JP4138616B2 - 燃料電池発電システム - Google Patents

燃料電池発電システム Download PDF

Info

Publication number
JP4138616B2
JP4138616B2 JP2003317189A JP2003317189A JP4138616B2 JP 4138616 B2 JP4138616 B2 JP 4138616B2 JP 2003317189 A JP2003317189 A JP 2003317189A JP 2003317189 A JP2003317189 A JP 2003317189A JP 4138616 B2 JP4138616 B2 JP 4138616B2
Authority
JP
Japan
Prior art keywords
fuel cell
capacitor
voltage
power
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003317189A
Other languages
English (en)
Other versions
JP2005085623A (ja
Inventor
英彦 高瀬
浩司 為乗
尚彦 沖
浅雄 上野臺
直之 円城寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003317189A priority Critical patent/JP4138616B2/ja
Publication of JP2005085623A publication Critical patent/JP2005085623A/ja
Application granted granted Critical
Publication of JP4138616B2 publication Critical patent/JP4138616B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池とキャパシタとを並列に接続して構成され、電気負荷に対する燃料電池の電力供給が不足する状態となったときに、キャパシタの放電電流により電力供給をアシストする燃料電池発電システムに関する。
従来より、燃料電池とキャパシタとを並列に接続して構成されたハイブリッド型の燃料電池発電システムが知られている(例えば、特許文献1参照)。かかる燃料電池発電システムによれば、燃料電池及びキャパシタと接続される電気負荷からの要求電力に応じて、燃料電池に供給される反応ガス(燃料となる水素等の還元性ガス及び/又は該還元性ガスと反応させて電子を取出すための空気等の酸化性ガス)の供給量が制御される。
そして、電気負荷からの要求電力が急激に増加して、反応ガスの供給量の増加に対する燃料電池の発電量の応答遅れから、該要求電力に対して燃料電池からの電力供給が不足する状態となったときに、キャパシタの放電電流により電力供給の不足分をアシストするようにしている。
しかし、キャパシタの充電状態によっては、電気負荷の要求電力に対して燃料電池からの電力供給が不足する状態となったときに、キャパシタから放電することができず、電気負荷に対する電力供給の不足を解消することができない場合があった。
特開2002−305011号公報
本発明は上記背景を鑑みてなされたものであり、燃料電池から電気負荷に供給される電力が不足する状況となったときに、キャパシタの放電電流による電力供給のアシストが不能となることを抑制した燃料電池発電システムを提供することを目的とする。
本発明は上記目的を達成するためになされたものであり、燃料電池と、該燃料電池と並列に接続されたキャパシタと、前記燃料電池に反応ガスを供給する反応ガス供給手段と、該反応ガス供給手段により前記燃料電池に供給される反応ガスの供給量を調節する反応ガス供給量調節手段と、電気負荷からの要求電力に応じた電流が前記燃料電池から供給されるように前記反応ガス供給量調節手段を制御する燃料電池制御手段とを備えた燃料電池発電システムの改良に関する。
前記燃料電池発電システムにおいては、前記燃料電池の出力電圧と前記キャパシタの開回路電圧との相対的な高低関係によって、前記キャパシタの放電電流による電気負荷に対する電力供給のアシストが可能か否かが決まる。すなわち、前記燃料電池の出力電圧が前記キャパシタの開回路電圧よりも低いときは、高電位側の前記キャパシタから低電位側の前記燃料電池の出力部に対して放電されるため、放電電流による電力供給のアシストが可能となる。一方、前記燃料電池の出力電圧が前記キャパシタの開回路電圧よりも高いときには、低電位側の前記キャパシタから高電位側の前記燃料電池に電流は流れないため、放電電流による電力供給のアシストが不能となる。
そこで、本発明は、前記燃料電池と前記キャパシタとの間に、入力側を燃料電池の出力端子に接続すると共に出力側をキャパシタの入出力端子と接続して設けられた出力電圧可変型のDC/DCコンバータと、前記キャパシタの開回路電圧を把握する開回路電圧把握手段と、前記キャパシタの放電電流による電気負荷に対する電力供給の補助が必要であるか否かを判断する電力供給補助判断手段と、該電力供給補助判断手段により、前記キャパシタの放電電流による電気負荷に対する電力供給の補助が必要であると判断されたときに、前記DC/DCコンバータの出力電圧を前記キャパシタの開回路電圧よりも低くなるように制御する出力電圧制御手段とを備えたことを特徴とする。
かかる本発明によれば、前記燃料電池と前記キャパシタとの間に設けられた前記DC/DCコンバータにより、前記キャパシタの端子間電圧を調節できるようにしている。そして、前記電力供給補助判断手段により前記キャパシタの放電電流による電気負荷に対する電力供給の補助が必要であると判断されたときに、前記出力電圧制御手段は、前記DC/DCコンバータの出力電圧(=前記キャパシタの端子間電圧)を前記キャパシタの開回路電圧よりも低くなるように制御する。これにより、前記キャパシタの放電電流による電気負荷に対する電力供給の補助が必要となったときに、確実に前記キャパシタからの放電電流の供給が可能な状態にすることができる。
また、前記燃料電池が前記要求電力に応じた電力を出力する状態となったときの前記燃料電池の出力電圧を推定する燃料電池電圧推定手段と、前記燃料電池が前記要求電力に応じた電力を出力する状態となったときの前記キャパシタの開回路電圧を推定する開回路電圧推定手段とを有し、前記電流補助判断手段は、前記燃料電池電圧推定手段により推定された前記燃料電池の出力電圧が、前記開回路電圧推定手段により推定された前記キャパシタの開回路電圧以上であるときに、前記キャパシタの放電電流による電気負荷に対する供給電流の補助が必要であると判断することを特徴とする。
かかる本発明において、前記燃料電池電圧推定手段により推定される前記燃料電池の出力電圧が、前記開回路電圧推定手段により推定される前記キャパシタの開回路電圧以上であるときは、電気負荷からの要求電力が増加して前記燃料電池の出力電圧が該要求電力に応じた電圧に向かって低下して行く過程において、前記キャパシタの開回路電圧が前記燃料電池の出力電圧以上となることがない。そのため、前記キャパシタの放電電流による電気負荷に対する電力供給の補助を行うことができない。そこで、この場合は、前記電力供給補助判断手段により前記キャパシタの放電電流による電気負荷に対する電流供給が必要であると判断し、前記出力電圧制御手段により前記DC/DCコンバータの出力電圧を前記キャパシタの開回路電圧よりも低くなるように制御することによって、前記キャパシタの放電電流による電気負荷に対する電力供給の補助が可能な状態とすることができる。
一方、前記燃料電池電圧推定手段により推定される前記燃料電池の出力電圧が、前記開回路電圧推定手段により推定される前記キャパシタの開回路電圧よりも低いときには、前記燃料電池の出力電圧が電気負荷からの要求電力に応じた電圧に向かって低下して行く途中で、前記燃料電池の出力電圧が前記キャパシタの開回路電圧よりも低くなる。そのため、前記出力制御手段による前記DC/DCコンバータの出力制御を行なわなくとも、前記キャパシタの放電電流による電気負荷に対する電流供給の補助が可能である。そこで、この場合には、前記電流補助手段により前記キャパシタの放電電流による電気負荷に対する電流供給が必要でないと判断し、前記出力電圧制御手段による前記DC/DCコンバータの出力電圧の制御を禁止することにより、前記キャパシタの放電電流が過剰となって前記キャパシタの端子間電圧の低下幅が大きくなることを抑制する。これにより、前記燃料電池の出力電圧を速やかに前記キャパシタの端子間電圧まで低下させて、前記燃料電池と前記キャパシタとを前記DC/DCコンバータにおける損失が少ない直結状態とすることができる。
本発明の実施の形態について、図1〜図6を参照して説明する。図1は本発明の燃料電池発電システムの全体構成図、図2は図1に示した電源管理制御部の制御ブロック図、図3はキャパシタの放電電流による電力供給のアシスト処理のフローチャート、図4,図5は目標出力電流に対応した燃料電池の出力電圧及びキャパシタの開回路電圧の推定方法を説明するためのグラフ、図6は燃料電池及びキャパシタの出力電圧の推移を示したグラフである。
図1を参照して、本発明の燃料電池発電システムは、車両に搭載されて該車両の駆動用電源として機能する。燃料電池発電システム1は、水素と空気を反応ガスとした電気化学反応を生じさせて電流を出力する燃料電池2と、電気二重層キャパシタ3(以下、単にキャパシタ3という)とを並列に接続して構成されたハイブリッド型の発電システムであり、その出力電力が、マイクロコンピュータ、メモリ等により構成されたコントローラ4によって制御される。
燃料電池発電システム1の出力電力は、モータ駆動装置5、空調機器6、12V出力のDC/DCコンバータ7を介して12V系の車載負荷8等の電気負荷に供給される。モータ駆動装置5は、コントローラ4に備えられた駆動制御部9から出力されるトルク指令値(TRQ_CMD)に応じて、モータ10の電機子に流れる電流を制御する。そして、モータ10の駆動力はトランスミッション11を介して駆動輪12に伝達される。
駆動制御部9は、アクセルペダル13の踏込み量(Ap)とモータ10の回転数(Nm)に基づいて、モータ駆動装置5で必要となる電力であるモータ要求電力(PD_REQ)の指示信号を電源管理制御部14に出力する。
また、電源管理制御部14には、モータ10以外の電装補機で消費される電力を把握するために、負荷センサ15により検出される負荷電流(I_load)と負荷電圧(V_load)の検出信号が入力され、これらの検出信号により、電源管理制御14は、モータ10以外の電装補機で消費される電力を把握する。
そして、電源管理制御部14は、燃料電池制御部16から出力される燃料電池2から供給可能な電流の上限値である出力上限電流(Ifc_LMT)と、キャパシタ3を構成するキャパシタセル(図示しない)の個々の状態(出力電圧や温度)等を考慮した上で、モータ要求電力(PD_REQ)とモータ10以外の電装補機で消費される電力との合計電力に応じて、燃料電池2から出力される電流の目標値である目標出力電流(Ifc_CMD)を決定し、該目標出力電流(Ifc_CMD)を指示する信号を燃料電池制御部16に出力する。また、電源管理制御部14は、駆動制御部9に対して、燃料電池2から供給可能な電力の上限値である出力制限電力(PLD)を通知する信号を出力する。
なお、燃料電池制御部16には、反応ガスセンサ20から出力される燃料電池2に供給される反応ガス(水素及び空気)の圧力(Pgas)、流量(Qgas)、及び温度(Tgas)の各検出信号と、燃料電池2のスタック(図示しない)の個々の状態(Vcell_indiv)の検出信号とが入力され、燃料電池制御部16は、これらの検出信号から把握される燃料電池2の状態を考慮して出力上限電流(Ifc_CMD)を決定する。
また、駆動制御部9は、電源管理制御部14から通知された出力制限電力(PLD)を超えないように、モータ駆動装置5に対してトルク指令(TRQ_CMD)の指示信号を出力し、モータ駆動装置5は、モータ10が該トルク指令(TRQ_CMD)に応じたトルクを発生するように、モータ10の電機子電流を制御する。
また、燃料電池制御部16は、燃料電池2から目標出力電流(Ifc_CMD)の電流が出力されるように、反応ガス供給装置21(本発明の反応ガス供給手段及び反応ガス供給量調節手段の機能を含む)に対して、燃料電池2に供給する反応ガスの目標供給量(CMP_CMD)を指示する信号を出力する。これにより、目標出力電流(Ifc_CMD)に応じた流量の空気と水素が燃料電池2に供給される。
そして、反応ガス供給装置21から供給される水素は、イジェクタ(図示しない)及び加湿器(図示しない)を経由して燃料電池2の水素極に供給され、空気極に供給される空気中の酸素と電気化学反応を生じて水となり、排出弁22を介して排出される。ここで、排出弁22の開度は、空気及び水素の供給圧に応じて燃料電池2内部の圧力勾配が一定に保たれるように、燃料電池制御部16からの制御信号(VLV_CMD)により制御される。
また、燃料電池2には、水冷式の冷却器(図示しない)が備えられ、燃料電池制御部16は、該冷却器の入水温度と出水温度に応じて該冷却器に供給される冷却水の流量と温度を制御する。
また、燃料電池電源装置1には、キャパシタ3の充放電電流(Icap)と端子電圧(Vcap)を検出するキャパシタセンサ31が備えられ、該キャパシタセンサ31の検出信号も電源管理制御部14に入力される。
さらに、燃料電池電源装置1には、入力側が燃料電池2の出力端子と接続され、出力側がキャパシタ3の出力端子と接続された電圧変換ユニット30が備えられている。電圧変換ユニット30は、燃料電池2の出力電圧を所定電圧に変換して出力する出力電圧可変型のDC/DCコンバータの機能(本発明のDC/DCコンバータに相当する)と、燃料電池2の出力電流(Ifc)と出力電圧(Vfc)を検出する機能とを有している。そして、電圧変換ユニット30は、電源管理制御部14から出力される電圧設定信号(VCU_CMD)に応じた電圧を出力する。
以上説明した構成により、モータ要求電力(PD_REQ)と負荷電流(Iload)及び負荷電圧(Vload)により算出される電装補機の消費電力とに応じて決定される目標出力電流(Ifc_CMD)に応じた電流が燃料電池2から出力されるように、燃料電池2に対する反応ガスの目標供給量(CMP_CMD)が制御される。
しかし、目標出力電流(Ifc_CMD)が増加したときに、それに応じて反応ガスの目標供給量(CMP_CMD)が変更されて燃料電池2の出力電流(Ifc)が実際に目標出力電流(Ifc_CMD)に達するまでには、ある程度の応答遅れが生じる。そして、かかる応答遅れが生じたときに、キャパシタ3の放電電流により電気負荷に対する電力供給をアシストすることができれば、目標出力電流(Ifc_CMD)に対する供給電流の不足が生じることを抑制することができる。
ここで、図2に示したように、キャパシタ3は、内部抵抗が0で開回路電圧がVcoのキャパシタ40と内部抵抗41とを直列に接続した等価回路で表すことができる。そして、キャパシタ3の端子間電圧(Vcap)がキャパシタ40の開回路電圧(=キャパシタ3の開回路電圧,Vco)よりも低いとき(Vcap<Vco)は、キャパシタ40から端子42に向かって放電電流(Icap_out)が流れるため、電力供給のアシストが可能である。
一方、キャパシタ3の端子間電圧(Vcap)がキャパシタ3の開回路電圧(Vco)よりも高いとき(Vcap>Vco)には、端子42からキャパシタ40に向かって充電電流(Icap_in)が流れるため、電力供給のアシストが不能となる。
そこで、キャパシタ3の端子間電圧(Vcap)がキャパシタ3の開回路電圧(Vco)よりも高い状態にあるときに、キャパシタ3の端子間電圧(Vcap)を低下させて、キャパシタ3の放電電流による電力供給のアシストを可能とする「強制電力アシスト処理」を実行するため、電源管理制御部14には、キャパシタ3の開回路電圧(Vco)を把握する開回路電圧把握手段50と、モータ要求電力(PD_REQ)及びモータ10以外の電装補機の消費電力(負荷電流(I_load)と負荷電圧(V_load)により算出される)とにより決定される要求電力(Lreq)を出力するときの燃料電池2の出力電圧(Vfc_e)を推定する燃料電池電圧推定手段51と、燃料電池2が要求電力(Lreq)を出力するときのキャパシタ3の開回路電圧(Vco_e)を推定する開回路電圧推定手段52と、「強制電力アシスト処理」の実行が必要であるか否かを判断する電力供給補助判断手段53と、「強制電力アシスト処理」の実行が可能となるように電圧変換ユニット30の出力電圧(=キャパシタ3の端子間電圧(Vcap))を制御する出力電圧制御手段54とが備えられている。
以下、図3に示したフローチャートに従って、「強制電力アシスト処理」の実行手順について説明する。図3のSTEP1は開回路電圧把握手段50による処理であり、開回路電圧把握手段50は、以下の式(1)によりキャパシタセンサ31により検出されるキャパシタ3の入出力電流(Icap)を積算し、以下の式(2)によりキャパシタ3の開回路電圧(Vco)を算出する。
Q = ∫Icap dt ・・・・・(1)
Vco = Q/C ・・・・・(2)
但し、Q:キャパシタ3の充電電荷量、Icap:キャパシタ3の入出力電流の検出値、C:キャパシタ3の容量、Vco:キャパシタ3の開回路電圧。
なお、例えばアイドリング状態やクルーズ状態において、キャパシタ3の入出力電流(Icap)がゼロとなったときに、キャパシタセンサ31により検出されるキャパシタ3の端子間電圧(Vcap,この場合はキャパシタ3の開回路電圧(Vco)と等しくなる)により、上記式(2)により算出したキャパシタ3の開回路電圧(Vco)を補正してもよい。
次のSTEP2及びSTEP3は電力供給補助判断手段53による処理であり、STEP3でキャパシタ3の開回路電圧(Vco)が予め定められた下限電圧(Vco_low)よりも低く、キャパシタ3の充電電荷量が放電電流による電力供給のアシストを行うためには不十分であるときは、電力供給補助判断手段53は、「強制電力供給アシスト処理」の実行は不要であると判断する。
そして、STEP20に分岐し、電力供給補助判断手段53は、STEP20で「強制電力アシスト処理」の禁止を指示するために、強制アシストフラグ(As_Flag)をリセット(As_Flag=0)し、STEP10に進んで処理を終了する。
また、STEP3で燃料電池2の出力電圧(Vfc)がキャパシタ3の端子間電圧(Vcap)と等しく(Vfc=Vcap)、燃料電池2とキャパシタ3とが直結状態であるときは、電圧変換ユニット30における損失が少なくなる。そのため、この場合も、電力供給補助判断手段53は、直結状態を維持するために「強制電力供給アシスト処理」の実行は不要であると判断する。そして、STEP20に分岐して、電力供給補助判断手段53は、強制アシストフラグ(As_Flag)をリセット(As_Flag=0)し、STEP10に進んで処理を終了する。
一方、STEP2でキャパシタ3の開放電圧(Vco)が下限電圧(Vco_low)以上であり、且つ、STEP3で燃料電池2の出力電圧(Vfc)とキャパシタ3の端子間電圧(Vcap)とが等しくないときには、STEP4に進む。
STEP4は燃料電池電圧推定手段51による処理であり、燃料電池電圧推定手段51は、先ず、図4(a)に示した「Lreq/Vfc MAP」に今回の要求電力(Lreq_1)を適用して、該要求電力(Lreq_1)に対応した燃料電池2の出力電圧(Vfc_1)を求める。なお、「Lreq/Vfc MAP」は、燃料電池2の出力電流密度の増加率(difc/dt、ifc=Ifc/C,ifc:電流密度(A/cm2),C:燃料電池のセル面積(cm2))の制限値や車速、アクセルペダル13の操作量等に選択パラメータに応じた複数種類の相関データ(図4(a)ではa1,a2,a3)を有しており、燃料電池電圧推定手段51は、これらの選択パラメータに応じて使用する相関データを選択する。
次に、燃料電池電圧推定手段51は、図5(b)に示した「Ifc/Vfc MAP」(燃料電池の出力電流/電圧特性グラフ)に、出力電圧(Vfc_1)を適用して、出力電圧(Vfc_1)に対応した出力電流(Ifc_1)を取得する。そして、燃料電池電圧推定手段51は、出力電圧(Vfc_1)と出力電流(Ifc_1)とを乗じた出力電力(Lfc_1,Lfc_1=Vfc_1×Ifc_1)を、図5(c)に示した「Lfc/Vfc MAP」に適用して、出力電力(Lfc_1)に対応した出力電圧(Vfc_e)を、燃料電池2から要求電力(Lfc_1)が出力されるときの燃料電池2の出力電圧の推定値として取得する。
なお、図4(a)に示した「Lreq/Vfc MAP」、図4(b)に示した「Ifc/Vfc MAP」、及び図4(c)に示した「Lfc/Vfc MAP」のデータは、予めメモリに記憶されている。
続くSTEP5は開回路電圧推定手段52による処理であり、開回路電圧推定手段52は、図5(a)に示した燃料電池2の出力電力(Lfc)の時系列グラフから、燃料電池2から目標電力(Lreq)に応じた電力が出力されるまでに要する時間(Δt)を求める。図5(a)において、t10〜t11は、車両がアイドリング状態等であって要求電力(Lreq)が小さい状態である。そして、t11で要求電力(Lreq)が増大し、燃料電池2自体や反応ガス供給装置21の応答遅れによる無駄時間(td)が経過したt12から、燃料電池2の出力電力(Lfc)が、燃料電池2の出力電流の増加率(dIfc/dt)の制限値に応じた直線bに沿って増加する。
燃料電池2の出力電力(Lfc)が要求出力(Lreq)に応じたレベル(Lfc_1)に達したときにキャパシタ3に要求される出力電力(Lcap_1)は、以下の式(3)で算出される。
Lcap_1 = Lreq − Lfc_1 ・・・・・(3)
また、t11〜t13の期間中(Δt)にキャパシタ3から出力される電力の総量は、以下の式(4)で算出される。
Ecap = Lcap_1・Δt/2 ・・・・・(4)
但し、Ecap:Δtにおけるキャパシタ3の出力電力の総量。
これにより、以下の式(5),式(6)によって、t11〜t13までの期間(Δt)におけるキャパシタ3の開放電圧の低下幅(ΔVco)を算出することができる。
ΔQ = Ecap/Vcap ・・・・・(5)
ΔVco = ΔQ/C ・・・・・(6)
但し、ΔQ:Δtにおけるキャパシタ3の放電電流の総量、Vcap:キャパシタ3の端子間電圧、ΔVco:Δtにおけるキャパシタ3の開回路電圧の低下幅。
そして、開回路電圧推定手段52は、以下の式(7)により、燃料電池2から要求電力(Lreq)に対応した電力が出力されているときのキャパシタ3の開回路電圧の推定値(Vco_e)を算出する。
Vco_e = Vco − ΔVco ・・・・・(7)
なお、上述した式(3)〜式(7)の演算によりキャパシタ3の開回路電圧の推定値(Vco_e)を算出する方法の他に、図5(b)に示したように、要求電力(Lreq)が増加したときのキャパシタ3の開回路電圧(Vco)の初期値や燃料電池2の出力電流の増加率(dIfc/dt)の制限値に応じた複数種類のデータ(図5(b)ではc1,c2,c3)を有する「Lreq/ΔVco MAP」を予めメモリに記憶し、該「Lreq/ΔVco MAP」に増加した要求電力(Lreq_1)を適用して、Δtにおけるキャパシタ3の開回路電圧の低下分(ΔVco_1)を求めるようにしてもよい。
続くSTEP6〜STEP7及びSTEP30は、電力供給補助判断手段53による処理である。STEP6において、電流補助判断手段53は、要求電力(Lreq)に応じた燃料電池2の出力電圧の推定値(Vfc_e)とキャパシタ3の開回路電圧の推定値(Vco_e)とを比較する。
ここで、図6(a)〜図6(c)は、要求電力(Lreq)が増大したときの燃料電池2の出力電圧(Vfc)と、キャパシタ3の端子間電圧(Vcap)及び開回路電圧(Vco)の変化を示したグラフであり、縦軸が電圧(V)に設定され、横軸が時間(t)に設定されている。
図6(a)のグラフでは、t21で要求電力(Lreq)が増大し、該要求電力(Lreq)に応じた推定電圧(Vfc_e)が、該要求電力(Lreq)に応じたキャパシタ3の開回路電圧(Vco_e)よりも低くなっている(Vfc_e<Vco_e)。この場合は、燃料電池2の出力電圧(Vfc)が推定電圧(Vfc_e)に向かって低下している期間(Δt)の途中のt22で、燃料電池2の出力電圧(Vfc)がキャパシタ3の端子間電圧(Vcap)と等しくなって、燃料電池2とキャパシタ3が直結状態となる。
そして、t22以降、燃料電池2の出力電圧(Vfc)(=キャパシタ3の端子間電圧(Vcap))がキャパシタ3の開回路電圧(Vco)よりも低くなるため、キャパシタ3の放電電力による電力供給のアシストが可能である。そして、燃料電池2とキャパシタ3が非直結状態である期間(t21〜t22)が相対的に短いため、非直結状態で「強制電流アシスト処理」を行うよりも、電圧変換ユニット30における損失が大きくなる非直結状態から、該非直結状態よりも電圧変換ユニット30における損失が小さくなる直結状態に速やかに移行させるほうが有効と考えられる。
次に、図6(b)のグラフでは、t31で要求電力(Lreq)が増加し、該要求出力(Lreq)に応じた燃料電池2の出力電圧の推定値(Vfc_e)が、該要求電力(Lreq)に応じたキャパシタ3の開回路電圧の推定値(Vco_e)以上となっている(Vfc_e≧Vco_e)。そして、燃料電池2の出力電圧(Vfc)が推定値(Vfc_e)に向かって低下していく期間(Δt)の途中のt32で、燃料電池2の出力電圧(Vfc)がキャパシタ3の端子間電圧(Vcap)と等しくなって、燃料電池2とキャパシタ3が直結状態となる。
しかし、t32以降、燃料電池2の出力電圧(Vfc)(=キャパシタ3の端子間電圧(Vcap))がキャパシタ3の開回路電圧(Vco)よりも低くなることはないため、キャパシタ3の放電電流による電力供給のアシストは不能となる。そして、この場合は、Δtの間、要求電力(Lreq)に対して燃料電池2からの電力供給が不足する状態が継続される。
そこで、この場合は、図6(c)に示したように、要求電力(Lreq)が増加したt41から、「強制電力アシスト処理」を行って、キャパシタ3の端子間電圧(Vcap)がキャパシタ3の開回路電圧(Vco)よりも低くなるように制御し、キャパシタ3の放電電流による電力供給の補助を可能とすることによって、要求電力(Lreq)に対して電力供給が不足する状態となることを抑制することができる。
そこで、電力供給補助判断手段53は、STEP6で、要求電力(Lreq)に応じた燃料電池2の出力電圧の推定値(Vfc_e)が、要求電力(Lreq)に応じたキャパシタ3の開回路電圧の推定値(Vcap_e)以上であるとき(図6(b)に示した状態)は、「強制電力アシスト処理」の実行が必要であると判断する。そして、STEP7に進んで、電力供給補助判断手段53は、「強制電力アシスト処理」の実行を指示するために、強制アシストフラグ(As_Flag)をセットする(As_Flag=1)。
一方、STEP6で、要求電力(Lreq)に応じた燃料電池2の出力電圧の推定値(Vfc_e)が、要求電力(Lreq)に応じたキャパシタ3の開回路電圧の推定値(Vcap_e)よりも低いとき(図6(a)に示した状態)には、電力供給補助判断手段53は、「強制電力アシスト処理」の実行が必要でないと判断する。そして、STEP30に分岐して、電力供給補助判断手段53は、「強制電力アシスト処理」の実行を禁止するために、強制アシストフラグ(As_Flag)をリセットする(As_Flag=0)。
続くSTEP8〜STEP9及びSTEP40は出力電圧制御手段54による処理であり、STEP8で強制アシストフラグがセットされていたとき(As_Flag=1)は、STEP9に進み、出力電圧制御手段54は、電圧変換ユニット30に対する電圧設定信号(VCU_CMD)をキャパシタ3の開回路電圧(Vco)よりも所定値(α)低い電圧を指示するものとする。これにより、電圧変換ユニット30の出力電圧(=キャパシタ3の端子間電圧(Vcap))が、キャパシタ3の開回路電圧(Vco)よりも低くなり、「強制電力アシスト処理」が実行される。
一方、STEP8で強制アシストフラグがリセットされていたとき(As_Flag=0)には、STEP40に分岐し、出力電力制御手段54は、電圧変換ユニット30に対する電圧設定信号(VCU_CMD)をキャパシタ3の開回路電圧(Vco)を指示するものとする。これにより、電圧変換ユニット30の出力電圧(=キャパシタの端子間電圧(Vcap))が、キャパシタ3の開回路電圧(Vco)と等しくなるように制御され、「強制電力アシスト処理」が禁止されると共にキャパシタ3への充電電流の流入が禁止される。
なお、本実施の形態では、図3のSTEP6で電力供給補助判断手段53は、燃料電池電圧推定手段51により推定された要求電力(Lreq)に応じた燃料電池2の出力電圧(Vfc_e)と、開回路電圧推定手段52により推定された要求電力(Lreq)に応じたキャパシタ3の開回路電圧(Vco_e)とを比較して、「強制電力アシスト処理」の実行の要否を判断したが、他の判断方法として、例えば、電圧変換ユニット30に備えられたセンサによる燃料電池2の出力電圧(Vfc)の検出値をキャパシタ3の開回路電圧(Vco)と比較して、「強制電力アシスト処理」の実行の要否を判断するようにしてもよい。
本発明の燃料電池発電システムの全体構成図。 電源管理制御部の制御ブロック図。 キャパシタの放電電流による電力供給のアシスト処理のフローチャート。 目標出力電流に対応した燃料電池の出力電圧及びキャパシタの開回路電圧の推定方法を説明するためのグラフ。 目標出力電流に対応した燃料電池の出力電圧及びキャパシタの開回路電圧の推定方法を説明するためのグラフ。 燃料電池及びキャパシタの出力電圧の推移を示したグラフ。
符号の説明
1…燃料電池発電システム、2…燃料電池、3…電気二重層キャパシタ、4…コントローラ、5…モータ駆動装置、9…駆動制御部、14…電源管理制御部、16…燃料電池制御部、21…反応ガス供給装置、30…電圧変換ユニット、50…開回路電圧把握手段、51…燃料電池電圧推定手段、52…開回路電圧推定手段、53…電力供給補助判断手段、54…出力電圧制御手段

Claims (2)

  1. 燃料電池と、該燃料電池と並列に接続されたキャパシタと、前記燃料電池に反応ガスを供給する反応ガス供給手段と、該反応ガス供給手段により前記燃料電池に供給される反応ガスの供給量を調節する反応ガス供給量調節手段と、電気負荷からの要求電力に応じた電流が前記燃料電池から供給されるように前記反応ガス供給量調節手段を制御する燃料電池制御手段とを備えた燃料電池発電システムにおいて、
    前記燃料電池と前記キャパシタとの間に、入力側を燃料電池の出力端子に接続すると共に出力側をキャパシタの入出力端子と接続して設けられた出力電圧可変型のDC/DCコンバータと、前記キャパシタの開回路電圧を把握する開回路電圧把握手段と、
    前記キャパシタの放電電流による電気負荷に対する電力供給の補助が必要であるか否かを判断する電力供給補助判断手段と、
    該電力供給補助判断手段により、前記キャパシタの放電電流による電気負荷に対する電力供給の補助が必要であると判断されたときに、前記DC/DCコンバータの出力電圧を前記キャパシタの開回路電圧よりも低くなるように制御する出力電圧制御手段とを備えたことを特徴とする燃料電池発電システム。
  2. 前記燃料電池が前記要求電力に応じた電力を出力する状態となったときの前記燃料電池の出力電圧を推定する燃料電池電圧推定手段と、
    前記燃料電池が前記要求電力に応じた電力を出力する状態となったときの前記キャパシタの開回路電圧を推定する開回路電圧推定手段とを有し、
    前記電流補助判断手段は、前記燃料電池電圧推定手段により推定された前記燃料電池の出力電圧が、前記開回路電圧推定手段により推定された前記キャパシタの開回路電圧以上であるときに、前記キャパシタの放電電流による電気負荷に対する供給電流の補助が必要であると判断することを特徴とする請求項1記載の燃料電池発電システム。
JP2003317189A 2003-09-09 2003-09-09 燃料電池発電システム Expired - Fee Related JP4138616B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003317189A JP4138616B2 (ja) 2003-09-09 2003-09-09 燃料電池発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003317189A JP4138616B2 (ja) 2003-09-09 2003-09-09 燃料電池発電システム

Publications (2)

Publication Number Publication Date
JP2005085623A JP2005085623A (ja) 2005-03-31
JP4138616B2 true JP4138616B2 (ja) 2008-08-27

Family

ID=34416849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317189A Expired - Fee Related JP4138616B2 (ja) 2003-09-09 2003-09-09 燃料電池発電システム

Country Status (1)

Country Link
JP (1) JP4138616B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100911562B1 (ko) 2007-08-07 2009-08-10 현대자동차주식회사 연료전지 스택 ocv 제거 및 과전압 상승 방지를 위한장치 및 방법
JP6633998B2 (ja) * 2016-10-12 2020-01-22 株式会社豊田自動織機 産業車両に搭載される燃料電池システム

Also Published As

Publication number Publication date
JP2005085623A (ja) 2005-03-31

Similar Documents

Publication Publication Date Title
EP1207578B1 (en) Fuel cell power supply unit
JP4294884B2 (ja) 燃料電池電源装置
JP3679070B2 (ja) 燃料電池自動車の制御装置
JP3928154B2 (ja) 燃料電池電源装置
CA2836555C (en) Fuel cell system with idle-stop control
US7291412B2 (en) Control apparatus and control method of fuel cell system
JP3822139B2 (ja) 燃料電池電源装置
JP3730592B2 (ja) 燃料電池自動車の制御装置
WO2010112998A1 (en) Fuel cell system, control method for the fuel cell system, and vehicle equipped with the fuel cell system
JP2002034171A (ja) 電動車両の電力制御方法
KR20090035623A (ko) 연료전지시스템 및 이동체
US7315771B2 (en) Control device for fuel cell vehicle
JP4308479B2 (ja) 燃料電池電源装置
JP4180998B2 (ja) 燃料電池発電システム
JP2002044807A (ja) 電動車両の電力供給装置
JP2008034309A (ja) 燃料電池システム
JP4138616B2 (ja) 燃料電池発電システム
JP4335303B2 (ja) 燃料電池電源装置
JP2002034103A (ja) 電動車両の電力制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees