JP4137594B2 - Cryogenic air separation method, liquid air production method, and apparatus used therefor - Google Patents

Cryogenic air separation method, liquid air production method, and apparatus used therefor Download PDF

Info

Publication number
JP4137594B2
JP4137594B2 JP2002309630A JP2002309630A JP4137594B2 JP 4137594 B2 JP4137594 B2 JP 4137594B2 JP 2002309630 A JP2002309630 A JP 2002309630A JP 2002309630 A JP2002309630 A JP 2002309630A JP 4137594 B2 JP4137594 B2 JP 4137594B2
Authority
JP
Japan
Prior art keywords
air
liquid
pressure
gas turbine
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002309630A
Other languages
Japanese (ja)
Other versions
JP2004144386A (en
Inventor
正夫 林
篤 宮本
修 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Air Water Inc
Original Assignee
Taisei Corp
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Air Water Inc filed Critical Taisei Corp
Priority to JP2002309630A priority Critical patent/JP4137594B2/en
Publication of JP2004144386A publication Critical patent/JP2004144386A/en
Application granted granted Critical
Publication of JP4137594B2 publication Critical patent/JP4137594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Description

【0001】
【発明の属する技術分野】
本発明は、CAES(Compressed Air Energy Storage:圧縮空気エネルギー貯蔵)システムと組み合わせることにより、エネルギー効率を向上させるようにした深冷空気分離方法および液体空気製造方法ならびにそれらに用いる装置に関するものである。
【0002】
【従来の技術】
従来から、原料空気圧縮機で生成された圧縮空気を原料として利用し、これを冷却液化し窒素,酸素等の沸点の違いを利用して窒素,酸素等を分離発生させる深冷空気分離装置では、原料空気圧縮機を常時駆動させている。
【0003】
上記の深冷空気分離装置の一例を、図10に示す。この深冷空気分離装置は、原料空気圧縮機51と、吸着塔等(図示せず)を備えた前処理装置52と、熱交換器,精留塔等(ともに図示せず)を収容するコールドボックス53と、窒素圧縮機54と、酸素圧縮機55等で構成されている。そして、原料空気圧縮機51により原料空気を取り入れてこれを圧縮し、前処理装置52で、圧縮した原料空気中の水分,CO2 等の不純物を吸着塔で除去する等の前処理を行い、つぎに、前処理を行った原料空気をコールドボックス53内に導入し、熱交換器で超低温に冷却して精留塔に導入する。この精留塔では、導入した原料空気を冷却液化し窒素,酸素等の沸点の違いを利用して窒素,酸素等を分離発生させ、これら分離発生させた窒素,酸素をコールドボックス53外に導出したのち、それぞれ窒素圧縮機54,酸素圧縮機55により圧縮して高圧窒素(N2 ),高圧酸素(O2 )にし、製品として取り出すようにしている。
【0004】
上記の深冷空気分離装置の他の例を、図11に示す。この深冷空気分離装置は、製品を液体で製造するプラントにみられるものであり、コールドボックス53から一旦窒素ガスを低圧で取り出し、循環窒素圧縮機56で略4.5MPaまで加圧後冷却し、液体を製造する。この場合に、循環窒素圧縮機56を、夜間の安価な電力が得られる時間帯のみ駆動させる場合がある。図において、57は液体酸素タンクで、58は液体窒素タンクである。
【0005】
また、上記の深冷空気分離装置には、省エネ効果を得ることを目的とした夜間電力型がある。この装置は、夜間の低価格電力を使用して液化ガスを余剰に製造し、昼間に、その余剰の液化ガスを利用して異なる液化ガスを製造するものである。例えば、液体酸素と液体窒素とを製造する装置では、夜間に液体窒素を余剰に製造しておき、昼間に、この余剰である液体窒素を利用して液体酸素を製造している。また、この深冷空気分離装置では、その深冷空気分離の過程で液体空気が製造されるため、この液体空気を夜間に余剰に製造しておき、昼間に、この余剰の液体空気を利用して液体酸素と液体窒素とを製造することもできる。また、液体空気を、原料空気圧縮機を有する専用の液体空気製造装置により、製造することもできる。
【0006】
一方、CAESシステムは、安価な夜間電力を利用して高圧空気を製造し貯蔵するシステムである。
【0007】
【発明が解決しようとする課題】
しかしながら、夜間電力型の深冷空気分離装置では、昼間は、通常に運転が行われており、原料空気は夜間と同等に必要であるため、原料空気圧縮機51を駆動させる必要があり、電力コストの大幅な低減とはなっていない。また、夜間に液化ガス,液体空気の製造量を増大させるため、それに伴い、夜間設備,貯槽の大型化が必要となり、設備コストが増大する。また、専用の液体空気製造装置を用いる場合にも、同様の問題がある。一方、CAESシステムでは、夜間に高圧空気を製造する電力に比べ、昼間の発電量が少なく、設備コストに見合う経済性を見出せていない。
【0008】
本発明は、このような事情に鑑みなされたもので、CAESシステムを組み合わせることにより、電力コストを大幅に低減することができ、深冷空気分離装置,液体空気製造装置を大型化させる必要のない深冷空気分離方法および液体空気製造方法ならびにそれらに用いる装置の提供をその目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、CAESシステムの高圧空気貯蔵用空間に貯蔵した高圧空気を深冷空気分離装置の原料空気として用い、この深冷空気分離装置により製造した高圧液化窒素を、発電設備のガスタービンに導入する原料空気と熱交換させ、この原料空気の温熱で上記高圧液体窒素をガス化し製品高圧窒素ガスとして取り出すとともに、上記高圧液体窒素の冷熱で、上記ガスタービンに導入する原料空気を冷却するようにした深冷空気分離方法を第1の要旨とし、CAESシステムの高圧空気貯蔵用空間に貯蔵した高圧空気を液体空気製造装置の原料空気として用い、この液体空気製造装置により製造した液体空気を、発電設備のガスタービンに導入する原料空気と熱交換させ、この原料空気の温熱で上記液体空気をガス化して取り出すとともに、上記液体空気の冷熱で、上記ガスタービンに導入する原料空気を冷却するようにした液体空気製造方法を第2の要旨とし、深冷空気分離装置の原料空気が、CAESシステムの高圧空気貯蔵用空間に貯蔵した高圧空気であり、上記深冷空気分離装置により製造した高圧液化窒素を、発電設備のガスタービンに導入する原料空気と熱交換させ、この原料空気の温熱で上記高圧液体窒素をガス化し製品高圧窒素ガスとして取り出すとともに、上記高圧液体窒素の冷熱で、上記ガスタービンに導入する原料空気を冷却するようにした深冷空気分離装置を第3の要旨とし、液体空気製造装置の原料空気が、CAESシステムの高圧空気貯蔵用空間に貯蔵した高圧空気であり、上記液体空気製造装置により製造した液体空気を、発電設備のガスタービンに導入する原料空気と熱交換させ、この原料空気の温熱で上記液体空気をガス化して取り出すとともに、上記液体空気の冷熱で、上記ガスタービンに導入する原料空気を冷却するようにした液体空気製造装置第4の要旨とする。
【0010】
すなわち、本発明の深冷空気分離方法は、CAESシステムの高圧空気貯蔵用空間に貯蔵した高圧空気を深冷空気分離装置の原料空気として用いている。このように、本発明の深冷空気分離方法では、安価な夜間電力を利用して高圧空気を製造し貯蔵するCAESシステムと、深冷空気分離装置とを組み合わせ、昼間に深冷空気分離装置を運転する際に、CAESシステムで安価に製造した高圧空気を、深冷空気分離装置の原料空気として用い、深冷空気分離装置に供給するようにしている。したがって、上記昼間の運転の際に、深冷空気分離装置の原料空気圧縮機を駆動させる必要がなく、昼間の電力コストをほぼゼロにすることができ、電力コストが大幅に低減する。しかも、深冷空気分離装置にCAESシステムを組み合わせたものであり、深冷空気分離装置を大型化させる必要がなく、深冷空気分離装置の設備コストは増大しない。このため、深冷空気分離装置で得られる製品ガスを安価に提供することができ、CAESシステムの設備コストに見合うだけの経済性を見出すことができる。また、本発明の深冷空気分離装置によれば、上記深冷空気分離方法を効率よく行うことができる。一方、本発明の液体空気製造方法は、CAESシステムの高圧空気貯蔵用空間に貯蔵した高圧空気を液体空気製造装置の原料空気として用いている。このように、本発明の液体空気製造方法では、安価な夜間電力を利用して高圧空気を製造し貯蔵するCAESシステムと、液体空気製造装置とを組み合わせ、昼間に液体空気製造装置を運転する際に、CAESシステムで安価に製造した高圧空気を、液体空気製造装置の原料空気として用い、液体空気製造装置に供給するようにしている。したがって、本発明の液体空気製造方法でも、本発明の深冷空気分離方法と同様に、上記の優れた効果を奏する。
【0011】
なお、本発明における「深冷空気分離装置」とは、大気等の原料空気を深冷空気分離して窒素ガス,酸素ガス等を製造する(副次的に、液体窒素,液体酸素等の液体状態で製造してもよい)装置であり、一般的に、原料空気圧縮手段,原料空気中の不純物を除去する不純物除去手段,原料空気を極低温に冷却する熱交換手段,精留手段等を備えている。CAESシステムで製造した高圧空気のみを深冷空気分離装置の原料空気として用いる(すなわち、CAESシステムで製造した高圧空気のみで深冷空気分離装置を運転する)場合には、原料空気圧縮手段を省くことができる。また、本発明における「液体空気製造装置」とは、大気等の原料空気を液化して液体空気を製造する装置であり、深冷空気分離装置の一部で構成されていてもよいし、専用の装置であってもよい。一般的に、原料空気圧縮手段,原料空気中の不純物を除去する不純物除去手段,原料空気を極低温に冷却する熱交換手段等を備えており、CAESシステムで製造した高圧空気のみを液体空気製造装置の原料空気として用いる(すなわち、CAESシステムで製造した高圧空気のみで液体空気製造装置を運転する)場合には、原料空気圧縮手段を省くことができる。また、本発明において、「高圧空気貯蔵用空間」とは、地下空洞等の地下空間、海底,山頂等の各種の場所に設けた圧力容器等の内部空間,パイプ等を利用して造られた高圧空気貯蔵のための空間等であり、高圧空気を貯蔵することができる空間であれば、どのような空間でもよく、また、この空間を形成する構造物の構造も問わない。
【0012】
また、本発明では、上記深冷空気分離装置により製造した高圧液化窒素の冷熱を発電設備に利用するようにしたため、発電効率が向上する。また、上記液体空気製造装置により製造した液体空気の冷熱を発電設備に利用するようにしたため、同様の効果を奏する。なお、発電設備としては、自家発電設備,商業用発電設備等の各種の発電設備があげられる。
【0013】
また、本発明では、上記冷熱で発電設備のガスタービンに導入する原料空気を冷却するようにしたため、ガスタービンの空気圧縮機の動力が削減でき、その分発電量が増える。
【0014】
【発明の実施の形態】
つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。
【0015】
図1は本発明の深冷空気分離装置の一実施の形態を示している。図において、1はCAESシステムで、2は酸素製造装置(深冷空気分離装置)で、3はガスタービン発電機である。上記CAESシステム1は、従来の岩盤空洞12(図2参照)を設けたCAESシステムを利用したものであり、空気を取り入れてこれを圧縮するCAES用圧縮機4と、このCAES用圧縮機4で圧縮した高圧空気(圧縮空気)を貯蔵する圧縮空気貯蔵タンク5とを備えている。
【0016】
上記圧縮空気貯蔵タンク5は、図2に示すように、軟岩地盤中に縦方向に形成された立坑11と、所望の深度(例えば、深度400m程度)で横方向に所望の長さ(例えば、長さ1000m程度)に形成された岩盤空洞12(高圧空気貯蔵用空間)とを備えており、この岩盤空洞12に、料金の安い夜間電力を利用して高圧空気を貯蔵するようにしている。
【0017】
上記立坑11は、公知の縦穴掘削工法を用いて軟岩地盤の地表面から鉛直下方に掘削形成された縦穴(直径6m程度の円形断面を有する縦穴)からなる。この立坑11には、これを貫通するようにして送泥管13(直径2m程度の円形断面を有する鋼管)が配設されており、この送泥管13の上端開口部は、立坑11に隣接する地表面に形成された(重泥水8〔図5参照〕を貯留する)重泥水貯留池14に連通している。また、上記送泥管13の外周面と立坑11の内壁面との間にはグラウト材15が充填されており、これにより、送泥管13が立坑11の内壁面に強固に固化されている(図3参照)。図2において、16はコンクリート製の閉塞栓であり、立坑11の下端部において、送泥管13の外周面を覆った状態で固定されており(図4参照)、この閉塞栓16によって、岩盤空洞12に貯留された加圧状態の高圧空気や軽泥水9(図5参照)が、立坑11の内壁面と送泥管13の外周面との間の隙間を介して上方に漏れ出すのを防止している。
【0018】
また、上記送泥管13には、その内部に,直径100mm程度のFRP(繊維強化プラスチック)製パイプからなる高圧空気流通管17と、逆浸透膜造水管18とが配設されている(図3参照)。上記高圧空気流通管17の下端部は、上記送泥管13の下端部において送泥管13外に突出したのち閉塞栓16内に進入してこれを貫通し、上記高圧空気流通管17の下端開口部は閉塞栓16の下端面から下方に向かって開口している(図4参照)。また、上記高圧空気流通管17の上端開口部はCAES用圧縮機4の高圧空気出口(図示せず)に開閉弁19a付き高圧空気導入管19を介して連通しており、これにより、CAES用圧縮機4で生成した高圧空気を高圧空気導入管19,高圧空気流通管17を介して岩盤空洞12内に導入するようにしている。また、上記高圧空気流通管17の上端開口部は酸素製造装置2の前処理設備6(図1参照)に開閉弁20a付き高圧空気導出管20を介して連通しており、これにより、岩盤空洞12内の高圧空気を高圧空気流通管17,高圧空気導出管20を介して前処理設備6に導出するようにしている。
【0019】
上記逆浸透膜造水管18は、直径1m程度の円形断面を有する鋼管からなる保護管22と、この保護管22の下部に設置された逆浸透膜モジュール23(例えば、特開平10−156356号公報に記載された逆浸透膜モジュール23)とで構成されており、上記保護管22の内部に、例えば、海水からなる塩水を投入し、上記逆浸透膜モジュール23の淡水集水管(図示せず)を経て生産水槽に集積された淡水を、揚水ポンプ(図示せず)により揚水管24を介して汲み上げることにより、淡水を生産するものである。この逆浸透膜造水管18によれば、淡水集水管の内部の水を汲み上げれば、保護管22内の塩水による逆浸透膜モジュール23の外周への静水圧により、逆浸透膜を挟んだ淡水集水管の内圧との間に逆浸透以上の圧力差が常時自然な状態で生じていることになり、容易に逆浸透に必要な圧力差を得て、経済的かつ効率的に淡水を生産することが可能になる。なお、上記逆浸透膜造水管18は、保護管22の下端部が送泥管13の下端より下方に突出して液溜まり部12a(図2参照)の底部に埋設支持されており、これにより、送泥管13に沿って安定した状態で設置されている。このようにして生産された淡水は、この実施の形態では、高炉メーカで使用されるスチームや洗浄用水等の大量の工業用水に利用される。
【0020】
上記岩盤空洞12は、公知の岩盤トンネル掘削工法を用いて立坑11の下端部から左右両側に500m程度の長さで掘削形成された地下空間(直径10〜15m程度の略円形断面の地下空間)である。この岩盤空洞12は、立坑11の下方に位置する部分から左右両側に向かってその直径が小さくなるように略水平に形成されており、これにより、岩盤空洞12の天端部分25が、この天端部分25の左右両側から頂部26に向かってなだらかな上り勾配に形成されている。図2において、12aは上記頂部26の下方に位置する岩盤空洞12の中央底部に凹状に拡大掘削された液溜まり部である。
【0021】
上記岩盤空洞12内では、高圧空気導入管19,高圧空気流通管17を介して導入された高圧空気が、重泥水貯留池14から送泥管13を介して岩盤空洞12内に供給された重泥水8の静水圧により、下方から圧力を負荷された状態で岩盤空洞12内に貯留されている(図5参照)。また、重泥水8の上方を覆って軽泥水9が供給配設されており、重泥水8と軽泥水9との比重差により岩盤空洞12内の泥水は、軽泥水9による上層と重泥水8による下層との二層構造となっている。
【0022】
上記重泥水8は、加重調整材としてのバライトやヘマタイト等の高比重微粉体を沈降しがたい安定した状態で混合させてなる懸濁液であって、1.2〜2.0程度の比重を有する比較的高価な泥水である。
【0023】
一方、上記軽泥水9は、例えばベントナイト泥水に配合される増粘材としてのベントナイトを若干増量し、かつ、充填材として平均粒径10〜40μm程度の炭酸カルシウム粉末等を加えた比重1.05〜1.20の泥水である。この軽泥水9には、岩盤の空隙や割れ目を閉塞するマッドケーキが形成される際の核となる目詰め材として、例えば、逸泥防止材(LCM)が混合されている。このような充填材と目詰め材との存在により、マッドケーキは岩盤の空隙や割れ目に確実にかつ強固に保持されることになる。
【0024】
上記の構成において、CAES用圧縮機4,圧縮空気貯蔵タンク5を稼働するのに先立って、掘削形成した岩盤空洞12の内壁面の空隙や割れ目を閉塞して、岩盤空洞12を気密化する作業を行う。すなわち、まず、岩盤空洞12に水を供給して洗浄を行ったのち、重泥水8を送泥管13から供給し、岩盤空洞12および送泥管13に充填する。つぎに、軽泥水9を高圧空気流通管17(このときだけ、高圧空気流通管17は軽泥水9の供給手段に接続される)を介して重泥水8が充填された岩盤空洞12内に、重泥水8を押し出すようにしながら圧入供給する。このようにして、重泥水8と軽泥水9が岩盤空洞12内に充填されることにより(図6参照)、これらの泥水成分により岩盤空洞12の天端部分25にはマッドケーキが形成され、岩盤の空隙や割れ目を閉塞して岩盤空洞12を気密化する。
【0025】
つぎに、CAES用圧縮機4,圧縮空気貯蔵タンク5を稼働する場合には、例えば、料金の安い夜間電力を利用してCAES用圧縮機4を駆動させ、これにより高圧空気を生成し、これを高圧空気導入管19,高圧空気流通管17を介して岩盤空洞12に圧送供給する。圧送された高圧空気は、その圧力によって岩盤空洞12内の重泥水8および軽泥水9を押し下げつつ、下方から重泥水8による静水圧を負荷された状態で圧縮空気貯蔵タンク5に貯蔵される(図5参照)。また、押し下げられた重泥水8は、送泥管13に順次流入し、この送泥管13を介して、押し上げられるようにして重泥水貯留池14に移動してゆく。
【0026】
一方、例えば、多量の電力を必要とする昼間には、岩盤空洞12内の高圧空気(4.5Pa,10℃,R.H.80%)を高圧空気流通管17,高圧空気導出管20を介して酸素製造装置2の前側処理設備6に導出する。この導出により、岩盤空洞12には、重泥水貯留池14から移動した重泥水8が補充され、重泥水8の静水圧によって高圧空気を下方から押圧する状態を引き続き保持する。そして、高圧空気が岩盤空洞12から全て導出された状態では、重泥水8は、岩盤空洞12の天端部分25に軽泥水9による上層を介在させた状態で、岩盤空洞12に充填されることになる(図6参照)。
【0027】
このように、CAES用圧縮機4,圧縮空気貯蔵タンク5の稼働によって、高圧空気の貯蔵(導入)と取り出し(導出)とが繰り返される。なお、この実施の形態において、重泥水8に代えて、海水を用いることができる。この場合には、重泥水貯留池14に海水を溜め、これを送泥管13を介して岩盤空洞12内に供給する。また、軽泥水9に代えて、気水分離膜としてシリコン油等を用いる。また、逆浸透膜造水管18,保護管22は不要であり、送泥管13内に直接に逆浸透膜モジュール23,揚水管24等を設置すればよい。
【0028】
上記酸素製造装置2は、上記CAESシステム1の岩盤空洞12に貯蔵された高圧空気を原料空気とし、昼間に、上記高圧空気に相当する高圧酸素を製造するものであり、図7に示すように、前側処理設備6として、圧縮空気貯蔵タンク5の岩盤空洞12(図5参照)から導出した高圧空気中の水分,炭酸ガス等の不純成分を除去する2個一対の吸着塔31,32を有している。また、低温部7には、熱交換器33,34と、膨張タービン35,36と、気液分離器37と、熱交換器38と、精留塔39と、過冷却器40と、液体酸素ポンプ41等が配設されている。図において、42は上記両吸着塔31,32の再生ガス(後述する排ガス)を加熱する再生ヒーターである。また、43は液酸蒸発器(図1では、図示せず)であり、前側処理設備6を経た高圧空気の一部と、液体酸素ポンプ41により精留塔39の低圧塔39bの底部から液体酸素取り出しパイプ41aを介して取り出した液体酸素とを熱交換させ、高圧空気を冷却して気液分離器37の上部に供給するとともに、液体酸素を加温し蒸発させて製品高圧酸素ガスとして取り出す作用をする。
【0029】
上記両熱交換器33,34は、前側処理設備6を経たのち気液分離器37に導入する高圧空気と、気液分離器37から導出する低温空気とを熱交換させ、前側処理設備6を経た高圧空気を冷却して液化する作用をする。また、第1膨張タービン35では、前側処理設備6を経たのち第1熱交換器33に導入する前の高圧空気の一部を導入して寒冷を発生させ、気液分離器37の頂部から延びる低温空気導入路44に供給する。また、第2膨張タービン36では、第1熱交換器33を経たのち第2熱交換器34に導入する前の高圧低温空気の一部を導入して寒冷を発生させ、気液分離器37の上部もしくは上記低温空気導入路44に供給する(この実施の形態では、気液分離器37の上部に供給している)。
【0030】
上記気液分離器37では、その底部に溜まる酸素リッチな液化空気(液体空気)を供給パイプ37aにより精留塔39の高圧塔39aに供給し、その上部に溜まる低温空気を低温空気導入路44により熱交換器38,高圧塔39aの底部に導入する。また、上記熱交換器38では、低温空気導入路44を通る低温空気と、精留塔39の低圧塔39bの上部から排ガス取り出しパイプ38aおよび低圧塔39bの頂部から窒素ガス取り出しパイプ38bにより取り出した製品窒素ガスとを熱交換させ、低温空気を冷却して高圧塔39aの底部に導入するとともに、窒素ガスを昇温し製品窒素ガスとして取り出し、排ガスを再生ヒーター42に供給する。
【0031】
上記高圧塔39aでは、精留作用により、その底部に酸素リッチな液化空気を溜め、これを取り出しパイプ40aにより取り出して過冷却器40に導入し、ここで過冷却して低圧塔39bの上部に供給する。また、上記高圧塔39aの頂部に溜まる窒素ガスを、低圧塔39bの底部に設けたコンデンサ39cに導入し、ここで凝縮,液化し、つぎに、その一部を上記高圧塔39aの頂部に還流し、残りを送給パイプ40bにより過冷却器40に導入してここで過冷却したのち、その一部を低温塔39bへ還流し、残りを液化窒素として取り出す。そして、取り出した液化窒素を液体ポンプ10により所望の圧力まで上昇させ、冷却器45に導入し、ここで、後述するガスタービン用原料空気を冷却したのち、製品高圧窒素ガスとして取り出す。一方、上記低圧塔39bでも、その精留作用により、その底部に液化酸素を溜め、液酸ポンプ41により取り出して液酸蒸発器43に導入し、製品高圧酸素ガスとして取り出す。なお、上記低圧塔39bの底部に溜めた液化酸素を、液酸ポンプ41に導入する前に、液化酸素のままで製品として取り出してもよい。
【0032】
一方、ガスタービン発電機3は、空気圧縮機46により外部から取り入れたガスタービン用原料空気を圧縮して燃焼器47に導入し、ここで燃料と燃焼させ、この燃焼器47から噴射される燃焼ガスの推力でガスタービン48を回転させ、この回転力により発電機49を回転させることを行う。また、ガスタービン48から排出される高温ガス(排ガス)は、スチーム製造等熱利用したのち、大気中に放出される。この実施の形態では、上記冷却器45にガスタービン用原料空気を導入し、ここで高圧液化窒素と熱交換させて冷却しているため、空気圧縮機46の動力を削減することができる。
【0033】
例えば、60,000kW級のCAESシステムを利用した場合には、20ataの高圧酸素ガスを約25,000m3 /h(0℃、101325Pa時換算)、液化窒素を約11,000m3 /h(0℃、101325Pa時換算)製造することができる。そして、液化窒素を15,000kW級のガスタービン発電機3の原料空気の冷却に利用した場合には、約2%の発電が向上する。
【0034】
上記のように、この実施の形態では、従来の岩盤空洞12を利用したCAESシステム1を利用し、上記岩盤空洞12に貯蔵した高圧空気を酸素製造装置2の原料空気として用いているため、昼間に、料金の安い夜間電力で製造した高圧空気により深冷空気分離装置を運転することができる。しかも、送泥管13に設けた逆浸透膜造水管18により、淡水を生産することができるため、大量の高圧酸素,窒素や上水を必要とする高炉メーカー等には、非常に経済効果が大きい。
【0035】
図8は本発明の深冷空気分離装置の他の実施の形態を示している。この実施の形態では、上記実施の形態において、上記高圧液化窒素ガスの一部を液化窒素取り出しパイプ40cにより昇温器48aに導入し、ここで排ガスと熱交換させて昇温させたのちガスタービン48に導入し、ガスタービン48に導入する原料空気量を増やすようにしている。それ以外の部分は上記実施の形態と同様であり、同様の部分には同じ符号を付している。
【0036】
図9は本発明の深冷空気分離装置のその他の実施の形態を示している。この実施の形態では、図1〜図7に示す実施の形態において、上記低温部7外にタンク等(図示せず)に設け、上記気液分離器37の底部に溜まる液化空気を上記底部から取り出して上記タンク等に溜めることができるようにしている。そして、夜間に、CAESシステム1の岩盤空洞12に高圧空気を貯蔵し、この貯蔵した高圧空気を酸素製造装置2の原料空気として用いて酸素製造装置2を運転し、この運転により製造される液化空気を上記タンク等に溜めておく。また、昼間には、上記タンク等に溜めておいた液化空気および上記CAESシステム1の岩盤空洞12に貯蔵しておいた高圧空気を用い、酸素製造装置2を運転するようにしている。それ以外の部分は上記実施の形態と同様であり、同様の部分には同じ符号を付している。
【0037】
なお、上記各実施の形態では、高圧酸素ガスを製品として取り出しているが、これに限定するものではなく、液化酸素を製品として取り出してもよい。また、図1および図8に示す深冷空気分離装置において、気液分離器37から液体空気を取り出してもよい。さらに、CAESシステム1の高圧空気を深冷空気分離装置の原料としているが、液体空気のみを製品として取り出す液体空気製造装置の原料空気としてもよい。
【0038】
また、本発明のCAESシステム1は、上記両実施の形態に限定されるものではなく、公知の各種のCAESシステム1を用いることができる。しかも、CAESシステムに大容量高圧空気圧縮機を組み合わせる等、高圧空気の生産性向上等の性能アップを図ることができる。
【0039】
【発明の効果】
以上のように、本発明の深冷空気分離方法によれば、安価な夜間電力を利用して高圧空気を製造し貯蔵するCAESシステムと、深冷空気分離装置とを組み合わせ、昼間に深冷空気分離装置を運転する際に、CAESシステムで安価に製造した高圧空気を、深冷空気分離装置の原料空気として用い、深冷空気分離装置に供給するようにしている。したがって、上記昼間の運転の際に、深冷空気分離装置の原料空気圧縮機を駆動させる必要がなく、昼間の電力コストをほぼゼロにすることができ、電力コストが大幅に低減する。しかも、深冷空気分離装置にCAESシステムを組み合わせたものであり、深冷空気分離装置を大型化させる必要がなく、深冷空気分離装置の設備コストは増大しない。このため、深冷空気分離装置で得られる製品ガスを安価に提供することができ、CAESシステムの設備コストに見合うだけの経済性を見出すことができる。また、本発明の深冷空気分離装置によれば、上記深冷空気分離方法を効率よく行うことができる。一方、本発明の液体空気製造方法は、CAESシステムの高圧空気貯蔵用空間に貯蔵した高圧空気を液体空気製造装置の原料空気として用いている。このように、本発明の液体空気製造方法では、安価な夜間電力を利用して高圧空気を製造し貯蔵するCAESシステムと、液体空気製造装置とを組み合わせ、昼間に液体空気製造装置を運転する際に、CAESシステムで安価に製造した高圧空気を、液体空気製造装置の原料空気として用い、液体空気製造装置に供給するようにしている。したがって、本発明の液体空気製造方法でも、本発明の深冷空気分離方法の同様に、上記の優れた効果を奏する。
【0040】
また、本発明では、上記深冷空気分離装置により製造した高圧液化窒素の冷熱を発電設備に利用するようにしたため、発電効率が向上する。また、上記液体空気製造装置により製造した液体空気の冷熱を発電設備に利用するようにしたため、同様の効果を奏する。
【0041】
また、本発明では、上記冷熱で発電設備のガスタービンに導入する原料空気を冷却するようにしたため、ガスタービンの空気圧縮機の動力が削減でき、その分発電量が増える。
【図面の簡単な説明】
【図1】本発明の深冷空気分離装置の一実施の形態を示す構成図である。
【図2】CAESシステムの説明図である。
【図3】上記CAESシステムの要部を示す断面図である。
【図4】上記CAESシステムの他の要部を示す断面図である。
【図5】上記CAESシステムの作用を示す断面図である。
【図6】上記CAESシステムの作用を示す断面図である。
【図7】酸素製造装置を示す構成図である。
【図8】本発明の深冷空気分離装置の他の実施の形態を示す構成図である。
【図9】本発明の深冷空気分離装置のさらに他の実施の形態を示す構成図である。
【図10】従来例の一例を示す構成図である。
【図11】従来例の他の例を示す構成図である。
【符号の説明】
1 CAESシステム
2 酸素製造装置
12 岩盤空洞
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cryogenic air separation method, a liquid air production method, and an apparatus used therefor, which are improved in energy efficiency by combining with a CAES (Compressed Air Energy Storage) system.
[0002]
[Prior art]
Conventionally, a cryogenic air separation device that uses compressed air generated by a raw material air compressor as a raw material, cools and liquefies it, and separates and generates nitrogen, oxygen, etc. using differences in boiling points of nitrogen, oxygen, etc. The raw material air compressor is always driven.
[0003]
An example of the cryogenic air separation device is shown in FIG. The chilled air separation device is a cold containing a raw material air compressor 51, a pretreatment device 52 equipped with an adsorption tower or the like (not shown), a heat exchanger, a rectification tower or the like (both not shown). It is composed of a box 53, a nitrogen compressor 54, an oxygen compressor 55, and the like. Then, the raw material air compressor 51 takes in the raw material air and compresses it, and the pretreatment device 52 compresses the moisture, CO in the compressed raw material air. 2 Pretreatment such as removal of impurities such as an adsorption tower is performed, and then the pretreated raw material air is introduced into the cold box 53, cooled to an ultra-low temperature with a heat exchanger, and introduced into the rectification tower. . In this rectification tower, the introduced raw material air is cooled and liquefied to separate and generate nitrogen, oxygen, etc. using the difference in boiling points of nitrogen, oxygen, etc., and these separated nitrogen, oxygen are led out of the cold box 53. After that, the high pressure nitrogen (N 2 ), High pressure oxygen (O 2 ) And take it out as a product.
[0004]
Another example of the chilled air separation device is shown in FIG. This cryogenic air separation device is found in plants that produce products in liquid form. Once the nitrogen gas is taken out from the cold box 53 at a low pressure, the circulating nitrogen compressor 56 pressurizes the nitrogen gas to about 4.5 MPa and then cools it. Manufacturing liquids. In this case, the circulating nitrogen compressor 56 may be driven only during a time period in which inexpensive electric power is obtained at night. In the figure, 57 is a liquid oxygen tank and 58 is a liquid nitrogen tank.
[0005]
Moreover, the above-mentioned cryogenic air separation device includes a night power type for the purpose of obtaining an energy saving effect. This apparatus produces excessively liquefied gas using low-cost electric power at night, and produces different liquefied gas using the surplus liquefied gas in the daytime. For example, in an apparatus for producing liquid oxygen and liquid nitrogen, liquid nitrogen is produced excessively at night, and liquid oxygen is produced in the daytime using this excess liquid nitrogen. Further, in this cryogenic air separation device, liquid air is produced in the course of the cryogenic air separation. Therefore, this liquid air is produced excessively at night, and this excess liquid air is used during the daytime. Thus, liquid oxygen and liquid nitrogen can be produced. Moreover, liquid air can also be manufactured with the exclusive liquid air manufacturing apparatus which has a raw material air compressor.
[0006]
On the other hand, the CAES system Cheap night Producing high-pressure air using electric power Store System.
[0007]
[Problems to be solved by the invention]
However, in the night power type chilled air separation apparatus, the operation is normally performed during the daytime, and the raw material air is required to be equivalent to the nighttime. The cost has not been significantly reduced. In addition, since the production amount of liquefied gas and liquid air is increased at night, it is necessary to increase the size of night facilities and storage tanks, thereby increasing the facility cost. There is a similar problem when using a dedicated liquid-air manufacturing apparatus. On the other hand, in the CAES system, compared with electric power that produces high-pressure air at night, the amount of power generation in the daytime is small, and the economic efficiency corresponding to the equipment cost cannot be found.
[0008]
The present invention has been made in view of such circumstances, and by combining the CAES system, the power cost can be significantly reduced, and there is no need to increase the size of the chilled air separation device and the liquid air production device. It is an object of the present invention to provide a cryogenic air separation method, a liquid air production method, and an apparatus used therefor.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention uses high-pressure air stored in a high-pressure air storage space of a CAES system as raw air for a chilled air separation device. The high-pressure liquefied nitrogen produced by the cryogenic air separation device is heat-exchanged with the raw material air introduced into the gas turbine of the power generation facility, and the high-pressure liquid nitrogen is gasified with the heat of the raw material air and taken out as product high-pressure nitrogen gas. The raw air introduced into the gas turbine is cooled by the cold heat of the high-pressure liquid nitrogen. First, the cryogenic air separation method is used, and the high pressure air stored in the high pressure air storage space of the CAES system is used as the raw material air of the liquid air production apparatus. The liquid air produced by the liquid air production apparatus is subjected to heat exchange with the raw material air to be introduced into the gas turbine of the power generation facility, and the liquid air is gasified and taken out with the hot heat of the raw material air. , Cooling the raw air introduced into the gas turbine The liquid air production method is a second gist, and the raw air of the cryogenic air separator is high-pressure air stored in the high-pressure air storage space of the CAES system. The high-pressure liquefied nitrogen produced by the cryogenic air separation device is heat-exchanged with the raw material air introduced into the gas turbine of the power generation facility, and the high-pressure liquid nitrogen is gasified and taken out as product high-pressure nitrogen gas by the heat of the raw material air. In addition, the raw air introduced into the gas turbine is cooled by the cold heat of the high-pressure liquid nitrogen. The cryogenic air separation device is the third gist, and the raw air of the liquid air production device is high-pressure air stored in the high-pressure air storage space of the CAES system. The liquid air produced by the liquid air production apparatus is heat-exchanged with the raw material air introduced into the gas turbine of the power generation facility, and the liquid air is gasified and taken out by the hot heat of the raw material air. The raw material air introduced into the gas turbine was cooled. Liquid air production equipment The This is the fourth gist.
[0010]
That is, the cryogenic air separation method of the present invention uses the high-pressure air stored in the high-pressure air storage space of the CAES system as the raw air of the cryogenic air separation device. As described above, the chilled air separation method of the present invention combines a CAES system that manufactures and stores high-pressure air using inexpensive nighttime power and a chilled air separation device, thereby providing a chilled air separation device in the daytime. During operation, high-pressure air produced at low cost by the CAES system is used as raw air for the cryogenic air separation device and supplied to the cryogenic air separation device. Therefore, it is not necessary to drive the raw air compressor of the chilled air separation device during the daytime operation, so that the daytime power cost can be reduced to almost zero, and the power cost is greatly reduced. In addition, since the CAES system is combined with the chilled air separator, it is not necessary to increase the size of the chilled air separator, and the equipment cost of the chilled air separator does not increase. For this reason, the product gas obtained by the cryogenic air separation device can be provided at low cost, and economic efficiency corresponding to the equipment cost of the CAES system can be found. Moreover, according to the cryogenic air separation apparatus of this invention, the said cryogenic air separation method can be performed efficiently. On the other hand, the liquid air manufacturing method of the present invention uses high-pressure air stored in a high-pressure air storage space of the CAES system as raw air for the liquid-air manufacturing apparatus. Thus, in the liquid air manufacturing method of the present invention, when the liquid air manufacturing apparatus is combined with the CAES system that manufactures and stores high-pressure air using inexpensive nighttime power and the liquid air manufacturing apparatus is operated in the daytime, In addition, high-pressure air produced at low cost by the CAES system is used as raw material air for the liquid air production apparatus and supplied to the liquid air production apparatus. Therefore, the liquid air production method of the present invention also exhibits the above-described excellent effects, similar to the chilled air separation method of the present invention.
[0011]
The “deep cold air separation device” in the present invention refers to the production of nitrogen gas, oxygen gas, etc. by separating raw air, such as the air, into cold air (secondarily, liquid such as liquid nitrogen, liquid oxygen, etc. In general, the apparatus includes a raw material air compressing means, an impurity removing means for removing impurities in the raw air, a heat exchange means for cooling the raw air to a cryogenic temperature, a rectifying means, etc. I have. When only the high-pressure air produced by the CAES system is used as the raw air for the cryogenic air separation device (that is, the cryogenic air separation device is operated only by the high-pressure air produced by the CAES system), the raw air compression means is omitted. be able to. In addition, the “liquid air production apparatus” in the present invention is an apparatus for producing liquid air by liquefying raw air such as the atmosphere, and may be constituted by a part of a cryogenic air separation apparatus or dedicated The apparatus may be used. Generally, it is equipped with raw material air compression means, impurity removal means for removing impurities in raw material air, heat exchange means for cooling raw material air to a cryogenic temperature, etc., and only high pressure air produced by CAES system is produced as liquid air When used as the raw material air of the apparatus (that is, the liquid air production apparatus is operated only with the high-pressure air produced by the CAES system), the raw air compression means can be omitted. In the present invention, the “high-pressure air storage space” is constructed using an underground space such as an underground cavity, an internal space such as a pressure vessel provided at various locations such as the sea floor and the summit, pipes, and the like. Any space can be used as long as it is a space for storing high-pressure air and can store high-pressure air, and the structure of the structure forming this space is not limited.
[0012]
Also, The present invention Then , High pressure produced by the above cryogenic air separation device Liquefied nitrogen To use the cold heat of the power generation equipment For , Power generation efficiency is improved. Moreover, the cold air of the liquid air manufactured by the liquid air manufacturing apparatus is used for power generation equipment. For Have the same effect. Examples of power generation facilities include various power generation facilities such as private power generation facilities and commercial power generation facilities.
[0013]
Also, The present invention Then The raw air to be introduced into the gas turbine of the power generation facility is cooled by the cold heat. For The power of the air compressor of the gas turbine can be reduced, and the amount of power generation increases accordingly.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 shows an embodiment of the cryogenic air separation device of the present invention. In the figure, 1 is a CAES system, 2 is an oxygen production apparatus (deep cold air separation apparatus), and 3 is a gas turbine generator. The CAES system 1 uses a CAES system provided with a conventional rock cavity 12 (see FIG. 2), and includes a CAES compressor 4 that takes in air and compresses the air, and the CAES compressor 4. And a compressed air storage tank 5 for storing compressed high-pressure air (compressed air).
[0016]
As shown in FIG. 2, the compressed air storage tank 5 includes a vertical shaft 11 formed in the soft rock ground in the vertical direction and a desired length (for example, a depth of about 400 m) in the lateral direction (for example, A bedrock cavity 12 (high-pressure air storage space) formed in a length of about 1000 m is provided, and high-pressure air is stored in the bedrock cavity 12 by using night electricity with a low charge.
[0017]
The vertical shaft 11 is composed of a vertical hole (vertical hole having a circular cross section having a diameter of about 6 m) formed by excavating vertically from the ground surface of the soft rock ground using a known vertical hole excavation method. A mud feed pipe 13 (steel pipe having a circular cross section with a diameter of about 2 m) is disposed in the shaft 11 so as to penetrate the shaft, and an upper end opening of the mud feed pipe 13 is adjacent to the shaft 11. It communicates with a heavy mud reservoir 14 (which stores heavy mud 8 [see FIG. 5]) formed on the ground surface. Further, a grout material 15 is filled between the outer peripheral surface of the mud pipe 13 and the inner wall surface of the vertical shaft 11, so that the mud pipe 13 is firmly solidified on the inner wall surface of the vertical shaft 11. (See FIG. 3). In FIG. 2, reference numeral 16 denotes a concrete plug, which is fixed at the lower end of the shaft 11 so as to cover the outer peripheral surface of the mud pipe 13 (see FIG. 4). The pressurized high-pressure air or light mud water 9 (see FIG. 5) stored in the cavity 12 leaks upward through the gap between the inner wall surface of the shaft 11 and the outer peripheral surface of the mud pipe 13. It is preventing.
[0018]
The mud pipe 13 is provided with a high-pressure air circulation pipe 17 made of FRP (fiber reinforced plastic) pipe having a diameter of about 100 mm and a reverse osmosis membrane water-making pipe 18 (see FIG. 5). 3). The lower end of the high-pressure air circulation pipe 17 protrudes outside the mud feeding pipe 13 at the lower end of the mud feeding pipe 13 and then enters the closure plug 16 to penetrate therethrough. The opening is opened downward from the lower end surface of the closing plug 16 (see FIG. 4). The upper end opening of the high-pressure air circulation pipe 17 communicates with a high-pressure air outlet (not shown) of the CAES compressor 4 via a high-pressure air introduction pipe 19 with an on-off valve 19a. The high-pressure air generated by the compressor 4 is introduced into the rock cavity 12 through the high-pressure air introduction pipe 19 and the high-pressure air circulation pipe 17. The upper end opening of the high-pressure air circulation pipe 17 communicates with the pretreatment facility 6 (see FIG. 1) of the oxygen production apparatus 2 via a high-pressure air outlet pipe 20 with an on-off valve 20a. The high pressure air in 12 is led out to the pretreatment facility 6 through the high pressure air circulation pipe 17 and the high pressure air outlet pipe 20.
[0019]
The reverse osmosis membrane water producing pipe 18 includes a protective pipe 22 made of a steel pipe having a circular cross section with a diameter of about 1 m, and a reverse osmosis membrane module 23 (for example, Japanese Patent Laid-Open No. 10-156356) installed below the protective pipe 22. The reverse osmosis membrane module 23) is described in the above, and salt water made of, for example, seawater is introduced into the protective tube 22, and a fresh water collecting pipe (not shown) of the reverse osmosis membrane module 23 is provided. The fresh water collected in the production water tank is pumped through a pumping pipe 24 by a pumping pump (not shown) to produce fresh water. According to the reverse osmosis membrane water producing pipe 18, when water in the fresh water collecting pipe is pumped up, fresh water sandwiching the reverse osmosis membrane is caused by the hydrostatic pressure on the outer periphery of the reverse osmosis membrane module 23 by the salt water in the protective pipe 22. The pressure difference over reverse osmosis is always in a natural state with the internal pressure of the water collection pipe, and it is easy to obtain the pressure difference necessary for reverse osmosis and produce fresh water economically and efficiently. It becomes possible. In addition, the reverse osmosis membrane water-making pipe 18 has a lower end of the protective pipe 22 projecting downward from a lower end of the mud pipe 13 and is embedded and supported at the bottom of the liquid reservoir 12a (see FIG. 2). It is installed in a stable state along the mud pipe 13. In this embodiment, the fresh water produced in this way is used for a large amount of industrial water such as steam and cleaning water used by blast furnace manufacturers.
[0020]
The rock cavity 12 is an underground space (substantially circular section with a diameter of about 10 to 15 m) formed by excavating and forming a length of about 500 m from the lower end of the shaft 11 to the left and right sides using a known rock tunnel excavation method. It is. The rock cavity 12 is formed substantially horizontally so that its diameter decreases from the portion located below the shaft 11 toward the left and right sides, whereby the top end portion 25 of the rock cavity 12 is The end portion 25 is formed with a gentle upward slope from the left and right sides of the end portion 25 toward the top portion 26. In FIG. 2, reference numeral 12 a denotes a liquid reservoir portion that is enlarged and excavated in a concave shape at the center bottom portion of the rock cavity 12 located below the top portion 26.
[0021]
In the bedrock cavity 12, the high-pressure air introduced through the high-pressure air introduction pipe 19 and the high-pressure air circulation pipe 17 is supplied from the heavy mud water reservoir 14 into the bedrock cavity 12 through the mud pipe 13. Due to the hydrostatic pressure of the muddy water 8, it is stored in the rock cavity 12 under a pressure applied from below (see FIG. 5). Further, light mud water 9 is supplied and disposed above the heavy mud water 8. Due to the specific gravity difference between the heavy mud water 8 and the light mud water 9, the mud water in the bedrock cavity 12 is separated from the upper layer by the light mud water 9 and the heavy mud water 8. It has a two-layer structure with the lower layer.
[0022]
The heavy mud water 8 is a suspension obtained by mixing a high specific gravity fine powder such as barite or hematite as a weight adjusting material in a stable state that is difficult to settle, and has a specific gravity of about 1.2 to 2.0. Is a relatively expensive muddy water.
[0023]
On the other hand, the light mud water 9 has a specific gravity of 1.05, for example, a slightly increased amount of bentonite as a thickening material blended in bentonite mud water and a calcium carbonate powder having an average particle size of about 10 to 40 μm as a filler. It is ~ 1.20 muddy water. The light mud water 9 is mixed with, for example, a mud prevention material (LCM) as a clogging material that becomes a core when a mud cake that closes the voids and cracks of the rock mass is formed. Due to the presence of such fillers and packing materials, the mud cake is securely and firmly held in the voids and cracks of the rock mass.
[0024]
In the above configuration, prior to operating the CAES compressor 4 and the compressed air storage tank 5, work to seal the rock cavity 12 by closing the voids and cracks in the inner wall surface of the excavated rock cavity 12. I do. That is, first, water is supplied to the rock cavity 12 for cleaning, and then the heavy mud water 8 is supplied from the mud pipe 13 to fill the rock cavity 12 and the mud pipe 13. Next, the light mud water 9 is put into the rock cavity 12 filled with the heavy mud water 8 through the high-pressure air circulation pipe 17 (only at this time, the high-pressure air circulation pipe 17 is connected to the supply means of the light mud water 9). It is press-fitted while pushing out the heavy mud water 8. In this way, when the mud water 8 and the light mud water 9 are filled in the rock cavity 12 (see FIG. 6), a mud cake is formed in the top end portion 25 of the rock cavity 12 by these muddy water components. The rock cavity 12 is hermetically sealed by closing the gaps and cracks in the rock.
[0025]
Next, when the CAES compressor 4 and the compressed air storage tank 5 are operated, for example, the CAES compressor 4 is driven using low-cost night electricity, thereby generating high-pressure air. Is fed to the rock cavity 12 through the high pressure air introduction pipe 19 and the high pressure air circulation pipe 17. The pressurized high pressure air is stored in the compressed air storage tank 5 in a state in which the hydrostatic pressure by the heavy mud water 8 is loaded from below while the heavy mud water 8 and the light mud water 9 in the rock cavity 12 are pushed down by the pressure. (See FIG. 5). Further, the pushed down heavy mud water 8 sequentially flows into the mud pipe 13 and moves to the heavy mud water reservoir 14 through the mud pipe 13 so as to be pushed up.
[0026]
On the other hand, for example, during the daytime when a large amount of electric power is required, the high pressure air (4.5 Pa, 10 ° C., RH 80%) in the rock cavity 12 is connected to the high pressure air circulation pipe 17 and the high pressure air outlet pipe 20. To the front treatment facility 6 of the oxygen production apparatus 2. By this derivation, the bedrock cavity 12 is replenished with the heavy mud water 8 moved from the heavy mud water reservoir 14, and the state where the high pressure air is pressed from below by the hydrostatic pressure of the heavy mud water 8 is continuously maintained. When the high-pressure air is all derived from the rock cavity 12, the heavy mud water 8 is filled in the rock cavity 12 with the upper layer of the light mud 9 interposed at the top end portion 25 of the rock cavity 12. (See FIG. 6).
[0027]
In this manner, the storage (introduction) and extraction (derivation) of high-pressure air are repeated by the operation of the CAES compressor 4 and the compressed air storage tank 5. In this embodiment, seawater can be used in place of the heavy mud water 8. In this case, seawater is stored in the heavy mud reservoir 14 and supplied into the rock cavity 12 through the mud pipe 13. Further, instead of the light mud water 9, silicon oil or the like is used as the air / water separation membrane. Further, the reverse osmosis membrane water producing pipe 18 and the protection pipe 22 are unnecessary, and the reverse osmosis membrane module 23, the pumping pipe 24 and the like may be installed directly in the mud pipe 13.
[0028]
The oxygen production apparatus 2 produces high-pressure oxygen corresponding to the high-pressure air in the daytime using high-pressure air stored in the rock cavity 12 of the CAES system 1 as raw material air, as shown in FIG. The front-side treatment facility 6 has two pairs of adsorption towers 31 and 32 for removing impure components such as moisture and carbon dioxide in high-pressure air derived from the rock cavity 12 (see FIG. 5) of the compressed air storage tank 5. is doing. Further, the low temperature section 7 includes heat exchangers 33 and 34, expansion turbines 35 and 36, a gas-liquid separator 37, a heat exchanger 38, a rectifying tower 39, a supercooler 40, and liquid oxygen. A pump 41 and the like are provided. In the figure, reference numeral 42 denotes a regenerative heater for heating the regenerated gas (exhaust gas described later) of both adsorption towers 31 and 32. Reference numeral 43 denotes a liquid acid evaporator (not shown in FIG. 1), which is liquidated from a part of the high-pressure air that has passed through the front side treatment facility 6 and from the bottom of the low-pressure column 39b of the rectification column 39 by the liquid oxygen pump 41. Heat exchange is performed with the liquid oxygen taken out through the oxygen take-out pipe 41a, the high-pressure air is cooled and supplied to the upper part of the gas-liquid separator 37, and the liquid oxygen is heated and evaporated to be taken out as a product high-pressure oxygen gas. Works.
[0029]
The heat exchangers 33 and 34 exchange heat between the high-pressure air introduced into the gas-liquid separator 37 after passing through the front-side treatment facility 6 and the low-temperature air led out from the gas-liquid separator 37, thereby The high-pressure air that has passed through is cooled and liquefied. In the first expansion turbine 35, after passing through the front processing facility 6, a part of the high-pressure air before being introduced into the first heat exchanger 33 is introduced to generate cold, and extends from the top of the gas-liquid separator 37. Supply to the low-temperature air introduction path 44. In the second expansion turbine 36, after passing through the first heat exchanger 33, a part of the high-pressure low-temperature air before being introduced into the second heat exchanger 34 is introduced to generate cold, and the gas-liquid separator 37 It is supplied to the upper part or the low-temperature air introduction path 44 (in this embodiment, it is supplied to the upper part of the gas-liquid separator 37).
[0030]
In the gas-liquid separator 37, oxygen-rich liquefied air (liquid air) accumulated at the bottom thereof is supplied to the high-pressure column 39a of the rectifying column 39 by the supply pipe 37a, and the low-temperature air accumulated at the upper portion is supplied to the low-temperature air introduction path 44. To the bottom of the heat exchanger 38 and the high pressure column 39a. In the heat exchanger 38, the low-temperature air passing through the low-temperature air introduction passage 44 and the exhaust gas extraction pipe 38a from the upper portion of the low-pressure column 39b of the rectifying column 39 and the nitrogen gas extraction pipe 38b from the top of the low-pressure column 39b are extracted. The product nitrogen gas is heat-exchanged, the low-temperature air is cooled and introduced into the bottom of the high-pressure tower 39 a, the nitrogen gas is heated and taken out as product nitrogen gas, and the exhaust gas is supplied to the regeneration heater 42.
[0031]
In the high-pressure column 39a, oxygen-rich liquefied air is accumulated at the bottom of the high-pressure column 39a, taken out by a take-out pipe 40a and introduced into the supercooler 40, where it is supercooled and placed above the low-pressure column 39b Supply. Further, nitrogen gas accumulated at the top of the high-pressure column 39a is introduced into a condenser 39c provided at the bottom of the low-pressure column 39b, where it is condensed and liquefied, and then a part thereof is returned to the top of the high-pressure column 39a. Then, the remainder is introduced into the supercooler 40 by the feed pipe 40b and supercooled here, and then a part thereof is refluxed to the low temperature tower 39b, and the remainder is taken out as liquefied nitrogen. And the taken-out liquefied nitrogen is raised to a desired pressure with the liquid pump 10, and it introduce | transduces into the cooler 45, Here, after cooling the gas turbine raw material air mentioned later, it takes out as product high-pressure nitrogen gas. On the other hand, in the low-pressure column 39b as well, due to the rectification action, liquefied oxygen is accumulated at the bottom, taken out by the liquid acid pump 41, introduced into the liquid acid evaporator 43, and taken out as product high-pressure oxygen gas. Note that the liquefied oxygen stored in the bottom of the low-pressure column 39b may be taken out as a product as liquefied oxygen before being introduced into the liquid acid pump 41.
[0032]
On the other hand, the gas turbine generator 3 compresses the gas turbine raw air taken in from the outside by the air compressor 46 and introduces it into the combustor 47, where it is burned with fuel, and the combustion injected from the combustor 47. The gas turbine 48 is rotated by the thrust of the gas, and the generator 49 is rotated by this rotational force. Further, the high-temperature gas (exhaust gas) discharged from the gas turbine 48 is released into the atmosphere after using heat such as steam production. In this embodiment, since the gas turbine raw air is introduced into the cooler 45 and is cooled by exchanging heat with high-pressure liquefied nitrogen, the power of the air compressor 46 can be reduced.
[0033]
For example, when a 60,000 kW class CAES system is used, a high pressure oxygen gas of 20 ata is about 25,000 m. Three / H (converted at 0 ° C, 101325 Pa), liquefied nitrogen about 11,000m Three / H (converted to 0 ° C. and 101325 Pa hours). When liquefied nitrogen is used for cooling the raw air of the 15,000 kW class gas turbine generator 3, power generation is improved by about 2%.
[0034]
As described above, in this embodiment, the CAES system 1 using the conventional rock cavity 12 is used, and the high-pressure air stored in the rock cavity 12 is used as the raw material air of the oxygen production apparatus 2. In addition, the chilled air separation device can be operated with high-pressure air produced with low-cost nighttime electric power. Moreover, since the reverse osmosis membrane water producing pipe 18 provided in the mud pipe 13 can produce fresh water, it is very economical for blast furnace manufacturers who require a large amount of high-pressure oxygen, nitrogen and clean water. large.
[0035]
FIG. 8 shows another embodiment of the cryogenic air separation device of the present invention. In this embodiment, in the above embodiment, a part of the high-pressure liquefied nitrogen gas is introduced into the temperature riser 48a through the liquefied nitrogen take-out pipe 40c, where the gas turbine is heated by exchanging heat with the exhaust gas. The amount of raw material air introduced into the gas turbine 48 is increased. Other parts are the same as those in the above embodiment, and the same reference numerals are given to the same parts.
[0036]
FIG. 9 shows another embodiment of the cryogenic air separation device of the present invention. In this embodiment, in the embodiment shown in FIG. 1 to FIG. 7, liquefied air that is provided in a tank or the like (not shown) outside the low temperature portion 7 and accumulates at the bottom of the gas-liquid separator 37 is introduced from the bottom. It can be taken out and stored in the tank or the like. Then, at night, high pressure air is stored in the rock cavity 12 of the CAES system 1, the oxygen production apparatus 2 is operated using the stored high pressure air as raw material air of the oxygen production apparatus 2, and the liquefaction produced by this operation Air is stored in the tank or the like. In the daytime, the oxygen production apparatus 2 is operated using liquefied air stored in the tank or the like and high-pressure air stored in the rock cavity 12 of the CAES system 1. Other parts are the same as those in the above embodiment, and the same reference numerals are given to the same parts.
[0037]
In each of the above embodiments, the high-pressure oxygen gas is taken out as a product. However, the present invention is not limited to this, and liquefied oxygen may be taken out as a product. Also The figure 1 and FIG. 8, the liquid air may be taken out from the gas-liquid separator 37. Furthermore, although the high-pressure air of the CAES system 1 is used as the raw material of the chilled air separation device, it may be used as the raw material air of the liquid air manufacturing device that takes out only liquid air as a product.
[0038]
Further, the CAES system 1 of the present invention is not limited to both the above-described embodiments, and various known CAES systems 1 can be used. In addition, it is possible to improve performance such as productivity improvement of high-pressure air by combining a CAES system with a large-capacity high-pressure air compressor.
[0039]
【The invention's effect】
As described above, according to the chilled air separation method of the present invention, a CAES system that manufactures and stores high-pressure air using inexpensive nighttime power and a chilled air separation device are combined, and chilled air is produced in the daytime. When the separator is operated, high-pressure air produced at low cost by the CAES system is used as raw air for the cryogenic air separator and is supplied to the cryogenic air separator. Therefore, it is not necessary to drive the raw air compressor of the chilled air separation device during the daytime operation, so that the daytime power cost can be reduced to almost zero, and the power cost is greatly reduced. Moreover, the CAES system is combined with the chilled air separation device, and it is not necessary to increase the size of the chilled air separation device, and the equipment cost of the chilled air separation device does not increase. For this reason, the product gas obtained by the cryogenic air separation device can be provided at a low cost, and economic efficiency corresponding to the equipment cost of the CAES system can be found. Moreover, according to the cryogenic air separation apparatus of this invention, the said cryogenic air separation method can be performed efficiently. On the other hand, the liquid air production method of the present invention uses high-pressure air stored in a high-pressure air storage space of the CAES system as raw air for the liquid-air production apparatus. Thus, in the liquid air manufacturing method of the present invention, when the liquid air manufacturing apparatus is combined with the CAES system that manufactures and stores high-pressure air using inexpensive nighttime power and the liquid air manufacturing apparatus is operated in the daytime, In addition, high-pressure air produced at a low cost by the CAES system is used as raw material air for the liquid air production apparatus and is supplied to the liquid air production apparatus. Therefore, the liquid air production method of the present invention also exhibits the above-described excellent effects as in the case of the cold air separation method of the present invention.
[0040]
Also, The present invention Then , High pressure produced by the above cryogenic air separation device Liquefied nitrogen To use the cold heat of the power generation equipment For , Power generation efficiency is improved. Moreover, the cold air of the liquid air manufactured by the liquid air manufacturing apparatus is used for power generation equipment. For Have the same effect.
[0041]
Also, The present invention Then The raw air to be introduced into the gas turbine of the power generation facility is cooled by the cold heat. For The power of the air compressor of the gas turbine can be reduced, and the amount of power generation increases accordingly.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a cryogenic air separation device of the present invention.
FIG. 2 is an explanatory diagram of a CAES system.
FIG. 3 is a cross-sectional view showing a main part of the CAES system.
FIG. 4 is a cross-sectional view showing another main part of the CAES system.
FIG. 5 is a cross-sectional view showing the operation of the CAES system.
FIG. 6 is a sectional view showing the operation of the CAES system.
FIG. 7 is a configuration diagram showing an oxygen production apparatus.
FIG. 8 is a configuration diagram showing another embodiment of the cryogenic air separation device of the present invention.
FIG. 9 is a configuration diagram showing still another embodiment of the cryogenic air separation device of the present invention.
FIG. 10 is a block diagram showing an example of a conventional example.
FIG. 11 is a configuration diagram illustrating another example of a conventional example.
[Explanation of symbols]
1 CAES system
2 Oxygen production equipment
12 Rock cavity

Claims (6)

CAESシステムの高圧空気貯蔵用空間に貯蔵した高圧空気を深冷空気分離装置の原料空気として用い、この深冷空気分離装置により製造した高圧液化窒素を、発電設備のガスタービンに導入する原料空気と熱交換させ、この原料空気の温熱で上記高圧液体窒素をガス化し製品高圧窒素ガスとして取り出すとともに、上記高圧液体窒素の冷熱で、上記ガスタービンに導入する原料空気を冷却するようにしたことを特徴とする深冷空気分離方法。The high-pressure air stored in the high-pressure air storage space of the CAES system is used as the raw air for the cryogenic air separation device, and the high-pressure liquefied nitrogen produced by this deep-cooling air separation device is introduced into the gas turbine of the power generation facility and is heat exchange, the high pressure liquid nitrogen in heat of the feed air is taken out as product high pressure nitrogen gas gasified in cold of the high pressure liquid nitrogen, that was so that to cool the feed air to be introduced into the gas turbine A featured cryogenic air separation method. 上記製品高圧窒素ガスの一部を、上記ガスタービンから排出される排ガスと熱交換させて昇温させたのち上記ガスタービンに導入するようにした請求項1記載の深冷空気分離方法。2. The deep cold air separation method according to claim 1 , wherein a part of the product high-pressure nitrogen gas is heat-exchanged with exhaust gas discharged from the gas turbine to raise the temperature and then introduced into the gas turbine . CAESシステムの高圧空気貯蔵用空間に貯蔵した高圧空気を液体空気製造装置の原料空気として用い、この液体空気製造装置により製造した液体空気を、発電設備のガスタービンに導入する原料空気と熱交換させ、この原料空気の温熱で上記液体空気をガス化して取り出すとともに、上記液体空気の冷熱で、上記ガスタービンに導入する原料空気を冷却するようにしたことを特徴とする液体空気製造方法。 The high-pressure air stored in the high-pressure air storage space of the CAES system is used as the raw material air of the liquid air production device, and the liquid air produced by this liquid air production device is heat-exchanged with the raw material air introduced into the gas turbine of the power generation facility. A method for producing liquid air , characterized in that the liquid air is gasified and taken out with the warm heat of the raw material air, and the raw air introduced into the gas turbine is cooled with the cold heat of the liquid air. 深冷空気分離装置の原料空気が、CAESシステムの高圧空気貯蔵用空間に貯蔵した高圧空気であり、上記深冷空気分離装置により製造した高圧液化窒素を、発電設備のガスタービンに導入する原料空気と熱交換させ、この原料空気の温熱で上記高圧液体窒素をガス化し製品高圧窒素ガスとして取り出すとともに、上記高圧液体窒素の冷熱で、上記ガスタービンに導入する原料空気を冷却するようにしたことを特徴とする深冷空気分離装置 The raw air of the cryogenic air separator is the high pressure air stored in the high pressure air storage space of the CAES system, and the high pressure liquefied nitrogen produced by the cryogenic air separator is introduced into the gas turbine of the power generation facility and is heat exchanged with the high pressure liquid nitrogen in heat of the feed air is taken out as product high pressure nitrogen gas gasified in cold of the high pressure liquid nitrogen, it was so that to cool the feed air to be introduced into the gas turbine A cryogenic air separator characterized by the above. 上記製品高圧窒素ガスの一部を、上記ガスタービンから排出される排ガスと熱交換させて昇温させたのち上記ガスタービンに導入するようにした請求項4記載の深冷空気分離装置 5. The cryogenic air separation device according to claim 4 , wherein a part of the high-pressure nitrogen gas of the product is heat-exchanged with the exhaust gas discharged from the gas turbine to raise the temperature and then introduced into the gas turbine . 液体空気製造装置の原料空気が、CAESシステムの高圧空気貯蔵用空間に貯蔵した高圧空気であり、上記液体空気製造装置により製造した液体空気を、発電設備のガスタービンに導入する原料空気と熱交換させ、この原料空気の温熱で上記液体空気をガス化して取り出すとともに、上記液体空気の冷熱で、上記ガスタービンに導入する原料空気を冷却するようにしたことを特徴とする液体空気製造装置 The raw material air of the liquid air production device is high pressure air stored in the high pressure air storage space of the CAES system, and the liquid air produced by the liquid air production device exchanges heat with the raw material air introduced into the gas turbine of the power generation facility. The liquid air production apparatus is characterized in that the liquid air is gasified and taken out with the warm heat of the raw material air, and the raw air introduced into the gas turbine is cooled with the cold heat of the liquid air.
JP2002309630A 2002-10-24 2002-10-24 Cryogenic air separation method, liquid air production method, and apparatus used therefor Expired - Fee Related JP4137594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002309630A JP4137594B2 (en) 2002-10-24 2002-10-24 Cryogenic air separation method, liquid air production method, and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309630A JP4137594B2 (en) 2002-10-24 2002-10-24 Cryogenic air separation method, liquid air production method, and apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2004144386A JP2004144386A (en) 2004-05-20
JP4137594B2 true JP4137594B2 (en) 2008-08-20

Family

ID=32455382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309630A Expired - Fee Related JP4137594B2 (en) 2002-10-24 2002-10-24 Cryogenic air separation method, liquid air production method, and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP4137594B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5005894B2 (en) * 2005-06-23 2012-08-22 エア・ウォーター株式会社 Nitrogen generation method and apparatus used therefor
US20110127004A1 (en) * 2009-11-30 2011-06-02 Freund Sebastian W Regenerative thermal energy storage apparatus for an adiabatic compressed air energy storage system
CN102817655A (en) * 2012-09-06 2012-12-12 南京玖壹环境科技有限公司 Comprehensive energy source management system for peak shifting power supplying and method thereof

Also Published As

Publication number Publication date
JP2004144386A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
US4873828A (en) Energy storage for off peak electricity
RU2435041C2 (en) Method and device for effective and low-toxic operation of thermal power plants, and for accumulation and conversion of energy
CN104040165B (en) Apparatus and method for energy stores
KR101334068B1 (en) System and method for liquid air production, power storage and power release
EP2500565A1 (en) Supercritical air energy storage system
CN101571340B (en) Air separation method utilizing liquefied natural gas cold energy
US20120151961A1 (en) Liquid Air As Energy Storage
CN104603403B (en) Method and system for energy storing and short-term power generation
US20220196341A1 (en) Three section configuration for compressed air energy storage systems
CN107060927A (en) Waste heat recycling system and its method and power station
US20140183869A1 (en) Method and apparatus for using wind energy or solar energy for an underwater and/or for an under seabed compressed air energy storage system
CN101498229A (en) Zero discharge natural gas power generation and liquefaction apparatus
US20150344770A1 (en) System and method for producing carbon dioxide for use in hydrocarbon recovery
US20170299226A1 (en) Multi-fluid renewable geo-energy systems and methods
CN108005739A (en) Using the LNG cold energy stepped utilization methods of cold energy generation
JP4137594B2 (en) Cryogenic air separation method, liquid air production method, and apparatus used therefor
CN114046172B (en) System and method for treating and utilizing coal fire based on carbon dioxide process and modularized design
JPH10238366A (en) Energy storage type gas turbine power generation system
US9664441B2 (en) Methods and systems for underwater gas pressurization and liquefaction
CN206035555U (en) Waste heat lithium bromide refrigeration's cryrogenic liquefied air energy storage system
US4450689A (en) Arrangement in or relating to a power plant
GB2602806A (en) Closed circuit natural gas extraction and sequestration of carbon dioxide
CN104482719A (en) Back-filling device for low-temperature liquid
JP2002168101A (en) Composite energy system
CN107381503A (en) A kind of system and method for sulfide hydrogen conversion gas purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees