JP2007178412A - Thermocouple system for heating measurement - Google Patents

Thermocouple system for heating measurement Download PDF

Info

Publication number
JP2007178412A
JP2007178412A JP2005381242A JP2005381242A JP2007178412A JP 2007178412 A JP2007178412 A JP 2007178412A JP 2005381242 A JP2005381242 A JP 2005381242A JP 2005381242 A JP2005381242 A JP 2005381242A JP 2007178412 A JP2007178412 A JP 2007178412A
Authority
JP
Japan
Prior art keywords
temperature
thermocouple
heating
sample
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005381242A
Other languages
Japanese (ja)
Other versions
JP4135181B2 (en
Inventor
Hideetsu Suzuki
秀悦 鈴木
Toshihiko Sunai
敏彦 簾内
Daisuke Hisamatsu
大輔 久松
Yoshio Ota
能生 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEXCELL KK
Original Assignee
TEXCELL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEXCELL KK filed Critical TEXCELL KK
Priority to JP2005381242A priority Critical patent/JP4135181B2/en
Publication of JP2007178412A publication Critical patent/JP2007178412A/en
Application granted granted Critical
Publication of JP4135181B2 publication Critical patent/JP4135181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermocouple system for heating measurement having a temperature detecting and heating function, and a sample holding function in a thermocouple, and capable of improving a temperature control function, sample observation and data recording or the like. <P>SOLUTION: This thermocouple system is provided with a heating measurement unit 1 constituted to electrify and heat the thermocouple 3 holding a sample 6 with a half-cycle rectangular wave by a heating electric power source part 23, while conducting alternately switching between the heating electric power source part 23 and a measuring part 24 by a heating measurement switching part 22, to digital-convert an analog temperature signal based on electromotive force from the thermocouple 3 in an A/D-conversion part 25 during the next half cycle, by the measuring part 24, to receive and control a converted digital temperature signal in a control part 21, to analog-convert the digital temperature signal in the control part 21 by a D/A-conversion part 26, and to receive an analog value to be temperature-controlled by a temperature regulation part 27, and a setting operation means 2 allowing various setting operations, and a melting state of the sample, a reaction of a molten body with a solid or the like can be easily and directly observe in a prescribed observation temperature, by the system. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱電対に試料保持機能とヒータ機能と温度検出機能を持たせたホットサーモカップル法において、温度制御機能、試料観察とデータ記録に関する改善を図った加熱計測用熱電対システムに関するものである。  The present invention relates to a thermocouple system for heating measurement in which a thermocouple method having a sample holding function, a heater function, and a temperature detection function is improved with respect to a temperature control function, sample observation and data recording. is there.

技術背景Technical background

従来の高温科学の研究において、溶融状態や融体と固体の反応などを直接観察する装置として、加熱用電源として商用周波数の半サイクルで熱電対を形成させたフィラメントを加熱し、残りの半サイクルのときにフィラメントに流れる加熱電流をシリコン整流器で遮断し、高速度リレーにより測温回路に接続させ、熱起電力を直流電圧測定装置で検出記録する方法がある。熱測定13(2)1986記載のホットサーモカップル法では耐熱耐蝕性のR熱電対を加熱用フィラメント兼温度測定素子とし、硬質ガラス製で冷却手段つきの試料容器に前記熱電対を取りつけ、この熱電対に観察対象の試料を保持し、この試料を加熱冷却しながら、実体顕微鏡などで観察し、例えば鉱物試料の溶融過程や凝固過程を直接観察し温度とともに記録出来、又はガラス形成系での液相線温度の決定が出来るものである。  In conventional high-temperature science research, as a device for directly observing the molten state and the reaction between the melt and the solid, as the heating power source, the filament with the thermocouple formed at half the commercial frequency is heated and the remaining half cycle In this case, there is a method in which the heating current flowing in the filament is interrupted by a silicon rectifier, connected to a temperature measuring circuit by a high-speed relay, and the thermoelectromotive force is detected and recorded by a DC voltage measuring device. In the hot thermocouple method described in thermal measurement 13 (2) 1986, a heat-resistant and corrosion-resistant R thermocouple is used as a heating filament and temperature measuring element, and the thermocouple is attached to a sample container made of hard glass and equipped with cooling means. The sample to be observed is held on the surface and observed with a stereomicroscope while heating and cooling the sample. For example, the melting and solidification process of the mineral sample can be directly observed and recorded along with the temperature, or the liquid phase in the glass forming system. The line temperature can be determined.

特許公報にはホットサーモカップル法に相当する方法は見当たらないが、試料を加熱冷却し、温度を検出しながら試料の外観の変化を観察する高温観察装置として、特開2002−107317号公報に示す如く、試料の加熱温度による変化を観察する高温観察装置であって、気密構造の高温室と、この高温室内の中央部に配置され且つ試料を載置する試料台と、この試料台上の試料を加熱、冷却する加熱手段及び冷却手段と、これらの加熱手段及び冷却手段によって加熱、冷却される試料の温度を検出する温度検出手段と、この温度検出手段の検出結果に基づいて加熱手段及び冷却手段を制御する制御手段と、この制御手段で温度制御された試料を高温室に設けられた観察窓を介して撮像する少なくとも一つの撮像手段と、この撮像手段で撮像された映像を映し出すモニタとを備えた高温観察装置がある。  Although no method corresponding to the hot thermocouple method is found in the patent publication, Japanese Patent Application Laid-Open No. 2002-107317 discloses a high-temperature observation apparatus that observes changes in the appearance of a sample while heating and cooling the sample and detecting the temperature. As described above, a high-temperature observation apparatus for observing a change due to a heating temperature of a sample, which is a high-temperature chamber having an airtight structure, a sample stage disposed in the center of the high-temperature chamber and mounting a sample, and a sample on the sample stage Heating means and cooling means for heating and cooling, temperature detection means for detecting the temperature of the sample heated and cooled by these heating means and cooling means, and heating means and cooling based on the detection result of this temperature detection means Control means for controlling the means, at least one image pickup means for picking up an image of the sample temperature-controlled by the control means through an observation window provided in the high temperature chamber, and the image pickup means There is high temperature observation apparatus provided with a monitor displaying an image video.

また、上記試料台は、試料を載置する基板と、この基板に断熱部材を介して連結された支持体とを有するものとし、上記加熱手段は、試料台両側の斜め上方で試料台を挟むように並設された2本の上側ヒータと、試料台両側の斜め下方で試料台を挟む位置に並設され且つ両上側ヒータの間隔よりも狭く配置された2本の下側ヒータとを有するものとし、上記温度検出手段は熱電対を有し、熱電対を基板の裏面に形成された凹陥部に挿入したものである。  Further, the sample stage includes a substrate on which the sample is placed and a support body connected to the substrate via a heat insulating member, and the heating means sandwiches the sample stage diagonally above both sides of the sample stage. Two upper heaters arranged side by side in this manner, and two lower heaters arranged side by side at a position sandwiching the sample table diagonally below both sides of the sample table and arranged narrower than the distance between the upper heaters The temperature detecting means has a thermocouple, and the thermocouple is inserted into a recessed portion formed on the back surface of the substrate.

参考文献1Reference 1

森永健次、中島邦彦、太田能生、熱測定13(2)1986
特開2002−107317号公報
Kenji Morinaga, Kunihiko Nakajima, Norio Ota, Thermal Measurement 13 (2) 1986
JP 2002-107317 A

前記文献に記載のホットサーモカップル法は試料量が微小で加熱手段としての熱電対の熱容量も小さいことから急速加熱、急速冷却が出来、1900Kの高温までの測定が出来るので、前記の如く幅広く観察記録が出来るが、温度上昇、温度降下などの温度制御や、観察記録等、手動であり、テクニックと忍耐が必要であり測定時間も長く、測定者の負担が大であり、また加熱サイクルでは熱起電力の取り込みができないため測定回路時定数により、測定電圧にサグ(電圧降下)が発生し直読値に誤差が生じてしまうので、標準試料(NaCl)などで測定値の補正をする必要があるという欠点があった。  The hot thermocouple method described in the above document has a small sample amount and a small heat capacity of a thermocouple as a heating means, so it can be rapidly heated and cooled, and can be measured up to a high temperature of 1900K. Although recording is possible, manual control, such as temperature control such as temperature rise and temperature drop, observation recording, etc. requires technique and patience, long measurement time, heavy burden on the measurer, and heat cycle is heat Since the electromotive force cannot be captured, a sag (voltage drop) occurs in the measurement voltage due to the measurement circuit time constant, resulting in an error in the direct reading value. Therefore, it is necessary to correct the measurement value with a standard sample (NaCl) or the like. There was a drawback.

また、特開特開2002−107317号公報に記載の高温観察装置は熱電対を用いて温度検出を行うが、熱電対とは別にヒーターや試料台を設けたものであり、熱電対に温度検出機能とヒータ機能と試料保持機能の3機能を持たせたものでないので、試料台の熱容量が大であり試料の急速加熱・急速冷却は出来ず、また、試料の温度と検出温度とは差が生じやすく、本発明とは構成や内容が異なっている。従来の示差熱分析装置等の熱分析装置では試料の融点、凝固点、変態点における可視的データは得ることができず、更に操作の簡便性に欠けるところがある。また温度の検出は試料パンの外部温度を検出する仕組みになっているため、微妙な温度変化に対して敏感ではない欠点がある。  In addition, the high-temperature observation apparatus described in Japanese Patent Application Laid-Open No. 2002-107317 performs temperature detection using a thermocouple, but is provided with a heater and a sample stand separately from the thermocouple. Since the function, heater function and sample holding function are not provided, the heat capacity of the sample stage is large, and the sample cannot be heated or cooled rapidly. Also, there is a difference between the sample temperature and the detected temperature. It tends to occur, and the configuration and contents are different from those of the present invention. In a conventional thermal analyzer such as a differential thermal analyzer, visible data on the melting point, freezing point, and transformation point of a sample cannot be obtained, and further, the operation is not easy. Further, since the temperature detection is a mechanism for detecting the external temperature of the sample pan, there is a drawback that it is not sensitive to subtle temperature changes.

本発明は、熱電対に温度検出とヒータ機能と試料保持機能を持たせたものにおいて、温度制御機能、試料観察とデータ記録などに関する改善を図ることを目的としている。  An object of the present invention is to improve a temperature control function, sample observation, data recording, and the like in a thermocouple having a temperature detection, a heater function, and a sample holding function.

上記の課題を解決するために、観察対象の試料を保持している熱電対に、可変直流を使用し所定周波数でスイッチングを行い熱電対に半サイクル矩形波で電圧を引加して加熱電流を流して熱電対と試料を加熱し、残り半サイクルで熱電対に流れる加熱電流を遮断し、温度測定タイミングの測温信号にて熱電対の熱起電力を検出して温度測定し、試料を所定観察温度にする加熱計測ユニットと、前記加熱計測ユニットに対し、予め設定された昇温勾配に従い自動で昇温を行う自動昇温、予め設定された降温勾配に従い自動で降温を行う自動降温、所定観察温度の維持、所定点での温度記録及び開始や終了時のデータ記録などの設定操作が出来る設定操作手段とを設けたことにより、熱電対にヒーター機能と、温度検出機能及び試料保持機能を持たせ、試料及び熱電対とも熱容量が微小となり試料の急速加熱・急速冷却が出来、温度測定の正確性と追随性が良くなり、また各種設定も容易になるので、所定観察温度における試料の溶融状態や融体と固体の反応などを容易にかつ直接観察出来るものとなった。  In order to solve the above problem, a thermocouple holding the sample to be observed is switched at a predetermined frequency using a variable direct current, and a voltage is applied to the thermocouple with a half-cycle rectangular wave to generate a heating current. The thermocouple and the sample are heated to flow, the heating current flowing through the thermocouple is shut off in the remaining half cycle, the thermoelectromotive force of the thermocouple is detected by the temperature measurement signal at the temperature measurement timing, the temperature is measured, and the sample is determined A heating measurement unit for observing temperature, an automatic temperature increase for automatically increasing the temperature according to a preset temperature increase gradient, an automatic temperature decrease for automatically decreasing according to a preset temperature decrease gradient, a predetermined value The thermocouple has a heater function, temperature detection function, and sample holding function by providing setting operation means that can perform setting operations such as maintenance of observation temperature, temperature recording at a predetermined point, and data recording at the start and end. Holding Because both the sample and thermocouple have a small heat capacity, the sample can be heated and cooled quickly, the accuracy and follow-up of the temperature measurement is improved, and various settings are facilitated. And the reaction between the melt and the solid can be easily and directly observed.

また、前記加熱計測ユニットを、前記熱電対に通電して加熱する加熱電源部と、熱電対の熱起電力を計測する計測部と、所定周波数でスイッチングを行い加熱電源部と計測部を切換える加熱計測切換部と、計測部が計測した熱起電力に基づくアナログ温度信号をデジタル変換するA/D変換部と、変換されたデジタル温度信号を受けるとともにこれらを制御する制御部と、制御部のデジタル温度信号をアナログ変換するD/A変換部と、このアナログ値を受け温度調節する温度調節部とで構成し、前記設定操作部による設定に基づき、制御部は加熱計測切換部にて加熱電源部と計測部を交互に切換ながら、加熱電源部により前記熱電対に半サイクル矩形波を通電して加熱し、熱電対からの温度に対するアナログ値の熱起電力信号を計測部を経由してA/D変換部にてデジタル変換して受けて温度データとしパソコンに出力するなど制御し、続いてこのデジタル値の温度データをD/A変換部にてアナログ変換して温度調節部に送り、温度調節部で設定操作部による設定とこのデジタル値の温度データを演算して温度調節やPID制御を行わせ、また制御部は加熱計測制御、データ処理、条件設定を行わせることができるものとすると、前記加熱に矩形波を使用することで、制御部とのインターフェースが容易となり、回路がシンプルになり、また、A/D変換部による熱起電力信号ディジタル化によるメリットとして、加熱サイクルでは熱起電力の取り込みができなくても、次回測定サイクルまで測定値をホールドすることにより測定電圧にサグ(電圧降下)が発生せず、正確な測定が可能になり、ディジタル化により熱電対による発生起電力の代わりに、加熱出力を発生せずに熱起電力相当の電圧を熱電対ホルダー先端より入力しシステムのキャリブレイションや保証が容易に出来、設定に応じて加熱計測制御、データ処理、条件設定が出来る。  In addition, the heating measurement unit is heated by energizing the thermocouple and heated, a measurement unit for measuring the thermoelectromotive force of the thermocouple, and heating for switching between the heating power supply unit and the measurement unit by switching at a predetermined frequency. A measurement switching unit, an A / D conversion unit that digitally converts an analog temperature signal based on the thermoelectromotive force measured by the measurement unit, a control unit that receives and controls the converted digital temperature signal, and a digital of the control unit It comprises a D / A converter that converts the temperature signal into analog and a temperature controller that adjusts the temperature by receiving the analog value. Based on the setting by the setting operation unit, the controller is a heating power supply unit at the heating measurement switching unit. With the heating power supply section, the thermocouple is energized with a half-cycle rectangular wave to heat it, and an analog thermoelectromotive force signal from the thermocouple is passed through the measurement section. The A / D converter converts the digital data and outputs it to a personal computer as temperature data. Subsequently, the digital temperature data is converted into analog data by the D / A converter. The temperature controller adjusts the setting by the setting operation unit and the temperature data of this digital value to perform temperature adjustment and PID control, and the control unit can perform heating measurement control, data processing, and condition setting. Assuming that a rectangular wave is used for the heating, the interface with the control unit becomes easy, the circuit becomes simple, and the advantage of digitizing the thermoelectromotive force signal by the A / D conversion unit is the heating cycle. Even if it is not possible to capture the thermoelectromotive force, the measured value is held until the next measurement cycle, so that no sag (voltage drop) occurs in the measured voltage. By digitalization, instead of the electromotive force generated by the thermocouple, a voltage equivalent to the thermoelectromotive force can be input from the tip of the thermocouple holder without generating a heating output, making it easy to calibrate and guarantee the system. Heating measurement control, data processing, and condition setting can be performed according to the setting.

また、前記熱電対と試料の状態を観察するための実体顕微鏡を設けると、観察用チャンバー内の試料の所定部分を拡大して直接目で見ながら所定観察温度における試料の溶融状態や融体と固体の反応などを、詳細に観察することが出来る。  In addition, when a stereomicroscope for observing the state of the thermocouple and the sample is provided, a predetermined portion of the sample in the observation chamber is magnified and directly viewed, while the sample is melted or melted at a predetermined observation temperature. A solid reaction can be observed in detail.

また、前記実体顕微鏡を介して観察映像を表示記録するために、CCDカメラ、テロップ装置、ビデオシステム、ディスプレイを設けると、CCDカメラにてその映像を高速撮影し、テロップ装置にて試料や温度など所定のテロップを加え、ビデオシステムにてテロップつきの映像データを記録し、ディスプレイにてこの映像データを観察することが出来る。  In addition, when a CCD camera, a telop device, a video system, and a display are provided to display and record the observation image through the stereomicroscope, the CCD camera takes a high-speed image of the image, and the telop device samples, temperature, etc. A predetermined telop is added, video data with a telop is recorded by a video system, and this video data can be observed on a display.

また、前記加熱計測ユニットにデータ記録システムとしてのパソコンを接続すると、パソコンは加熱計測ユニットのPID温度制御状況や設定温度、測定温度など、温度記録をトレンドデータとして取り込み、ファイルに保存するなど観察記録を記録保存することが出来る。  When a personal computer as a data recording system is connected to the heating measurement unit, the personal computer captures temperature records such as the PID temperature control status, set temperature, and measured temperature of the heating measurement unit as trend data and saves them in a file. Can be recorded and saved.

また、前記テロップ装置、ビデオシステム及び加熱計測ユニットを制御すると共にデータを記録するためにこれらテロップ装置、ビデオシステム及び加熱計測ユニットにパソコンを接続すると、パソコンはこれらテロップ装置及びビデオシステムを制御すると共に、データ記録システムとして映像データ及び加熱計測ユニット1のPID温度制御状況や設定温度、測定温度など、温度記録をトレンドデータとして取り込み、ファイルに保存するなど観察記録を記録保存することが出来る。  When a personal computer is connected to the telop device, video system and heating measurement unit to control the telop device, video system and heating measurement unit and to record data, the personal computer controls the telop device and video system. As a data recording system, it is possible to record and save observation records such as video data and PID temperature control status, set temperature, measurement temperature, etc. of the heating measurement unit 1 as trend data and save it in a file.

前記加熱計測ユニットを観察対象の試料に熱電対にて温度変化を与えつつ、変化する試料の温度を熱電対にて計測し、温度変化に基づく試料の温度特性を前記実体顕微鏡にて観察し、計測及び観察にて得られたデータを取込んで熱分析を行うものとすると、自動昇温、自動降温、あるいは定温加熱過程において発生する試料の吸熱、発熱反応はトレンド記録データ上に特異な変曲線を描くため、これにより試料の熱的変態点を検出することが可能となり、かつその状態観察が目視で可能となり、また、試料の吸熱、発熱反応などは極めて微妙な温度変化を捉える必要があるが、本法では試料に温度検出部が直接接触しており、極めて敏感にこれを検出出来る。  While measuring the temperature of the changing sample with a thermocouple while giving the temperature change to the sample to be observed with the thermocouple, observe the temperature characteristics of the sample based on the temperature change with the stereomicroscope, Assuming that thermal analysis is performed by taking data obtained by measurement and observation, the endothermic and exothermic reactions of samples that occur during the process of automatic temperature rise, automatic temperature drop, or constant temperature heating are unique changes on the trend record data. Because it draws a curve, it is possible to detect the thermal transformation point of the sample, and it is possible to visually observe the state of the sample, and it is necessary to capture extremely subtle temperature changes in the endothermic and exothermic reactions of the sample. However, in this method, the temperature detector is in direct contact with the sample, and this can be detected extremely sensitively.

また、前記パソコンを予め設定された昇温勾配に従い自動で昇温を行う自動昇温、予め設定された降温勾配に従い自動で降温を行う自動降温、所定観察温度の維持、所定点での温度記録及び開始や終了時のデータ記録などの設定操作が出来る設定操作手段とすると、パソコンからも昇温(例えば10℃/分、100℃/分、500℃/分の3種、予め設定された昇温勾配に従い自動で昇温を行う)、降温(例えば10℃/分、100℃/分、500℃/分の3種、予め設定された降温勾配に従い自動で降温を行う)、温度維持、温度記録(例えば5点)、データ記録(例えば開始、終了の2点)などの設定操作が出来る。  In addition, automatic temperature increase that automatically increases the temperature of the personal computer according to a predetermined temperature increase gradient, automatic temperature decrease that automatically decreases the temperature according to a predetermined temperature decrease gradient, maintenance of a predetermined observation temperature, temperature recording at a predetermined point If the setting operation means is capable of performing setting operations such as data recording at the start and end, the temperature is also increased from the personal computer (for example, three types of preset temperature increases of 10 ° C./min, 100 ° C./min, 500 ° C./min). The temperature is automatically raised according to the temperature gradient), the temperature is lowered (for example, 10 ° C./min, 100 ° C./min, 500 ° C./min, the temperature is automatically lowered according to a preset temperature gradient), temperature maintenance, temperature Setting operations such as recording (for example, 5 points) and data recording (for example, 2 points of start and end) can be performed.

また、前記加熱計測ユニットとパソコンを通信ケーブルで接続して、このパソコンにてシステム全体のリモート操作や、測定・設定温度の記録をしながら、試料の溶融過程や凝固過程を実体顕微鏡で直接観察し温度とともに記録出来るものとするとよい。  In addition, the heating measurement unit and a personal computer are connected with a communication cable, and the melting and solidification process of the sample is directly observed with a stereomicroscope while remotely operating the entire system and recording the measured / set temperature with this personal computer. However, it should be recorded with temperature.

本発明は、以上の構成としたので、請求項1では前記熱電対にヒーター機能と、温度検出機能及び試料保持機能を持たせ、試料及び熱電対とも熱容量が微小となり試料の急速加熱・急速冷却が出来、温度測定の正確性と追随性が良くなり、また自動昇温、自動降温、温度維持、温度記録及びデータ記録などの各種設定も容易になるので、所定観察温度における試料の溶融状態や融体と固体の反応などを容易にかつ直接観察出来る加熱計測用熱電対システムを提供することが出来る。  Since the present invention is configured as described above, in claim 1, the thermocouple is provided with a heater function, a temperature detection function, and a sample holding function, and both the sample and the thermocouple have a small heat capacity so that the sample can be rapidly heated and cooled quickly. The temperature measurement accuracy and follow-up are improved, and various settings such as automatic temperature rise, automatic temperature drop, temperature maintenance, temperature recording and data recording are facilitated. It is possible to provide a thermocouple system for heating measurement capable of easily and directly observing a reaction between a melt and a solid.

請求項2では加熱に矩形波を使用することで、制御部とのインターフェースが容易となり、回路がシンプルになり、また、A/D変換部による熱起電力信号ディジタル化により、加熱サイクルで熱起電力の取り込みがなくても、次回測定サイクルまで測定値がホールドされ測定電圧にサグが発生せず、正確な測定が可能になり、ディジタル化により熱電対による発生起電力の代わりに、加熱出力を発生せずに熱起電力相当の電圧を入力しシステムのキャリブレイションや保証が容易に出来、設定に応じて加熱計測制御、データ処理、条件設定が出来る加熱計測用熱電対システムを提供することが出来る。  In the second aspect, the use of a rectangular wave for heating facilitates the interface with the control unit, simplifies the circuit, and digitization of the thermoelectromotive force signal by the A / D conversion unit makes it possible to generate heat in the heating cycle. Even if the power is not captured, the measured value is held until the next measurement cycle, and no sag is generated in the measured voltage.Accurate measurement is possible, and digitization enables the heating output to be used instead of the electromotive force generated by the thermocouple. It is possible to provide a thermocouple system for heating measurement that can input a voltage equivalent to a thermoelectromotive force without generating it, easily calibrate and guarantee the system, and perform heating measurement control, data processing, and condition setting according to the setting. I can do it.

請求項3では前記実体顕微鏡にて観察用チャンバー内の試料の所定部分を拡大して直接目で見ながら所定観察温度における試料の溶融状態や融体と固体の反応などを、詳細に観察することが出来、また、請求項4ではCCDカメラにてその映像を高速撮影し、テロップ装置にて試料や温度など所定のテロップを加え、ビデオシステムにてテロップつきの映像データを記録し、ディスプレイにてこの映像データを観察することが出来る。  In the third aspect, the predetermined state of the sample in the observation chamber is magnified by the stereomicroscope, and the molten state of the sample at the predetermined observation temperature and the reaction between the melt and the solid are observed in detail while directly observing with the eyes. In claim 4, the video is taken at a high speed by a CCD camera, a predetermined telop such as a sample or temperature is added by a telop device, and video data with a telop is recorded by a video system. Video data can be observed.

また、請求項5では前記パソコンは加熱計測ユニットのPID温度制御状況や設定温度、測定温度など、温度記録をトレンドデータとして取り込み、ファイルに保存するなど観察記録を記録保存することが出来、また、請求項6では前記パソコンはこれらテロップ装置及びビデオシステムを制御すると共に、データ記録システムとして映像データ及び加熱計測ユニット1のPID温度制御状況や設定温度、測定温度など、温度記録をトレンドデータとして取り込み、ファイルに保存するなど観察記録を記録保存することが出来る。  Further, in claim 5, the personal computer can record and save observation records such as PID temperature control status of the heating measurement unit, set temperature, measurement temperature, etc. as temperature data, and save it in a file. In claim 6, the personal computer controls the telop device and the video system, and captures the temperature data such as the video data and the PID temperature control status, the set temperature, and the measured temperature of the heating measurement unit 1 as the data recording system as the trend data, Observation records can be recorded and saved, such as saving to a file.

また、請求項7では熱分析を行う際に、自動昇温、自動降温、あるいは定温加熱過程において発生する試料の吸熱、発熱反応はトレンド記録データ上に特異な変曲線を描くため、これにより試料の熱的変態点を検出することが可能となり、かつその状態観察が目視で可能となり、また、試料の吸熱、発熱反応などは極めて微妙な温度変化を捉える必要があるが、本法では試料に温度検出部である熱電対が直接接触しており、極めて敏感にこれを検出出来る加熱計測用熱電対システムが提供出来る。  Further, in claim 7, when performing thermal analysis, the endothermic and exothermic reactions of the sample that occur during the process of automatic temperature rise, automatic temperature drop, or constant temperature heating draw a unique curve on the trend record data. The thermal transformation point of the sample can be detected and its state can be observed visually, and the endothermic and exothermic reactions of the sample must capture very subtle temperature changes. The thermocouple which is a temperature detection part is in direct contact, and a thermocouple system for heating measurement which can detect this extremely sensitively can be provided.

また、請求項8では前記パソコンからも昇温、降温、温度維持、温度記録、データ記録などの設定操作が出来、また、請求項9では通信ケーブルで接続したパソコンにてシステム全体のリモート操作や、測定・設定温度の記録をしながら、試料の溶融過程や凝固過程を実体顕微鏡で直接観察し温度とともに記録出来る加熱計測用熱電対システムが提供出来る。  Further, in claim 8, setting operations such as temperature rise, temperature drop, temperature maintenance, temperature recording, data recording and the like can be performed from the personal computer, and in claim 9, remote operation of the entire system can be performed by a personal computer connected by a communication cable. It is possible to provide a thermocouple system for heating measurement capable of directly observing the melting process and solidification process of the sample with a stereomicroscope and recording it together with the temperature while recording the measured / set temperature.

以下本発明の一実施例を図により説明する。図1は本発明の一実施形態に係る加熱計測用熱電対システムの構成図であり、図2は同加熱計測用熱電対システムの加熱計測ユニットのブロック構成図であり、図3は同加熱計測用熱電対システムの加熱計測原理を示すタイミング図である。  An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a heating measurement thermocouple system according to an embodiment of the present invention, FIG. 2 is a block configuration diagram of a heating measurement unit of the heating measurement thermocouple system, and FIG. It is a timing diagram which shows the heating measurement principle of the thermocouple system for an industrial use.

図1において、本発明の加熱計測用熱電対システムの加熱計測ユニット1は各種加熱制御や温度計測などの設定操作用の設定操作部2と、耐熱耐蝕性の例えばR熱電対からなる熱電対3に接続されている。熱電対3は熱電対ホルダ4に取付けられた状態で硬質ガラス製で冷却手段つきの観察用チャンバー5内に装着され、観察対象の微小の試料6を保持している。観察用チャンバー5には内部の熱電対3と試料6を観察出来る観察窓が設けられており、この観察窓に対向して熱電対3と試料6の状態を観察するための実体顕微鏡7が設けられている。この実体顕微鏡7を介して観察映像を表示記録するために、順にCCDカメラ8、テロップ装置9、ビデオシステム10、ディスプレイ11が接続されている。更にこれらを制御すると共にデータを記録するために前記加熱計測ユニット1とテロップ装置9及びビデオシステム10にパソコン12が、またパソコン12には記録の印刷用にプリンター13が接続されている。  In FIG. 1, a heating measurement unit 1 of the thermocouple system for heating measurement according to the present invention includes a setting operation unit 2 for setting operations such as various heating controls and temperature measurements, and a thermocouple 3 made of heat-resistant and corrosion-resistant, for example, R thermocouple. It is connected to the. The thermocouple 3 is mounted in an observation chamber 5 made of hard glass and equipped with a cooling means while being attached to a thermocouple holder 4, and holds a minute sample 6 to be observed. The observation chamber 5 is provided with an observation window through which the internal thermocouple 3 and the sample 6 can be observed. A stereomicroscope 7 for observing the state of the thermocouple 3 and the sample 6 is provided opposite to the observation window. It has been. In order to display and record the observation video through the stereomicroscope 7, a CCD camera 8, a telop device 9, a video system 10, and a display 11 are connected in order. Further, in order to control these and record data, a personal computer 12 is connected to the heating measurement unit 1, the telop device 9 and the video system 10, and a printer 13 is connected to the personal computer 12 for printing the recording.

次に、前記設定操作部2では、昇温(例えば10℃/分、100℃/分、500℃/分の3種、予め設定された昇温勾配に従い自動で昇温を行う)、降温(例えば10℃/分、100℃/分、500℃/分の3種、予め設定された降温勾配に従い自動で降温を行う)、温度維持、温度記録(例えば5点)、データ記録(例えば開始、終了の2点)などの設定操作が出来る。これらの設定に基づき加熱計測ユニット1は熱電対3にて観察用チャンバー5内で試料6を保持させ、加熱又は冷却させながら温度測定して、試料6のPID温度制御を行う。従って熱電対3に試料保持機能と、ヒーター機能及び温度検出機能を持たせている。  Next, in the setting operation unit 2, the temperature is raised (for example, three kinds of temperatures of 10 ° C./min, 100 ° C./min, 500 ° C./min are automatically raised according to a preset temperature rise gradient), and the temperature is lowered ( For example, 3 types of 10 ° C./min, 100 ° C./min, 500 ° C./min, temperature is automatically decreased according to a preset temperature decrease gradient), temperature maintenance, temperature recording (for example, 5 points), data recording (for example, start, Setting operations such as 2 points of completion) can be performed. Based on these settings, the heating measurement unit 1 holds the sample 6 in the observation chamber 5 by the thermocouple 3, measures the temperature while heating or cooling, and controls the PID temperature of the sample 6. Therefore, the thermocouple 3 is provided with a sample holding function, a heater function, and a temperature detection function.

また、前記実体顕微鏡7にて観察用チャンバー5内の試料6の所定部分を拡大して詳細に観察するとともに、CCDカメラ8にてその映像を高速撮影し、テロップ装置9にて試料6や温度など所定のテロップを加え、ビデオシステム10にてテロップつきの映像データを記録し、ディスプレイ11にてこの映像データを観察することが出来る。  In addition, a predetermined portion of the sample 6 in the observation chamber 5 is magnified and observed in detail with the stereomicroscope 7, and the image is taken at a high speed with the CCD camera 8, and the sample 6 and temperature are monitored with the telop device 9. A predetermined telop is added, video data with a telop is recorded in the video system 10, and this video data can be observed on the display 11.

前記パソコン12はこれらテロップ装置9及びビデオシステム10を制御すると共に、データ記録システムとして映像データ及び加熱計測ユニット1のPID温度制御状況や設定温度、測定温度など、温度記録をトレンドデータとして取り込み、ファイルに保存するなど観察記録を記録保存することが出来る。またパソコン12はプリンター13にて観察記録を印刷させることが出来る。  The personal computer 12 controls the telop device 9 and the video system 10, and as a data recording system, captures temperature data such as video data and PID temperature control status, set temperature, and measured temperature of the heating measurement unit 1 as trend data, The observation record can be recorded and saved. Further, the personal computer 12 can print the observation record by the printer 13.

図2に示す如く、前記加熱計測ユニット1は前記熱電対3に通電して加熱する加熱電源部23と、熱電対の熱起電力を計測する計測部24と、所定周波数でスイッチングを行いこれら加熱電源部23と計測部24を切換える加熱計測切換部22と、計測部23が計測した熱起電力に基づくアナログ温度信号をデジタル変換するA/D変換部25と、変換されたデジタル温度信号を受けるとともにこれらを制御する例えばマイコンからなる制御部21と、制御部21のデジタル温度信号をアナログ変換するD/A変換部26と、このアナログ値を受け温度調節する温度調節部27と、また制御部21と温度調節部27を接続しているシリアル通信部28とで構成されている。  As shown in FIG. 2, the heating measurement unit 1 includes a heating power source unit 23 that energizes and heats the thermocouple 3, a measurement unit 24 that measures the thermoelectromotive force of the thermocouple, and performs switching at a predetermined frequency. A heating measurement switching unit 22 that switches between the power supply unit 23 and the measurement unit 24, an A / D conversion unit 25 that digitally converts an analog temperature signal based on the thermoelectromotive force measured by the measurement unit 23, and the converted digital temperature signal. A control unit 21 comprising, for example, a microcomputer for controlling them, a D / A conversion unit 26 for converting the digital temperature signal of the control unit 21 into analog, a temperature adjustment unit 27 for adjusting the temperature by receiving the analog value, and a control unit 21 and a serial communication unit 28 to which the temperature adjustment unit 27 is connected.

以下、前記加熱計測ユニット1の作用について説明する。前記設定操作部2による設定に基づき、制御部21は加熱計測切換部22にて加熱電源部23と計測部24を交互に切換ながら、加熱電源部23により熱電対3に半サイクル矩形波を通電して加熱し、計測部24により次の半サイクル間に熱電対3からの熱起電力に基づくアナログ温度信号をA/D変換部25経由してデジタル変換して受けて温度データとしパソコン12に出力するなどの制御をする。続いて制御部21からこのデジタル温度信号をD/A変換部26にてアナログ変換して温度調節部27に送り、温度調節部27で設定操作部2による設定温度とこのアナログ温度信号を演算して温度調節やPID制御を行わせる。以上により制御部21は加熱計測制御、データ処理、条件設定を行うとともに、パソコン12へデータを送ることが出来る。  Hereinafter, the operation of the heating measurement unit 1 will be described. Based on the setting by the setting operation unit 2, the control unit 21 energizes the thermocouple 3 by the heating power supply unit 23 while alternately switching the heating power supply unit 23 and the measurement unit 24 by the heating measurement switching unit 22. Then, the analog temperature signal based on the thermoelectromotive force from the thermocouple 3 is digitally converted via the A / D conversion unit 25 during the next half cycle by the measuring unit 24 and received as temperature data to the personal computer 12. Control output. Subsequently, the digital temperature signal is analog-converted by the D / A conversion unit 26 from the control unit 21 and sent to the temperature adjustment unit 27. The temperature adjustment unit 27 calculates the set temperature by the setting operation unit 2 and the analog temperature signal. Temperature control and PID control. As described above, the control unit 21 can perform heating measurement control, data processing, and condition setting, and can send data to the personal computer 12.

本発明における加熱計測は、加熱計測切換部22にて加熱電源部23と計測部24を図3に示す加熱・計測タイミングで交互に切換ながら、加熱電源部23からの0〜12V可変直流を使用し300Hzでスイッチングを行い熱電対3に半サイクル矩形波で電圧を引加して加熱電流を流して加熱する。次に残り半サイクルで熱電対3に流れる加熱電流を整流器(図示略)で遮断し、計測部24では高速度リレーにより測温回路(図示略)に接続させ、温度測定タイミングの測温信号にて熱電対の熱起電力を直流電圧測定装置(図示略)で検出する。  The heating measurement in the present invention uses 0-12 V variable direct current from the heating power supply unit 23 while the heating measurement switching unit 22 alternately switches the heating power supply unit 23 and the measurement unit 24 at the heating / measurement timing shown in FIG. Then, switching is performed at 300 Hz, and a voltage is applied to the thermocouple 3 with a half-cycle rectangular wave to heat the thermocouple 3 with a heating current. Next, the heating current flowing through the thermocouple 3 in the remaining half cycle is cut off by a rectifier (not shown), and the measuring unit 24 is connected to a temperature measuring circuit (not shown) by a high-speed relay to generate a temperature measurement signal at the temperature measurement timing. The thermoelectromotive force of the thermocouple is detected by a DC voltage measuring device (not shown).

前記熱電対3の加熱に矩形波を使用することで、制御部21とのインターフェースが容易となり、回路がシンプルになっている。また、A/D変換部25による熱起電力信号ディジタル化によるメリットとして、次の2つの効果がある。1.従来のホットサーモカップル法は加熱サイクルでは熱起電力の取り込みができないため測定回路時定数により、測定電圧にサグ(電圧降下)が発生し直読値に誤差が生じてしまうが、ディジタル化により、次回測定サイクルまで測定値をホールドすることにより正確な測定が可能になる。2.ディジタル化により熱電対による発生起電力の代わりに、加熱出力を発生せずに熱起電力相当の電圧を熱電対ホルダー先端より入力しシステムのキャリブレイションや保証が容易にできる。(従来は標準試料(NaCl)などで測定値の補正をする必要があった)  By using a rectangular wave for heating the thermocouple 3, the interface with the controller 21 is facilitated, and the circuit is simple. Further, there are the following two effects as the merit of digitizing the thermoelectromotive force signal by the A / D converter 25. 1. In the conventional hot thermocouple method, the thermoelectromotive force cannot be captured in the heating cycle, so a sag (voltage drop) occurs in the measurement voltage due to the measurement circuit time constant, and an error occurs in the direct reading value. Accurate measurement is possible by holding the measured value until the measurement cycle. 2. Digitization makes it easy to calibrate and guarantee the system by inputting a voltage corresponding to the thermoelectromotive force from the tip of the thermocouple holder without generating a heating output instead of the electromotive force generated by the thermocouple. (In the past, it was necessary to correct the measured value with a standard sample (NaCl), etc.)

また、前記加熱計測ユニット1を観察対象の試料6に熱電対3にて温度変化を与えつつ、変化する試料6の温度を熱電対3にて計測し、温度変化に基づく試料の温度特性を前記実体顕微鏡7にて観察し、計測及び観察にて得られたデータを取込んで熱分析を行うものとすると、自動昇温、自動降温、あるいは定温加熱過程において発生する試料6の吸熱、発熱反応はトレンド記録データ上に特異な変曲線を描くため、これにより試料の熱的変態点を検出することが可能となり、かつその状態観察が目視で可能となり、また、試料6の吸熱、発熱反応などは極めて微妙な温度変化を捉える必要があるが、本法では試料6に温度検出部である熱電対3が直接接触しており、極めて敏感にこれを検出出来る。  The heating measurement unit 1 measures the temperature of the changing sample 6 with the thermocouple 3 while giving the temperature change to the sample 6 to be observed with the thermocouple 3, and the temperature characteristics of the sample based on the temperature change are described above. If the thermal analysis is carried out by observing with the stereomicroscope 7 and taking in the data obtained by measurement and observation, the endothermic and exothermic reaction of the sample 6 that occurs during the process of automatic temperature rise, automatic temperature drop, or constant temperature heating Draws a unique curve on the trend recording data, which makes it possible to detect the thermal transformation point of the sample and to visually observe its state, and to absorb the endotherm of the sample 6, exothermic reaction, etc. However, in this method, the thermocouple 3 which is a temperature detection unit is in direct contact with the sample 6 and can be detected very sensitively.

なお、本実施例では、前記設定操作部2にて各種設定操作を行うよう記載したが、設定操作部2を設けず、同様の設定操作をパソコン12で行うものとしても良い。また加熱計測ユニット1とパソコン12を通信ケーブルで接続して、システム全体のリモート操作や、測定・設定温度の記録をしながら、試料6の溶融過程や凝固過程を実体顕微鏡7で直接観察し温度とともに記録出来るものとしても良い。  In the present embodiment, the setting operation unit 2 performs various setting operations. However, the setting operation unit 2 may not be provided, and the same setting operation may be performed by the personal computer 12. In addition, the heating measurement unit 1 and the personal computer 12 are connected by a communication cable, and the melting process and the solidification process of the sample 6 are directly observed with the stereo microscope 7 while the remote operation of the entire system and the measurement / setting temperature are recorded. It is good also as what can be recorded with it.

本発明の一実施形態に係る加熱計測用熱電対システムの構成図である。  It is a block diagram of the thermocouple system for heating measurement which concerns on one Embodiment of this invention. 同加熱計測用熱電対システムの加熱計測ユニットのブロック構成図である。  It is a block block diagram of the heating measurement unit of the thermocouple system for heating measurement. 同加熱計測用熱電対システムの加熱計測原理を示すタイミング図である。図である。  It is a timing diagram which shows the heating measurement principle of the thermocouple system for the heating measurement. FIG.

符号の説明Explanation of symbols

1 加熱計測ユニット
2 設定操作部
3 熱電対
6 試料
7 実体顕微鏡
8 CCDカメラ
9 テロップ装置
10 ビデオシステム
11 ディスプレイ
12 パソコン
13 プリンター
21 制御部
22 加熱計測切換部
23 加熱電源部
24 計測部
25 A/D変換部
26 D/A変換部
27 温度調節部
DESCRIPTION OF SYMBOLS 1 Heating measurement unit 2 Setting operation part 3 Thermocouple 6 Sample 7 Stereomicroscope 8 CCD camera 9 Telop apparatus 10 Video system 11 Display 12 Personal computer 13 Printer 21 Control part 22 Heating measurement switching part 23 Heating power supply part 24 Measuring part 25 A / D Conversion unit 26 D / A conversion unit 27 Temperature control unit

Claims (9)

観察対象の試料を保持している熱電対に、可変直流を使用し所定周波数でスイッチングを行い熱電対に半サイクル矩形波で電圧を引加して加熱電流を流して熱電対と試料を加熱し、残り半サイクルで熱電対に流れる加熱電流を遮断し、温度測定タイミングの測温信号にて熱電対の熱起電力を検出して温度測定し、試料を所定観察温度にする加熱計測ユニットと、この加熱計測ユニットに対し、予め設定された昇温勾配に従い自動で昇温を行う自動昇温、予め設定された降温勾配に従い自動で降温を行う自動降温、所定観察温度の維持、所定点での温度記録及び開始や終了時のデータ記録などの設定操作が出来る設定操作手段とを設け、所定観察温度における試料の溶融状態や融体と固体の反応などを容易に直接観察出来るものとしたことを特徴とする加熱計測用熱電対システム。  The thermocouple holding the sample to be observed is switched at a predetermined frequency using variable direct current, and a voltage is applied to the thermocouple with a half-cycle rectangular wave to flow a heating current to heat the thermocouple and sample. The heating measurement unit that cuts off the heating current flowing in the thermocouple in the remaining half cycle, detects the thermoelectromotive force of the thermocouple with the temperature measurement signal at the temperature measurement timing, measures the temperature, and sets the sample to a predetermined observation temperature, For this heating measurement unit, automatic temperature increase that automatically increases temperature according to a preset temperature increase gradient, automatic temperature decrease that automatically decreases temperature according to a preset temperature decrease gradient, maintenance of a predetermined observation temperature, at a predetermined point Setting operation means that can perform setting operations such as temperature recording and data recording at the start and end, and to make it possible to easily and directly observe the melting state of the sample and the reaction between the melt and the solid at a predetermined observation temperature. Special Thermocouple System for heating measurement to. 前記加熱計測ユニットを、前記熱電対に通電して加熱する加熱電源部と、熱電対の熱起電力を計測する計測部と、所定周波数でスイッチングを行い加熱電源部と計測部を切換える加熱計測切換部と、計測部が計測した熱起電力に基づくアナログ温度信号をデジタル変換するA/D変換部と、変換されたデジタル温度信号を受けるとともにこれらを制御する制御部と、制御部のデジタル温度信号をアナログ変換するD/A変換部と、このアナログ値を受け温度調節する温度調節部とで構成し、前記設定操作部による設定に基づき、前記制御部は加熱計測切換部にて加熱電源部と計測部を交互に切換ながら、加熱電源部により前記熱電対に半サイクル矩形波を通電して加熱し、熱電対からの温度に対するアナログ値の熱起電力信号を計測部を経由してA/D変換部にてデジタル変換して受けて温度データとしパソコンに出力するなど制御し、続いてこのデジタル値の温度データをD/A変換部にてアナログ変換して温度調節部に送り、温度調節部で設定操作部による設定とこのデジタル値の温度データを演算して温度調節やPID制御を行わせ、また制御部は加熱計測制御、データ処理、条件設定を行わせることができるものとした請求項1記載の加熱計測用熱電対システム。  A heating power supply unit that heats the thermocouple by energizing the thermocouple, a measurement unit that measures the thermoelectromotive force of the thermocouple, and a heating measurement switch that switches between the heating power supply unit and the measurement unit by switching at a predetermined frequency Unit, an A / D conversion unit that digitally converts an analog temperature signal based on the thermoelectromotive force measured by the measurement unit, a control unit that receives and controls the converted digital temperature signal, and a digital temperature signal of the control unit A D / A conversion unit that converts the analog value and a temperature adjustment unit that adjusts the temperature by receiving the analog value, and based on the setting by the setting operation unit, the control unit is a heating power supply unit in the heating measurement switching unit. While alternately switching the measurement unit, the heating power supply unit energizes the thermocouple with a half-cycle rectangular wave to heat it, and sends the analog thermoelectromotive force signal to the temperature from the thermocouple via the measurement unit The A / D converter converts the digital data, receives it as temperature data, and outputs it to a personal computer. The D / A converter analog converts the digital temperature data and sends it to the temperature controller. The temperature control unit can be set by the setting operation unit and the temperature data of this digital value is calculated to perform temperature adjustment and PID control, and the control unit can perform heating measurement control, data processing, and condition setting The thermocouple system for heating measurement according to claim 1. 前記熱電対と試料の状態を観察するための実体顕微鏡を設けた請求項1又は2記載の加熱計測用熱電対システム。  The thermocouple system for heating measurement according to claim 1 or 2, further comprising a stereomicroscope for observing the state of the thermocouple and the sample. 前記実体顕微鏡を介して観察映像を表示記録するために、CCDカメラ、テロップ装置、ビデオシステム、ディスプレイを設けた請求項3記載の加熱計測用熱電対システム。  The thermocouple system for heating measurement according to claim 3, wherein a CCD camera, a telop device, a video system, and a display are provided to display and record an observation image through the stereomicroscope. 前記加熱計測ユニットにデータ記録システムとしてのパソコンを接続した請求項1、2又は3記載の加熱計測用熱電対システム。  The thermocouple system for heating measurement according to claim 1, 2, or 3, wherein a personal computer as a data recording system is connected to the heating measuring unit. 前記テロップ装置、ビデオシステム及び加熱計測ユニットを制御すると共にデータを記録するためにこれらテロップ装置、ビデオシステム及び加熱計測ユニットに前記パソコンを接続した請求項4記載の加熱計測用熱電対システム。  The thermocouple system for heating measurement according to claim 4, wherein the personal computer is connected to the telop device, video system and heating measurement unit in order to control the telop device, video system and heating measurement unit and to record data. 前記加熱計測ユニットを観察対象の試料に熱電対にて温度変化を与えつつ、変化する試料の温度を熱電対にて計測し、温度変化に基づく試料の温度特性を前記実体顕微鏡にて観察し、計測及び観察にて得られたデータを取込んで熱分析を行うものとした請求項3、4、5又は6記載の加熱計測用熱電対システム。  While measuring the temperature of the changing sample with a thermocouple while giving the temperature change to the sample to be observed with the thermocouple, observe the temperature characteristics of the sample based on the temperature change with the stereomicroscope, The thermocouple system for heating measurement according to claim 3, 4, 5, or 6, wherein the thermal analysis is performed by taking in data obtained by measurement and observation. 前記パソコンを予め設定された昇温勾配に従い自動で昇温を行う自動昇温、予め設定された降温勾配に従い自動で降温を行う自動降温、所定観察温度の維持、所定点での温度記録及び開始や終了時のデータ記録などの設定操作が出来る設定操作手段とした請求項5、6又は7記載の加熱計測用熱電対システム。  Automatic temperature rise that automatically raises the PC according to a preset temperature rise gradient, automatic temperature drop that automatically falls according to a preset temperature drop gradient, maintenance of a predetermined observation temperature, temperature recording and start at a predetermined point 8. The thermocouple system for heating measurement according to claim 5, 6 or 7, wherein the setting operation means is capable of performing a setting operation such as data recording at the time of termination. 前記加熱計測ユニットとパソコンを通信ケーブルで接続して、このパソコンにてシステム全体のリモート操作や、測定・設定温度の記録をしながら、試料の溶融過程や凝固過程を実体顕微鏡で直接観察し温度とともに記録出来るものとした請求項8記載の加熱計測用熱電対システム。  Connect the heating measurement unit to a personal computer with a communication cable, and directly observe the melting and solidification process of the sample with a stereomicroscope while remotely operating the entire system and recording the measured / set temperature with this personal computer. The thermocouple system for heating measurement according to claim 8, which can be recorded together.
JP2005381242A 2005-12-27 2005-12-27 Thermocouple system for heating measurement Active JP4135181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005381242A JP4135181B2 (en) 2005-12-27 2005-12-27 Thermocouple system for heating measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005381242A JP4135181B2 (en) 2005-12-27 2005-12-27 Thermocouple system for heating measurement

Publications (2)

Publication Number Publication Date
JP2007178412A true JP2007178412A (en) 2007-07-12
JP4135181B2 JP4135181B2 (en) 2008-08-20

Family

ID=38303723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005381242A Active JP4135181B2 (en) 2005-12-27 2005-12-27 Thermocouple system for heating measurement

Country Status (1)

Country Link
JP (1) JP4135181B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079965A (en) * 2007-09-26 2009-04-16 Mitsuteru Kimura Thermocouple heater and temperature measuring device using it
JP2011059089A (en) * 2009-09-04 2011-03-24 Texcell Kk Thermocouple system for heating measurement
CN109343608A (en) * 2018-11-09 2019-02-15 岭南师范学院 Thermal fuse-link temperature intelligent detection system and its detection method based on Internet of Things
KR101956168B1 (en) * 2018-04-24 2019-03-08 한국산업기술대학교산학협력단 Method for testing slag dissolution behavior
CN110161076A (en) * 2019-06-03 2019-08-23 哈尔滨工程大学 A kind of unsteady state flow moves the analytical equipment of thermal characteristics and bubbling behaviour
CN114527009A (en) * 2022-02-09 2022-05-24 南京钢铁股份有限公司 Melting and solidifying process control method on thermal simulation testing machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079965A (en) * 2007-09-26 2009-04-16 Mitsuteru Kimura Thermocouple heater and temperature measuring device using it
JP2011059089A (en) * 2009-09-04 2011-03-24 Texcell Kk Thermocouple system for heating measurement
KR101956168B1 (en) * 2018-04-24 2019-03-08 한국산업기술대학교산학협력단 Method for testing slag dissolution behavior
CN109343608A (en) * 2018-11-09 2019-02-15 岭南师范学院 Thermal fuse-link temperature intelligent detection system and its detection method based on Internet of Things
CN110161076A (en) * 2019-06-03 2019-08-23 哈尔滨工程大学 A kind of unsteady state flow moves the analytical equipment of thermal characteristics and bubbling behaviour
CN110161076B (en) * 2019-06-03 2024-04-30 哈尔滨工程大学 Device for analyzing unsteady state flow heat transfer characteristic and bubble behavior
CN114527009A (en) * 2022-02-09 2022-05-24 南京钢铁股份有限公司 Melting and solidifying process control method on thermal simulation testing machine
CN114527009B (en) * 2022-02-09 2023-07-04 南京钢铁股份有限公司 Method for controlling melting and solidifying process on thermal simulation testing machine

Also Published As

Publication number Publication date
JP4135181B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP4135181B2 (en) Thermocouple system for heating measurement
CN102445464A (en) Dual-thermocouple test apparatus for crystallization property of continuous casting mould casting powder
CN108427452B (en) Temperature control method and device
JP2005249427A (en) Thermophysical property measuring method and device
CN109900738B (en) Device and method for heating material based on high-power laser
JP2010002412A (en) Thermo-analytical instrument
CN102053100A (en) Automatic measuring instrument for parameter of thermoelectric material
EP1816536A3 (en) Temperature controlling device
JP2011059089A (en) Thermocouple system for heating measurement
JP2002107317A (en) Device for observing high-temperature
JP2001183319A (en) Thermal analyzer
Kölbl et al. Single hot thermocouple technique for the characterization of the crystallization behavior of transparent or translucent liquids
JP3687030B2 (en) Micro surface temperature distribution measurement method and apparatus therefor
NL2026655A (en) System and method for testing high-temperature tensile anisotropic r-values of metal plate
JP3068526B2 (en) Heater temperature detection device for pulse heating type bonding equipment
CN205959102U (en) Miniature control by temperature change chamber based on semiconductor refrigeration technology
JP4116526B2 (en) Differential scanning calorimeter with second heater
JP2010048618A (en) Method for measuring phase transition conditions of sample to be subjected to phase transition, and measuring apparatus therefor
CN204807489U (en) Melt crystallization temperature test appearance
JP2013020471A (en) Temperature controller and temperature control method
KR20110088614A (en) Temperature control apparatus for dram module test
Kolbl et al. Single hot thermocouple technique for the characterization of the crystallization behavior of transparent or translucent liquids
JP3670757B2 (en) Sample temperature control method and apparatus
TW201706549A (en) Movable and instantaneous temperature-monitoring device
CN220419178U (en) Device and system for detecting flux or solder spreading process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080523

R150 Certificate of patent or registration of utility model

Ref document number: 4135181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250