JP4133906B2 - Coaxial / waveguide conversion structure manufacturing method - Google Patents

Coaxial / waveguide conversion structure manufacturing method Download PDF

Info

Publication number
JP4133906B2
JP4133906B2 JP2004102410A JP2004102410A JP4133906B2 JP 4133906 B2 JP4133906 B2 JP 4133906B2 JP 2004102410 A JP2004102410 A JP 2004102410A JP 2004102410 A JP2004102410 A JP 2004102410A JP 4133906 B2 JP4133906 B2 JP 4133906B2
Authority
JP
Japan
Prior art keywords
coaxial
waveguide
mode transmission
transmission line
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004102410A
Other languages
Japanese (ja)
Other versions
JP2005294881A (en
Inventor
洋 中野
康剛 平地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Device Innovations Inc
Original Assignee
Sumitomo Electric Device Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Device Innovations Inc filed Critical Sumitomo Electric Device Innovations Inc
Priority to JP2004102410A priority Critical patent/JP4133906B2/en
Publication of JP2005294881A publication Critical patent/JP2005294881A/en
Application granted granted Critical
Publication of JP4133906B2 publication Critical patent/JP4133906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、同軸・導波管変換構造製造方法に関する。 The present invention relates to a method of manufacturing a coaxial-waveguide transition structure.

従来、高周波信号を伝送する伝送路として、例えば図1に示すような同軸モード伝送路1a及び導波管モード伝送路1bが用いられてきた。ここで、同軸モード伝送路1aとは、図1(a)に示すように、中心導体2の周囲を円形パイプ状の周囲導体3aで囲んだ構造の伝送路であり、中心導体2と周囲導体3aとの間には誘電体4aが設けられ、周囲導体3aは接地電位の状態で構成される。このとき、周囲導体3aは、中心導体2の全周を囲む構成の他に部分的に周囲を囲む構成を用いても良い。また、導波管モード伝送路1bとは、例えば矩形形状等の断面形状を有するパイプ状の周囲導体3bで構成される伝送路であり、周囲導体3bの内部には誘電体4bが設けられ、周囲導体3bは接地電位の状態で構成される。このとき、周囲導体3bは、連続的なパイプ状構造の他に、伝送する信号の波長よりも小さい間隔で導体を間欠的に配置する構造を用いても良い。誘電体4a及び4bには、通常、誘電体材料が用いられる。   Conventionally, for example, a coaxial mode transmission line 1a and a waveguide mode transmission line 1b as shown in FIG. 1 have been used as transmission lines for transmitting high-frequency signals. Here, the coaxial mode transmission line 1a is a transmission line having a structure in which the periphery of the central conductor 2 is surrounded by a circular pipe-shaped peripheral conductor 3a as shown in FIG. A dielectric 4a is provided between the conductor 3a and the surrounding conductor 3a. At this time, the surrounding conductor 3a may be configured to partially surround the periphery in addition to the structure surrounding the entire circumference of the center conductor 2. The waveguide mode transmission line 1b is a transmission line composed of a pipe-shaped peripheral conductor 3b having a cross-sectional shape such as a rectangular shape, for example, and a dielectric 4b is provided inside the peripheral conductor 3b. The surrounding conductor 3b is configured in a ground potential state. At this time, the surrounding conductor 3b may use a structure in which conductors are intermittently arranged at intervals smaller than the wavelength of a signal to be transmitted, in addition to a continuous pipe-like structure. A dielectric material is usually used for the dielectrics 4a and 4b.

一般的に、電波によって情報を送受信する無線モジュールでは、送信又は受信を行うアンテナの伝送路に同軸モード伝送路を用い、無線モジュールの信号の伝送路に導波管モード伝送路を用いる組み合わせが多く用いられている。したがって、アンテナ側の同軸モード伝送路と無線モジュール側の導波管モード伝送路との接続部分では、例えば図1(b)に示すような、同軸・導波管変換器の構成が用いられてきた。すなわち、同軸モード伝送路1aと導波管モード伝送路1bとを直交するように結合し、同軸モード伝送路1aの中心導体2を導波管モード伝送路1bの誘電体4b内に、所定長さLだけ突出するように配置した構成である。   In general, in a wireless module that transmits and receives information by radio waves, there are many combinations that use a coaxial mode transmission path as a transmission path of an antenna that performs transmission or reception and use a waveguide mode transmission path as a transmission path of a signal of the wireless module. It is used. Therefore, for example, a configuration of a coaxial / waveguide converter as shown in FIG. 1B has been used at the connection portion between the coaxial mode transmission path on the antenna side and the waveguide mode transmission path on the wireless module side. It was. That is, the coaxial mode transmission line 1a and the waveguide mode transmission line 1b are coupled so as to be orthogonal to each other, and the central conductor 2 of the coaxial mode transmission line 1a is placed in the dielectric 4b of the waveguide mode transmission line 1b to a predetermined length. It is the structure arrange | positioned so that only length L may protrude.

図1(b)に示すような同軸・導波管変換器の構成では、導波管モード伝送路1bの設計事項に応じて同軸モード伝送路1aの中心導体2の突出する部分の長さLを非常に高精度に加工する必要があるため、量産性の点からは製造上大きな問題点があった。特に、導波管モード伝送路1bの誘電体4bに例えばドリル等で所定深さの穿孔を形成する場合、ドリル等の加工工具の先端は通常テーパ状に形成形成されているため穿孔の深さを高精度に調整することが困難であり、中心導体2の先端を高精度に仕上げたとしても中心導体2の突出深さを所定深さに制御するのは困難であるという問題があった。   In the configuration of the coaxial / waveguide converter as shown in FIG. 1B, the length L of the protruding portion of the central conductor 2 of the coaxial mode transmission line 1a according to the design matters of the waveguide mode transmission line 1b. Therefore, there is a big problem in manufacturing from the point of mass productivity. In particular, when drilling a predetermined depth in the dielectric 4b of the waveguide mode transmission line 1b with a drill or the like, for example, since the tip of a processing tool such as a drill is usually formed in a tapered shape, the depth of the drilling There is a problem that it is difficult to adjust the protrusion depth of the center conductor 2 to a predetermined depth even if the tip of the center conductor 2 is finished with high accuracy.

そこで本発明は、上記のような問題を鑑み、同軸モード伝送路と導波管モード伝送路とを高精度かつ容易に接続可能な同軸・導波管変換構造製造方法を提供することを目的とする。 The present invention aims to view the above problems, to provide a method of manufacturing a coaxial mode transmission line and the waveguide mode transmission line accurately and easily connectable coaxial-waveguide transition structure And

かかる目的を達成するために、本発明は、請求項1記載のように、少なくとも1つに貫通孔を有する複数の誘電体部材を積層して少なくとも第1の面側に前記貫通孔が露出する積層体を形成する第1のステップと、前記貫通孔の周囲を除く前記積層体の前記第1の面及び前記第1の面に対向する第2の面、並びに前記貫通孔に導体を設ける第2のステップと、を含むことにより、前記貫通孔内の導体に中心導体が接続される同軸モード伝送路と前記第1の面及び前記第2の面に設けられた導体を周囲導体として備える導波管モード伝送路との変換構造を形成することを特徴とする同軸・導波管変換構造の製造方法である。このような製造方法によれば、同軸モード伝送路から導波管モード伝送路へ突出する中心導体の深さに対応する厚さの誘電体に貫通孔を形成し、この貫通孔に導体を設けることで、同軸モード伝送路からの中心導体の長さを高精度かつ容易に実現することが可能となる。   In order to achieve such an object, according to the present invention, a plurality of dielectric members having at least one through hole are stacked and the through hole is exposed at least on the first surface side. A first step of forming a multilayer body; a first surface of the multilayer body excluding the periphery of the through hole; a second surface opposite to the first surface; and a conductor provided in the through hole. A coaxial mode transmission line in which a central conductor is connected to a conductor in the through hole and a conductor provided on the first surface and the second surface as a peripheral conductor. A method of manufacturing a coaxial / waveguide conversion structure, wherein a conversion structure with a wave tube mode transmission line is formed. According to such a manufacturing method, the through hole is formed in the dielectric having a thickness corresponding to the depth of the central conductor protruding from the coaxial mode transmission line to the waveguide mode transmission line, and the conductor is provided in the through hole. Thus, the length of the central conductor from the coaxial mode transmission line can be realized with high accuracy and ease.

前記第1のステップは、貫通孔を有する第1の誘電体部材と貫通孔を持たない第2の誘電体部材とを積層するステップを含む構成とすることができる。また、前記第1のステップは、貫通孔を有する複数の誘電体部材を、これらの貫通孔が一列に配置されかつ全体として所定の深さを有するように積層するステップを含む構成とすることもできる。   The first step may include a step of laminating a first dielectric member having a through hole and a second dielectric member having no through hole. The first step may include a step of laminating a plurality of dielectric members having through holes so that the through holes are arranged in a row and have a predetermined depth as a whole. it can.

なお、本発明の同軸・導波管変換構造は、積層体の第1の面と第2の面に導体が設けられ、これが導波管モード伝送路の周囲導体をなすが、周囲導体としては種々のものが考えられる。例えば、積層体の側面に導体を設けたもの、あるいは、伝送される電波の波長より短いピッチで設けられた貫通孔を導波管モード伝送路の側壁と想定するパターンで配置しその内部に導体を充填したいわゆるプラグ壁(プラグ壁導波管)とすることができる。   In the coaxial / waveguide conversion structure of the present invention, conductors are provided on the first surface and the second surface of the laminate, and this constitutes the surrounding conductor of the waveguide mode transmission line. Various things are possible. For example, a conductor provided on the side of the laminate, or a through hole provided at a pitch shorter than the wavelength of the transmitted radio wave is arranged in a pattern that assumes the side wall of the waveguide mode transmission line, and the conductor is provided in the inside. The so-called plug wall (plug wall waveguide) filled with can be obtained.

本発明によれば、同軸モード伝送路と導波管モード伝送路とを高精度かつ容易に接続することができる同軸・導波管変換構造製造方法を実現することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the coaxial-waveguide conversion structure which can connect a coaxial mode transmission line and a waveguide mode transmission line with high precision and easily is realizable.

以下、本発明を実施するための最良の形態を図面と共に詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

まず、本発明の実施例1について図面を用いて詳細に説明する。図2は、本実施例1による同軸・導波管変換構造の製造方法を示す流れ図である。本実施例1による同軸・導波管変換構造の製造方法は、導波管誘電体積層工程(ステップS1)と、周囲導体形成工程(ステップS2)と、同軸モード結合工程(ステップS3)とで構成されている。   First, Embodiment 1 of the present invention will be described in detail with reference to the drawings. FIG. 2 is a flowchart showing a method of manufacturing the coaxial / waveguide conversion structure according to the first embodiment. The manufacturing method of the coaxial / waveguide conversion structure according to the first embodiment includes a waveguide dielectric laminating step (step S1), a surrounding conductor forming step (step S2), and a coaxial mode coupling step (step S3). It is configured.

導波管誘電体積層工程(ステップS1)は、導波管モード伝送路内部に充填される例えばポリテトラフルオロエチレン等の誘電体を積層し、かつ上述の同軸モード伝送路の中心導体の突出部に相当する部分に空孔を形成する工程であり、その詳細については後述する。周囲導体形成工程(ステップS2)は、ステップS1で形成された誘電体の周囲に導波管を構成する周囲導体を形成する工程であり、その詳細についても後述する。また、同軸モード結合工程は、ステップS2で形成された導波管モード伝送路に同軸モード伝送路を結合する工程であり、その詳細については後述する。これらの工程を経ることによって、所定の導波管モード伝送路の断面形状及び所定の同軸モード伝送路の中心導体の突出長さを含む同軸・導波管変換器を製造することが可能となる。   In the waveguide dielectric laminating step (step S1), a dielectric such as polytetrafluoroethylene filled in the waveguide mode transmission line is laminated, and the projecting portion of the central conductor of the coaxial mode transmission line described above Is a step of forming holes in a portion corresponding to the above, and details thereof will be described later. The surrounding conductor forming step (step S2) is a step of forming the surrounding conductor constituting the waveguide around the dielectric formed in step S1, and details thereof will be described later. The coaxial mode coupling step is a step of coupling the coaxial mode transmission path to the waveguide mode transmission path formed in step S2, and details thereof will be described later. Through these steps, it becomes possible to manufacture a coaxial / waveguide converter including the cross-sectional shape of a predetermined waveguide mode transmission path and the protruding length of the center conductor of the predetermined coaxial mode transmission path. .

次に、図2に示された導波管誘電体積層工程の詳細を図面を用いて説明する。図3は、導波管誘電体積層工程の手順を示す断面図である。導波管誘電体積層工程では、図3(a)に示すように、厚さt1の第1の誘電体部材11aと厚さt2の第2の誘電体部材11bとを積層して積層体11を形成する。第1の誘電体部材11a及び第2の誘電体部材11bは、例えばポリテトラフルオロエチレン等の同一の樹脂材料であり、第2の誘電体部材11bの厚さt2は、図1で示した同軸モード伝送路1aの中心導体2の突出部分の長さLに相当する。第2の誘電体部材11bには、同軸モード伝送路の中心導体の直径に相当する径の貫通孔12が形成される。このように第1の誘電体部材11a及び第2の誘電体部材11bを積層することによって、見かけ上厚さが(t1+t2)で上面からの突出部用孔の深さがt2の積層体11を高精度に形成することができる。また、図3(b)に示すように、例えば同軸モード伝送路の中心導体の直径に相当する径の貫通孔が形成された誘電体部材11c、11d、11eのような複数の誘電体層を積層して所望の厚さt2を得る構成にしても良い。特に、所定の厚さの誘電体を高精度に量産する場合に有効である。   Next, the details of the waveguide dielectric laminating process shown in FIG. 2 will be described with reference to the drawings. FIG. 3 is a cross-sectional view showing the procedure of the waveguide dielectric laminating step. In the waveguide dielectric laminating step, as shown in FIG. 3A, a first dielectric member 11a having a thickness t1 and a second dielectric member 11b having a thickness t2 are laminated to form a laminate 11. Form. The first dielectric member 11a and the second dielectric member 11b are made of the same resin material such as polytetrafluoroethylene, and the thickness t2 of the second dielectric member 11b is the same as that shown in FIG. This corresponds to the length L of the protruding portion of the center conductor 2 of the mode transmission line 1a. A through hole 12 having a diameter corresponding to the diameter of the central conductor of the coaxial mode transmission line is formed in the second dielectric member 11b. By laminating the first dielectric member 11a and the second dielectric member 11b in this way, the multilayer body 11 having an apparent thickness (t1 + t2) and a depth of the protrusion hole from the upper surface t2 is obtained. It can be formed with high accuracy. Further, as shown in FIG. 3B, for example, a plurality of dielectric layers such as dielectric members 11c, 11d, and 11e in which a through hole having a diameter corresponding to the diameter of the central conductor of the coaxial mode transmission line is formed. It may be configured to obtain a desired thickness t2 by stacking. This is particularly effective when mass-producing a dielectric having a predetermined thickness with high accuracy.

次に、図2に示された周囲導体形成工程の詳細を図面を用いて説明する。図4は、周囲導体形成工程によって形成される導波管モード伝送路10の断面図である。周囲導体形成工程では、導波管誘電体積層工程で製造された積層体11の表面に、例えば銅合金等の導体13が形成される。導体13は、例えばめっき等の方法で積層体11の周囲に所定の厚さで形成され、このとき、第2の誘電体部材11bに設けられた貫通孔12にも導体13bが形成される。このような工程を実行することによって、導波管モード伝送路10の積層体11に所定深さだけ導体を高精度に設けた構造を容易に得ることが可能となる。   Next, details of the surrounding conductor forming step shown in FIG. 2 will be described with reference to the drawings. FIG. 4 is a cross-sectional view of the waveguide mode transmission line 10 formed by the surrounding conductor forming step. In the surrounding conductor forming step, a conductor 13 such as a copper alloy is formed on the surface of the laminate 11 manufactured in the waveguide dielectric laminating step. The conductor 13 is formed with a predetermined thickness around the multilayer body 11 by a method such as plating, and at this time, the conductor 13b is also formed in the through hole 12 provided in the second dielectric member 11b. By executing such a process, it is possible to easily obtain a structure in which a conductor having a predetermined depth is provided in the multilayer body 11 of the waveguide mode transmission line 10 with a high accuracy.

次に、図2に示された同軸モード結合工程の詳細を、図面を用いて説明する。図5は、周囲導体形成工程によって形成された導波管モード伝送路10に同軸モード伝送路20を取り付ける手順を示す断面図である。同軸モード結合工程では、まず、周囲導体形成工程で製造された導波管モード伝送路10の上面、すなわち貫通孔12及び導体13bが形成されている側において、図5(a)に示すように、導体13bを中心としかつ同軸モード伝送路20の誘電体22の断面に相当する領域の周囲導体13を除去する。続いて、当該領域に同軸モード伝送路20を嵌合するように取り付ける。このとき、同軸モード伝送路20の取り付け側端部の周囲導体21は、取り付け側端部から導波管モード伝送路10の周囲導体13の厚さに対応する分だけ予め除去されており、導波管モード伝送路10の周囲導体13と同軸モード伝送路20の周囲導体21とは、例えばろう付け又は接着等の方法で固着される。また、図5(b)に示すように、同軸モード伝送路20の中心導体23は、導波管モード伝送路10と結合された際に導波管内に設けられた導体13bと電気的に接触する。これによって、見かけ上、導波管モード伝送路10と同軸モード伝送路20とを結合して、同軸モード伝送路20の中心導体23を導波管モード伝送路10の積層体11内に所定の深さだけ高精度に突出させた同軸・導波管変換構造30を形成することが可能となる。   Next, details of the coaxial mode coupling process shown in FIG. 2 will be described with reference to the drawings. FIG. 5 is a cross-sectional view showing a procedure for attaching the coaxial mode transmission line 20 to the waveguide mode transmission line 10 formed by the surrounding conductor forming step. In the coaxial mode coupling step, first, as shown in FIG. 5A, on the upper surface of the waveguide mode transmission line 10 manufactured in the surrounding conductor forming step, that is, on the side where the through hole 12 and the conductor 13b are formed. Then, the surrounding conductor 13 in the region corresponding to the cross section of the dielectric 22 of the coaxial mode transmission line 20 with the conductor 13b as the center is removed. Subsequently, the coaxial mode transmission path 20 is attached so as to fit in the region. At this time, the surrounding conductor 21 at the attachment side end of the coaxial mode transmission line 20 is removed in advance from the attachment side end by an amount corresponding to the thickness of the surrounding conductor 13 of the waveguide mode transmission line 10. The surrounding conductor 13 of the wave tube mode transmission path 10 and the surrounding conductor 21 of the coaxial mode transmission path 20 are fixed by a method such as brazing or bonding, for example. Further, as shown in FIG. 5B, the central conductor 23 of the coaxial mode transmission line 20 is in electrical contact with the conductor 13b provided in the waveguide when coupled to the waveguide mode transmission line 10. To do. As a result, the waveguide mode transmission line 10 and the coaxial mode transmission line 20 are apparently coupled to each other, and the central conductor 23 of the coaxial mode transmission line 20 is placed in the laminated body 11 of the waveguide mode transmission line 10 in a predetermined manner. It is possible to form the coaxial / waveguide conversion structure 30 protruding with high precision by the depth.

また、図5に示した同軸モード伝送路20は、通常は同軸ケーブル等を用いるが、同軸モード伝送路の構造を有する構造を積層して形成しても良い。   In addition, the coaxial mode transmission line 20 shown in FIG. 5 normally uses a coaxial cable or the like, but may be formed by stacking structures having the structure of the coaxial mode transmission line.

以上のような工程を実行することによって、本実施例1による同軸・導波管変換構造の製造方法によれば、導波管誘電体積層工程において同軸モード伝送路から導波管モード伝送路へ突出する中心導体の深さに対応する厚さを有する誘電体に貫通孔を設け、周囲導体形成工程においてこの貫通孔に導体を積層し、同軸モード結合工程においてこの導体と中心導体とを電気的に接続するように結合することによって、同軸モード伝送路からの中心導体が導波管モード伝送路の所定の深さまで突出した同軸・導波管変化構造を高精度かつ容易に実現することができる。   By performing the steps as described above, according to the manufacturing method of the coaxial / waveguide conversion structure according to the first embodiment, from the coaxial mode transmission line to the waveguide mode transmission line in the waveguide dielectric laminating step. A through-hole is provided in a dielectric having a thickness corresponding to the depth of the protruding central conductor, and a conductor is stacked in the through-hole in the surrounding conductor forming process, and the conductor and the central conductor are electrically connected in the coaxial mode coupling process. By connecting so as to connect to the coaxial mode transmission line, a coaxial / waveguide change structure in which the central conductor from the coaxial mode transmission line protrudes to a predetermined depth of the waveguide mode transmission line can be realized with high accuracy and easily. .

続いて、本実施例1による同軸・導波管変換構造の適用例を図面を用いて説明する。図6は、平面アンテナ41を含む同軸・導波管変換構造40を示しており、図6(a)は平面図、図6(b)は同軸モード伝送路の中心を通る線による断面図である。同軸・導波管変換構造40は平面基板であり、図6(b)に示すように、誘電体の上下面に導体40a及び40bが積層された構造となっている。導体40aの一部には、平面アンテナ41が形成されている。また、同軸・導波管変換構造40の内部には、壁部材42によって囲まれた導波路43が形成されている。導波路43は、壁部材42と上下の導体40a及び40bとに囲まれた閉空間であり、この内部に入力された電波又は信号は外部には漏出しない構造となっている。壁部材42は、導体40a及び40bと電気的に接続された導体であり、図6に示すように連続的に形成される構造又は伝送する信号の波長よりも小さい間隔で導体を間欠的に配置する構造でも良い。   Next, an application example of the coaxial / waveguide conversion structure according to the first embodiment will be described with reference to the drawings. 6 shows a coaxial / waveguide conversion structure 40 including a planar antenna 41. FIG. 6 (a) is a plan view, and FIG. 6 (b) is a cross-sectional view taken along a line passing through the center of the coaxial mode transmission line. is there. The coaxial / waveguide conversion structure 40 is a planar substrate, and has a structure in which conductors 40a and 40b are laminated on the upper and lower surfaces of a dielectric, as shown in FIG. 6B. A planar antenna 41 is formed on a part of the conductor 40a. A waveguide 43 surrounded by a wall member 42 is formed inside the coaxial / waveguide conversion structure 40. The waveguide 43 is a closed space surrounded by the wall member 42 and the upper and lower conductors 40a and 40b, and has a structure in which radio waves or signals input to the inside do not leak to the outside. The wall member 42 is a conductor electrically connected to the conductors 40a and 40b, and the conductors are intermittently arranged at intervals smaller than the wavelength of the signal to be transmitted or the structure formed continuously as shown in FIG. The structure to do may be sufficient.

同軸・導波管変換構造40には、上述の導波路43の一部に同軸モード伝送路44が結合されるように配置されている。導波路43と同軸モード伝送路44との結合部は、図3から図5に示すような本実施例1による同軸・導波管変換構造の製造方法によって形成される。平面アンテナ41から送信又は受信される電波信号は、導波路43を経由して同軸モード伝送路44の中心導体45に導かれ、同軸モード伝送路44によって外部装置(図示せず)に入出力される。   The coaxial / waveguide conversion structure 40 is arranged so that a coaxial mode transmission line 44 is coupled to a part of the waveguide 43 described above. The coupling portion between the waveguide 43 and the coaxial mode transmission line 44 is formed by the method of manufacturing the coaxial / waveguide conversion structure according to the first embodiment as shown in FIGS. A radio wave signal transmitted or received from the planar antenna 41 is guided to the central conductor 45 of the coaxial mode transmission path 44 via the waveguide 43 and input / output to / from an external device (not shown) by the coaxial mode transmission path 44. The

以上の実施例から、本発明によれば、同軸モード伝送路と導波管モード伝送路とを高精度かつ容易に接続可能な同軸・導波管変換構造の製造方法及びこれを用いて製造された同軸・導波管変換構造を実現できる。   From the above embodiments, according to the present invention, a method for manufacturing a coaxial / waveguide conversion structure capable of easily connecting a coaxial mode transmission line and a waveguide mode transmission line with high accuracy and a manufacturing method using the same. A coaxial / waveguide conversion structure can be realized.

以上、説明した実施例は、本発明を実施するための最良の形態の一つにすぎず、本発明はその主旨を逸脱しない限り種々変化及び変形して実施可能である。   The embodiment described above is only one of the best modes for carrying out the present invention, and the present invention can be implemented with various changes and modifications without departing from the gist thereof.

一般的な同軸モード伝送路及び導波管モード伝送路の概略と従来技術における同軸・導波管変換器の構成とを示す図である。It is a figure which shows the outline of a general coaxial mode transmission path and a waveguide mode transmission path, and the structure of the coaxial-waveguide converter in a prior art. 本発明の実施例1における同軸・導波管変換構造の製造方法を示す流れ図である。It is a flowchart which shows the manufacturing method of the coaxial-waveguide conversion structure in Example 1 of this invention. 図2に示された導波管誘電体積層工程の手順を示す断面図である。FIG. 3 is a cross-sectional view showing a procedure of a waveguide dielectric laminating process shown in FIG. 2. 図2に示された周囲導体形成工程によって形成される導波管モード伝送路10の断面図である。It is sectional drawing of the waveguide mode transmission line 10 formed by the surrounding conductor formation process shown by FIG. 図2に示された周囲導体形成工程によって形成された導波管モード伝送路10に同軸モード伝送路20を取り付ける手順を示す断面図である。It is sectional drawing which shows the procedure which attaches the coaxial mode transmission path 20 to the waveguide mode transmission path 10 formed by the surrounding conductor formation process shown by FIG. 本実施例1による同軸・導波管変換構造の適用例である平面アンテナ41を含む同軸・導波管変換構造40を示しており、図6(a)は平面図、図6(b)は同軸モード伝送路の中心を通る線による断面図である。6 shows a coaxial / waveguide conversion structure 40 including a planar antenna 41, which is an application example of the coaxial / waveguide conversion structure according to the first embodiment. FIG. 6 (a) is a plan view, and FIG. 6 (b) is a plan view. It is sectional drawing by the line which passes along the center of a coaxial mode transmission line.

符号の説明Explanation of symbols

10 導波管モード伝送路
11、11a、11b、11c、11d、11e 誘電体
12 貫通孔
13 周囲導体
20、44 同軸モード伝送路
21 周囲導体
23、45 中心導体
40 同軸・導波管変換構造
41 平面アンテナ
42 壁部材
43 導波路
L 中心導体が突出する所定深さ
t1 第1の誘電体の厚さ
t2 第2の誘電体の厚さ

DESCRIPTION OF SYMBOLS 10 Waveguide mode transmission path 11, 11a, 11b, 11c, 11d, 11e Dielectric 12 Through-hole 13 Ambient conductor 20, 44 Coaxial mode transmission path 21 Ambient conductor 23, 45 Center conductor 40 Coaxial / waveguide conversion structure 41 Planar antenna 42 Wall member 43 Waveguide L Predetermined depth of protrusion of central conductor t1 Thickness of first dielectric t2 Thickness of second dielectric

Claims (3)

少なくとも1つに貫通孔を有する複数の誘電体部材を積層して少なくとも第1の面側に前記貫通孔が露出する積層体を形成する第1のステップと、
前記貫通孔の周囲を除く前記積層体の前記第1の面及び前記第1の面に対向する第2の面、並びに前記貫通孔に導体を設ける第2のステップと、
を含むことにより、前記貫通孔内の導体に中心導体が接続される同軸モード伝送路と前記第1の面及び前記第2の面に設けられた導体を周囲導体として備える導波管モード伝送路との変換構造を形成することを特徴とする同軸・導波管変換構造の製造方法。
A first step of laminating a plurality of dielectric members having at least one through-hole to form a laminate in which the through-hole is exposed at least on the first surface side;
A second step of providing a conductor in the through hole, and the first surface of the laminate excluding the periphery of the through hole, the second surface opposite to the first surface, and
A coaxial mode transmission line in which a central conductor is connected to a conductor in the through hole, and a waveguide mode transmission line provided with conductors provided on the first surface and the second surface as surrounding conductors. A method of manufacturing a coaxial / waveguide conversion structure, characterized in that a conversion structure is formed.
前記第1のステップは、貫通孔を有する第1の誘電体部材と貫通孔を持たない第2の誘電体部材とを積層するステップを含むことを特徴とする請求項1記載の同軸・導波管変換構造の製造方法。   The coaxial / waveguide according to claim 1, wherein the first step includes a step of laminating a first dielectric member having a through hole and a second dielectric member having no through hole. Manufacturing method of tube conversion structure. 前記第1のステップは、貫通孔を有する複数の誘電体部材を、これらの貫通孔が一列に配置されかつ全体として所定の深さを有するように積層するステップを含むことを特徴とする請求項1記載の同軸・導波管変換構造の製造方法。 The first step includes a step of laminating a plurality of dielectric members having through holes so that the through holes are arranged in a row and have a predetermined depth as a whole. A method for producing a coaxial / waveguide conversion structure according to claim 1.
JP2004102410A 2004-03-31 2004-03-31 Coaxial / waveguide conversion structure manufacturing method Expired - Lifetime JP4133906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004102410A JP4133906B2 (en) 2004-03-31 2004-03-31 Coaxial / waveguide conversion structure manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004102410A JP4133906B2 (en) 2004-03-31 2004-03-31 Coaxial / waveguide conversion structure manufacturing method

Publications (2)

Publication Number Publication Date
JP2005294881A JP2005294881A (en) 2005-10-20
JP4133906B2 true JP4133906B2 (en) 2008-08-13

Family

ID=35327387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004102410A Expired - Lifetime JP4133906B2 (en) 2004-03-31 2004-03-31 Coaxial / waveguide conversion structure manufacturing method

Country Status (1)

Country Link
JP (1) JP4133906B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5669043B2 (en) * 2011-02-24 2015-02-12 株式会社 アムシス Post-wall waveguide antenna and antenna module
JP5978149B2 (en) * 2013-02-18 2016-08-24 株式会社フジクラ Mode converter manufacturing method
CN110165350B (en) * 2019-06-06 2024-01-16 西南应用磁学研究所 Miniaturized waveguide coaxial switching device

Also Published As

Publication number Publication date
JP2005294881A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
KR101756124B1 (en) Cavity type radio frequency filter with cross-coupling notch structure
JP6196188B2 (en) ANTENNA DEVICE AND RADIO DEVICE
JP6105496B2 (en) Batch laminated substrate
JP5947917B2 (en) Mode converter
JP6146313B2 (en) Wireless module
US20220005770A1 (en) Integrated structures with antenna elements and ic chips employing edge contact connections
WO2014119302A1 (en) Wireless module and production method for wireless module
JP2018186204A (en) High frequency module, radio equipment and manufacturing method of the same high frequency module
US11581652B2 (en) Spiral antenna and related fabrication techniques
JP2008193243A (en) Waveguide
JP4133906B2 (en) Coaxial / waveguide conversion structure manufacturing method
JP6353762B2 (en) Circuit board
JP4904336B2 (en) Radar device antenna and manufacturing method thereof
JP6560830B2 (en) Transmission line
JP2020022156A (en) Waveguide interconnect
CN212874751U (en) Antenna radiation unit with impedance matching function
JP2008193161A (en) Microstrip line-waveguide converter
JP2006304113A (en) Radio frequency (rf) probe substrate
EP3151336A1 (en) Three-dimensional antenna apparatus
JP4990021B2 (en) High frequency transmission line
JP4091015B2 (en) Coaxial / waveguide conversion structure
KR100536572B1 (en) Helical antenna and method of manufacturing the same
CN116913894B (en) Ceramic interconnection device based on HTCC
JP7120336B2 (en) High frequency module and method for manufacturing high frequency module
JP2010098609A (en) Waveguide-microstrip line converter and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4133906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250