JP4135181B2 - Thermocouple system for heating measurement - Google Patents

Thermocouple system for heating measurement Download PDF

Info

Publication number
JP4135181B2
JP4135181B2 JP2005381242A JP2005381242A JP4135181B2 JP 4135181 B2 JP4135181 B2 JP 4135181B2 JP 2005381242 A JP2005381242 A JP 2005381242A JP 2005381242 A JP2005381242 A JP 2005381242A JP 4135181 B2 JP4135181 B2 JP 4135181B2
Authority
JP
Japan
Prior art keywords
temperature
thermocouple
heating
unit
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005381242A
Other languages
Japanese (ja)
Other versions
JP2007178412A (en
Inventor
秀悦 鈴木
敏彦 簾内
大輔 久松
能生 太田
Original Assignee
テクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクセル株式会社 filed Critical テクセル株式会社
Priority to JP2005381242A priority Critical patent/JP4135181B2/en
Publication of JP2007178412A publication Critical patent/JP2007178412A/en
Application granted granted Critical
Publication of JP4135181B2 publication Critical patent/JP4135181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、熱電対に試料保持機能とヒータ機能と温度検出機能を持たせたホットサーモカップル法において、温度制御機能、試料観察とデータ記録に関する改善を図った加熱計測用熱電対システムに関するものである。  The present invention relates to a thermocouple system for heating measurement in which a thermocouple method having a sample holding function, a heater function, and a temperature detection function is improved with respect to a temperature control function, sample observation and data recording. is there.

技術背景Technical background

従来の高温科学の研究において、溶融状態や融体と固体の反応などを直接観察する装置として、加熱用電源として商用周波数の半サイクルで熱電対を形成させたフィラメントを加熱し、残りの半サイクルのときにフィラメントに流れる加熱電流をシリコン整流器で遮断し、高速度リレーにより測温回路に接続させ、熱起電力を直流電圧測定装置で検出記録する方法がある。熱測定13(2)1986記載のホットサーモカップル法では耐熱耐蝕性のR熱電対を加熱用フィラメント兼温度測定素子とし、硬質ガラス製で冷却手段つきの試料容器に前記熱電対を取りつけ、この熱電対に観察対象の試料を保持し、この試料を加熱冷却しながら、実体顕微鏡などで観察し、例えば鉱物試料の溶融過程や凝固過程を直接観察し温度とともに記録出来、又はガラス形成系での液相線温度の決定が出来るものである。  In conventional high-temperature science research, as a device for directly observing the molten state and the reaction between the melt and the solid, as the heating power source, the filament with the thermocouple formed at half the commercial frequency is heated and the remaining half cycle In this case, there is a method in which the heating current flowing in the filament is interrupted by a silicon rectifier, connected to a temperature measuring circuit by a high-speed relay, and the thermoelectromotive force is detected and recorded by a DC voltage measuring device. In the hot thermocouple method described in thermal measurement 13 (2) 1986, a heat-resistant and corrosion-resistant R thermocouple is used as a heating filament and temperature measuring element, and the thermocouple is attached to a sample container made of hard glass and equipped with cooling means. The sample to be observed is held on the surface and observed with a stereomicroscope while heating and cooling the sample. For example, the melting and solidification process of the mineral sample can be directly observed and recorded along with the temperature, or the liquid phase in the glass forming system. The line temperature can be determined.

特許公報にはホットサーモカップル法に相当する方法は見当たらないが、試料を加熱冷却し、温度を検出しながら試料の外観の変化を観察する高温観察装置として、特開2002−107317号公報に示す如く、試料の加熱温度による変化を観察する高温観察装置であって、気密構造の高温室と、この高温室内の中央部に配置され且つ試料を載置する試料台と、この試料台上の試料を加熱、冷却する加熱手段及び冷却手段と、これらの加熱手段及び冷却手段によって加熱、冷却される試料の温度を検出する温度検出手段と、この温度検出手段の検出結果に基づいて加熱手段及び冷却手段を制御する制御手段と、この制御手段で温度制御された試料を高温室に設けられた観察窓を介して撮像する少なくとも一つの撮像手段と、この撮像手段で撮像された映像を映し出すモニタとを備えた高温観察装置がある。  Although no method corresponding to the hot thermocouple method is found in the patent publication, Japanese Patent Application Laid-Open No. 2002-107317 discloses a high-temperature observation apparatus that observes changes in the appearance of a sample while heating and cooling the sample and detecting the temperature. As described above, a high-temperature observation apparatus for observing a change due to a heating temperature of a sample, which is a high-temperature chamber having an airtight structure, a sample stage disposed in the center of the high-temperature chamber and mounting a sample, and a sample on the sample stage Heating means and cooling means for heating and cooling, temperature detection means for detecting the temperature of the sample heated and cooled by these heating means and cooling means, and heating means and cooling based on the detection result of this temperature detection means Control means for controlling the means, at least one image pickup means for picking up an image of the sample temperature-controlled by the control means through an observation window provided in the high temperature chamber, and the image pickup means There is high temperature observation apparatus provided with a monitor displaying an image video.

また、上記試料台は、試料を載置する基板と、この基板に断熱部材を介して連結された支持体とを有するものとし、上記加熱手段は、試料台両側の斜め上方で試料台を挟むように並設された2本の上側ヒータと、試料台両側の斜め下方で試料台を挟む位置に並設され且つ両上側ヒータの間隔よりも狭く配置された2本の下側ヒータとを有するものとし、上記温度検出手段は熱電対を有し、熱電対を基板の裏面に形成された凹陥部に挿入したものである。  Further, the sample stage includes a substrate on which the sample is placed and a support body connected to the substrate via a heat insulating member, and the heating means sandwiches the sample stage diagonally above both sides of the sample stage. Two upper heaters arranged side by side in this manner, and two lower heaters arranged side by side at a position sandwiching the sample table diagonally below both sides of the sample table and arranged narrower than the distance between the upper heaters The temperature detecting means has a thermocouple, and the thermocouple is inserted into a recessed portion formed on the back surface of the substrate.

参考文献1Reference 1

森永健次、中島邦彦、太田能生、熱測定13(2)1986
特開2002−107317号公報
Kenji Morinaga, Kunihiko Nakajima, Norio Ota, Thermal Measurement 13 (2) 1986
JP 2002-107317 A

前記文献に記載のホットサーモカップル法は試料量が微小で加熱手段としての熱電対の熱容量も小さいことから急速加熱、急速冷却が出来、1900Kの高温までの測定が出来るので、前記の如く幅広く観察記録が出来るが、温度上昇、温度降下などの温度制御や、観察記録等、手動であり、テクニックと忍耐が必要であり測定時間も長く、測定者の負担が大であり、また加熱サイクルでは熱起電力の取り込みができないため測定回路時定数により、測定電圧にサグ(電圧降下)が発生し直読値に誤差が生じてしまうので、標準試料(NaCl)などで測定値の補正をする必要があるという欠点があった。  The hot thermocouple method described in the above document has a small sample amount and a small heat capacity of a thermocouple as a heating means, so it can be rapidly heated and cooled, and can be measured up to a high temperature of 1900K. Although recording is possible, manual control, such as temperature control such as temperature rise and temperature drop, observation recording, etc. requires technique and patience, long measurement time, heavy burden on the measurer, and heat cycle is heat Since the electromotive force cannot be captured, a sag (voltage drop) occurs in the measurement voltage due to the measurement circuit time constant, resulting in an error in the direct reading value. Therefore, it is necessary to correct the measurement value with a standard sample (NaCl) or the like. There was a drawback.

また、特開特開2002−107317号公報に記載の高温観察装置は熱電対を用いて温度検出を行うが、熱電対とは別にヒーターや試料台を設けたものであり、熱電対に温度検出機能とヒータ機能と試料保持機能の3機能を持たせたものでないので、試料台の熱容量が大であり試料の急速加熱・急速冷却は出来ず、また、試料の温度と検出温度とは差が生じやすく、本発明とは構成や内容が異なっている。従来の示差熱分析装置等の熱分析装置では試料の融点、凝固点、変態点における可視的データは得ることができず、更に操作の簡便性に欠けるところがある。また温度の検出は試料パンの外部温度を検出する仕組みになっているため、微妙な温度変化に対して敏感ではない欠点がある。  In addition, the high-temperature observation apparatus described in Japanese Patent Application Laid-Open No. 2002-107317 performs temperature detection using a thermocouple, but is provided with a heater and a sample stand separately from the thermocouple. Since the function, heater function and sample holding function are not provided, the heat capacity of the sample stage is large, and the sample cannot be heated or cooled rapidly. Also, there is a difference between the sample temperature and the detected temperature. It tends to occur, and the configuration and contents are different from those of the present invention. In a conventional thermal analyzer such as a differential thermal analyzer, visible data on the melting point, freezing point, and transformation point of a sample cannot be obtained, and further, the operation is not easy. Further, since the temperature detection is a mechanism for detecting the external temperature of the sample pan, there is a drawback that it is not sensitive to subtle temperature changes.

本発明は、熱電対に温度検出とヒータ機能と試料保持機能を持たせたものにおいて、温度制御機能、試料観察とデータ記録などに関する改善を図ることを目的としている。  An object of the present invention is to improve a temperature control function, sample observation, data recording, and the like in a thermocouple having a temperature detection, a heater function, and a sample holding function.

上記の課題を解決するために、観察対象の試料を保持している熱電対に、可変直流を使用し所定周波数でスイッチングを行い熱電対に半サイクル矩形波で電圧を引加して加熱電流を流して熱電対と試料を加熱し、残り半サイクルで熱電対に流れる加熱電流を遮断し、温度測定タイミングの測温信号にて熱電対の熱起電力を検出して温度測定し、試料を所定観察温度にする加熱計測ユニットと、前記加熱計測ユニットに対し、予め設定された昇温勾配に従い自動で昇温を行う自動昇温、予め設定された降温勾配に従い自動で降温を行う自動降温、所定観察温度の維持、所定点での温度記録及び開始や終了時のデータ記録などの設定操作が出来る設定操作とを設け、また、前記加熱計測ユニットを、前記熱電対に通電して加熱する加熱電源部と、熱電対の熱起電力を計測する計測部と、所定周波数でスイッチングを行い加熱電源部と計測部を切換える加熱計測切換部と、計測部が計測した熱起電力に基づくアナログ温度信号をデジタル変換するA/D変換部と、変換されたデジタル温度信号を受けるとともにこれらを制御する制御部と、制御部のデジタル温度信号をアナログ変換するD/A変換部と、このアナログ値を受け温度調節する温度調節部とで構成した。 In order to solve the above problem, a thermocouple holding the sample to be observed is switched at a predetermined frequency using a variable direct current, and a voltage is applied to the thermocouple with a half-cycle rectangular wave to generate a heating current. The thermocouple and the sample are heated to flow, the heating current flowing through the thermocouple is shut off in the remaining half cycle, the thermoelectromotive force of the thermocouple is detected by the temperature measurement signal at the temperature measurement timing, the temperature is measured, and the sample is determined A heating measurement unit for observing temperature, an automatic temperature increase for automatically increasing the temperature according to a preset temperature increase gradient, an automatic temperature decrease for automatically decreasing according to a preset temperature decrease gradient, a predetermined value A setting operation unit that can perform setting operations such as maintenance of observation temperature, temperature recording at a predetermined point, and data recording at start and end , and heating the heating measurement unit by energizing the thermocouple Power supply and A measurement unit that measures the thermoelectromotive force of the thermocouple, a heating measurement switching unit that switches between the heating power supply unit and the measurement unit by switching at a predetermined frequency, and an analog temperature signal based on the thermoelectromotive force measured by the measurement unit is converted to digital An A / D converter, a controller that receives and controls the converted digital temperature signal, a D / A converter that analog-converts the digital temperature signal of the controller, and a temperature that receives this analog value and adjusts the temperature Consists of a control unit.

前記構成により、熱電対にヒーター機能と、温度検出機能及び試料保持機能を持たせ、試料及び熱電対とも熱容量が微小となり試料の急速加熱・急速冷却が出来、温度測定の正確性と追随性が良くなり、また各種設定も容易になるので、所定観察温度における試料の溶融状態や融体と固体の反応などを容易にかつ直接観察出来るものとなった。
また、前記設定操作部による設定に基づき、制御部は加熱計測切換部にて加熱電源部と計測部を交互に切換ながら、加熱電源部により前記熱電対に半サイクル矩形波を通電して加熱し、熱電対からの温度に対するアナログ値の熱起電力信号を計測部を経由してA/D変換部にてデジタル変換して受けて温度データとしパソコンに出力するなど制御し、続いてこのデジタル値の温度データをD/A変換部にてアナログ変換して温度調節部に送り、温度調節部で設定操作部による設定とこのデジタル値の温度データを演算して温度調節やPID制御を行わせ、また制御部は加熱計測制御、データ処理、条件設定を行わせることができるものとすると、前記加熱に矩形波を使用することで、制御部とのインターフェースが容易となり、回路がシンプルになり、また、A/D変換部による熱起電力信号ディジタル化によるメリットとして、加熱サイクルでは熱起電力の取り込みができなくても、次回測定サイクルまで測定値をホールドすることにより測定電圧にサグ(電圧降下)が発生せず、正確な測定が可能になり、ディジタル化により熱電対による発生起電力の代わりに、加熱出力を発生せずに熱起電力相当の電圧を熱電対ホルダー先端より入力しシステムのキャリブレーションや保証が容易に出来、設定に応じて加熱計測制御、データ処理、条件設定が出来る。
With the above configuration, the thermocouple has a heater function, a temperature detection function, and a sample holding function. Both the sample and the thermocouple have a small heat capacity, so that the sample can be rapidly heated and cooled, and the accuracy and follow-up of the temperature measurement can be achieved. Since it is improved and various settings are facilitated, it is possible to easily and directly observe the molten state of the sample at the predetermined observation temperature and the reaction between the melt and the solid.
Further , based on the setting by the setting operation unit, the control unit alternately heats the thermocouple with the heating power supply unit and heats the thermocouple while switching the heating power supply unit and the measurement unit alternately with the heating measurement switching unit. The analog thermoelectric signal for the temperature from the thermocouple is digitally converted by the A / D converter via the measuring unit, and is output as temperature data to the personal computer. The D / A converter converts the temperature data to analog and sends it to the temperature controller. The temperature controller adjusts the setting by the setting operation unit and the temperature data of this digital value to perform temperature adjustment and PID control. If the control unit can perform heating measurement control, data processing, and condition setting, the use of a square wave for the heating facilitates the interface with the control unit and simplifies the circuit. In addition, as a merit of digitizing the thermoelectromotive force signal by the A / D converter, even if the thermoelectromotive force cannot be captured in the heating cycle, the measured voltage is sag by holding the measured value until the next measurement cycle. (Voltage drop) does not occur, and accurate measurement is possible. By digitalization, a voltage equivalent to the thermoelectromotive force is input from the tip of the thermocouple holder without generating a heating output instead of the electromotive force generated by the thermocouple. The system can be easily calibrated and guaranteed, and heating measurement control, data processing, and condition setting can be performed according to the settings.

本発明は、以上の構成としたので前記熱電対にヒーター機能と、温度検出機能及び試料保持機能を持たせ、試料及び熱電対とも熱容量が微小となり試料の急速加熱・急速冷却が出来、温度測定の正確性と追随性が良くなり、また自動昇温、自動降温、温度維持、温度記録及びデータ記録などの各種設定も容易になるので、所定観察温度における試料の溶融状態や融体と固体の反応などを容易にかつ直接観察出来る加熱計測用熱電対システムを提供することが出来る。Since the present invention has the above configuration, the heater function to the thermocouple, to have a temperature detecting function and the sample holding function, the sample and the thermocouple both heat capacity can rapid heating and rapid cooling of the sample becomes very small, the temperature The accuracy and follow-up of the measurement is improved, and various settings such as automatic temperature rise, automatic temperature drop, temperature maintenance, temperature recording and data recording are facilitated. It is possible to provide a thermocouple system for heating measurement that can easily and directly observe the reaction of the above.

加熱に矩形波を使用することで、制御部とのインターフェースが容易となり、回路がシンプルになり、また、A/D変換部による熱起電力信号ディジタル化により、加熱サイクルで熱起電力の取り込みがなくても、次回測定サイクルまで測定値がホールドされ測定電圧にサグが発生せず、正確な測定が可能になり、ディジタル化により熱電対による発生起電力の代わりに、加熱出力を発生せずに熱起電力相当の電圧を入力しシステムのキャリブレイションや保証が容易に出来、設定に応じて加熱計測制御、データ処理、条件設定が出来る加熱計測用熱電対システムを提供することが出来る。 By using a square wave for heating, the interface with the control unit becomes easy, the circuit is simplified, and the thermoelectromotive force signal is digitized by the A / D conversion unit so that the thermoelectromotive force can be captured in the heating cycle. Even if it is not, the measurement value is held until the next measurement cycle, and the measurement voltage does not sag, and accurate measurement is possible. Digitization does not generate heating output instead of electromotive force generated by thermocouple. It is possible to provide a thermocouple system for heating measurement in which a voltage equivalent to a thermoelectromotive force can be input and calibration and guarantee of the system can be easily performed, and heating measurement control, data processing, and condition setting can be performed according to settings.

以下本発明の一実施例を図により説明する。図1は本発明の一実施形態に係る加熱計測用熱電対システムの構成図であり、図2は同加熱計測用熱電対システムの加熱計測ユニットのブロック構成図であり、図3は同加熱計測用熱電対システムの加熱計測原理を示すタイミング図である。  An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a heating measurement thermocouple system according to an embodiment of the present invention, FIG. 2 is a block configuration diagram of a heating measurement unit of the heating measurement thermocouple system, and FIG. It is a timing diagram which shows the heating measurement principle of the thermocouple system for an industrial use.

図1において、本発明の加熱計測用熱電対システムの加熱計測ユニット1は各種加熱制御や温度計測などの設定操作用の設定操作部2と、耐熱耐蝕性の例えばR熱電対からなる熱電対3に接続されている。熱電対3は熱電対ホルダ4に取付けられた状態で硬質ガラス製で冷却手段つきの観察用チャンバー5内に装着され、観察対象の微小の試料6を保持している。観察用チャンバー5には内部の熱電対3と試料6を観察出来る観察窓が設けられており、この観察窓に対向して熱電対3と試料6の状態を観察するための実体顕微鏡7が設けられている。この実体顕微鏡7を介して観察映像を表示記録するために、順にCCDカメラ8、テロップ装置9、ビデオシステム10、ディスプレイ11が接続されている。更にこれらを制御すると共にデータを記録するために前記加熱計測ユニット1とテロップ装置9及びビデオシステム10にパソコン12が、またパソコン12には記録の印刷用にプリンター13が接続されている。  In FIG. 1, a heating measurement unit 1 of the thermocouple system for heating measurement according to the present invention includes a setting operation unit 2 for setting operations such as various heating controls and temperature measurements, and a thermocouple 3 made of heat-resistant and corrosion-resistant, for example, R thermocouple. It is connected to the. The thermocouple 3 is mounted in an observation chamber 5 made of hard glass and equipped with a cooling means while being attached to a thermocouple holder 4, and holds a minute sample 6 to be observed. The observation chamber 5 is provided with an observation window through which the internal thermocouple 3 and the sample 6 can be observed. A stereomicroscope 7 for observing the state of the thermocouple 3 and the sample 6 is provided opposite to the observation window. It has been. In order to display and record the observation video through the stereomicroscope 7, a CCD camera 8, a telop device 9, a video system 10, and a display 11 are connected in order. Further, in order to control these and record data, a personal computer 12 is connected to the heating measurement unit 1, the telop device 9 and the video system 10, and a printer 13 is connected to the personal computer 12 for printing the recording.

次に、前記設定操作部2では、昇温(例えば10℃/分、100℃/分、500℃/分の3種、予め設定された昇温勾配に従い自動で昇温を行う)、降温(例えば10℃/分、100℃/分、500℃/分の3種、予め設定された降温勾配に従い自動で降温を行う)、温度維持、温度記録(例えば5点)、データ記録(例えば開始、終了の2点)などの設定操作が出来る。これらの設定に基づき加熱計測ユニット1は熱電対3にて観察用チャンバー5内で試料6を保持させ、加熱又は冷却させながら温度測定して、試料6のPID温度制御を行う。従って熱電対3に試料保持機能と、ヒーター機能及び温度検出機能を持たせている。  Next, in the setting operation unit 2, the temperature is raised (for example, three kinds of temperatures of 10 ° C./min, 100 ° C./min, 500 ° C./min are automatically raised according to a preset temperature rise gradient), and the temperature is lowered ( For example, 3 types of 10 ° C./min, 100 ° C./min, 500 ° C./min, temperature is automatically decreased according to a preset temperature decrease gradient), temperature maintenance, temperature recording (for example, 5 points), data recording (for example, start, Setting operations such as 2 points at the end) can be performed. Based on these settings, the heating measurement unit 1 holds the sample 6 in the observation chamber 5 by the thermocouple 3, measures the temperature while heating or cooling, and controls the PID temperature of the sample 6. Therefore, the thermocouple 3 has a sample holding function, a heater function, and a temperature detection function.

また、前記実体顕微鏡7にて観察用チャンバー5内の試料6の所定部分を拡大して詳細に観察するとともに、CCDカメラ8にてその映像を高速撮影し、テロップ装置9にて試料6や温度など所定のテロップを加え、ビデオシステム10にてテロップつきの映像データを記録し、ディスプレイ11にてこの映像データを観察することが出来る。  In addition, a predetermined portion of the sample 6 in the observation chamber 5 is magnified and observed in detail with the stereomicroscope 7, and the image is taken at a high speed with the CCD camera 8, and the sample 6 and temperature are monitored with the telop device 9. A predetermined telop is added, video data with a telop is recorded in the video system 10, and this video data can be observed on the display 11.

前記パソコン12はこれらテロップ装置9及びビデオシステム10を制御すると共に、データ記録システムとして映像データ及び加熱計測ユニット1のPID温度制御状況や設定温度、測定温度など、温度記録をトレンドデータとして取り込み、ファイルに保存するなど観察記録を記録保存することが出来る。またパソコン12はプリンター13にて観察記録を印刷させることが出来る。  The personal computer 12 controls the telop device 9 and the video system 10, and as a data recording system, captures temperature data such as video data and PID temperature control status, set temperature, and measured temperature of the heating measurement unit 1 as trend data, The observation record can be recorded and saved. Further, the personal computer 12 can print the observation record by the printer 13.

図2に示す如く、前記加熱計測ユニット1は前記熱電対3に通電して加熱する加熱電源部23と、熱電対の熱起電力を計測する計測部24と、所定周波数でスイッチングを行いこれら加熱電源部23と計測部24を切換える加熱計測切換部22と、計測部23が計測した熱起電力に基づくアナログ温度信号をデジタル変換するA/D変換部25と、変換されたデジタル温度信号を受けるとともにこれらを制御する例えばマイコンからなる制御部21と、制御部21のデジタル温度信号をアナログ変換するD/A変換部26と、このアナログ値を受け温度調節する温度調節部27と、また制御部21と温度調節部27を接続しているシリアル通信部28とで構成されている。  As shown in FIG. 2, the heating measurement unit 1 includes a heating power source unit 23 that energizes and heats the thermocouple 3, a measurement unit 24 that measures the thermoelectromotive force of the thermocouple, and performs switching at a predetermined frequency. A heating measurement switching unit 22 that switches between the power supply unit 23 and the measurement unit 24, an A / D conversion unit 25 that digitally converts an analog temperature signal based on the thermoelectromotive force measured by the measurement unit 23, and the converted digital temperature signal. A control unit 21 comprising, for example, a microcomputer for controlling them, a D / A conversion unit 26 for converting the digital temperature signal of the control unit 21 into analog, a temperature adjustment unit 27 for adjusting the temperature by receiving the analog value, and a control unit 21 and a serial communication unit 28 to which the temperature adjustment unit 27 is connected.

以下、前記加熱計測ユニット1の作用について説明する。前記設定操作部2による設定に基づき、制御部21は加熱計測切換部22にて加熱電源部23と計測部24を交互に切換ながら、加熱電源部23により熱電対3に半サイクル矩形波を通電して加熱し、計測部24により次の半サイクル間に熱電対3からの熱起電力に基づくアナログ温度信号をA/D変換部25経由してデジタル変換して受けて温度データとしパソコン12に出力するなどの制御をする。続いて制御部21からこのデジタル温度信号をD/A変換部26にてアナログ変換して温度調節部27に送り、温度調節部27で設定操作部2による設定温度とこのアナログ温度信号を演算して温度調節やPID制御を行わせる。以上により制御部21は加熱計測制御、データ処理、条件設定を行うとともに、パソコン12へデータを送ることが出来る。  Hereinafter, the operation of the heating measurement unit 1 will be described. Based on the setting by the setting operation unit 2, the control unit 21 energizes the thermocouple 3 by the heating power supply unit 23 while alternately switching the heating power supply unit 23 and the measurement unit 24 by the heating measurement switching unit 22. Then, the analog temperature signal based on the thermoelectromotive force from the thermocouple 3 is digitally converted via the A / D conversion unit 25 during the next half cycle by the measuring unit 24 and received as temperature data to the personal computer 12. Control output. Subsequently, the digital temperature signal is analog-converted by the D / A conversion unit 26 from the control unit 21 and sent to the temperature adjustment unit 27. The temperature adjustment unit 27 calculates the set temperature by the setting operation unit 2 and the analog temperature signal. Temperature control and PID control. As described above, the control unit 21 can perform heating measurement control, data processing, and condition setting, and can send data to the personal computer 12.

本発明における加熱計測は、加熱計測切換部22にて加熱電源部23と計測部24を図3に示す加熱・計測タイミングで交互に切換ながら、加熱電源部23からの0〜12V可変直流を使用し300Hzでスイッチングを行い熱電対3に半サイクル矩形波で電圧を引加して加熱電流を流して加熱する。次に残り半サイクルで熱電対3に流れる加熱電流を整流器(図示略)で遮断し、計測部24では高速度リレーにより測温回路(図示略)に接続させ、温度測定タイミングの測温信号にて熱電対の熱起電力を直流電圧測定装置(図示略)で検出する。  The heating measurement in the present invention uses 0-12 V variable direct current from the heating power supply unit 23 while the heating measurement switching unit 22 alternately switches the heating power supply unit 23 and the measurement unit 24 at the heating / measurement timing shown in FIG. Then, switching is performed at 300 Hz, and a voltage is applied to the thermocouple 3 with a half-cycle rectangular wave to heat the thermocouple 3 with a heating current. Next, the heating current flowing through the thermocouple 3 in the remaining half cycle is cut off by a rectifier (not shown), and the measuring unit 24 is connected to a temperature measuring circuit (not shown) by a high-speed relay to generate a temperature measurement signal at the temperature measurement timing. The thermoelectromotive force of the thermocouple is detected by a DC voltage measuring device (not shown).

前記熱電対3の加熱に矩形波を使用することで、制御部21とのインターフェースが容易となり、回路がシンプルになっている。また、A/D変換部25による熱起電力信号ディジタル化によるメリットとして、次の2つの効果がある。1.従来のホットサーモカップル法は加熱サイクルでは熱起電力の取り込みができないため測定回路時定数により、測定電圧にサグ(電圧降下)が発生し直読値に誤差が生じてしまうが、ディジタル化により、次回測定サイクルまで測定値をホールドすることにより正確な測定が可能になる。2.ディジタル化により熱電対による発生起電力の代わりに、加熱出力を発生せずに熱起電力相当の電圧を熱電対ホルダー先端より入力しシステムのキャリブレイションや保証が容易にできる。(従来は標準試料(NaCl)などで測定値の補正をする必要があった)  By using a rectangular wave for heating the thermocouple 3, the interface with the controller 21 is facilitated, and the circuit is simple. Further, there are the following two effects as the merit of digitizing the thermoelectromotive force signal by the A / D conversion unit 25. 1. In the conventional hot thermocouple method, the thermoelectromotive force cannot be captured in the heating cycle, so a sag (voltage drop) occurs in the measurement voltage due to the measurement circuit time constant, and an error occurs in the direct reading value. Accurate measurement is possible by holding the measured value until the measurement cycle. 2. Digitization makes it easy to calibrate and guarantee the system by inputting a voltage corresponding to the thermoelectromotive force from the tip of the thermocouple holder without generating a heating output instead of the electromotive force generated by the thermocouple. (In the past, it was necessary to correct the measured value with a standard sample (NaCl), etc.)

また、前記加熱計測ユニット1を観察対象の試料6に熱電対3にて温度変化を与えつつ、変化する試料6の温度を熱電対3にて計測し、温度変化に基づく試料の温度特性を前記実体顕微鏡7にて観察し、計測及び観察にて得られたデータを取込んで熱分析を行うものとすると、自動昇温、自動降温、あるいは定温加熱過程において発生する試料6の吸熱、発熱反応はトレンド記録データ上に特異な変曲線を描くため、これにより試料の熱的変態点を検出することが可能となり、かつその状態観察が目視で可能となり、また、試料6の吸熱、発熱反応などは極めて微妙な温度変化を捉える必要があるが、本法では試料6に温度検出部である熱電対3が直接接触しており、極めて敏感にこれを検出出来る。  The heating measurement unit 1 measures the temperature of the changing sample 6 with the thermocouple 3 while giving the temperature change to the sample 6 to be observed with the thermocouple 3, and the temperature characteristics of the sample based on the temperature change are described above. If the thermal analysis is carried out by observing with the stereomicroscope 7 and taking in the data obtained by measurement and observation, the endothermic and exothermic reaction of the sample 6 that occurs during the process of automatic temperature rise, automatic temperature drop, or constant temperature heating Draws a unique curve on the trend recording data, which makes it possible to detect the thermal transformation point of the sample and to visually observe its state, and to absorb the endotherm of the sample 6, exothermic reaction, etc. However, in this method, the thermocouple 3 which is a temperature detection unit is in direct contact with the sample 6 and can be detected very sensitively.

なお、本実施例では、前記設定操作部2にて各種設定操作を行うよう記載したが、設定操作部2を設けず、同様の設定操作をパソコン12で行うものとしても良い。また加熱計測ユニット1とパソコン12を通信ケーブルで接続して、システム全体のリモート操作や、測定・設定温度の記録をしながら、試料6の溶融過程や凝固過程を実体顕微鏡7で直接観察し温度とともに記録出来るものとしても良い。  In the present embodiment, the setting operation unit 2 performs various setting operations. However, the setting operation unit 2 may not be provided, and the same setting operation may be performed by the personal computer 12. In addition, the heating measurement unit 1 and the personal computer 12 are connected by a communication cable, and the melting process and the solidification process of the sample 6 are directly observed with the stereo microscope 7 while the remote operation of the entire system and the measurement / setting temperature are recorded. It is good also as what can be recorded with it.

本発明の一実施形態に係る加熱計測用熱電対システムの構成図である。  It is a block diagram of the thermocouple system for heating measurement which concerns on one Embodiment of this invention. 同加熱計測用熱電対システムの加熱計測ユニットのブロック構成図である。  It is a block block diagram of the heating measurement unit of the thermocouple system for heating measurement. 同加熱計測用熱電対システムの加熱計測原理を示すタイミング図である。図である。  It is a timing diagram which shows the heating measurement principle of the thermocouple system for the heating measurement. FIG.

符号の説明Explanation of symbols

1 加熱計測ユニット
2 設定操作部
3 熱電対
6 試料
7 実体顕微鏡
8 CCDカメラ
9 テロップ装置
10 ビデオシステム
11 ディスプレイ
12 パソコン
13 プリンター
21 制御部
22 加熱計測切換部
23 加熱電源部
24 計測部
25 A/D変換部
26 D/A変換部
27 温度調節部
DESCRIPTION OF SYMBOLS 1 Heating measurement unit 2 Setting operation part 3 Thermocouple 6 Sample 7 Stereomicroscope 8 CCD camera 9 Telop apparatus 10 Video system 11 Display 12 Personal computer 13 Printer 21 Control part 22 Heating measurement switching part 23 Heating power supply part 24 Measuring part 25 A / D Conversion unit 26 D / A conversion unit 27 Temperature control unit

Claims (1)

観察対象の試料を保持している熱電対に、可変直流を使用し所定周波数でスイッチングを行い熱電対に半サイクル矩形波で電圧を引加して加熱電流を流して熱電対と試料を加熱し、残り半サイクルで熱電対に流れる加熱電流を遮断し、温度測定タイミングの測温信号にて熱電対の熱起電力を検出して温度測定し、試料を所定観察温度にする加熱計測ユニットと、この加熱計測ユニットに対し、予め設定された昇温勾配に従い自動で昇温を行う自動昇温、予め設定された降温勾配に従い自動で降温を行う自動降温、所定観察温度の維持、所定点での温度記録及び開始や終了時のデータ記録などの設定操作が出来る設定操作とを設け、所定観察温度における試料の溶融状態や融体と固体の反応などを容易に直接観察出来るものとし、前記加熱計測ユニットを、前記熱電対に通電して加熱する加熱電源部と、熱電対の熱起電力を計測する計測部と、所定周波数でスイッチングを行い加熱電源部と計測部を切換える加熱計測切換部と、計測部が計測した熱起電力に基づくアナログ温度信号をデジタル変換するA/D変換部と、変換されたデジタル温度信号を受けるとともにこれらを制御する制御部と、制御部のデジタル温度信号をアナログ変換するD/A変換部と、このアナログ値を受け温度調節する温度調節部とで構成し、前記設定操作部による設定に基づき、前記制御部は加熱計測切換部にて加熱電源部と計測部を交互に切換ながら、加熱電源部により前記熱電対に半サイクル矩形波を通電して加熱し、熱電対からの温度に対するアナログ値の熱起電力信号を計測部を経由してA/D変換部にてデジタル変換して受けて温度データとしパソコンに出力するなど制御し、続いてこのデジタル値の温度データをD/A変換部にてアナログ変換して温度調節部に送り、温度調節部で設定操作部による設定とこのデジタル値の温度データを演算して温度調節やPID制御を行わせ、また制御部は加熱計測制御、データ処理、条件設定を行わせることができるものとしたことを特徴とする加熱計測用熱電対システム。The thermocouple holding the sample to be observed is switched at a predetermined frequency using variable direct current, and a voltage is applied to the thermocouple with a half-cycle rectangular wave to flow a heating current to heat the thermocouple and sample. The heating measurement unit that cuts off the heating current flowing in the thermocouple in the remaining half cycle, detects the thermoelectromotive force of the thermocouple with the temperature measurement signal at the temperature measurement timing, measures the temperature, and brings the sample to the predetermined observation temperature For this heating measurement unit, automatic temperature increase that automatically increases temperature according to a preset temperature increase gradient, automatic temperature decrease that automatically decreases temperature according to a preset temperature decrease gradient, maintenance of a predetermined observation temperature, at a predetermined point and a setting operation unit setting operation, such as temperature recording and the start and end of data recording can be provided, and shall forth used in the molten state or melt and solid sample at a predetermined observation temperature can be observed easily directly, the heating Total A heating power supply unit that heats the thermocouple by energizing the thermocouple, a measurement unit that measures the thermoelectromotive force of the thermocouple, a heating measurement switching unit that switches between the heating power supply unit and the measurement unit by switching at a predetermined frequency, An A / D converter that digitally converts an analog temperature signal based on the thermoelectromotive force measured by the measurement unit, a control unit that receives and controls the converted digital temperature signal, and an analog conversion of the digital temperature signal of the control unit A D / A converter that performs this operation and a temperature controller that adjusts the temperature by receiving the analog value. Based on the setting by the setting operation unit, the controller switches the heating power supply unit and the measuring unit at the heating measurement switching unit. While switching alternately, a half-cycle rectangular wave is energized and heated by the heating power supply unit, and an analog thermoelectromotive force signal with respect to the temperature from the thermocouple is A / D via the measurement unit. The converter converts the digital data and receives it as temperature data and outputs it to a personal computer. Subsequently, the digital temperature data is converted into analog data by the D / A converter and sent to the temperature controller. It is possible to calculate the setting by the setting operation unit and the temperature data of this digital value to perform temperature adjustment and PID control, and that the control unit can perform heating measurement control, data processing, and condition setting. A thermocouple system for heating measurement.
JP2005381242A 2005-12-27 2005-12-27 Thermocouple system for heating measurement Active JP4135181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005381242A JP4135181B2 (en) 2005-12-27 2005-12-27 Thermocouple system for heating measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005381242A JP4135181B2 (en) 2005-12-27 2005-12-27 Thermocouple system for heating measurement

Publications (2)

Publication Number Publication Date
JP2007178412A JP2007178412A (en) 2007-07-12
JP4135181B2 true JP4135181B2 (en) 2008-08-20

Family

ID=38303723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005381242A Active JP4135181B2 (en) 2005-12-27 2005-12-27 Thermocouple system for heating measurement

Country Status (1)

Country Link
JP (1) JP4135181B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076235B2 (en) * 2007-09-26 2012-11-21 光照 木村 Thermocouple heater and temperature measurement device using the same
JP2011059089A (en) * 2009-09-04 2011-03-24 Texcell Kk Thermocouple system for heating measurement
KR101956168B1 (en) * 2018-04-24 2019-03-08 한국산업기술대학교산학협력단 Method for testing slag dissolution behavior
CN109343608A (en) * 2018-11-09 2019-02-15 岭南师范学院 Thermal fuse-link temperature intelligent detection system and its detection method based on Internet of Things
CN110161076B (en) * 2019-06-03 2024-04-30 哈尔滨工程大学 Device for analyzing unsteady state flow heat transfer characteristic and bubble behavior
CN114527009B (en) * 2022-02-09 2023-07-04 南京钢铁股份有限公司 Method for controlling melting and solidifying process on thermal simulation testing machine

Also Published As

Publication number Publication date
JP2007178412A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4135181B2 (en) Thermocouple system for heating measurement
JP4195935B2 (en) Thermophysical property measuring method and apparatus
CN102445464A (en) Dual-thermocouple test apparatus for crystallization property of continuous casting mould casting powder
JP2010002412A (en) Thermo-analytical instrument
CN104422711B (en) Variable temperature sample platform and thermoelectric property measuring method
WO2012103601A1 (en) Differential adiabatic scanning calorimeter
US20110013663A1 (en) Thermal analysis method and apparatus
EP0962763A1 (en) Differential scanning calorimeter
JP7365278B2 (en) Thermal analyzer
EP1816536A3 (en) Temperature controlling device
JP3687030B2 (en) Micro surface temperature distribution measurement method and apparatus therefor
JP2007093509A (en) Thermal physical property measurement method and device
JP2012504750A (en) System and method for a temperature sensor using temperature balance
JP2001183319A (en) Thermal analyzer
JP2011059089A (en) Thermocouple system for heating measurement
CN113390918A (en) Thermal analysis device
JP6401350B2 (en) Calibration method of temperature adjustment during thermal analysis of sample
JP2010048618A (en) Method for measuring phase transition conditions of sample to be subjected to phase transition, and measuring apparatus therefor
JP2010204063A (en) Method and device for measuring specific heat capacity and hemispherical total emissivity of conductive sample
JP4116526B2 (en) Differential scanning calorimeter with second heater
Choi et al. Measurement of thermal properties of microfluidic samples using laser point heating thermometry
JP3670757B2 (en) Sample temperature control method and apparatus
US10054494B2 (en) Temperature sensing
CN204807489U (en) Melt crystallization temperature test appearance
JP3113272U (en) Thermal analyzer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080523

R150 Certificate of patent or registration of utility model

Ref document number: 4135181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250