JP4141079B2 - Toroidal continuously variable transmission - Google Patents

Toroidal continuously variable transmission Download PDF

Info

Publication number
JP4141079B2
JP4141079B2 JP2000073657A JP2000073657A JP4141079B2 JP 4141079 B2 JP4141079 B2 JP 4141079B2 JP 2000073657 A JP2000073657 A JP 2000073657A JP 2000073657 A JP2000073657 A JP 2000073657A JP 4141079 B2 JP4141079 B2 JP 4141079B2
Authority
JP
Japan
Prior art keywords
pivot shaft
shaft portion
thrust
oil supply
power rollers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000073657A
Other languages
Japanese (ja)
Other versions
JP2001263442A (en
JP2001263442A5 (en
Inventor
尚 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2000073657A priority Critical patent/JP4141079B2/en
Publication of JP2001263442A publication Critical patent/JP2001263442A/en
Publication of JP2001263442A5 publication Critical patent/JP2001263442A5/ja
Application granted granted Critical
Publication of JP4141079B2 publication Critical patent/JP4141079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/043Guidance of lubricant within rotary parts, e.g. axial channels or radial openings in shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0487Friction gearings
    • F16H57/049Friction gearings of the toroid type

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • General Details Of Gearings (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明に係るトロイダル型無段変速機は、例えば自動車用の変速機の変速ユニットとして、或は各種産業機械用の変速機として、それぞれ利用する。
【0002】
【従来の技術】
自動車用変速機の変速ユニットとして、図3〜4に略示する様なトロイダル型無段変速機を使用する事が研究され、一部で実施されている。このトロイダル型無段変速機は、例えば実開昭62−71465号公報に開示されている様に、入力軸1と同心に入力側ディスク(第一のディスク)2を支持し、この入力軸1と同心に配置された出力軸3の端部に出力側ディスク(第二のディスク)4を固定している。トロイダル型無段変速機を納めたケーシングの内側には、上記入力軸1並びに出力軸3に対して捻れの位置にある枢軸5、5を中心として揺動するトラニオン6、6が設けられている。
【0003】
即ち、これら各トラニオン6、6は、両端部外側面に上記枢軸5、5を、互いに同心に、図3〜4の表裏方向に設けている。又、各トラニオン6、6の中心部には変位軸7、7の基端部を支持し、上記枢軸5、5を中心として各トラニオン6、6を揺動させる事により、各変位軸7、7の傾斜角度の調節を自在としている。各トラニオン6、6に支持された変位軸7、7の周囲には、それぞれパワーローラ8、8を回転自在に支持している。そして、各パワーローラ8、8を、上記入力側、出力側両ディスク2、4の間に挟持している。
【0004】
これら入力側、出力側両ディスク2、4の互いに対向する内側面2a、4aは、それぞれ断面が、上記枢軸5を中心とする円弧、若しくはこの様な円弧に近い曲線を回転させて得られる凹面をなしている。そして、球状凸面に形成された各パワーローラ8、8の周面8a、8aを、上記内側面2a、4aに当接させている。
【0005】
上記入力軸1と入力側ディスク2との間には、ローディングカム式の押圧装置9を設け、この押圧装置9によって、上記入力側ディスク2を出力側ディスク4に向け、弾性的に押圧自在としている。この押圧装置9は、入力軸1と共に回転するカム板10と、保持器11により保持された複数個(例えば4個)のローラ12、12とから構成されている。上記カム板10の片側面(図3〜4の左側面)には、円周方向に亙る凹凸面であるカム面13を形成し、上記入力側ディスク2の外側面(図3〜4の右側面)にも、同様のカム面14を形成している。そして、上記複数個のローラ12、12を、上記入力軸1の中心に対して放射方向の軸を中心とする回転自在に支持している。
【0006】
上述の様に構成するトロイダル型無段変速機の使用時、入力軸1の回転に伴ってカム板10が回転すると、カム面13によって複数個のローラ12、12が、入力側ディスク2外側面のカム面14に押圧される。この結果、上記入力側ディスク2が、上記複数のパワーローラ8、8に押圧されると同時に、上記1対のカム面13、14と複数個のローラ12、12との押し付け合いに基づいて、上記入力側ディスク2が回転する。そして、この入力側ディスク2の回転が、上記複数のパワーローラ8、8を介して出力側ディスク4に伝達され、この出力側ディスク4に固定の出力軸3が回転する。
【0007】
入力軸1と出力軸3との回転速度比(変速比)を変える場合で、先ず入力軸1と出力軸3との間で減速を行なう場合には、枢軸5、5を中心として各トラニオン6、6を揺動させ、各パワーローラ8、8の周面8a、8aが図3に示す様に、入力側ディスク2の内側面2aの中心寄り部分と出力側ディスク4の内側面4aの外周寄り部分とにそれぞれ当接する様に、各変位軸7、7を傾斜させる。
【0008】
反対に、増速を行なう場合には、上記枢軸5、5を中心として上記各トラニオン6、6を揺動させ、各パワーローラ8、8の周面8a、8aが図4に示す様に、入力側ディスク2の内側面2aの外周寄り部分と出力側ディスク4の内側面4aの中心寄り部分とに、それぞれ当接する様に、各変位軸7、7を傾斜させる。各変位軸7、7の傾斜角度を図3図4との中間にすれば、入力軸1と出力軸3との間で、中間の変速比を得られる。
【0009】
更に、図5〜6は、実願昭63−69293号(実開平1−173552号)のマイクロフィルムに記載された、より具体化されたトロイダル型無段変速機を示している。入力側ディスク2と出力側ディスク4とは円管状の入力軸15の周囲に、それぞれニードル軸受16、16を介して回転自在に支持している。又、カム板10は上記入力軸15の端部(図5の左端部)外周面にスプライン係合し、鍔部17によって上記入力側ディスク2から離れる方向への移動を阻止されている。そして、このカム板10とローラ12、12とにより、上記入力軸15の回転に基づいて上記入力側ディスク2を、出力側ディスク4に向け押圧しつつ回転させる、ローディングカム式の押圧装置9を構成している。上記出力側ディスク4には出力歯車18を、キー19、19により結合し、これら出力側ディスク4と出力歯車18とが同期して回転する様にしている。
【0010】
1対のトラニオン6、6の両端部は1対の支持板20、20に、揺動並びに軸方向(図5の表裏方向、図6の左右方向)の変位自在に支持している。そして、上記各トラニオン6、6の中間部に形成した円孔23、23部分に、変位軸7、7を支持している。これら各変位軸7、7は、互いに平行で且つ偏心した支持軸部21、21と枢支軸部22、22とを、それぞれ有する。このうちの各支持軸部21、21を上記各円孔23、23の内側に、ラジアルニードル軸受24、24を介して、回転自在に支持している。又、上記各枢支軸部22、22の周囲にパワーローラ8、8を、別のラジアルニードル軸受25、25を介して回転自在に支持している。
【0011】
尚、上記1対の変位軸7、7は、上記入力軸15に対して180度反対側位置に設けている。又、これら各変位軸7、7の各枢支軸部22、22が各支持軸部21、21に対し偏心している方向は、上記入力側、出力側両ディスク2、4の回転方向に関し同方向(図6で左右逆方向)としている。又、偏心方向は、上記入力軸15の配設方向に対しほぼ直交する方向としている。従って上記各パワーローラ8、8は、上記入力軸15の配設方向に若干の変位自在に支持される。この結果、構成各部品の弾性変形等に起因して、上記各パワーローラ8、8が上記入力軸15の軸方向(図5の左右方向、図6の表裏方向)に変位する場合でも、構成各部品に無理な力を加える事なく、この変位を吸収できる。
【0012】
又、上記各パワーローラ8、8の外側面と上記各トラニオン6、6の中間部内側面との間には、パワーローラ8、8の外側面の側から順に、このパワーローラ8、8に加わるスラスト荷重を支承する為のスラスト転がり軸受であるスラスト玉軸受26、26と、別のスラスト軸受であるスラストニードル軸受27、27とを設けている。このうちのスラスト玉軸受26、26は、上記各パワーローラ8、8に加わるスラスト方向の荷重を支承しつつ、これら各パワーローラ8、8の回転を許容するものである。又、上記スラストニードル軸受27、27は、上記各パワーローラ8、8から上記各スラスト玉軸受26、26を構成する外輪28、28に加わるスラスト荷重を支承しつつ、前記枢支軸部22、22及びこれら各外輪28、28が前記各支持軸部21、21を中心に揺動する事を許容する。
【0013】
更に、上記各トラニオン6、6の一端部(図6の左端部)にはそれぞれ駆動ロッド29、29を結合し、これら各駆動ロッド29、29の中間部外周面に駆動ピストン30、30を固設している。そして、これら各駆動ピストン30、30を、それぞれ駆動シリンダ46、46内に油密に嵌装している。
【0014】
上述の様に構成するトロイダル型無段変速機の場合には、入力軸15の回転は押圧装置9を介して入力側ディスク2に伝えられる。そして、この入力側ディスク2の回転が、1対のパワーローラ8、8を介して出力側ディスク4に伝えられ、更にこの出力側ディスク4の回転が、出力歯車18より取り出される。
【0015】
入力軸15と出力歯車18との間の回転速度比を変える場合には、上記1対の駆動ピストン30、30を互いに逆方向に変位させる。これら各駆動ピストン30、30の変位に伴って上記1対のトラニオン6、6が、それぞれ逆方向に変位し、例えば図6の下側のパワーローラ8が同図の右側に、同図の上側のパワーローラ8が同図の左側に、それぞれ変位する。この結果、これら各パワーローラ8、8の周面8a、8aと上記入力側ディスク2及び出力側ディスク4の内側面2a、4aとの当接部に作用する、接線方向の力の向きが変化する。そして、この力の向きの変化に伴って上記各トラニオン6、6が、支持板20、20に枢支された枢軸5、5を中心として、互いに逆方向に揺動する。この結果、前述の図3〜4に示した様に、上記各パワーローラ8、8の周面8a、8aと上記各内側面2a、4aとの当接位置が変化し、上記入力軸15と出力歯車18との間の回転速度比が変化する。
【0016】
上述の様に構成し作用するトロイダル型無段変速機の場合、パワーローラ8、8を支持する為のラジアルニードル軸受25及びスラスト玉軸受26に潤滑油を送り込む必要がある。何となれば、トロイダル型無段変速機の運転時に上記パワーローラ8、8は、大きな荷重を受けつつ高速回転する。従って、上記ラジアルニードル軸受25及びスラスト玉軸受26の耐久性を確保する為には、これら両軸受25、26に十分量の潤滑油(トラクションオイル)を送り込む必要がある。
【0017】
この様な潤滑油を送り込む為の構造として従来から、例えば実開昭62−156658号公報、特開平8−291850号公報に記載されている様な潤滑油供給装置が知られている。この従来から知られた潤滑油供給装置は、図7に示す様に、トラニオン6の内部に送り込み側給油通路31を形成すると共に、スラスト玉軸受26を構成する外輪28に給油孔32、32を形成して、このスラスト玉軸受26に潤滑油を送り込み自在としている。又、ラジアルニードル軸受25には、変位軸7の先半部を構成する枢支軸部22の内側に設けた、請求項に記載した給油通路である受入側給油通路33を通じて潤滑油を送り込む様にしている。この受入側給油通路33の上流端は、上記枢支軸部22の基端面34の一部で支持軸部21から外れた部分に開口している。
【0018】
トロイダル型無段変速機の運転時には、この変速機中に組み込まれた図示しないポンプの作用により、上記送り込み側給油通路31に潤滑油が送り込まれる。そして、この潤滑油は、送り込み側給油通路31の下流端開口から、上記スラスト玉軸受26を構成する外輪28の外側面とトラニオン6の内側面との間の隙間空間内に流出する。更にこの潤滑油は、上記給油孔32、32を通じて上記スラスト玉軸受26に、上記受入側給油通路33を通じて上記ラジアルニードル軸受25に、それぞれ送られ、これら両軸受26、25を潤滑する。
【0019】
【発明が解決しようとする課題】
上述の様に構成し作用する従来のトロイダル型無段変速機の場合、受入側潤滑油通路33の加工が面倒でコストが嵩む他、この受入側潤滑油通路33をその内部に設けた枢支軸部22の耐久性を確保する事が難しくなる。即ち、上記受入側通路33は、この枢支軸部22の軸方向(図7の上下方向)に設けられた、基端面34側にのみ開口した主通路35と、この主通路35と上記枢支軸部22の外周面とを連通させる複数の分岐通路36、36とから構成している為、加工作業が面倒である。特に、上記主通路35は、上記枢支軸部22のうちで大きな負荷を受けにくい、中心部から外れた部分に形成する。又、上記各分岐通路36、36も、大きな負荷を受けにくい部分(非負荷圏)に形成する必要がある。この為、上記各分岐通路36、36を、上記枢支軸部22の断面の直径方向に形成できない場合が多い。そして、この様な場合には、上記各分岐通路36、36を形成する為のドリル刃を、上記枢支軸部22の外周面の接線方向に対し直角方向に突き当てる事ができず、上記各分岐通路36、36の形成作業が面倒になる。
【0020】
又、加工に伴って発生するバリの除去が面倒で、コストが嵩む。即ち、ボール盤等の切削加工機を使用する加工に伴って発生したバリを放置すると、使用時に分離したバリが入力側、出力側各ディスク2、4の内側面2a、4aと各パワーローラ8、8の周面8a、8aとの摩擦係合部に入り込んで、これら各面2a、4a、8aを損傷する可能性がある。この為、上記加工に伴って発生したバリを除去する必要があるが、上記主通路35と上記各分岐通路36、36との分岐部に生じたバリの除去が面倒で、コスト上昇の原因となる。しかも、これら各分岐部の様に、2本の孔が交差する部分ではバリが発生し易いので、この様な問題が顕著になる。
【0021】
又、トロイダル型無段変速機の運転時に上記枢支軸部22には、この枢支軸部22に支持した上記パワーローラ8の周面8aと上記入力側、出力側各ディスク2、4の内側面2a、4aとの摩擦に伴って、これら各ディスク2、4の回転方向の大きな力が加わる。そして、この力に基づいて上記枢支軸部22には、大きな曲げ応力が加わる。そして、この枢支軸部22に、この枢支軸部22の中心軸に対し直角方向の孔である、上記分岐通路36、36が存在すると、この分岐通路36、36部分に応力が集中する。この為、大きなトルクを伝達するトロイダル型無段変速機の場合には、上記枢支軸部22の径を大きくしないと、上記分岐通路36、36部分に亀裂等の損傷が発生する可能性が生じる為、小型・軽量化を図りにくくなる。
本発明のトロイダル型無段変速機は、この様な事情に鑑みて発明したものである。
【0022】
【課題を解決するための手段】
本発明のトロイダル型無段変速機は、前述した従来のトロイダル型無段変速機と同様に、第一、第二のディスクと、複数のトラニオンと、複数本の変位軸と、複数個のパワーローラと、複数個のスラスト転がり軸受と、複数個の別のスラスト軸受と、給油通路とを備える。
このうちの第一、第二のディスクは、互いの内側面同士を対向させた状態で、互いに同心に、且つ回転自在に支持されている。
又、上記各トラニオンは、それぞれがこれら第一、第二のディスクの中心軸に対し捻れの位置にある枢軸を中心として揺動する。
又、上記各変位軸は、互いに偏心した支持軸部及び枢支軸部から成り、このうちの支持軸部を上記トラニオンに回転自在に支持し、枢支軸部を上記トラニオンの内側面から突出させている。
又、上記各パワーローラは、上記枢支軸部の周囲にラジアルニードル軸受を介して回転自在に支持された状態で、上記第一、第二の両ディスクの間に挟持されている。
又、上記各スラスト転がり軸受は、上記各パワーローラの外端面に添設されてこれら各パワーローラに加わるスラスト荷重を支承する。
又、上記各別のスラスト軸受は、上記各スラスト転がり軸受を構成するスラスト軌道輪の外側面と上記各トラニオンの内側面との間に設けられ、上記各パワーローラから上記各スラスト軌道輪に加わるスラスト方向の荷重を支承しつつ、上記各トラニオンに対するこれら各スラスト軌道輪の変位を許容する。
更に、上記給油通路は、上記各変位軸の枢支軸部の内部に設けられ、その上流端部を上記枢支軸部の基端面に開口させている。
特に、本発明のトロイダル型無段変速機に於いては、上記各パワーローラの中心部に、その内部に上記枢支軸部及び上記ラジアルニードル軸受を挿入自在な有底の円孔を、上記各パワーローラの外端面側にのみ開口する状態で形成している。
又、上記枢支軸部の内部に、この枢支軸部の基端面からこの枢支軸部の先端側に向けて形成された1本の直線状の給油孔の下流端を、上記枢支軸部の先端面に開口させて、上記給油通路を構成している。
そして、上記給油通路を通じて上記円孔内に送り込んだ潤滑油の全量を、上記ラジアルニードル軸受及び上記スラスト転がり軸受を通過させてから、このスラスト転がり軸受の周囲空間に排出自在としている。
【0023】
【作用】
上述の様に構成する本発明のトロイダル型無段変速機は、前述した従来のトロイダル型無段変速機と同様の作用に基づき、第一のディスクと第二のディスクとの間で回転力の伝達を行ない、更にトラニオンの傾斜角度を変える事により、これら両ディスクの回転速度比を変える。
【0024】
特に、本発明のトロイダル型無段変速機の場合には、枢支軸部の内部に設ける給油通路を、この枢支軸部の基端面から先端側に向けて形成された1本の直線状の給油孔により構成している為、上記給油通路の加工が容易でコストの低廉化を図れ、しかも、この給油通路をその内部に設けた上記枢支軸部の耐久性を確保する事が容易になる。更には、バリの発生を少なくでき、発生したバリの除去も容易である。
しかも、本発明のトロイダル型無段変速機の場合には、上記給油通路を送られる潤滑油は、その全量が、ラジアルニードル軸受及びスラスト転がり軸受を通じて流れる為、これら各軸受を潤滑する潤滑油の流量を確保して、これら各軸受の潤滑性を良好にできる。
【0025】
【発明の実施の形態】
図1は、本発明の実施の形態の第1例を示している。尚、本例の特徴は、変位軸7を構成する枢支軸部22の内部に設けた給油通路である受入側給油通路37の構造、並びにこの受入側給油通路37を通じて送られる潤滑油を、パワーローラ8Aを支持するラジアルニードル軸受25に効率良く送り込む部分の構造にある。その他の部分の構造及び作用に就いては、前述した従来構造と同様である為、重複する説明を省略若しくは簡略にし、以下、本発明の特徴部分を中心に説明する。
【0026】
上記パワーローラ8Aを枢支する為の変位軸7の先半部を構成する枢支軸部22の内側には、特許請求の範囲に記載した給油通路に対応する受入側給油通路37を設けている。この受入側給油通路37は、上記枢支軸部22の軸方向(図1の上下方向)に形成しており、その上流端(図1の上端)を上記枢支軸部22の基端面34に、その下流端(図1の下端)をこの枢支軸部22の先端面38に、それぞれ開口させている。
【0027】
又、上記パワーローラ8Aの中心部には有底の円孔39を、このパワーローラ8Aの外端面(トラニオン6の内側面に対向する面で、図1の上面)側にのみ開口する状態で形成している。この様な円孔39は、その内部に上記パワーローラ8Aを支持する為の枢支軸部22及びラジアルニードル軸受25を挿入自在である。尚、上記円孔39の底面40の中央部には凹部41を形成し、この底面40と上記枢支軸部22の先端面38とが密接せず、これら両面40、38同士の間に給油隙間42が形成される様にしている。
【0028】
上述の様な受入側給油通路37を有する上記変位軸7、及び上述の様な円孔39を有するパワーローラ8Aを組み込んだ、本例のトロイダル型無段変速機の運転時に、トラニオン6内に設けられた送り込み側給油通路31を通じて送り込まれる潤滑油は、上記受入側給油通路37の上流端からこの受入側給油通路37に流入する。そして、この受入側給油通路37内を流れた潤滑油は、この受入側給油通路37の下流端開口から上記給油隙間42に入り込む。
【0029】
この様にして給油隙間42内に入り込んだ潤滑油は、この給油隙間42をその奥端部(底部)に設けた上記円孔39の開口部に向け、上記ラジアルニードル軸受25内の隙間を通過しつつ流れる。更に、上記円孔39から流出した潤滑油は、スラスト玉軸受26の隙間を通じて、上記パワーローラ8Aの径方向外方に流れる。この様に本例の場合には、上記受入側給油通路37の下流端開口から流れ出した潤滑油は、その全量が、上記ラジアルニードル軸受25及び上記スラスト玉軸受26を通じて流れる。従って、これら各軸受25、26を潤滑する潤滑油の流量を確保して、これら各軸受25、26の潤滑性を良好にできる。
【0030】
又、本例の場合には、上記受入側給油通路37を、前記枢支軸部22の基端面34から先端面38に向け、この枢支軸部22の軸方向(基端面34及び先端面38に対し直角方向)に形成している。この為、上記受入側給油通路37の加工が容易で、コストの低廉化を図れる。即ち、上記受入側給油通路37を形成する作業は、上記基端面34(又は先端面38)にドリル刃を直角に突き当てる事で、容易に行なえる。しかも、加工に伴ってバリが発生する個所は、先端面38(又は基端面34)の1個所のみであり、しかもこのバリは外部に露出した場所に存在する為、除去作業は容易である。従って、上記受入側給油通路37の形成作業自体も、この形成作業に伴って生じるバリの除去も容易で、コスト低減を図れる。
【0031】
しかも、上記受入側給油通路37は、上記枢支軸部22の軸方向に形成している為、トロイダル型無段変速機の運転時にこの枢支軸部22に曲げ応力が作用した場合でも、上記受入側給油通路37部分に発生する応力集中の程度は小さい。言い換えれば、前述した従来構造の様な、径方向の孔が存在しないので、曲げ応力によっても、大きな応力集中が発生する事はない。この為、上記枢支軸部22の径を特に大きくしなくても、この枢支軸部22を含む変位軸7の耐久性を確保する事が容易になる。しかも、発生する応力が低下するので、この変位軸7を肉抜き等によって、より軽量化する事も可能になり、小型・軽量で、しかも十分な耐久性を有するトロイダル型無段変速機の実現を図れる。
【0032】
次に、図2は、本発明の実施の形態の第2例を示している。本例の場合には、変位軸7を構成する枢支軸部22の基端面34の一部で、この枢支軸部22に形成した受入側給油通路37の上流端開口部に、大径部43を形成している。この様な大径部43は、トラニオン6に設けた送り込み側給油通路31(図1参照)の下流端開口部と対向して、この送り込み側給油通路31から吐出される潤滑油を上記受入側給油通路37に、効率良く取り込める様にする。その他の構成及び作用は、上述した第1例と同様である。
【0033】
【発明の効果】
本発明は、以上に述べた通り構成され作用する為、軽量でしかも十分な耐久性を有するトロイダル型無段変速機を、低コストで実現できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態の第1例を示す要部断面図。
【図2】 同第2例を示す、図1のA部に相当する断面図。
【図3】 従来から知られているトロイダル型無段変速機の基本的構成を、最大減速時の状態で示す側面図。
【図4】 同じく最大増速時の状態で示す側面図。
【図5】 従来の具体的構造の1例を示す断面図。
【図6】 図5のB−B断面図。
【図7】 給油通路を設けた従来構造を示す要部断面図。
【符号の説明】
1 入力軸
2 入力側ディスク(第一のディスク)
2a 内側面
3 出力軸
4 出力側ディスク(第二のディスク)
4a 内側面
5 枢軸
6 トラニオン
7 変位軸
8、8A パワーローラ
8a 周面
9 押圧装置
10 カム板
11 保持器
12 ローラ
13、14 カム面
15 入力軸
16 ニードル軸受
17 鍔部
18 出力歯車
19 キー
20 支持板
21 支持軸部
22 枢支軸部
23 円孔
24、25 ラジアルニードル軸受
26 スラスト玉軸受
27 スラストニードル軸受
28 外輪
29 駆動ロッド
30 駆動ピストン
31 送り込み側給油通路
32 給油孔
33 受入側給油通路
34 基端面
35 主通路
36 分岐通路
37 受入側給油通路
38 先端面
39 円孔
40 底面
41 凹部
42 給油隙間
43 大径部
46 駆動シリンダ
[0001]
BACKGROUND OF THE INVENTION
The toroidal type continuously variable transmission according to the present invention is used, for example, as a transmission unit of a transmission for an automobile or as a transmission for various industrial machines.
[0002]
[Prior art]
The use of a toroidal continuously variable transmission as schematically shown in FIGS. 3 to 4 as a transmission unit of a transmission for automobiles has been studied and implemented in part. This toroidal-type continuously variable transmission supports an input side disk (first disk) 2 concentrically with the input shaft 1 as disclosed in, for example, Japanese Utility Model Laid-Open No. 62-71465. The output side disk (second disk) 4 is fixed to the end of the output shaft 3 arranged concentrically. On the inner side of the casing containing the toroidal type continuously variable transmission, trunnions 6 and 6 that swing around pivots 5 and 5 that are twisted with respect to the input shaft 1 and the output shaft 3 are provided. .
[0003]
That is, the trunnions 6, 6, the pivot shafts 5, 5 at both ends outer side, concentric with each other, are provided on the front and back direction of FIG. 3-4. Further, by supporting the base ends of the displacement shafts 7 and 7 at the center of the trunnions 6 and 6, and by swinging the trunnions 6 and 6 around the pivot shafts 5 and 5, 7 tilt angle can be adjusted freely. Power rollers 8 and 8 are rotatably supported around the displacement shafts 7 and 7 supported by the trunnions 6 and 6, respectively. The power rollers 8 and 8 are sandwiched between the input side and output side disks 2 and 4.
[0004]
The inner side surfaces 2a and 4a of the input side and output side discs 2 and 4 facing each other are concave surfaces obtained by rotating a cross section of an arc centered on the pivot 5 or a curve close to such an arc. I am doing. And the peripheral surfaces 8a and 8a of each power roller 8 and 8 formed in the spherical convex surface are made to contact | abut to the said inner surface 2a and 4a.
[0005]
A loading cam type pressing device 9 is provided between the input shaft 1 and the input side disc 2, and the pressing device 9 makes the input side disc 2 toward the output side disc 4 elastically pressable. Yes. The pressing device 9 includes a cam plate 10 that rotates together with the input shaft 1 and a plurality of (for example, four) rollers 12 and 12 held by a cage 11. On one side surface (left side surface in FIGS. 3 to 4 ) of the cam plate 10, a cam surface 13 that is an uneven surface extending in the circumferential direction is formed, and the outer side surface of the input side disk 2 (right side in FIGS. 3 to 4 ) . The same cam surface 14 is also formed on the surface). The plurality of rollers 12 and 12 are supported so as to be rotatable about a radial axis with respect to the center of the input shaft 1.
[0006]
When the toroidal type continuously variable transmission configured as described above is used, when the cam plate 10 rotates with the rotation of the input shaft 1, the plurality of rollers 12, 12 are moved by the cam surface 13 to the outer surface of the input side disk 2. The cam surface 14 is pressed. As a result, the input side disk 2 is pressed by the plurality of power rollers 8 and 8 and at the same time, based on the pressing of the pair of cam surfaces 13 and 14 and the plurality of rollers 12 and 12, The input side disk 2 rotates. The rotation of the input side disk 2 is transmitted to the output side disk 4 via the plurality of power rollers 8, 8, and the output shaft 3 fixed to the output side disk 4 rotates.
[0007]
When the rotational speed ratio (transmission ratio) between the input shaft 1 and the output shaft 3 is changed, and when first decelerating between the input shaft 1 and the output shaft 3, each trunnion 6 is centered on the pivot shafts 5 and 5. 6, and the peripheral surfaces 8 a, 8 a of the power rollers 8, 8 are located near the center of the inner surface 2 a of the input side disk 2 and the outer periphery of the inner surface 4 a of the output side disk 4 as shown in FIG. 3. The displacement shafts 7 and 7 are inclined so as to abut against the offset portions.
[0008]
On the other hand, when increasing the speed, the trunnions 6 and 6 are swung around the pivot shafts 5 and 5 so that the peripheral surfaces 8a and 8a of the power rollers 8 and 8 are as shown in FIG. The displacement shafts 7 and 7 are inclined so as to abut the outer peripheral portion of the inner side surface 2a of the input side disc 2 and the central portion of the inner side surface 4a of the output side disc 4 respectively. If the inclination angle of each of the displacement shafts 7 and 7 is set intermediate between those shown in FIGS. 3 and 4 , an intermediate transmission ratio can be obtained between the input shaft 1 and the output shaft 3.
[0009]
5 to 6 show a more specific toroidal type continuously variable transmission described in the microfilm of Japanese Utility Model Application No. 63-69293 (Japanese Utility Model Laid-Open No. 1-173552). The input side disk 2 and the output side disk 4 are rotatably supported around needle-shaped input shafts 15 via needle bearings 16 and 16, respectively. The cam plate 10 is spline-engaged with the outer peripheral surface of the end portion (left end portion in FIG. 5 ) of the input shaft 15 and is prevented from moving away from the input side disk 2 by the flange portion 17. Then, a loading cam type pressing device 9 that rotates the input side disk 2 while pressing the input side disk 2 toward the output side disk 4 based on the rotation of the input shaft 15 by the cam plate 10 and the rollers 12 and 12. It is composed. An output gear 18 is coupled to the output side disk 4 by means of keys 19, 19, so that the output side disk 4 and the output gear 18 rotate in synchronization.
[0010]
Both ends of the pair of trunnions 6 and 6 are supported by the pair of support plates 20 and 20 so as to be swingable and displaceable in the axial direction (front and back direction in FIG . 5 and left and right direction in FIG. 6 ). The displacement shafts 7 and 7 are supported in the circular holes 23 and 23 formed in the intermediate portions of the trunnions 6 and 6. Each of these displacement shafts 7 and 7 has support shaft portions 21 and 21 and pivot shaft portions 22 and 22 that are parallel to each other and eccentric, respectively. Of these, the support shaft portions 21 and 21 are rotatably supported inside the circular holes 23 and 23 via radial needle bearings 24 and 24. Further, power rollers 8 and 8 are rotatably supported around the pivot shaft portions 22 and 22 via other radial needle bearings 25 and 25, respectively.
[0011]
The pair of displacement shafts 7 and 7 are provided at positions opposite to the input shaft 15 by 180 degrees. Further, the directions in which the pivot shafts 22 and 22 of the displacement shafts 7 and 7 are eccentric with respect to the support shafts 21 and 21 are the same with respect to the rotational directions of the input side and output side disks 2 and 4. It is set as a direction (left-right reverse direction in FIG. 6 ). The eccentric direction is a direction substantially perpendicular to the direction in which the input shaft 15 is disposed. Accordingly, the power rollers 8 and 8 are supported so as to be slightly displaceable in the direction in which the input shaft 15 is disposed. As a result, even when each of the power rollers 8 and 8 is displaced in the axial direction of the input shaft 15 (left and right direction in FIG . 5 , front and back direction in FIG. 6 ) due to elastic deformation or the like of each component . This displacement can be absorbed without applying excessive force to each part.
[0012]
Further, between the outer surface of each of the power rollers 8 and 8 and the inner surface of the intermediate portion of each of the trunnions 6 and 6, the power rollers 8 and 8 are sequentially applied from the outer surface side. Thrust ball bearings 26 and 26 which are thrust rolling bearings for supporting a thrust load, and thrust needle bearings 27 and 27 which are other thrust bearings are provided. Of these, the thrust ball bearings 26, 26 allow the power rollers 8, 8 to rotate while supporting a load in the thrust direction applied to the power rollers 8, 8. The thrust needle bearings 27, 27 support the thrust shaft 22, while supporting the thrust load applied from the power rollers 8, 8 to the outer rings 28, 28 constituting the thrust ball bearings 26 , 26 . 22 and the outer rings 28, 28 are allowed to swing around the support shafts 21, 21.
[0013]
Further, driving rods 29 and 29 are coupled to one end portions (left end portions in FIG. 6 ) of the trunnions 6 and 6, respectively, and driving pistons 30 and 30 are fixed to the outer peripheral surfaces of the intermediate portions of the driving rods 29 and 29, respectively. Has been established. These drive pistons 30 and 30 are fitted into the drive cylinders 46 and 46 in an oil-tight manner, respectively.
[0014]
In the case of the toroidal continuously variable transmission configured as described above, the rotation of the input shaft 15 is transmitted to the input side disk 2 via the pressing device 9. Then, the rotation of the input side disk 2 is transmitted to the output side disk 4 through a pair of power rollers 8 and 8, and the rotation of the output side disk 4 is further taken out from the output gear 18.
[0015]
When changing the rotational speed ratio between the input shaft 15 and the output gear 18, the pair of drive pistons 30, 30 are displaced in opposite directions. As the drive pistons 30 and 30 are displaced, the pair of trunnions 6 and 6 are displaced in the opposite directions . For example, the lower power roller 8 in FIG. The power rollers 8 are displaced to the left in the figure. As a result, the direction of the tangential force acting on the contact portion between the peripheral surfaces 8a, 8a of the power rollers 8, 8 and the inner side surfaces 2a, 4a of the input side disk 2 and the output side disk 4 changes. To do. The trunnions 6 and 6 swing in opposite directions around the pivots 5 and 5 pivotally supported by the support plates 20 and 20 in accordance with the change in the direction of the force. As a result, as shown in FIGS. 3 to 4 described above, the contact position between the peripheral surfaces 8a and 8a of the power rollers 8 and 8 and the inner surfaces 2a and 4a changes, and the input shaft 15 and The rotational speed ratio with the output gear 18 changes.
[0016]
In the case of the toroidal type continuously variable transmission configured and operated as described above, it is necessary to feed the lubricating oil to the radial needle bearing 25 and the thrust ball bearing 26 for supporting the power rollers 8 and 8. In any case, when the toroidal type continuously variable transmission is operated, the power rollers 8 and 8 rotate at a high speed while receiving a large load. Therefore, in order to ensure the durability of the radial needle bearing 25 and the thrust ball bearing 26, it is necessary to feed a sufficient amount of lubricating oil (traction oil) to both the bearings 25 and 26.
[0017]
As a structure for feeding such lubricating oil, a lubricating oil supply device as described in, for example, Japanese Utility Model Laid-Open No. 62-156658 and Japanese Patent Laid-Open No. 8-291850 has been known. As shown in FIG. 7 , this conventionally known lubricating oil supply device forms a feed-side oil supply passage 31 in the trunnion 6, and has oil supply holes 32, 32 in the outer ring 28 constituting the thrust ball bearing 26. In this way, lubricating oil can be fed into the thrust ball bearing 26 freely. The radial needle bearing 25 is fed with lubricating oil through a receiving side oil supply passage 33 which is an oil supply passage provided in the inside of the pivot shaft 22 constituting the front half of the displacement shaft 7. I have to. The upstream end of the receiving-side oil supply passage 33 is open to a part of the base end surface 34 of the pivot shaft 22 that is separated from the support shaft 21.
[0018]
During operation of the toroidal continuously variable transmission, the lubricating oil is fed into the feed-side oil supply passage 31 by the action of a pump (not shown) incorporated in the transmission. Then, this lubricating oil flows out from the downstream end opening of the feed-side oil supply passage 31 into the gap space between the outer side surface of the outer ring 28 and the inner side surface of the trunnion 6 constituting the thrust ball bearing 26. Further, the lubricating oil is sent to the thrust ball bearing 26 through the oil supply holes 32, 32 and to the radial needle bearing 25 through the receiving-side oil supply passage 33, thereby lubricating both the bearings 26, 25.
[0019]
[Problems to be solved by the invention]
In the case of the conventional toroidal-type continuously variable transmission constructed and operated as described above, the processing of the receiving-side lubricating oil passage 33 is troublesome and costly, and the receiving-side lubricating oil passage 33 is provided with a pivotal support provided therein. It becomes difficult to ensure the durability of the shaft portion 22. That is, the receiving side passage 33 is provided in the axial direction (vertical direction in FIG. 7 ) of the pivot shaft 22 and is open only on the base end face 34 side, and the main passage 35 and the pivot. Since it is composed of a plurality of branch passages 36, 36 that communicate with the outer peripheral surface of the support shaft portion 22, the machining operation is troublesome. In particular, the main passage 35 is formed in a portion of the pivot shaft portion 22 that is difficult to receive a large load and is off the center. Each of the branch passages 36, 36 also needs to be formed in a portion (non-load zone) that is difficult to receive a large load. For this reason, in many cases, the branch passages 36 and 36 cannot be formed in the diameter direction of the cross section of the pivot shaft portion 22. In such a case, the drill blade for forming each of the branch passages 36 and 36 cannot be abutted in a direction perpendicular to the tangential direction of the outer peripheral surface of the pivot shaft 22, The operation of forming the branch passages 36 and 36 is troublesome.
[0020]
Moreover, removal of burrs generated during processing is cumbersome and costly. That is, if burrs generated during processing using a cutting machine such as a drilling machine are left unattended, the burrs separated during use are the inner side surfaces 2a and 4a of the input side and output side disks 2 and 4 and the power rollers 8 and There is a possibility that these frictional surfaces 2a, 4a and 8a may be damaged by entering the frictional engagement portions with the peripheral surfaces 8a and 8a of the eight. For this reason, it is necessary to remove burrs that have occurred during the above processing, but it is troublesome to remove burrs generated at the branch portions of the main passage 35 and the branch passages 36, 36, which causes an increase in cost. Become. In addition, burrs are likely to occur at the intersections of the two holes, such as these branched portions, and this problem becomes significant.
[0021]
Further, when the toroidal-type continuously variable transmission is operated, the pivot shaft portion 22 includes a peripheral surface 8a of the power roller 8 supported by the pivot shaft portion 22 and the input side and output side disks 2 and 4 respectively. Along with the friction with the inner side surfaces 2a and 4a, a large force in the rotational direction of each of the disks 2 and 4 is applied. Based on this force, a large bending stress is applied to the pivot shaft 22. When the branch passages 36 and 36, which are holes perpendicular to the central axis of the pivot shaft portion 22, are present in the pivot shaft portion 22, stress is concentrated on the branch passage portions 36 and 36. . Therefore, in the case of a toroidal continuously variable transmission that transmits a large torque, if the diameter of the pivot shaft 22 is not increased, damage such as cracks may occur in the branch passages 36 and 36. As a result, it is difficult to reduce the size and weight.
The toroidal continuously variable transmission of the present invention has been invented in view of such circumstances.
[0022]
[Means for Solving the Problems]
The toroidal-type continuously variable transmission of the present invention is similar to the above-described conventional toroidal-type continuously variable transmission, and includes first and second disks, a plurality of trunnions, a plurality of displacement shafts, and a plurality of powers. A roller, a plurality of thrust rolling bearings, a plurality of other thrust bearings, and an oil supply passage are provided.
Of these, the first and second disks are supported concentrically and rotatably, with the inner surfaces facing each other.
Each trunnion swings around a pivot that is twisted with respect to the central axes of the first and second disks.
Each of the displacement shafts includes a support shaft portion and a pivot shaft portion that are eccentric to each other. The support shaft portion is rotatably supported by the trunnion, and the pivot shaft portion projects from the inner surface of the trunnion. I am letting.
The power rollers are sandwiched between the first and second disks in a state of being rotatably supported around the pivot shaft portion via a radial needle bearing.
The thrust rolling bearings are attached to the outer end surfaces of the power rollers and support thrust loads applied to the power rollers.
Each of the separate thrust bearings is provided between an outer surface of the thrust raceway ring constituting each thrust rolling bearing and an inner side surface of each trunnion, and is applied to each thrust raceway ring from each power roller. While supporting the load in the thrust direction, the displacement of each thrust raceway with respect to each trunnion is allowed.
Further, the oil supply passage is provided inside the pivot shaft portion of each of the displacement shafts, and an upstream end portion thereof is opened to a base end surface of the pivot shaft portion.
In particular, in the toroidal-type continuously variable transmission of the present invention, a bottomed circular hole into which the pivot shaft and the radial needle bearing can be inserted is provided in the center of each power roller. Each power roller is formed so as to open only on the outer end surface side.
Further, the downstream end of one linear oil supply hole formed from the base end surface of the pivot support shaft portion toward the distal end side of the pivot support shaft portion is provided in the pivot support shaft portion. The oil supply passage is configured by opening the front end surface of the shaft portion.
Then, the entire amount of the lubricating oil fed into the circular hole through the oil supply passage is allowed to pass through the radial needle bearing and the thrust rolling bearing, and then can be discharged into the space around the thrust rolling bearing.
[0023]
[Action]
The toroidal type continuously variable transmission of the present invention configured as described above has a rotational force between the first disk and the second disk based on the same operation as the conventional toroidal type continuously variable transmission described above. By performing transmission, and further changing the angle of inclination of the trunnion, the rotational speed ratio of these two disks is changed.
[0024]
In particular, in the case of the toroidal type continuously variable transmission according to the present invention, the oil supply passage provided inside the pivot shaft portion is formed as one straight line formed from the base end surface of the pivot shaft portion toward the distal end side. The oil supply passage makes it easy to process the oil supply passage and reduce the cost, and it is easy to ensure the durability of the pivot shaft section provided with the oil supply passage. become. Furthermore, the generation of burrs can be reduced and the generated burrs can be easily removed.
In addition, in the case of the toroidal continuously variable transmission according to the present invention, the entire amount of the lubricating oil fed through the oil supply passage flows through the radial needle bearing and the thrust rolling bearing. By ensuring the flow rate, the lubricity of these bearings can be improved.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a first example of an embodiment of the present invention . The feature of this example is that the structure of the receiving-side oil supply passage 37 that is an oil supply passage provided inside the pivot shaft 22 constituting the displacement shaft 7 and the lubricating oil sent through the receiving-side oil supply passage 37 are: The structure is such that it efficiently feeds the radial needle bearing 25 that supports the power roller 8A. Since the structure and operation of other parts are the same as those of the above-described conventional structure, the overlapping description will be omitted or simplified, and the following description will focus on the characteristic parts of the present invention.
[0026]
A receiving-side oil supply passage 37 corresponding to the oil supply passage described in the claims is provided on the inner side of the pivot shaft portion 22 constituting the first half of the displacement shaft 7 for pivotally supporting the power roller 8A. Yes. The receiving-side oil supply passage 37 is formed in the axial direction (vertical direction in FIG. 1) of the pivot shaft portion 22, and its upstream end (upper end in FIG. 1) is the base end surface 34 of the pivot shaft portion 22. In addition, the downstream end (the lower end in FIG. 1) is opened to the front end surface 38 of the pivot shaft 22, respectively.
[0027]
Further, a bottomed circular hole 39 is opened at the center of the power roller 8A only on the outer end surface (the surface facing the inner surface of the trunnion 6 and the upper surface in FIG. 1) of the power roller 8A. Forming. In such a circular hole 39, the pivot shaft portion 22 and the radial needle bearing 25 for supporting the power roller 8A can be inserted. A concave portion 41 is formed at the center of the bottom surface 40 of the circular hole 39, and the bottom surface 40 and the tip surface 38 of the pivot shaft 22 are not in close contact with each other. A gap 42 is formed.
[0028]
During operation of the toroidal type continuously variable transmission of this example incorporating the displacement shaft 7 having the receiving-side oil supply passage 37 as described above and the power roller 8A having the circular hole 39 as described above, Lubricating oil fed through the provided feeding-side oil supply passage 31 flows into the receiving-side oil supply passage 37 from the upstream end of the receiving-side oil supply passage 37. The lubricating oil that has flowed through the receiving side oil supply passage 37 enters the oil supply gap 42 from the downstream end opening of the receiving side oil supply passage 37.
[0029]
The lubricating oil that has entered the oil supply gap 42 in this way passes through the gap in the radial needle bearing 25 with the oil supply gap 42 directed toward the opening of the circular hole 39 provided at the back end (bottom) thereof. While flowing. Further, the lubricating oil that has flowed out of the circular hole 39 flows outward in the radial direction of the power roller 8 </ b> A through the clearance of the thrust ball bearing 26. As described above, in this example, the entire amount of the lubricating oil flowing out from the downstream end opening of the receiving-side oil supply passage 37 flows through the radial needle bearing 25 and the thrust ball bearing 26. Therefore, the flow rate of the lubricating oil for lubricating the bearings 25 and 26 can be secured, and the lubricity of the bearings 25 and 26 can be improved.
[0030]
In the case of this example, the receiving-side oil supply passage 37 is directed from the base end surface 34 of the pivot shaft portion 22 to the tip surface 38, and the axial direction of the pivot shaft portion 22 (the base end surface 34 and the tip surface). 38). For this reason, the receiving-side oil supply passage 37 can be easily processed, and the cost can be reduced. That is, the operation of forming the receiving-side oil supply passage 37 can be easily performed by abutting the drill blade at a right angle against the base end surface 34 (or the front end surface 38). In addition, there is only one place on the distal end surface 38 (or the base end face 34) where burrs are generated during processing, and since the burrs are present at locations exposed to the outside, the removal work is easy. Therefore, the operation of forming the receiving-side oil supply passage 37 itself and the removal of burrs caused by the formation operation are easy, and the cost can be reduced.
[0031]
Moreover, since the receiving-side oil supply passage 37 is formed in the axial direction of the pivot shaft 22, even when bending stress acts on the pivot shaft 22 during operation of the toroidal continuously variable transmission, The degree of stress concentration generated in the receiving-side oil supply passage 37 is small. In other words, since there is no radial hole as in the conventional structure described above, no large stress concentration is generated even by bending stress. Therefore, it is easy to ensure the durability of the displacement shaft 7 including the pivot shaft portion 22 without particularly increasing the diameter of the pivot shaft portion 22. Moreover, since the generated stress is reduced, it is possible to reduce the weight of the displacement shaft 7 by removing the thickness, etc., and to realize a toroidal type continuously variable transmission that is small and light and has sufficient durability. Can be planned.
[0032]
Next, FIG. 2 shows a second example of the embodiment of the present invention . In the case of this example, a part of the base end surface 34 of the pivot shaft 22 constituting the displacement shaft 7 has a large diameter at the upstream end opening of the receiving-side oil supply passage 37 formed in the pivot shaft 22. A portion 43 is formed. Such a large-diameter portion 43 faces the downstream end opening of the feed-side oil supply passage 31 (see FIG. 1) provided in the trunnion 6, and lubricates the oil discharged from the feed-side oil supply passage 31 on the receiving side. The oil supply passage 37 can be efficiently taken in. Other configurations and operations are the same as those of the first example described above.
[0033]
【The invention's effect】
Since the present invention is configured and operates as described above, a toroidal continuously variable transmission that is lightweight and has sufficient durability can be realized at low cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part showing a first example of an embodiment of the present invention.
FIG. 2 is a cross-sectional view corresponding to a portion A in FIG. 1, showing the second example.
FIG. 3 is a side view showing a basic configuration of a conventionally known toroidal type continuously variable transmission in a state of maximum deceleration.
FIG. 4 is a side view showing the state of the maximum speed increase.
FIG. 5 is a cross-sectional view showing an example of a conventional specific structure.
6 is a cross-sectional view taken along the line BB in FIG.
FIG. 7 is a cross-sectional view of a main part showing a conventional structure provided with an oil supply passage.
[Explanation of symbols]
1 Input shaft 2 Input side disk (first disk)
2a Inner side surface 3 Output shaft 4 Output side disk (second disk)
4a inner surface 5 pivot 6 trunnion 7 displacement shaft 8, 8A power roller 8a peripheral surface 9 pressing device 10 cam plate 11 cage 12 roller 13, 14 cam surface 15 input shaft 16 needle bearing 17 collar 18 output gear 19 key 20 support Plate 21 Support shaft portion 22 Pivot shaft portion 23 Circular hole 24, 25 Radial needle bearing 26 Thrust ball bearing 27 Thrust needle bearing 28 Outer ring 29 Drive rod 30 Drive piston 31 Feed-side oil supply passage 32 Oil supply hole 33 Accept-side oil supply passage 34 Base End face 35 Main passage 36 Branch passage
37 Receiving side oil supply passage 38 Tip end face 39 Circular hole 40 Bottom face 41 Recess 42 Oil supply gap 43 Large diameter part
46 drive cylinder

Claims (1)

互いの内側面同士を対向させた状態で、互いに同心に、且つ回転自在に支持された第一、第二のディスクと、それぞれがこれら第一、第二のディスクの中心軸に対し捻れの位置にある枢軸を中心として揺動する複数のトラニオンと、それぞれが互いに偏心した支持軸部及び枢支軸部から成り、このうちの支持軸部を上記トラニオンに回転自在に支持し、枢支軸部を上記トラニオンの内側面から突出させた複数本の変位軸と、それぞれが上記枢支軸部の周囲にラジアルニードル軸受を介して回転自在に支持された状態で、上記第一、第二の両ディスクの間に挟持された複数個のパワーローラと、これら各パワーローラの外端面に添設されてこれら各パワーローラに加わるスラスト荷重を支承しつつこれら各パワーローラの回転を許容する複数個のスラスト転がり軸受と、これら各スラスト転がり軸受を構成するスラスト軌道輪の外側面と上記各トラニオンの内側面との間に設けられ、上記各パワーローラから上記各スラスト軌道輪に加わるスラスト方向の荷重を支承しつつ、上記各トラニオンに対するこれら各スラスト軌道輪の変位を許容する複数個の別のスラスト軸受と、上記各変位軸の枢支軸部の内部に設けられ、その上流端部を上記枢支軸部の基端面に開口させた給油通路とを備えたトロイダル型無段変速機に於いて、上記各パワーローラの中心部に、その内部に上記枢支軸部及び上記ラジアルニードル軸受を挿入自在な有底の円孔を、上記各パワーローラの外端面側にのみ開口する状態で形成すると共に、上記枢支軸部の内部に、この枢支軸部の基端面からこの枢支軸部の先端側に向けて形成された1本の直線状の給油孔の下流端を、上記枢支軸部の先端面に開口させて、上記給油通路を構成すると共に、この給油通路を通じて上記円孔内に送り込んだ潤滑油の全量を、上記ラジアルニードル軸受及び上記スラスト転がり軸受を通過させてから、このスラスト転がり軸受の周囲空間に排出自在とした事を特徴とするトロイダル型無段変速機。The first and second discs supported concentrically and rotatably with the inner surfaces facing each other, and the twisted positions with respect to the central axes of these first and second discs, respectively A plurality of trunnions that swing about a pivot shaft, and a support shaft portion and a pivot shaft portion that are eccentric to each other. The support shaft portion is rotatably supported by the trunnion, and the pivot shaft portion A plurality of displacement shafts projecting from the inner side surface of the trunnion, and each of the first and second shafts being rotatably supported via a radial needle bearing around the pivot shaft portion. A plurality of power rollers sandwiched between the disks and a plurality of power rollers attached to the outer end surfaces of the respective power rollers to allow rotation of the respective power rollers while supporting a thrust load applied to the respective power rollers. A thrust rolling bearing is provided between the outer surface of each thrust rolling bearing and the inner surface of each trunnion constituting each thrust rolling bearing, and applies a thrust load applied to each thrust bearing ring from each power roller. A plurality of other thrust bearings that allow displacement of each of the thrust bearing rings with respect to each of the trunnions while being supported, and a pivot shaft of each of the displacement shafts, the upstream end of which is provided in the pivot support In a toroidal-type continuously variable transmission having an oil supply passage opened at the base end surface of the shaft, the pivot shaft and the radial needle bearing can be inserted into the center of each power roller. The bottomed circular hole is formed so as to open only on the outer end surface side of each of the power rollers, and the pivot shaft portion is provided in the pivot shaft portion from the base end surface of the pivot shaft portion. Ahead The downstream end of one linear oil supply holes formed toward the side, and is opened to the distal end surface of the pivot shaft portion, along with constituting the oil supply passage, to the circular hole through the oil supply passageway A toroidal-type continuously variable transmission characterized in that the entire amount of lubricating oil fed is allowed to pass through the radial needle bearing and the thrust rolling bearing and then discharged into the space around the thrust rolling bearing .
JP2000073657A 2000-03-16 2000-03-16 Toroidal continuously variable transmission Expired - Fee Related JP4141079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000073657A JP4141079B2 (en) 2000-03-16 2000-03-16 Toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000073657A JP4141079B2 (en) 2000-03-16 2000-03-16 Toroidal continuously variable transmission

Publications (3)

Publication Number Publication Date
JP2001263442A JP2001263442A (en) 2001-09-26
JP2001263442A5 JP2001263442A5 (en) 2005-10-13
JP4141079B2 true JP4141079B2 (en) 2008-08-27

Family

ID=18591871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000073657A Expired - Fee Related JP4141079B2 (en) 2000-03-16 2000-03-16 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP4141079B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207007A (en) 2002-01-17 2003-07-25 Nsk Ltd Toroidal type continuously variable transmission
DE102004009409A1 (en) 2004-02-24 2006-01-26 Daimlerchrysler Ag Infinitely variable variator for a toroidal transmission of a motor vehicle

Also Published As

Publication number Publication date
JP2001263442A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP3870592B2 (en) Half toroidal continuously variable transmission
JP3932027B2 (en) Toroidal continuously variable transmission
JP3617267B2 (en) Toroidal continuously variable transmission
JP4141079B2 (en) Toroidal continuously variable transmission
JP4161247B2 (en) Toroidal continuously variable transmission
JP4135249B2 (en) Half toroidal continuously variable transmission
JP3783507B2 (en) Machining method of toroidal type continuously variable transmission disk
JP4433834B2 (en) Toroidal continuously variable transmission
JP3899745B2 (en) Toroidal continuously variable transmission
JP3430648B2 (en) Toroidal type continuously variable transmission
JP4016514B2 (en) Toroidal continuously variable transmission
JP3663851B2 (en) Toroidal continuously variable transmission
JP2006002882A (en) Toroidal continuously variable transmission
JP4089081B2 (en) Toroidal continuously variable transmission
JP4055305B2 (en) Toroidal continuously variable transmission and manufacturing method thereof
JP4247733B2 (en) Toroidal continuously variable transmission
JPH08291850A (en) Toroidal type continuously variable transmission
JP3617235B2 (en) Toroidal continuously variable transmission
JP4356001B2 (en) Toroidal continuously variable transmission
JP2005163854A (en) Toroidal continuously variable transmission
JP4207330B2 (en) Toroidal continuously variable transmission
JP4761193B2 (en) Toroidal continuously variable transmission
JP3617258B2 (en) Toroidal continuously variable transmission
JPH0814350A (en) Toroidal-type continuously variable transmission
JP4013369B2 (en) Toroidal type continuously variable transmission assembly method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees