermost negative electrode plate) located on the outermost side of the electrode group 2 in the stacking direction of the electrode plates 3, 4 is outside (the outer can 1 side). The thickness of the negative electrode mixture 4b is equal to or less than ½ of the thickness of the negative electrode mixture 4b at other locations, that is, the inner side (center side of the electrode group 2) of the negative electrode mixture 4b. And in the location which opposes the side wall of the outer can 1 of the outermost negative electrode plate, the core body 4a is covered with the negative electrode mixture 4b and is not exposed.
[0019]
Thus, the thickness of the negative electrode mixture 4b outside the outermost negative electrode plate is 1/2 or less of the thickness of the other negative electrode mixture, and the core body 4a is exposed at a location facing the side wall of the outer can 1. The reason for not doing so is as follows.
That is, when the core of the outermost negative electrode plate is opposed to the outer can side wall without the negative electrode mixture, although the volumetric efficiency is high, the negative electrode mixture that absorbs hydrogen gas generated inside the battery is insufficient, Hydrogen gas stays between the negative electrode plate and the battery outer can, and the pressure inside the battery rises. In particular, when the battery is charged at a high rate (high current), the pressure inside the battery becomes remarkably high, and the alkaline electrolyte in the battery leaks out of the battery together with hydrogen gas through the hole 6 and the gas passage hole. The charge / discharge cycle characteristics of the battery will be significantly reduced.
[0020]
On the other hand, when the thickness of the negative electrode mixture on the outside of the outermost negative electrode plate exceeds 1/2 of the other negative electrode mixture, problems relating to the internal pressure of the battery are prevented. However, since the negative electrode mixture outside the outermost negative electrode plate does not face the positive electrode plate, the contribution to the charge / discharge reaction is small, and the thickness of the outer negative electrode mixture is relatively smaller than other negative electrode mixtures. This is because if the proportion of the amount of the alkaline electrolyte contained therein increases and the charge / discharge cycle characteristics of the battery decrease.
[0021]
The negative electrode plate in which the negative electrode mixture containing the negative electrode active material is held on both sides of the core is prepared by, for example, kneading the negative electrode active material, the conductive material, and the binder together with water to prepare the paste, Manufactured by filling the body, drying, and molding.
The outermost negative electrode plate used in the present invention has different thicknesses of the negative electrode mixture on the front and back sides, for example, the paste filling amount is changed on the front and back sides, and the negative electrode mixture on one side and the thickness are on the other side during press molding. It can produce by pressing so that it may become 1/2 of the thickness of negative electrode mixture. Alternatively, the negative electrode plates having different negative electrode mixture thicknesses on the front and back sides described above are the same as the negative electrode mixture on one side and the thickness of the negative electrode mixture on the other side without changing the filling amount of the paste on the front and back sides. May be prepared using a method of cutting off the negative electrode mixture on one side.
[0022]
In the present invention, the outermost negative electrode plate is preferably in direct contact with the side wall of the outer can 1. This is because the current collecting property is improved by the direct contact between the side wall of the outer can that also serves as the negative electrode terminal and the negative electrode plate.
Examples of the negative electrode active material include cadmium compounds such as metal cadmium and cadmium hydroxide, and hydrogen. Examples of the hydrogen host matrix include a hydrogen storage alloy.
[0023]
Especially, since the said hydrogen storage alloy can improve the capacity | capacitance of a secondary battery rather than the case where the said cadmium compound is used, it is preferable. The hydrogen storage alloy is not particularly limited as long as it can store hydrogen generated electrochemically in the electrolyte and can easily release the stored hydrogen during discharge. For example, LaNi 5 , MmNi 5 (Mm is a misch metal), LmNi 5 (Lm is at least one selected from rare earth elements including La), and part of Ni in these alloys is Al, Mn, Co, Ti, Cu, Zn , Zr, Cr, B, or a multi-element type substituted by an element such as TiNi type or TiFe type. In particular, a hydrogen storage alloy having a composition represented by the general formula LmNiwCoxMnyAlz (the total value of atomic ratios w, x, y, z is 5.00 ≦ w + x + y + z ≦ 5.50) is pulverized as the charge / discharge cycle progresses. This is preferable because the charge / discharge cycle life can be improved.
[0024]
In the present invention, the thickness of the negative electrode mixture outside the outermost negative electrode plate is preferably 4 times or less the average particle size of the hydrogen storage alloy. This is because when the ratio exceeds four times, the excess electrolyte distributed to the outer negative electrode mixture increases, and the charge / discharge cycle life decreases.
As the binder, one or more selected from the same polymers as those described for the positive electrode plate described above can be used. Examples of the conductive material include carbon black and graphite.
[0025]
Examples of the negative electrode core include two-dimensional substrates such as punched metal, expanded metal, perforated rigid plate, and nickel net.
3) Separator 5
Examples of the separator 5 include polyamide fiber nonwoven fabrics and polyolefin fiber nonwoven fabrics such as polyethylene and polypropylene provided with a hydrophilic functional group.
[0026]
4) Alkaline electrolyte As the alkaline electrolyte, for example, an aqueous solution of sodium hydroxide (NaOH), an aqueous solution of lithium hydroxide (LiOH), an aqueous solution of potassium hydroxide (KOH), a mixed solution of NaOH and LiOH, KOH and A mixed solution of LiOH, a mixed solution of KOH, LiOH, and NaOH can be used.
[0027]
【Example】
Examples 1 to 3, Comparative Examples 1 and 2
1. Preparation of positive electrode plate 0.3% by weight of carboxymethylcellulose and 0.5% by weight of polytetrafluoroethylene were added to a mixed powder consisting of 90% by weight of nickel hydroxide powder and 10% by weight of cobalt oxide powder as a conductive additive, A paste was prepared by kneading in the presence of.
[0028]
This paste is filled in a sintered fiber substrate as a core, dried, and then roller-pressed and rolled to form a positive electrode plate having a structure in which a positive electrode material containing nickel hydroxide is assigned to the core. A sheet was produced. Each positive electrode plate had a positive electrode material thickness of 20 μm, an overall thickness of 0.6 mm, and a capacity per unit area of 650 mAh / cc.
2. Production of Negative Electrode Plate A hydrogen storage alloy having a composition of LmNi 4.0 Co 0.4 Mn 0.3 A1 0.3 was produced by a high frequency furnace using commercially available lanthanum-rich misch metal Lm, Ni, Co, Mn and Al. The hydrogen storage alloy was mechanically pulverized and passed through a 200 mesh sieve. To 100 parts by weight of the obtained alloy powder having an average particle size of 50 μm, 0.5 part by weight of sodium polyacrylate, 0.125 part by weight of carboxymethyl cellulose, and a dispersion of polytetrafluoroethylene (specific gravity 1.5, solid content 60% by weight) A paste was prepared by adding 2.5 parts by weight in terms of solid content and 1.0 part by weight of carbon powder as a conductive material and mixing with 50 parts by weight of water. This paste was applied to both sides of the punched metal as the core in the thicknesses shown in Table 1 and dried. Subsequently, it pressure-molded with the roller press so that the thickness ratio of a negative electrode mixture might become the value shown in Table 1. FIG. Thus, a negative electrode mixture containing hydrogen as an active material or a hydrogen storage alloy as a hydrogen host matrix is provided on both sides of the core, and has the thickness ratio of the negative electrode mixture shown in Table 1. Four outermost negative electrode plates were produced for each example and comparative example.
[0029]
On the other hand, the paste was applied to both sides of the punched metal to a thickness of 0.70 mm, dried, and then pressure-formed by a roller press. Thereby, the negative electrode mixture containing hydrogen as an active material or a hydrogen storage alloy as a hydrogen host matrix is assigned to both surfaces of the core, and the thickness ratio of the negative electrode mixture is 1: 1. Four negative plates for the inner side of the electrode group were prepared for each of Examples and Comparative Examples.
[0030]
3. Each positive electrode plate obtained by assembling the battery is encapsulated with a bag-shaped separator made of a non-woven fabric mainly composed of polyolefin, and this and each negative electrode plate are alternately stacked, with the outermost negative electrode plate on the outermost side, Produced an electrode group in which the negative electrode plates for the inside were respectively arranged.
After storing such an electrode group in a bottomed rectangular tubular outer can serving also as a negative electrode terminal so that the outermost negative electrode plate is in direct contact with the side wall of the outer can, 7N KOH and 1N in the outer can Two F5 size (theoretical capacity: 665 mAh) prismatic nickel metal hydride secondary batteries containing an alkaline electrolyte made of LiOH and having the structure shown in FIG. 1 described above were assembled for each example and comparative example.
[0031]
4). Battery cycle characteristics evaluation 1) Internal resistance and mass reduction The secondary batteries of Examples 1 to 3 and Comparative Examples 1 and 2 thus obtained were first charged and discharged. Next, after charging 150% of these batteries at 1 CmA, a charge / discharge cycle was performed in which the batteries were discharged until the battery voltage reached 1.0 V at 1 CmA.
[0032]
Then, after the battery voltage at the 500th cycle reached 1.0 V, the internal resistance of each battery was measured at AC (1 kHz). For each battery, the battery mass was measured before the start of charge / discharge at the first cycle and after the battery voltage at the 500th cycle reached 1.0 V, and the battery mass (electrolyte) decreased due to the charge / discharge cycle. The amount was measured. These results are also shown in Table 1.
[0033]
2) Pressure inside the battery For the secondary batteries of Examples 1 to 3 and Comparative Examples 1 and 2, the battery internal pressure was measured. Measurement of the battery internal pressure, as a subject, not sealing plate is attached to the upper opening of the outer can, each battery outer can top is open, then it placed in a pressure measuring device M shown in FIG. 3 I went.
[0034]
The pressure measuring device M includes a battery housing case made of acrylic resin, and the housing case includes a case body 21 and a cap 22. A bottomed hole 23 having substantially the same shape as the outer shape of the battery outer can constituting the subject 24 is formed at the center of the case body 21, and the subject 24 is accommodated in the bottomed hole 23. A cap 22 is disposed on the case body 21 via a packing 25 and an O-ring 26, and the case body 21 and the cap 22 are fixed to each other by bolts 27 and nuts 28. The case body 21, the cap 22, the cap 22, the packing 25, and the O-ring 26 define an airtight space, and the bottomed hole 23 or the subject 24 is included in the airtight space. A pressure detector 29 for detecting the pressure in the bottomed hole 23 is attached to the cap 22. Further, a negative electrode lead wire 30 and a positive electrode lead wire 31 for charging and discharging the subject are respectively connected to the negative electrode plate and the positive electrode plate of the subject 24, and the lead wires 30 and 31 include the packing 25 and the O-ring 26. Is led out to the outside of the case body 21.
[0035]
Using such a battery internal pressure measuring apparatus M, charging is performed until the battery voltage reaches 1.0 V at 1 CmA after charging 150% at 1 CmA for each of the samples of Examples 1 to 3 and Comparative Examples 1 and 2. A discharge cycle was performed, and the battery internal pressure during charging at each cycle was measured. The battery internal pressure measurement results at the 200th cycle are also shown in Table 1.
[0036]
[Table 1]
Figure 0004141152
[0037]
As can be seen from Table 1, the batteries of Examples 1 to 3 are less likely to increase the internal pressure of the battery, have a smaller decrease in battery mass, and have a lower internal resistance than the battery of Comparative Example 1. . This is because the outermost negative electrode plate has a negative electrode mixture on the outer side, hydrogen gas retention between the outermost negative electrode plate and the battery outer can is suppressed, and leakage of the alkaline electrolyte due to the charge / discharge cycle is prevented. it is conceivable that.
[0038]
Moreover, although the battery of Examples 1-3 is equivalent about the battery internal pressure and battery mass reduction | decrease compared with the battery of the comparative example 2, it turns out that internal resistance is small. In the batteries of Examples 1 to 3, the thickness of the negative electrode mixture outside the outermost negative electrode plate is less than half the thickness of the inner negative electrode mixture, and the electrolysis absorbed by the outer negative electrode mixture This is because the amount of solution is small and the alkaline electrolyte effectively contributes to the charge / discharge reaction.
[0039]
Furthermore, when the batteries of Examples 1 to 3 are compared, it is recognized that the internal resistance and the mass decrease tend to decrease as the thickness of the negative electrode mixture outside the outermost negative electrode plate decreases. Therefore, the thinner the negative electrode mixture on the outside, the better. However, if the core part facing the side wall of the battery outer can is exposed as in the case of the battery of Comparative Example 1, the battery internal pressure, the internal resistance, and the mass reduction increase, so that the negative electrode combination on the outer side of the outermost negative electrode plate increases. The thickness of the agent is preferably 3/20 (0.15 / 1.0) or more of the thickness of the other portion or the inner negative electrode mixture.
[0040]
【The invention's effect】
As described above in detail, the sealed storage battery of the present invention has a negative electrode plate in which the negative electrode mixture is supported on both surfaces of the core body, and the negative electrode mixture outside the negative electrode plate located outside the electrode plate group. Since the thickness is not more than half of the thickness of the inner negative electrode mixture, an increase in pressure and a decrease in mass in the battery accompanying the progress of the charge / discharge cycle are suppressed, and a longer battery life can be achieved.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing an example of a sealed storage battery.
FIG. 2 is a cross-sectional view of an electrode group used in a battery B according to the present invention.
FIG. 3 is a cross-sectional view showing a schematic configuration of a battery internal pressure measuring device.
FIG. 4 is a cross-sectional view of an electrode group used in a conventional battery.
[Explanation of symbols]
B Sealed storage battery 1 Outer can 2 Electrode group 3 Positive electrode plate 4 Negative electrode plate 4a Negative electrode core 4b Negative electrode mixture 5 Separator

Claims (1)

正極板と、芯体の両面に負極合剤が担持されている負極板と、これら極板間に介装されたセパレータとからなる電極群が、負極板を最外側にしてアルカリ電解液と一緒に外装缶に密閉封入された密閉型蓄電池において、
前記最外側の負極板の前記外装缶側の負極合剤の厚みが、他の個所の負極合剤の厚みの1/2以下であることを特徴とする密閉型蓄電池。
An electrode group consisting of a positive electrode plate, a negative electrode plate carrying a negative electrode mixture on both sides of the core, and a separator interposed between these electrode plates is combined with the alkaline electrolyte with the negative electrode plate as the outermost side. In a sealed storage battery sealed in an outer can,
The sealed storage battery, wherein a thickness of the negative electrode mixture on the outer can side of the outermost negative electrode plate is ½ or less of a thickness of the negative electrode mixture at other locations.
JP2002054589A 2002-02-28 2002-02-28 Sealed storage battery Expired - Lifetime JP4141152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002054589A JP4141152B2 (en) 2002-02-28 2002-02-28 Sealed storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002054589A JP4141152B2 (en) 2002-02-28 2002-02-28 Sealed storage battery

Publications (2)

Publication Number Publication Date
JP2003257424A JP2003257424A (en) 2003-09-12
JP4141152B2 true JP4141152B2 (en) 2008-08-27

Family

ID=28665704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002054589A Expired - Lifetime JP4141152B2 (en) 2002-02-28 2002-02-28 Sealed storage battery

Country Status (1)

Country Link
JP (1) JP4141152B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005358A1 (en) * 2011-07-01 2013-01-10 株式会社豊田自動織機 Power storage apparatus and vehicle

Also Published As

Publication number Publication date
JP2003257424A (en) 2003-09-12

Similar Documents

Publication Publication Date Title
JP4141152B2 (en) Sealed storage battery
JP3925963B2 (en) Alkaline secondary battery
JP3825548B2 (en) Nickel metal hydride secondary battery
JPH11162468A (en) Alkaline secondary battery
JP3686139B2 (en) Alkaline secondary battery
JP3567021B2 (en) Alkaline secondary battery
JP3410340B2 (en) Prismatic alkaline secondary battery
JP2004031140A (en) Square alkaline secondary battery
JP2002117857A (en) Hydrogen storing metal alloy electrode, and manufacturing method of nickel hydrogen secondary battery and hydrogen storage alloy electrode
JP3393978B2 (en) Alkaline secondary battery
JP3392700B2 (en) Alkaline secondary battery
JP2003109554A (en) Enclosed battery
JPH11214029A (en) Square alkaline secondary battery
JP2005243519A (en) Nickel hydrogen secondary battery
JP3742149B2 (en) Alkaline secondary battery
JPH11149938A (en) Nickel hydrogen secondary battery
JPH09102308A (en) Alkaline secondary battery
JP2004063325A (en) Cylindrical storage battery
JP2001006723A (en) Alkaline secondary battery and manufacture of alkaline secondary battery
JPH11260331A (en) Battery
JPH1140183A (en) Battery
JPH09213360A (en) Manufacture of angular battery
JPH11214028A (en) Rectangular alkaline secondary battery
JPH10255788A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JPH10223205A (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4141152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term