JP4133049B2 - FRP pressure vessel molding method - Google Patents

FRP pressure vessel molding method Download PDF

Info

Publication number
JP4133049B2
JP4133049B2 JP2002198826A JP2002198826A JP4133049B2 JP 4133049 B2 JP4133049 B2 JP 4133049B2 JP 2002198826 A JP2002198826 A JP 2002198826A JP 2002198826 A JP2002198826 A JP 2002198826A JP 4133049 B2 JP4133049 B2 JP 4133049B2
Authority
JP
Japan
Prior art keywords
resin
vinyl ester
styrene monomer
pressure vessel
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002198826A
Other languages
Japanese (ja)
Other versions
JP2004034661A (en
Inventor
和男 大谷
富生 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP2002198826A priority Critical patent/JP4133049B2/en
Publication of JP2004034661A publication Critical patent/JP2004034661A/en
Application granted granted Critical
Publication of JP4133049B2 publication Critical patent/JP4133049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、宇宙航空機器、天然ガス自動車、消防、医療、レジャー用などに使用される空気、酸素、液化プロパンガス、液化天然ガスなどに用いられるFRP圧力容器の成形方法に関する。
【0002】
【従来の技術】
FRP圧力容器は、一般に熱硬化性樹脂を含浸させた繊維材を、金属や熱可塑性樹脂のライナーにワインディングした後、該成形体を加熱硬化してなされるフィラメントワインディング成形やブレイディング成形により製造されている。
使用される熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂などがあるが、エポキシ樹脂が使われることが多い。
しかしエポキシ樹脂は、粘度が高く繊維への含浸性が悪く、しかも硬化に長時間を要するため成形時間が長くかかり、成形にかかるコストが高いという欠点がある。また、成形物の耐薬品性が不十分であるため安全性という点でも課題が残されている。
これに対しビニルエステル樹脂等を使用した成形する例もある。この場合、低粘度で繊維への含浸性は良好で、成形物の耐薬品性も良好となる。しかも過酸化物触媒系を用いたラジカル重合が行われるため、硬化もエポキシ樹脂に比べて短時間で行うことが出来る。しかし、通常ビニルエステル樹脂や不飽和ポリエステル樹脂は、スチレンモノマーを通常30〜50重量%と多く含有するため、成形時のスチレンモノマーの揮散量が多く、作業環境上の問題となっている。
【0003】
【発明が解決しようとする課題】
本発明は、こうした現状に鑑み、成形時の樹脂の繊維への含浸性、成形物の耐薬品性が良好で、成形サイクルを更に向上し、且つ改善された作業環境で製造できるFRP圧力容器の成形方法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明者らは、特定のFRP圧力容器成形用樹脂組成物を2段で成形させることにより上記目的を達成しうることを見出した。
すなわち本発明は、以下のFRP圧力容器の成形方法およびFRP圧力容器を提供する。
1.可視光重合開始剤及び/又は近赤外光重合開始剤と熱重合開始剤を含む重合開始剤(C)を含む、スチレンモノマーの含有量が10重量%未満である不飽和ポリエステル樹脂及び/又はビニルエステル樹脂(A)を繊維材料(B)に含浸させてワインディングし、可視光及び/又は近赤外光を照射して表面のみを硬化させた後、加熱硬化させることを特徴とするFRP圧力容器の成形方法。
2.(A)成分がエポキシ基を含有するビニルエステル樹脂である上記1のFRP圧力容器の成形方法。
.スチレンモノマーを含有しない不飽和ポリエステル樹脂及び/又はビニルエステル樹脂(A')および重合開始剤(C')を繊維材料(B)に含浸させてワインディングした後、スチレンモノマーを含有する不飽和ポリエステル樹脂及び/又はビニルエステル樹脂(A'')を塗工して硬化させることを特徴とするFRP圧力容器の成形方法。
.スチレンモノマーを含有する不飽和ポリエステル樹脂及び/又はビニルエステル樹脂(A'')の塗工量が50〜300g/m2 である上記3のFRP圧力容器の成形方法。
.(A')成分のスチレンモノマーを含有しないビニルエステル樹脂及び/又は(A'') 成分のスチレンモノマーを含有するビニルエステル樹脂がエポキシ基を含有するものである上記3又は4のFRP圧力容器の成形方法。
.ワインディングを、金属及び/又は熱可塑性樹脂製のマンドレル及び/又はライナー上に行なう上記1〜のいずれかのFRP圧力容器の成形方法。
.繊維材料(B)が、ガラス繊維、カ−ボン繊維およびアラミド繊維から選ばれる1種以上の繊維からなり、形状がロービングまたは編み物である上記1〜のいずれかのFRP圧力容器の成形方法。
.上記1〜のいずれかの方法で成形したFRP圧力容器。
【0005】
【発明の実施の形態】
本発明では(A)の樹脂成分として、不飽和ポリエステル樹脂及びビニルエステル樹脂(以下、両樹脂を併せて樹脂等と呼ぶこともある)のうち、少なくともその一つを使用する。
本発明に使用する不飽和ポリエステル樹脂は、多価アルコールと不飽和多塩基酸(及び必要に応じて飽和多塩基酸)とのエステル化反応による縮合生成物(不飽和ポリエステル)を、スチレンのような重合性モノマーに溶解したもので、「ポリエステル樹脂ハンドブック」(日刊工業新聞社、1988年発行)や「塗料用語辞典」(色材協会編、1993年発行)等に記載されている樹脂である。
またビニルエステル樹脂は、エポキシアクリレート樹脂とも呼ばれ、一般にグリシジル基(エポキシ基)を有する化合物と、アクリル酸などの重合性不飽和結合を有するカルボキシル化合物のカルボキシル基との開環反応により生成する重合性不飽和結合を持った化合物(ビニルエステル)を、スチレンのような重合性モノマーに溶解したもので、「ポリエステル樹脂ハンドブック」(日刊工業新聞社、1988年発行)や「塗料用語辞典」(色材協会編、1993年発行)等に記載されている樹脂である。
【0006】
不飽和ポリエステル樹脂の原料として用いられる不飽和ポリエステルとしては、公知の方法により製造されたもので良い。具体的にはフタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、アジピン酸、セバチン酸等の重合性不飽和結合を有していない多塩基酸またはその無水物とフマル酸、マレイン酸、イタコン酸等の重合性不飽和多塩基酸またはその無水物を酸成分とし、これとエチレングリコ−ル、プロピレングリコ−ル、ジエチレングリコ−ル、ジプロピレングリコ−ル、1,2−ブタンジオ−ル、1,3−ブタンジオ−ル、1,5−ペンタンジオ−ル、1,6−ヘキサンジオ−ル、2−メチル−1,3−プロパンジオ−ル、2,2−ジメチル−1,3−プロパンジオ−ル、シクロヘキサン−1,4−ジメタノ−ル、ビスフェノ−ルAのエチレンオキサイド付加物、ビスフェノ−ルAのプロピレンオキサイド付加物等の多価アルコ−ルをアルコ−ル成分として反応させて製造されるものである。
【0007】
またビニルエステル樹脂(エポキシアクリレート系樹脂)の原料として用いられるビニルエステルとしては、公知の方法により製造されるものであってよく、エポキシ樹脂に不飽和一塩基酸、例えばアクリル酸またはメタクリル酸を反応させて得られるエポキシ(メタ)アクリレ−ト、あるいは飽和ジカルボン酸及び/または不飽和ジカルボン酸と多価アルコ−ルから得られる末端カルボキシル基の飽和ポリエステルまたは不飽和ポリエステルにエポキシ基を有するα、β−不飽和カルボン酸エステル基を反応させて得られる飽和ポリエステルまたは不飽和ポリエステルのポリエステル(メタ)アクリレ−トが挙げられる。
原料としてのエポキシ樹脂としては、ビスフェノ−ルAジグリシジルエ−テル及びその高分子量同族体、ノボラック型ポリグリシジルエ−テル類等が挙げられる。
【0008】
本発明において、ビニルエステル樹脂としてエポキシ基を含有するものが好適に使用される。このエポキシ基を含有するビニルエステル樹脂は、例えばエポキシ化合物中のエポキシ基を100%(メタ)アクリロイル化せずに、エポキシ基を残したものなどが使用できる。例えば1成分中に少なくとも2個以上のエポキシ基を有するエポキシ樹脂に、公知の方法により不飽和一塩基酸、例えばアクリル酸またはメタクリル酸をエポキシ基が残るように反応させて得られるエポキシ(メタ)アクリレ−トであり、エポキシ樹脂は1種または2種以上併用してもよい。また、ビニルエステル樹脂にエポキシ樹脂をブレンドしても良い。
【0009】
末端カルボキシルポリエステルに用いる飽和ジカルボン酸としては、活性不飽和基を有していないジカルボン酸、例えばフタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、アジピン酸、セバチン酸等が挙げられる。不飽和ジカルボン酸としては、活性不飽和基を有しているジカルボン酸、例えばフマル酸、マレイン酸、無水マレイン酸、イタコン酸等が挙げられる。多価アルコ−ル成分としては、例えばエチレングリコ−ル、プロピレングリコ−ル、ジエチレングリコ−ル、ジプロピレングリコ−ル、1,2−ブタンジオ−ル、1,3−ブタンジオ−ル、1,5−ペンタンジオ−ル、1,6−ヘキサンジオ−ル、2−メチル−1,3−プロパンジオ−ル、2,2−ジメチル−1,3−プロパンジオ−ル、シクロヘキサン−1,4−ジメタノ−ル、ビスフェノ−ルAのエチレンオキサイド付加物、ビスフェノ−ルAのプロピレンオキサイド付加物等の多価アルコールが挙げられる。
【0010】
ポリエステル(メタ)アクリレ−トの製造に用いるエポキシ基を有するα、β−不飽和カルボン酸エステルとしては、グリシジルメタクリレ−トが代表例として挙げられる。
【0011】
樹脂等に用いられる不飽和ポリエステルやビニルエステルは、不飽和度の比較的高いものが好ましく、不飽和基当量(不飽和基1個当たりの分子量)が100〜800程度のものを用いる。不飽和基当量が100未満のものは合成ができない。しかし不飽和基当量が800を超えると高硬度の硬化物が得られない。
【0012】
本発明において使用される不飽和ポリエステル樹脂やビニルエステル樹脂は、通常前記の不飽和ポリエステルやビニルエステルにスチレンモノマ−やスチレンモノマ−以外の不飽和基を有するモノマーを配合したものである。スチレンモノマー以外の不飽和基を有するモノマーの具体例としては、クロルスチレン、ビニルトルエン、ジビニルベンゼンなどのスチレン系モノマー、ジエン類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ジシクロペンテニルオキシエチルメタクリレート、テトラヒドロフルフリルメタクリレートなどの(メタ)アクリル酸エステル類、(メタ)アクリル酸アミド、ビニル化合物、不飽和ジカルボン酸エステル、モノマレイミド化合物、エチレングリコールジ(メタ)アクリレートなどの多官能(メタ)アクリル酸エステル類があり、これらを本発明の主旨を損なわない範囲で代替し、使用することも可能である。
【0013】
本発明の樹脂等に配合される不飽和基を有するモノマーは、複合材料を製造する際に繊維強化材及びフィラ−との混練性、含浸性を高め、かつ成形製品の硬度、強度、耐薬品性、耐水性等を向上させるために重要であり、不飽和ポリエステルあるいはビニルエステル100(A)重量部に対して10〜250重量部、好ましくは20〜100重量部使用される。使用量が10重量部未満では、高粘度のため成形が困難となり、250重量部を超える量では、高硬度の製品が得られず、耐熱性が不足し、FRP材料として好ましくない。
但し、作業環境を考慮すると、(A)成分におけるスチレンモノマーが10重量%未満となるよう、不飽和基を有するモノマー中のスチレン比率を調整することが好ましい。
【0014】
次に、スチレンモノマーを含有しない不飽和ポリエステル樹脂及び/又はビニルエステル樹脂(A’)および重合開始剤(C’)を繊維材料(B)に含浸させてワインディングした後、スチレンモノマーを含有する不飽和ポリエステル樹脂及び/又はビニルエステル樹脂(A'') を塗工して硬化させる場合について述べる。
(A’)における樹脂等がスチレンモノマーを含有しないとは、スチレンモノマーを全く含まない状態である。
(A'') における樹脂等がスチレンモノマーを含有するとは、スチレンモノマーを使用した樹脂組成物であることを意味する。スチレンモノマーが揮散して臭気を発生する状態を軽減するためにはスチレンモノマーが10重量%未満であることが好ましい。
スチレンモノマーを含有しない不飽和ポリエステル樹脂及び/又はビニルエステル樹脂(A’)をワインディング後の表面塗工に使用する樹脂は、耐蝕性向上のためにスチレンモノマーを含有する不飽和ポリエステル樹脂及び/又はビニルエステル樹脂(A'') を使用する。作業環境上、その塗工量は50〜300g/m2 が好ましく、100〜200g/m2 が更に好ましい。
【0015】
本発明で使用される繊維材料(B)は、有機及び/または無機繊維であり、例えばガラス繊維、炭素繊維、アラミド繊維、ポリエチレンテレフタレ−ト繊維、ビニロン繊維等の公知のものが使用され、その形状はロービング、編み物、クロス、マット状などのものが使用される。むろんこれらの繊維材料を組み合わせて使用してもよく、その使用量は樹脂等100重量部に対して5〜400重量部、好ましくは50〜300重量部である。
【0016】
本発明に使用する重合開始剤(C)における熱重合開始剤としては、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアリルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネートに分類されるもの等公知ものが挙げられ、またアゾ化合物も有効である。具体例としては、例えばベンゾイルパーオキサイド、ジクミルパーオキサイド、ジイソプロピルパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルパーオキシベンゾエート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキシン−3、3−イソプロピルヒドロパーオキサイド、t−ブチルヒドロパーオキサイド、ジクミルパーオキサイド、ジクミルヒドロパーオキサイド、アセチルパーオキサイド、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、イソブチルパーオキサイド、3,3,5−トリメチルヘキサノイルパーオキサイド、ラウリルパーオキサイド、アゾビスイソブチロニトリル、アゾビスカルボンアミドなどが使用できる。
【0017】
また、硬化を速めるために上記の熱重合開始剤に還元剤を組み合わせた常温ラジカル重合開始剤を使用し、常温硬化させた後、加熱硬化してもよい。常温ラジカル重合開始剤としては、例えばケトンパーオキサイドと還元剤の組み合わせ、ハイドロパーオキサイドと還元剤の組み合わせ、ジアシルパーオキサイドと還元剤の組み合わせが挙げられ、還元剤としての具体例としては、ナフテン酸コバルト、オクチル酸コバルト等のコバルト塩、五酸化バナジウム等のバナジウム化合物、ジメチルアニリン等のアミン類等が挙げられる。中でもポットライフ等の点でパーオキシエステルとコバルト塩の組み合わせが特に有効である。
【0018】
熱重合開始剤の使用量は、樹脂等の種類、強化繊維の種類、量、厚み等によって最適値が異なるが、一般には樹脂等100重量部に対して0.01〜20重量部、好ましくは0.05〜15重量部である。熱重合開始剤組成物の使用量が0.01重量部未満では、重合が不十分になり易く、また20重量部を超える量では経済的に不利な上、硬化物の物性低下などが起こる。
【0019】
ワインディング後直ちに光照射して表面のみ硬化させ揮発性分の揮発を抑えるために使用する光重合開始剤としては、紫外光領域から近赤外領域に至る領域に感光性を有する光重合開始剤を用いられる。
特に可視光領域から近赤外領域に至る領域に感光性を有する光重合開始剤が好ましく、この場合には可視光や近赤外光を照射して表面のみを容易に硬化させることができる。
なお、本発明において、紫外光とは280〜380nm、可視光とは380〜780nm、近赤外光とは780〜1200nmの波長領域の光線を指す。
【0020】
紫外線重合開始剤としては、具体例としては、ベンゾイン類、アセトフェノン類、アントラキノン類、チオキサントン類、ベンゾフェノン類等が挙げられ、例えば、ベンゾイン類では、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等の誘導体、アセトフェノン類では、アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン等の誘導体、アントラキノン類では、2-メチルアントラキノン、2-クロロアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン等の誘導体、チオキサントン類では、チオキサントン、2,4-ジメチルチオキサントン等の誘導体、ベンゾフェノン類では、ベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルサルファイド、4,4’―ジクロロベンゾフェノン、N,N-ジメチルアミノベンゾフェノン等の誘導体、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド等があり、その他公知のものを使用することができる。
【0021】
しかしながら、紫外線を利用した硬化では、表面の乾燥性には有利だが、光透過性が低いことから、比較的長波長、好ましくは300nm以上の波長域に感光性を有するものが望ましい。特に可視光領域にまで感光性を有する(ビス)アシルホスフィンオキサイド系の光重合開始剤を使用することが好ましい。
(ビス)アシルホスフィンオキサイド化合物の具体例としては、2,4,6−トリメチルベンゾイル−ジフェニルホスフィンオキサイド、2,6−ジフェニルベンゾイル−ジフェニルホスフィンオキサイド、2,6−ジメトキシベンゾイル−ジフェニルホスフィンオキサイド、2,3,5,6−テトラメチルベンゾイル−ジフェニルホスフィンオキサイド、2,6−ジクロルベンゾイル−ジフェニルホスフィンオキサイド、2,3,6−トリメチルベンゾイル−ジフェニルホスフィンオキサイド、2−フェニル−6−メチルベンゾイル−ジフェニルホスフィンオキサイド、2,6−ジブロムベンゾイル−ジフェニルホスフィンオキサイド、2,8−ジメチルナフタリン−1−カルボニル−ジフェニルホスフィンオキサイド、1,3−ジメトキシナフタリン−2−カルボニル−ジフェニルホスフィンオキサイド、2,4,6−トリメチルベンゾイル−フェニルホスフィン酸メチルエステル、2,6−ジメチルベンゾイル−フェニルホスフィン酸メチルエステル、2,6−ジクロルベンゾイル−フェニルホスフィン酸メチルエステル等を挙げることができる。
【0022】
具体的には、例えば2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン(商品名:Darocur1173、チバスペシャルティーケミカルズ(株)製)とビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキサイド(チバスペシャルティーケミカルズ(株)製)を75%/25%の割合で混合された商品名イルガキュア−1700(チバスペシャルティーケミカルズ(株)製)、1−ヒドロキシ−シクロヘキシル−フェニルーケトン(商品名:イルガキュアー184、チバスペシャルティーケミカルズ(株)製)とビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキサイド(チバスペシャルティーケミカルズ(株)製)を75%/25%の割合で混合された商品名イルガキュアー1800(チバスペシャルティーケミカルズ(株)製)、50%/50%の割合で混合された商品名イルガキュアー1850(チバスペシャルティーケミカルズ(株)製)、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド(商品名:イルガキュアー819、チバスペシャルティーケミカルズ(株)製)、2,4,6−トリメチルベンゾイル−ジフェニルホスフィンオキサイド(商品名Lucirin TPO、BASF(株)製)、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン(商品名:Darocur1173、チバスペシャルティーケミカルズ(株)製)と2,4,6−トリメチルベンゾイル−ジフェニルホスフィンオキサイド(商品名Lucirin TPO、BASF(株)製)を50%/50%の割合で混合された商品名Darocur4265などがある。
【0023】
可視光領域に感光性を有する可視光重合開始剤としては、例えば山岡ら、「表面」,27(7),548(1989)、佐藤ら、「第3回 ポリマ−材料フォ−ラム要旨集」、1BP18(1994)に記載のカンファ−キノン、ベンジル、トリメチルベンゾイルジフェニルフォスフィンオキシド、メチルチオキサントン、ビスペンタジエニルチタニウム−ジ(ペンタフルオロフェニル)等の単独での可視光重合開始剤の他、有機過酸化物触媒/色素系、ジフェニルヨ−ドニウム塩/色素、ビイミダゾ−ル/ケト化合物、ヘキサアリ−ルビイミダゾ−ル化合物/水素供与性化合物、メルカプトベンゾチアゾ−ル/チオピリリウム塩、金属アレ−ン/シアニン色素の他、特公昭45−37377号公報に記載のヘキサアリ−ルビイミダゾ−ル/ラジカル発生剤等の公知の複合開始剤系を挙げることができる。可視光領域に感光性を有する可視光重合開始剤は、380〜780nmの波長域に感光性を有する光重合開始剤であれば良く、それらを組合わせて使用しても良い。
【0024】
500nm以上の波長の可視光領域や近赤外光領域に感光性を有する光重合開始剤としては、一般式(1)
+ ・A- ・・・(1)
〔D+ は可視光あるいは近赤外光領域に感光性を有するメチン,ポリメチン,シアニン,キサンテン,オキサジン,チアジン,アリールメタン及びピリリウム系色素陽イオンのうちの少なくとも1種であり、A- は各種陰イオンを示す。〕
で表される近赤外光領域に吸収をもつ陽イオン染料と、一般式(2)
【0025】
【化1】

Figure 0004133049
【0026】
〔Z+ は任意の陽イオンを示し、R1 ,R2 ,R3 及びR4 はそれぞれ独立してアルキル基, アリール基, アシル基, アラルキル基, アルケニル基, アルキニル基, シリル基, 複素環基, ハロゲン原子, 置換アルキル基, 置換アリール基, 置換アシル基, 置換アラルキル基, 置換アルケニル基, 置換アルキニル基,置換シリル基または置換複素環基を示す。〕で表される有機ホウ素化合物(増感剤)を組み合わせた光重合開始剤が好ましい。
【0027】
また、一般式(2)における陽イオン「Z+ 」の例としては、可視光領域や近赤外光領域に感光性を有しない4級アンモニウム陽イオン,4級ピリジニウム陽イオン,4級キノリニウム陽イオン,ジアゾニウム陽イオン,テトラゾリウム陽イオン,スルホニウム陽イオン,オキソスルホニウム陽イオン,ナトリウム,カリウム,リチウム,マグネシウム,カルシウム等の金属陽イオン、フラビリウム,ピラニウム塩等の酸素原子上に陽イオン電荷を持つ(有機)化合物、トロピリウム,シクロプロピリウム等の炭素陽イオン、ヨードニウム等のハロゲニウム陽イオン、砒素,コバルト,パラジウム,クロム,チタン,スズ,アンチモン等の金属化合物の陽イオン等が挙げられる。
【0028】
このように有機ホウ素化合物と可視光領域や近赤外光領域に感光波長を有するカチオン色素とを組み合わせることによって、感光領域の波長の光照射を受けた色素が励起され、有機ホウ素化合物と電子授受を行うことで色素が消色すると共にラジカルが発生し、共存する重合性不飽和化合物の重合反応が起こる。この重合反応では、従来の紫外線重合反応などと異なり、発生ラジカルをコントロールしやすく、樹脂中の不飽和基の一部をラジカル重合したところで容易に止めることが出来る。また、可視光領域や近赤外光領域の長波長を使用するため、充填材や顔料など添加された系でも容易に反応を進めることができるという特徴を持っている。
【0029】
上記陽イオン染料とホウ素系化合物との組み合わせの例については、特開平3−111402号公報,特開平3−179003号公報,特開平4−146905号公報,特開平4−261405号公報,特開平4−261406号公報,特開平5−194619号公報などに詳細な記載がある。
陽イオン染料の「D+ 」の具体例を第1表及び第2表に示す。これらの陽イオン染料の中でも好ましくはシアニン系、スチリル系陽イオン染料及びトリアリールメタン系染料が使用される。シアニン系、スチリル系陽イオン染料は、一般に有機ホウ素系化合物との電子授受が起こりやすいので本発明の反応を容易に起こしやすいなどの点で好ましい。
【0030】
【表1】
Figure 0004133049
【0031】
【表2】
Figure 0004133049
【0032】
【表3】
Figure 0004133049
【0033】
【表4】
Figure 0004133049
【0034】
一般式(1)で表される陽イオン染料のカウンターアニオンであるA- は、p−トルエンスルホネートイオン,有機カルボキシレートイオン,パークロレートイオン,ハライドイオン等の任意の陰イオンであるが、一般式(3)
【0035】
【化2】
Figure 0004133049
【0036】
〔R5 ,R6 ,R7 及びR8 は、それぞれ独立してアルキル基,アリール基,アシル基,アラルキル基,アルケニル基,アルキニル基,シリル基,複素環基,ハロゲン原子,置換アルキル基,置換アリール基,置換アシル基,置換アラルキル基,置換アルケニル基,置換アルキニル基,置換シリル基または置換複素環基を示す。〕で表される4配位ホウ素陰イオンが特に好ましい。
【0037】
有機ホウ素化合物と近赤外光あるいは可視光吸収性陽イオン染料化合物との組成比は、重量で1/5〜1/0.05、好ましくは1/1〜1/0.1である。色素の消色反応及びラジカル発生効率の観点から、一般には有機ホウ素化合物を陽イオン染料よりも多く用いることが好ましい。
【0038】
光重合開始剤の使用量は、一般には樹脂等100重量部に対して0.01〜20重量部、好ましくは0.05〜15重量部である。光重合開始剤の使用量が0.01重量部未満では、重合が不十分になり易く、また20重量部を超える量では経済的に不利な上、硬化物の物性低下などが起こる。
【0039】
本発明の成形方法において、スチレンモノマーを含有しない不飽和ポリエステル樹脂及び/又はビニルエステル樹脂(A’)および重合開始剤(C’)を繊維材料(B)に含浸させてワインディングした後、スチレンモノマーを含有する不飽和ポリエステル樹脂及び/又はビニルエステル樹脂(A'') を塗工して硬化させる場合の重合開始剤(C’)は特に制限されず、上記の熱重合開始剤を用いても、光重合開始剤を用いても良く、熱重合開始剤と光重合開始剤を併用して用いても良い。この際の塗工は塗布による方法が一般的である。
【0040】
なお、本発明の成形方法では、エポキシ硬化剤を併用することができる。エポキシ硬化剤を併用する場合、公知のエポキシ硬化剤を使用できる。具体的には酸無水物類や脂肪族アミン、芳香族アミン、ポリアミド、複素環状アミン等のアミン類が挙げられる。添加量は樹脂のエポキシ当量に応じて適量を添加する。
また、本発明の成形方法では、紫外線吸収剤も配合することができる。使用する紫外線吸収剤としてはベンゾフェノン系、サリチル酸エステル系、ベンゾトリアゾール系、ベンゾエート系、シアノアクリレート系などの公知のものを使用することができる。
【0041】
本発明の成形方法において、ワインディングは、金属及び/又は熱可塑性樹脂製のマンドレル及び/又はライナー上に行なうことが好ましい。マンドレルやライナーには、アルミニウム合金、鋼、ステンレスなどの金属や、高密度ポリエチレン、ポリプロピレンなどの熱可塑性樹脂のフィラメントが用いられる。
ワインディング終了後光照射して表面のみ硬化させる光源としては、高圧水銀灯、メタルハライドランプ、キセノンランプ、近赤外光ランプ、ナトリウムランプ、ハロゲンランプ、白熱灯、陽光ランプ、太陽光等を使用することができ、各種ランプをヒーター兼用として使用してもよい。
表面のみ硬化させ後の加熱硬化には加熱炉を使用してもよいし赤外線ランプ、ハロゲンランプ等をヒーターとして使用してもよい。
【0042】
本発明の成形方法においては、樹脂成分として不飽和ポリエステル樹脂やビニルエステル樹脂を用いるので、成形時の樹脂の繊維への含浸性、成形物の耐薬品性が良好であり、且つ短時間で硬化が可能で、成形サイクルを向上できる。
このような樹脂成分の場合はスチレンモノマーなど揮散により作業環境が悪化しやすいが、光重合開始剤と熱重合開始剤を含む重合開始剤を用い、ワインディングして直ちに光照射により表面のみを硬化させることにより、スチレンモノマーなどの揮発成分の揮発が抑制された状態となるので、スチレンモノマーの臭気が少ない作業環境で成形を行なうことができる。
また、スチレンモノマーの含有量が10重量%未満である樹脂組成物を使用することで、更にスチレンモノマーの臭気を低減できる。
更に、スチレンモノマーを含有しない樹脂等を繊維材料に含浸させてワインディングした後、表面にスチレンモノマーを含有する樹脂組成物を塗工することによっても、スチレンモノマーを含有する樹脂の使用量を軽減でき、スチレンモノマーの臭気が少ない作業環境で表面の耐蝕性能の優れた容器を成形することができる。
【0043】
【実施例】
以下、実施例、比較例により本発明の内容を詳細にするが、各例中の「部」は重量基準を示す。本発明はこれらの実施例のみに限定されるものではない。
【0044】
合成例1
攪拌機、還流冷却器、ガス導入管、温度計を付した反応装置にエピコート828(油化シェル(株)製エポキシ樹脂:エポキシ当量189)1当量(189g)を189部、ビスフェノールAを11.4部(0.1当量)、トリエチルアミン0.5部を仕込み、窒素雰囲気下で150℃で2時間反応させた。反応終了後90℃まで冷却し、メタクリル酸を77.4部(0.9当量)、トリエリルアミン0.8部、ハイドロキノン0.07部、スチレンモノマー37部を仕込み、空気を吹き込みながら120℃で4時間反応させ酸価が10mgKOH/gになった時点で反応を終了し、ジシクロペンテニルオキシエチルメタクリレート148部を加えてスチレンモノマー8重量%のビスフェノールA系ビニルエステル樹脂(VE−1)を得た。
【0045】
合成例2
攪拌機、還流冷却器、ガス導入管、温度計を付した反応装置にエピコート828(油化シェル(株)製エポキシ樹脂:エポキシ当量189)1当量(189g)を189部、ビスフェノールAを11.4部(0.1当量)、トリエチルアミン0.5部を仕込み、窒素雰囲気下で150℃で2時間反応させた。反応終了後90℃まで冷却し、メタクリル酸を77.4部(0.9当量)、トリエリルアミン0.8部、ハイドロキノン0.07部、ジシクロペンテニルオキシエチルメタクリレート100部を仕込み、空気を吹き込みながら120℃で4時間反応させ酸価が10mgKOH/gになった時点で反応を終了し、テトラヒドロフルフリルメタクリレート100部を加えてスチレンモノマーを含有しないビスフェノールA系ビニルエステル樹脂(VE−2)を得た。
【0046】
合成例3
攪拌機、還流冷却器、ガス導入管、温度計を付した反応装置にエピコート828(油化シェル(株)製エポキシ樹脂:エポキシ当量189)1当量(189g)を189部、メタクリル酸を43部(0.5当量)、ナフテン酸Cr0.8部、ハイドロキノン0.07部、スチレンモノマー22部を仕込み、空気を吹き込みながら120℃で2.5時間反応させ、酸価が0mgKOH/gになった時点で反応を終了し、ジシクロペンテニルオキシエチルメタクリレート36部を加えてスチレンモノマー7.5重量%のエポキシ基を含有する樹脂(HE−1)を得た。
【0047】
参考例
(圧力容器の成形)
ビニルエステル樹脂、商品名リポキシR−802(スチレンモノマー:45重量%、昭和高分子(株)製)100部に、メチルエチルケトンパーオキサイド:1.0部、ナフテン酸Co:0.5部、紫外光から可視光領域まで感光性を有するイルガキュア819(チバスペシャルティーケミカルズ(株)製):0.5部を添加し光硬化性樹脂組成物を得た。
次に、円筒状の胴部の両側にドーム部を有する繭型の高密度ポリエチレン製ライナー(胴部の長さ:593mm、胴部の外径:380mm、ドーム部を含めた全長:830mm、肉厚:4mm)に、上記光硬化性樹脂組成物を含浸したTガラスロービング〔日東紡(株)製RST−220PA〕をフィラメントワインディング法で、最初にヘリカル巻きを層厚で0.98mm、次いでフープ巻きを膜厚0.6mm(繊維含有率:50容量%)となるようにワインディングした。
ワインディング終了後、直ちに36W蛍光灯2本を5cmの距離から5分間光照射して表面のみ硬化させ、常温で1時間回転させたままで常温硬化させ、さらに120℃の炉の中で2時間放置してFRP圧力容器を成形した。
ワインディング開始してから炉の中に入れるまでの間で、回転させている付近で北川式検知管で10分毎に測定したスチレン濃度の最高値は25ppmであった。
【0048】
(内圧試験)
バースト試験装置を使用し、水圧をかけながら内圧をポンプについているロードセルからコンピューターに取り込むと同時に、容器の歪みを表面に付着させた歪みゲージからコンピューターに取り込み、容器の歪みの状態を見ながら内圧を上げていったところ、内圧8MPa、ドーム部より80mm離れたところでバーストした。
網目理論と薄肉殻理論に基づく次式より求めた設計圧力は8MPaであり、設計値通りであることを確認した。
PR=σm m +σf (thel sin2 α+thoop
(式中、Pは圧力、 Rは容器の半径を示し、σm およびσf はライナー材および繊維に生じる応力を示す。tm 、thel およびthoopはライナー材、フープ巻き層およびヘリカル巻き層の肉厚を示し、αはヘリカル巻き層での繊維配向角を示す。)
【0049】
実施例1
(圧力容器の成形)
合成例3で得られたエポキシ基を含有する樹脂(HE−1)に、ベンゾイルパーオキサイド:1.0部、N,N'−ジメチルアニリン:0.1部、エポキシ硬化剤2−エチル−4−メチルイミダゾール:1.0部、イルガキュア819:0.5部を混合して光硬化性樹脂組成物を得た。
次に、参考例1と同じライナー材を使用し、同様に上記光硬化性樹脂組成物を含浸してワインディングした後、直ちにメタルハライドランプを使用して3分間光照射して表面のみ硬化させ、常温で1時間回転させたままで常温硬化させ、さらに120℃の炉の中で2時間放置してFRP圧力容器を成形した。
ワインディング開始してから炉の中に入れるまでの間で、回転させている付近で北川式検知管で10分毎に測定したスチレン濃度の最高値は10ppmであった。
(内圧試験)
参考例1と同様の内圧試験では、内圧8MPa、ドーム部より70mm離れたところでバーストした。
【0050】
比較例1
(圧力容器の成形)
ビニルエステル樹脂(商品名リポキシR−802、昭和高分子(株)製)100部に、メチルエチルケトンパーオキサイド:1.0部、ナフテン酸Co:0.5部を添加し硬化性樹脂組成物を得た。
次に参考例1と同様に上記硬化性樹脂組成物を含浸してワインディングを行ないワインディング終了後、常温で1時間回転させたままで常温硬化させ、さらに120℃の炉の中で2時間放置してFRP圧力容器を成形した。
ワインディング開始してから炉の中に入れるまでの間で、回転させている付近で北川式検知管で10分毎に測定したスチレン濃度の最高値は90ppmであった。
(内圧試験)
参考例1と同様の内圧試験では、内圧8MPa、ドーム部より75mm離れたところでバーストし、参考例1および実施例1と同様の結果となったが、成形時のスチレン濃度が高いことが確認された。
【0051】
実施例2
(圧力容器の成形)
合成例1で得られたスチレンモノマー8重量%のビスフェノールA系ビニルエステル樹脂(VE−1):100部に、メチルエチルケトンパーオキサイド:1.0部、ナフテン酸Co:0.5部、イルガキュア819:0.5部を添加し光硬化性樹脂組成物を得た。
次に、円筒状の胴部の両側にドーム部を有する繭型のアルミニウム製ライナー(胴部の長さ:224mm、胴部の外径:100mm、ドーム部を含めた全長:380mm、肉厚:3mm)に、上記の光硬化性樹脂組成物を含浸したカーボンロービング(東レ(株)製T−700S−12K)をフィラメントワインディング法で、ヘリカル巻き:0.53mm、フープ巻き:0.44mm(繊維含有率:50容量%)となるようにワインディングした。
ワインディング終了後、蛍光灯(380−450nmの照度:700μW/cm2 )で表面を15分で硬化させ、常温で更に1時間回転させたままで常温硬化させ、さらに120℃の炉の中で2時間放置してFRP圧力容器を成形した。
ワインディング開始してから炉の中に入れるまでの間で、回転させている付近で北川式検知管で10分毎に測定したスチレン濃度の最高値は15ppmであった。
(内圧試験)
参考例1と同様の内圧試験では、設計バースト圧力が40MPaに対し、内圧42MPa、ドーム部より25mm離れたところでバーストした。
【0052】
実施例3
(圧力容器の成形)
合成例2で得られたスチレンモノマーが含有しないビスフェノールA系ビニルエステル樹脂(VE−2)にメチルエチルケトンパーオキサイド:1.0部、ナフテン酸Co:0.5部を添加し硬化性樹脂組成物を得た。
次に、実施例2と同じライナー材を使用し、同様に上記の硬化性樹脂組成物を含浸してワインディング後、比較例1で使用した硬化性樹樹脂組成物を100g/m2 塗布して、常温で1時間回転させたままで常温硬化させ、さらに120℃の炉の中で2時間放置してFRP圧力容器を成形した。
ワインディング開始してから炉の中に入れるまでの間で、回転させている付近で北川式検知管で10分毎に測定したスチレン濃度の最高値は20ppmであった。
(内圧試験)
参考例1と同様の内圧試験では、設計バースト圧力が40MPaに対し、内圧41MPa、ドーム部より20mm離れたところでバーストした。
【0053】
【発明の効果】
本発明のFRP圧力容器の成形方法においては、樹脂成分として不飽和ポリエステル樹脂やビニルエステル樹脂を用いるので、成形時の樹脂の繊維への含浸性、成形物の耐薬品性が良好であり、且つ成形サイクルが向上できる。
また、光重合開始剤と熱重合開始剤を含む樹脂等を繊維材料に含浸させてワインディングし、ワインディング後直ちに光照射して表面のみ硬化させ、揮発性分の揮発を抑えて加熱硬化させること、或いは、スチレンモノマーを含有しない樹脂等と重合開始剤を繊維材料に含浸させてワインディングした後、スチレンモノマーを含有する樹脂等を塗工して硬化させることにより、スチレンモノマーの臭気が少ない作業環境で成形を行なうことができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming an FRP pressure vessel used for air, oxygen, liquefied propane gas, liquefied natural gas and the like used for aerospace equipment, natural gas automobiles, fire fighting, medical care, leisure and the like.
[0002]
[Prior art]
FRP pressure vessels are generally manufactured by filament winding molding or braiding molding in which a fiber material impregnated with a thermosetting resin is wound on a metal or thermoplastic resin liner and then the molded body is heated and cured. ing.
Examples of the thermosetting resin used include epoxy resins, unsaturated polyester resins, and vinyl ester resins. Epoxy resins are often used.
However, the epoxy resin has a disadvantage that it has a high viscosity and poor fiber impregnation property, and takes a long time for curing, so that the molding time is long and the molding cost is high. Moreover, since the chemical resistance of the molded product is insufficient, there is still a problem in terms of safety.
On the other hand, there is an example of molding using a vinyl ester resin or the like. In this case, the impregnation into the fiber is good with low viscosity, and the chemical resistance of the molded article is also good. In addition, since radical polymerization using a peroxide catalyst system is performed, curing can be performed in a shorter time than epoxy resin. However, since vinyl ester resins and unsaturated polyester resins usually contain a large amount of styrene monomer at 30 to 50% by weight, the volatilization amount of styrene monomer during molding is large, which is a problem on the working environment.
[0003]
[Problems to be solved by the invention]
In view of the present situation, the present invention provides an FRP pressure vessel that has good impregnation of resin into fibers during molding and good chemical resistance of the molded product, further improves the molding cycle, and can be manufactured in an improved working environment. The object is to provide a molding method.
[0004]
[Means for Solving the Problems]
  The present inventors have found that the above object can be achieved by molding a specific FRP pressure vessel molding resin composition in two stages.
  That is, the present invention provides the following FRP pressure vessel molding method and FRP pressure vessel.
1.Visible light polymerization initiator and / or near infrared light polymerization initiatorAnd a polymerization initiator (C) containing a thermal polymerization initiator,The content of styrene monomer is less than 10% by weightThe fiber material (B) is impregnated with the unsaturated polyester resin and / or vinyl ester resin (A) and wound.Visible light and / or near infrared lightA method for forming an FRP pressure vessel, wherein only the surface is cured by irradiation, followed by heat curing.
2. (A) component isContains epoxy groupsVinyl ester resinAbove 1A method for forming an FRP pressure vessel.
3. Unsaturated polyester resin not containing styrene monomer and / or vinyl ester resin (A ′) and polymerization initiator (C ′) impregnated into fiber material (B) and winding, and then unsaturated polyester resin containing styrene monomer And / or curing a vinyl ester resin (A ″) by coating and curing the vinyl ester resin (A ″).
4. Coating amount of unsaturated polyester resin and / or vinyl ester resin (A ″) containing styrene monomer is 50 to 300 g / m2IsAbove 3A method for forming an FRP pressure vessel.
5. The vinyl ester resin containing no styrene monomer as the component (A ′) and / or the vinyl ester resin containing the styrene monomer as the component (A ″) contains an epoxy group.3 or 4 aboveA method for forming an FRP pressure vessel.
6. The above 1 to 3 in which winding is performed on a mandrel and / or liner made of metal and / or thermoplastic resin.5A method for forming an FRP pressure vessel according to any of the above.
7. The fiber material (B) is composed of at least one fiber selected from glass fiber, carbon fiber and aramid fiber, and the shape is roving or knitted fabric.6A method for forming an FRP pressure vessel according to any of the above.
8. 1 to above7An FRP pressure vessel formed by any one of the methods.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as the resin component (A), at least one of an unsaturated polyester resin and a vinyl ester resin (hereinafter, both resins may be collectively referred to as a resin or the like) is used.
The unsaturated polyester resin used in the present invention is obtained by converting a condensation product (unsaturated polyester) obtained by esterification of a polyhydric alcohol and an unsaturated polybasic acid (and a saturated polybasic acid if necessary), such as styrene. It is a resin dissolved in a polymerizable monomer and described in “Polyester Resin Handbook” (published by Nikkan Kogyo Shimbun, 1988) and “Dictionary of Paint Terms” (edited by Color Material Association, published in 1993). .
Vinyl ester resin, also called epoxy acrylate resin, is a polymerization generally formed by a ring-opening reaction between a compound having a glycidyl group (epoxy group) and a carboxyl group of a carboxyl compound having a polymerizable unsaturated bond such as acrylic acid. A compound with a vinyl unsaturated bond (vinyl ester) dissolved in a polymerizable monomer such as styrene. "Polyester resin handbook" (Nikkan Kogyo Shimbun, published in 1988) and "painting glossary" (color This is a resin described in Materials Association, published in 1993).
[0006]
The unsaturated polyester used as the raw material for the unsaturated polyester resin may be one produced by a known method. Specifically, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, adipic acid, sebacic acid and other polybasic acids having no polymerizable unsaturated bond or anhydrides thereof and fumaric acid, maleic acid, itaconic acid A polymerizable unsaturated polybasic acid or an anhydride thereof such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,2-butanediol, 1, 3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, Polyhydric alcohols such as cyclohexane-1,4-dimethanol, bisphenol A ethylene oxide adduct, bisphenol A propylene oxide adduct, etc. It is manufactured by reacting a Le component.
[0007]
The vinyl ester used as a raw material for the vinyl ester resin (epoxy acrylate resin) may be produced by a known method, and the epoxy resin is reacted with an unsaturated monobasic acid such as acrylic acid or methacrylic acid. Α, β having an epoxy group in a saturated polyester or unsaturated polyester of a terminal carboxyl group obtained from an epoxy (meth) acrylate obtained by the above, or a saturated dicarboxylic acid and / or an unsaturated dicarboxylic acid and a polyhydric alcohol -Polyester (meth) acrylates of saturated polyesters or unsaturated polyesters obtained by reacting unsaturated carboxylic acid ester groups.
Examples of the epoxy resin as a raw material include bisphenol A diglycidyl ether and high molecular weight homologues thereof, novolak type polyglycidyl ethers, and the like.
[0008]
In this invention, what contains an epoxy group as a vinyl ester resin is used suitably. As this vinyl ester resin containing an epoxy group, for example, an epoxy group in which an epoxy group remains without being converted to 100% (meth) acryloyl can be used. For example, an epoxy (meth) obtained by reacting an epoxy resin having at least two epoxy groups in one component with an unsaturated monobasic acid such as acrylic acid or methacrylic acid by a known method so that the epoxy group remains. It is an acrylate, and one or more epoxy resins may be used in combination. Further, an epoxy resin may be blended with the vinyl ester resin.
[0009]
Examples of the saturated dicarboxylic acid used for the terminal carboxyl polyester include dicarboxylic acids having no active unsaturated groups, such as phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, adipic acid, and sebacic acid. Examples of the unsaturated dicarboxylic acid include dicarboxylic acids having an active unsaturated group, such as fumaric acid, maleic acid, maleic anhydride, and itaconic acid. Examples of the polyhydric alcohol component include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,5- Pentanediol, 1,6-hexanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, cyclohexane-1,4-dimethanol, Examples thereof include polyhydric alcohols such as an ethylene oxide adduct of bisphenol A and a propylene oxide adduct of bisphenol A.
[0010]
A typical example of the α, β-unsaturated carboxylic acid ester having an epoxy group used for the production of polyester (meth) acrylate is glycidyl methacrylate.
[0011]
The unsaturated polyester or vinyl ester used for the resin or the like preferably has a relatively high degree of unsaturation, and has an unsaturated group equivalent (molecular weight per unsaturated group) of about 100 to 800. Those having an unsaturated group equivalent of less than 100 cannot be synthesized. However, if the unsaturated group equivalent exceeds 800, a cured product with high hardness cannot be obtained.
[0012]
The unsaturated polyester resin or vinyl ester resin used in the present invention is usually one obtained by blending a monomer having an unsaturated group other than styrene monomer or styrene monomer with the unsaturated polyester or vinyl ester. Specific examples of monomers having unsaturated groups other than styrene monomers include styrene monomers such as chlorostyrene, vinyltoluene, and divinylbenzene, dienes, methyl (meth) acrylate, ethyl (meth) acrylate, and dicyclopentenyloxyethyl. Multifunctional (meth) such as (meth) acrylic acid esters such as methacrylate and tetrahydrofurfuryl methacrylate, (meth) acrylic acid amide, vinyl compound, unsaturated dicarboxylic acid ester, monomaleimide compound, and ethylene glycol di (meth) acrylate There are acrylate esters, and these can be substituted and used within a range not impairing the gist of the present invention.
[0013]
The monomer having an unsaturated group blended in the resin or the like of the present invention improves the kneading property and impregnation property with a fiber reinforcing material and a filler when producing a composite material, and the hardness, strength and chemical resistance of a molded product. 10 to 250 parts by weight, preferably 20 to 100 parts by weight based on 100 parts by weight of unsaturated polyester or vinyl ester. If the amount used is less than 10 parts by weight, molding becomes difficult due to high viscosity. If the amount exceeds 250 parts by weight, a product with high hardness cannot be obtained, heat resistance is insufficient, and it is not preferred as an FRP material.
However, considering the working environment, it is preferable to adjust the styrene ratio in the monomer having an unsaturated group so that the styrene monomer in the component (A) is less than 10% by weight.
[0014]
Next, the fiber material (B) is impregnated with an unsaturated polyester resin and / or vinyl ester resin (A ′) and a polymerization initiator (C ′) not containing a styrene monomer, and then wound. The case where a saturated polyester resin and / or vinyl ester resin (A ″) is applied and cured will be described.
That the resin or the like in (A ′) contains no styrene monomer is a state in which no styrene monomer is contained.
That the resin or the like in (A ″) contains a styrene monomer means a resin composition using the styrene monomer. In order to reduce the state in which the styrene monomer is volatilized to generate an odor, the styrene monomer is preferably less than 10% by weight.
Resin using unsaturated polyester resin not containing styrene monomer and / or vinyl ester resin (A ′) for surface coating after winding is unsaturated polyester resin containing styrene monomer for improving corrosion resistance and / or Vinyl ester resin (A ″) is used. In the working environment, the coating amount is 50 to 300 g / m.2Is preferable, 100-200 g / m2Is more preferable.
[0015]
The fiber material (B) used in the present invention is an organic and / or inorganic fiber, and known materials such as glass fiber, carbon fiber, aramid fiber, polyethylene terephthalate fiber, and vinylon fiber are used. The shape used is roving, knitting, cloth, mat or the like. Of course, these fiber materials may be used in combination, and the amount used is 5 to 400 parts by weight, preferably 50 to 300 parts by weight, based on 100 parts by weight of resin or the like.
[0016]
The thermal polymerization initiator in the polymerization initiator (C) used in the present invention is classified into ketone peroxide, peroxyketal, hydroperoxide, diallyl peroxide, diacyl peroxide, peroxyester, and peroxydicarbonate. And known compounds such as those, and azo compounds are also effective. Specific examples include benzoyl peroxide, dicumyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, t-butylperoxybenzoate, 1,1-bis (t-butylperoxy) -3,3. , 5-trimethylcyclohexane, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3, 3-isopropyl hydroperoxide, t-butyl hydroperoxide, dicumyl peroxide, dicumyl hydro Peroxide, acetyl peroxide, bis (4-t-butylcyclohexyl) peroxydicarbonate, diisopropylperoxydicarbonate, isobutyl peroxide, 3,3,5-trimethylhexanoyl peroxide, lauryl peroxide, azobi Isobutyronitrile, azo-bis-carboxylic amide can be used.
[0017]
Further, in order to accelerate curing, a normal temperature radical polymerization initiator in which a reducing agent is combined with the above thermal polymerization initiator may be used, cured at room temperature, and then heat cured. Examples of the room temperature radical polymerization initiator include a combination of a ketone peroxide and a reducing agent, a combination of a hydroperoxide and a reducing agent, and a combination of a diacyl peroxide and a reducing agent. Specific examples of the reducing agent include naphthenic acid. Examples include cobalt salts such as cobalt and cobalt octylate, vanadium compounds such as vanadium pentoxide, and amines such as dimethylaniline. Of these, a combination of a peroxyester and a cobalt salt is particularly effective in terms of pot life and the like.
[0018]
The amount of the thermal polymerization initiator used varies depending on the type of resin and the like, the type, amount, and thickness of the reinforcing fiber. 0.05 to 15 parts by weight. If the amount of the thermal polymerization initiator composition used is less than 0.01 parts by weight, the polymerization tends to be insufficient, and if it exceeds 20 parts by weight, it is economically disadvantageous and physical properties of the cured product are lowered.
[0019]
As a photopolymerization initiator used for light irradiation immediately after winding and curing only the surface to suppress volatilization, a photopolymerization initiator having photosensitivity in the region from the ultraviolet region to the near infrared region is used. Used.
In particular, a photopolymerization initiator having photosensitivity in a region from the visible light region to the near infrared region is preferable. In this case, only the surface can be easily cured by irradiation with visible light or near infrared light.
In the present invention, ultraviolet light is 280 to 380 nm, visible light is 380 to 780 nm, and near infrared light is light in the wavelength range of 780 to 1200 nm.
[0020]
Specific examples of the ultraviolet polymerization initiator include benzoins, acetophenones, anthraquinones, thioxanthones, benzophenones, etc. For example, in benzoins, derivatives such as benzoin, benzoin methyl ether, benzoin isopropyl ether, For acetophenones, derivatives such as acetophenone and 2,2-dimethoxy-2-phenylacetophenone, and for anthraquinones, derivatives such as 2-methylanthraquinone, 2-chloroanthraquinone, 2-ethylanthraquinone and 2-t-butylanthraquinone, thioxanthone In the class, derivatives such as thioxanthone and 2,4-dimethylthioxanthone, and in the case of benzophenones, benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 4,4′-dichlorobenzophene. Emissions, N, N-dimethylamino benzophenone derivatives such as, there is 2,4,6-trimethylbenzoyl diphenylphosphine oxide, and the like, can be used others known.
[0021]
However, curing using ultraviolet rays is advantageous for drying of the surface, but has low light transmissivity, so that it is desirable to have photosensitivity in a relatively long wavelength, preferably 300 nm or more. In particular, it is preferable to use a (bis) acylphosphine oxide photopolymerization initiator having photosensitivity up to the visible light region.
Specific examples of the (bis) acylphosphine oxide compound include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, 2,6-diphenylbenzoyl-diphenylphosphine oxide, 2,6-dimethoxybenzoyl-diphenylphosphine oxide, 2, 3,5,6-tetramethylbenzoyl-diphenylphosphine oxide, 2,6-dichlorobenzoyl-diphenylphosphine oxide, 2,3,6-trimethylbenzoyl-diphenylphosphine oxide, 2-phenyl-6-methylbenzoyl-diphenylphosphine Oxide, 2,6-dibromobenzoyl-diphenylphosphine oxide, 2,8-dimethylnaphthalene-1-carbonyl-diphenylphosphine oxide, 1,3-dimethoxy Naphthalene-2-carbonyl-diphenylphosphine oxide, 2,4,6-trimethylbenzoyl-phenylphosphinic acid methyl ester, 2,6-dimethylbenzoyl-phenylphosphinic acid methyl ester, 2,6-dichlorobenzoyl-phenylphosphinic acid methyl ester Examples include esters.
[0022]
Specifically, for example, 2-hydroxy-2-methyl-1-phenylpropan-1-one (trade name: Darocur 1173, manufactured by Ciba Specialty Chemicals) and bis (2,6-dimethoxybenzoyl) -2, Trade name Irgacure-1700 (manufactured by Ciba Specialty Chemicals Co., Ltd.), 1-hydroxy-, mixed with 4,4-trimethylpentylphosphine oxide (manufactured by Ciba Specialty Chemicals Co., Ltd.) at a ratio of 75% / 25% Cyclohexyl-phenyl-ketone (trade name: Irgacure 184, manufactured by Ciba Specialty Chemicals Co., Ltd.) and bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide (Ciba Specialty Chemicals Co., Ltd.) ))) At a rate of 75% / 25% Trade name Irgacure 1800 (manufactured by Ciba Specialty Chemicals Co., Ltd.), trade name Irgacure 1850 (manufactured by Ciba Specialty Chemicals Co., Ltd.), bis (2,4 , 6-Trimethylbenzoyl) -phenylphosphine oxide (trade name: Irgacure 819, manufactured by Ciba Specialty Chemicals Co., Ltd.), 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (trade name Lucirin TPO, BASF Corporation) 2-hydroxy-2-methyl-1-phenylpropan-1-one (trade name: Darocur 1173, manufactured by Ciba Specialty Chemicals) and 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (trade name) Lucirin T O, and the like tradename Darocur4265 mixed at a ratio of BASF Co., Ltd., Ltd.) 50% / 50%.
[0023]
Examples of visible light polymerization initiators having photosensitivity in the visible light region include, for example, Yamaoka et al., “Surface”, 27 (7), 548 (1989), Sato et al., “3rd Polymer Material Forum Summary”. 1BP18 (1994) as described in camphor-quinone, benzyl, trimethylbenzoyldiphenylphosphine oxide, methylthioxanthone, bispentadienyltitanium-di (pentafluorophenyl), etc. Peroxide catalyst / dye system, diphenyliodonium salt / dye, biimidazole / keto compound, hexaarylbiimidazole compound / hydrogen donating compound, mercaptobenzothiazol / thiopyrylium salt, metal arene / cyanine In addition to dyes, hexaarylbiimidazole described in JP-B-45-37777 / It can be mentioned known combined initiator systems, such as radical generator. The visible light polymerization initiator having photosensitivity in the visible light region may be any photopolymerization initiator having photosensitivity in the wavelength region of 380 to 780 nm, and these may be used in combination.
[0024]
As a photopolymerization initiator having photosensitivity in the visible light region or near infrared light region having a wavelength of 500 nm or more, the general formula (1)
D+・ A-      ... (1)
[D+Is at least one of methine, polymethine, cyanine, xanthene, oxazine, thiazine, arylmethane, and pyrylium dye cations having photosensitivity in the visible or near infrared region, and A-Indicates various anions. ]
A cationic dye having absorption in the near-infrared region represented by the formula (2)
[0025]
[Chemical 1]
Figure 0004133049
[0026]
[Z+Represents any cation, R1, R2, RThreeAnd RFourEach independently represents an alkyl group, aryl group, acyl group, aralkyl group, alkenyl group, alkynyl group, silyl group, heterocyclic group, halogen atom, substituted alkyl group, substituted aryl group, substituted acyl group, substituted aralkyl group, substituted An alkenyl group, a substituted alkynyl group, a substituted silyl group or a substituted heterocyclic group is shown. ] The photoinitiator which combined the organic boron compound (sensitizer) represented by these is preferable.
[0027]
In addition, the cation “Z” in the general formula (2)+Examples of quaternary ammonium cations, quaternary pyridinium cations, quaternary quinolinium cations, diazonium cations, tetrazolium cations, sulfonium cations that are not sensitive in the visible light region or near infrared light region. , Oxosulfonium cations, metal cations such as sodium, potassium, lithium, magnesium and calcium, (organic) compounds having a cationic charge on oxygen atoms such as flavilium and pyranium salts, carbon cations such as tropylium and cyclopropylium Examples thereof include halogenium cations such as ions and iodonium, and cations of metal compounds such as arsenic, cobalt, palladium, chromium, titanium, tin, and antimony.
[0028]
In this way, by combining an organic boron compound with a cationic dye having a photosensitive wavelength in the visible light region or near infrared light region, the dye irradiated with light having a wavelength in the photosensitive region is excited to exchange electrons with the organic boron compound. In this case, the dye is decolored and radicals are generated, causing a polymerization reaction of the polymerizable unsaturated compound to coexist. In this polymerization reaction, unlike the conventional ultraviolet polymerization reaction, the generated radicals can be easily controlled, and can be easily stopped when a part of the unsaturated group in the resin is radically polymerized. In addition, since a long wavelength in the visible light region or near infrared light region is used, the reaction can be easily advanced even in a system to which a filler or pigment is added.
[0029]
Examples of combinations of the above cationic dyes and boron compounds are described in JP-A-3-111402, JP-A-3-179003, JP-A-4-146905, JP-A-4-261405, There are detailed descriptions in Japanese Patent Laid-Open No. 4-261406, Japanese Patent Laid-Open No. 5-194619, and the like.
Cationic dye "D+Specific examples of "are shown in Tables 1 and 2. Among these cationic dyes, cyanine-based, styryl-based cationic dyes and triarylmethane-based dyes are preferably used. Cyanine-based and styryl-based cationic dyes are preferable from the viewpoint that the reaction of the present invention is easily caused because electron transfer with an organic boron-based compound generally occurs easily.
[0030]
[Table 1]
Figure 0004133049
[0031]
[Table 2]
Figure 0004133049
[0032]
[Table 3]
Figure 0004133049
[0033]
[Table 4]
Figure 0004133049
[0034]
A which is a counter anion of the cationic dye represented by the general formula (1)-Is any anion such as p-toluenesulfonate ion, organic carboxylate ion, perchlorate ion, halide ion, etc.
[0035]
[Chemical 2]
Figure 0004133049
[0036]
[RFive, R6, R7And R8Are each independently an alkyl group, aryl group, acyl group, aralkyl group, alkenyl group, alkynyl group, silyl group, heterocyclic group, halogen atom, substituted alkyl group, substituted aryl group, substituted acyl group, substituted aralkyl group, A substituted alkenyl group, a substituted alkynyl group, a substituted silyl group or a substituted heterocyclic group is shown. A tetracoordinate boron anion represented by the formula is particularly preferred.
[0037]
The composition ratio of the organoboron compound to the near infrared light or visible light absorbing cationic dye compound is 1/5 to 1 / 0.05, preferably 1/1 to 1 / 0.1 by weight. In general, it is preferable to use more organoboron compounds than cationic dyes from the viewpoint of decolorization reaction of the dye and radical generation efficiency.
[0038]
The use amount of the photopolymerization initiator is generally 0.01 to 20 parts by weight, preferably 0.05 to 15 parts by weight with respect to 100 parts by weight of the resin or the like. When the amount of the photopolymerization initiator used is less than 0.01 parts by weight, the polymerization tends to be insufficient, and when it exceeds 20 parts by weight, it is economically disadvantageous and the physical properties of the cured product are lowered.
[0039]
In the molding method of the present invention, the fiber material (B) is impregnated with an unsaturated polyester resin and / or vinyl ester resin (A ′) and a polymerization initiator (C ′) that do not contain a styrene monomer, and then the styrene monomer is wound. The polymerization initiator (C ′) in the case of coating and curing the unsaturated polyester resin and / or vinyl ester resin (A ″) containing benzene is not particularly limited, and the above thermal polymerization initiator may be used. A photopolymerization initiator may be used, or a thermal polymerization initiator and a photopolymerization initiator may be used in combination. In this case, coating is generally performed by coating.
[0040]
In the molding method of the present invention, an epoxy curing agent can be used in combination. When an epoxy curing agent is used in combination, a known epoxy curing agent can be used. Specific examples include acid anhydrides, amines such as aliphatic amines, aromatic amines, polyamides, and heterocyclic amines. An appropriate amount is added according to the epoxy equivalent of the resin.
In the molding method of the present invention, an ultraviolet absorber can also be blended. As the ultraviolet absorber to be used, known ones such as benzophenone series, salicylic acid ester series, benzotriazole series, benzoate series, and cyanoacrylate series can be used.
[0041]
In the molding method of the present invention, the winding is preferably performed on a mandrel and / or liner made of metal and / or thermoplastic resin. For the mandrel and liner, filaments of metals such as aluminum alloy, steel and stainless steel, and thermoplastic resins such as high density polyethylene and polypropylene are used.
High-pressure mercury lamps, metal halide lamps, xenon lamps, near-infrared lamps, sodium lamps, halogen lamps, incandescent lamps, sunlight lamps, sunlight, etc. can be used as the light source for irradiating the surface with light after curing. Various lamps may be used as a heater.
A heating furnace may be used for the subsequent heat curing after curing only the surface, or an infrared lamp, a halogen lamp or the like may be used as a heater.
[0042]
In the molding method of the present invention, an unsaturated polyester resin or vinyl ester resin is used as the resin component, so that the resin impregnation into the fiber during molding and the chemical resistance of the molded article are good and cures in a short time. And the molding cycle can be improved.
In the case of such a resin component, the working environment is likely to deteriorate due to volatilization of styrene monomer, etc., but using a polymerization initiator containing a photopolymerization initiator and a thermal polymerization initiator, winding and immediately curing only the surface by light irradiation Thus, since the volatilization of volatile components such as styrene monomer is suppressed, molding can be performed in a working environment where the odor of styrene monomer is small.
Moreover, the odor of a styrene monomer can be further reduced by using the resin composition whose content of a styrene monomer is less than 10 weight%.
Furthermore, after impregnating the fiber material with a resin that does not contain styrene monomer and winding it, the amount of resin containing styrene monomer can be reduced by coating the surface with a resin composition containing styrene monomer. In addition, a container having excellent surface corrosion resistance can be formed in a working environment where the odor of the styrene monomer is low.
[0043]
【Example】
Hereinafter, the contents of the present invention will be described in detail by way of examples and comparative examples, and “parts” in each example indicate a weight basis. The present invention is not limited to these examples.
[0044]
Synthesis example 1
A reactor equipped with a stirrer, a reflux condenser, a gas inlet tube, and a thermometer was equipped with 189 parts of 1 equivalent (189 g) of Epicoat 828 (epoxy resin: epoxy equivalent 189 manufactured by Yuka Shell Co., Ltd.) and 11.4 parts of bisphenol A. Part (0.1 equivalent) and 0.5 part of triethylamine were added and reacted at 150 ° C. for 2 hours in a nitrogen atmosphere. After completion of the reaction, the mixture was cooled to 90 ° C., charged with 77.4 parts (0.9 equivalent) of methacrylic acid, 0.8 part of triarylamine, 0.07 part of hydroquinone, and 37 parts of styrene monomer, and 120 ° C. while blowing air. The reaction was terminated when the acid value reached 10 mg KOH / g for 4 hours, and 148 parts of dicyclopentenyloxyethyl methacrylate was added, and bisphenol A vinyl ester resin (VE-1) containing 8% by weight of styrene monomer was added. Obtained.
[0045]
Synthesis example 2
A reactor equipped with a stirrer, a reflux condenser, a gas inlet tube, and a thermometer was equipped with 189 parts of 1 equivalent (189 g) of Epicoat 828 (epoxy resin: epoxy equivalent 189 manufactured by Yuka Shell Co., Ltd.) and 11.4 parts of bisphenol A. Part (0.1 equivalent) and 0.5 part of triethylamine were added and reacted at 150 ° C. for 2 hours in a nitrogen atmosphere. After completion of the reaction, the mixture was cooled to 90 ° C., charged with 77.4 parts (0.9 equivalents) of methacrylic acid, 0.8 part of trierylamine, 0.07 part of hydroquinone, and 100 parts of dicyclopentenyloxyethyl methacrylate. Bisphenol A vinyl ester resin (VE-2) containing no styrene monomer by adding 100 parts of tetrahydrofurfuryl methacrylate by reacting at 120 ° C. for 4 hours while blowing and finishing the reaction when the acid value reached 10 mg KOH / g. Got.
[0046]
Synthesis example 3
A reactor equipped with a stirrer, a reflux condenser, a gas inlet tube, and a thermometer was equipped with 189 parts of 1 equivalent (189 g) of Epicoat 828 (epoxy resin: Epoxy equivalent 189 manufactured by Yuka Shell Co., Ltd.) and 43 parts of methacrylic acid ( 0.5 equivalents), 0.8 part of naphthenic acid Cr, 0.07 part of hydroquinone, and 22 parts of styrene monomer were allowed to react at 120 ° C. for 2.5 hours while blowing air, and when the acid value reached 0 mgKOH / g. Then, 36 parts of dicyclopentenyloxyethyl methacrylate was added to obtain a resin (HE-1) containing an epoxy group of 7.5% by weight of styrene monomer.
[0047]
Reference example1
(Molding of pressure vessel)
Vinyl ester resin, trade name Lipoxy R-802 (styrene monomer: 45% by weight, manufactured by Showa Polymer Co., Ltd.) 100 parts, methyl ethyl ketone peroxide: 1.0 part, naphthenic acid Co: 0.5 part, ultraviolet light Irgacure 819 (manufactured by Ciba Specialty Chemicals Co., Ltd.) having photosensitivity from 1 to visible light region: 0.5 part was added to obtain a photocurable resin composition.
Next, a bowl-shaped high-density polyethylene liner having dome parts on both sides of the cylindrical body part (length of the body part: 593 mm, outer diameter of the body part: 380 mm, total length including the dome part: 830 mm, meat Thickness: 4mm), T glass roving impregnated with the above photo-curable resin composition [RST-220PA manufactured by Nittobo Co., Ltd.] is filament winding method, helical winding is 0.98mm in layer thickness, then hoop The winding was wound so that the film thickness was 0.6 mm (fiber content: 50% by volume).
Immediately after winding, two 36 W fluorescent lamps were irradiated with light from a distance of 5 cm for 5 minutes to cure only the surface, rotated at room temperature for 1 hour, cured at room temperature, and then left in a 120 ° C. oven for 2 hours. Thus, an FRP pressure vessel was formed.
The maximum value of the styrene concentration measured every 10 minutes with the Kitagawa type detector tube in the vicinity of the rotation from the start of winding to being put into the furnace was 25 ppm.
[0048]
(Internal pressure test)
Using a burst test device, while applying water pressure, the internal pressure is taken into the computer from the load cell attached to the pump, and at the same time, the strain is attached to the computer from the strain gauge attached to the surface, and the internal pressure is checked while checking the state of the container strain. As it was raised, the burst occurred at an internal pressure of 8 MPa and at a distance of 80 mm from the dome.
The design pressure obtained from the following equation based on the network theory and the thin shell theory was 8 MPa, and it was confirmed that it was as designed.
PR = σmtm+ Σf(Thelsin2α + thoop)
(Where P is pressure, R is the radius of the container, and σmAnd σfIndicates the stress generated in the liner material and fiber. tm, ThelAnd thoopIndicates the thickness of the liner material, the hoop winding layer, and the helical winding layer, and α indicates the fiber orientation angle in the helical winding layer. )
[0049]
Example 1
(Molding of pressure vessel)
To the resin (HE-1) containing an epoxy group obtained in Synthesis Example 3, benzoyl peroxide: 1.0 part, N, N′-dimethylaniline: 0.1 part, epoxy curing agent 2-ethyl-4 -Methylimidazole: 1.0 part and Irgacure 819: 0.5 part were mixed and the photocurable resin composition was obtained.
  next,Reference exampleUse the same liner material as in No. 1, wind up by impregnating the above photo-curable resin composition in the same way, then immediately irradiate with a metal halide lamp for 3 minutes to cure only the surface, and rotate at room temperature for 1 hour. Then, it was cured at room temperature and left in a furnace at 120 ° C. for 2 hours to form an FRP pressure vessel.
  The maximum value of the styrene concentration measured every 10 minutes with the Kitagawa type detector tube in the vicinity of the rotation from the start of winding to being put into the furnace was 10 ppm.
(Internal pressure test)
  Reference exampleIn the same internal pressure test as in No. 1, bursting occurred at an internal pressure of 8 MPa and 70 mm away from the dome.
[0050]
Comparative Example 1
(Molding of pressure vessel)
  To 100 parts of vinyl ester resin (trade name Lipoxy R-802, Showa Polymer Co., Ltd.), 1.0 part of methyl ethyl ketone peroxide and 0.5 part of naphthenic acid Co are added to obtain a curable resin composition. It was.
  nextReference exampleIn the same manner as in No. 1, the above curable resin composition was impregnated and wound, and after the winding was completed, it was cured at room temperature while rotating at room temperature for 1 hour, and then allowed to stand in an oven at 120 ° C. for 2 hours to set the FRP pressure vessel. Molded.
  The maximum value of styrene concentration measured every 10 minutes with the Kitagawa type detection tube in the vicinity of the rotation from the start of winding to being put into the furnace was 90 ppm.
(Internal pressure test)
  Reference exampleIn the internal pressure test similar to 1, the internal pressure is 8 MPa, burst at a distance of 75 mm from the dome,Reference Example 1 and Example 1However, it was confirmed that the styrene concentration during molding was high.
[0051]
Example 2
(Molding of pressure vessel)
Bisphenol A-based vinyl ester resin (VE-1) of 8% by weight of styrene monomer obtained in Synthesis Example 1: 100 parts, methyl ethyl ketone peroxide: 1.0 part, naphthenic acid Co: 0.5 part, Irgacure 819: 0.5 part was added and the photocurable resin composition was obtained.
Next, a bowl-shaped aluminum liner having dome portions on both sides of the cylindrical body portion (length of the body portion: 224 mm, outer diameter of the body portion: 100 mm, total length including the dome portion: 380 mm, wall thickness: 3 mm), carbon roving (T-700S-12K, manufactured by Toray Industries, Inc.) impregnated with the above-mentioned photocurable resin composition by a filament winding method, helical winding: 0.53 mm, hoop winding: 0.44 mm (fiber Content: 50% by volume)To beWinded up.
After the winding, fluorescent lamp (380-450 nm illuminance: 700 μW / cm2The surface was cured in 15 minutes, and was cured at room temperature while rotating at room temperature for an additional hour, and then allowed to stand in an oven at 120 ° C. for 2 hours to form an FRP pressure vessel.
The maximum value of the styrene concentration measured every 10 minutes with the Kitagawa type detector tube in the vicinity of the rotation from the start of winding to the time when it was put into the furnace was 15 ppm.
(Internal pressure test)
  Reference exampleIn the internal pressure test similar to 1, the design burst pressure was 40 MPa, while the internal pressure was 42 MPa and burst at a position 25 mm away from the dome.
[0052]
Example 3
(Molding of pressure vessel)
A curable resin composition is obtained by adding 1.0 part of methyl ethyl ketone peroxide and 0.5 part of naphthenic acid Co to the bisphenol A-based vinyl ester resin (VE-2) which is not contained in the styrene monomer obtained in Synthesis Example 2. Obtained.
  next,Example 2Using the same liner material as above, after impregnating the curable resin composition as described above and winding, 100 g / m of the curable resin resin composition used in Comparative Example 1 was used.2It was coated and cured at room temperature while rotating for 1 hour at room temperature, and then left in a furnace at 120 ° C. for 2 hours to form an FRP pressure vessel.
  The maximum value of the styrene concentration measured every 10 minutes with the Kitagawa type detection tube in the vicinity of the rotation from the start of winding to the time when it was put into the furnace was 20 ppm.
(Internal pressure test)
  Reference exampleIn the same internal pressure test as in No. 1, the design burst pressure was 40 MPa, while the internal pressure was 41 MPa, and the burst occurred at a distance of 20 mm from the dome.
[0053]
【The invention's effect】
In the FRP pressure vessel molding method of the present invention, an unsaturated polyester resin or vinyl ester resin is used as the resin component, so that the resin impregnation into the fiber during molding and the chemical resistance of the molded product are good, and The molding cycle can be improved.
In addition, impregnating the fiber material with a resin containing a photopolymerization initiator and a thermal polymerization initiator and winding, curing the surface by light irradiation immediately after winding, curing by heating while suppressing volatilization of volatile components, Alternatively, after impregnating the fiber material with a resin that does not contain a styrene monomer and a polymerization initiator and winding it, the resin containing the styrene monomer is coated and cured, thereby reducing the odor of the styrene monomer. Molding can be performed.

Claims (6)

スチレンモノマーを含有しない不飽和ポリエステル樹脂及び/又はビニルエステル樹脂(A')および重合開始剤(C')を繊維材料(B)に含浸させてワインディングした後、スチレンモノマーを含有する不飽和ポリエステル樹脂及び/又はビニルエステル樹脂(A'')を塗工して硬化させることを特徴とするFRP圧力容器の成形方法。  Unsaturated polyester resin not containing styrene monomer and / or vinyl ester resin (A ′) and polymerization initiator (C ′) impregnated into fiber material (B) and winding, and then unsaturated polyester resin containing styrene monomer And / or curing a vinyl ester resin (A ″) by coating and curing the vinyl ester resin (A ″). スチレンモノマーを含有する不飽和ポリエステル樹脂及び/又はビニルエステル樹脂(A'')の塗工量が50〜300g/m2 である請求項に記載のFRP圧力容器の成形方法。Method of molding FRP pressure vessel according to claim 1 coating amount of the unsaturated polyester resin and / or vinyl ester resin containing a styrene monomer (A '') is 50 to 300 g / m 2. (A')成分のスチレンモノマーを含有しないビニルエステル樹脂及び/又は(A'')成分のスチレンモノマーを含有するビニルエステル樹脂がエポキシ基を含有するものである請求項1又は2に記載のFRP圧力容器の成形方法。The FRP according to claim 1 or 2 , wherein the vinyl ester resin containing no styrene monomer as the component (A ') and / or the vinyl ester resin containing the styrene monomer as the component (A'') contains an epoxy group. Pressure vessel molding method. ワインディングを、金属及び/又は熱可塑性樹脂製のマンドレル及び/又はライナー上に行なう請求項1〜3のいずれかに記載のFRP圧力容器の成形方法。The method for forming an FRP pressure vessel according to any one of claims 1 to 3 , wherein the winding is performed on a mandrel and / or liner made of metal and / or thermoplastic resin. 繊維材料(B)が、ガラス繊維、カ−ボン繊維およびアラミド繊維から選ばれる1種以上の繊維からなり、形状がロービングまたは編み物である請求項1〜4のいずれかに記載のFRP圧力容器の成形方法。The FRP pressure vessel according to any one of claims 1 to 4 , wherein the fiber material (B) comprises one or more fibers selected from glass fibers, carbon fibers, and aramid fibers, and the shape is roving or knitting. Molding method. 請求項1〜5のいずれかに記載の方法で成形したFRP圧力容器。The FRP pressure vessel shape | molded by the method in any one of Claims 1-5 .
JP2002198826A 2002-07-08 2002-07-08 FRP pressure vessel molding method Expired - Fee Related JP4133049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002198826A JP4133049B2 (en) 2002-07-08 2002-07-08 FRP pressure vessel molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002198826A JP4133049B2 (en) 2002-07-08 2002-07-08 FRP pressure vessel molding method

Publications (2)

Publication Number Publication Date
JP2004034661A JP2004034661A (en) 2004-02-05
JP4133049B2 true JP4133049B2 (en) 2008-08-13

Family

ID=31706170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002198826A Expired - Fee Related JP4133049B2 (en) 2002-07-08 2002-07-08 FRP pressure vessel molding method

Country Status (1)

Country Link
JP (1) JP4133049B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107119A1 (en) * 2009-03-19 2010-09-23 新日本石油株式会社 Process and device for producing composite container
JP2011136491A (en) * 2009-12-28 2011-07-14 Jx Nippon Oil & Energy Corp Process of producing composite container
JP2010221401A (en) * 2009-03-19 2010-10-07 Kyushu Univ Method and apparatus for manufacturing composite container
JP2011245740A (en) * 2010-05-27 2011-12-08 Toyota Motor Corp Apparatus and method for manufacturing high pressure tank
JP5820477B2 (en) * 2011-08-01 2015-11-24 昭和電工株式会社 Manufacturing method of pressure vessel
JP6451106B2 (en) * 2014-07-07 2019-01-16 三菱ケミカル株式会社 Manufacturing method of pressure vessel
JP6724389B2 (en) * 2016-01-28 2020-07-15 東洋インキScホールディングス株式会社 Pressure vessel manufacturing method

Also Published As

Publication number Publication date
JP2004034661A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP3431782B2 (en) Curable composite material composition and curing method thereof
EP1740646B1 (en) Method for photocuring of resin compositions
JP2837242B2 (en) Resin composition, prepreg comprising the composition, and product comprising the prepreg
JP3479202B2 (en) Photocurable prepreg composition and method for producing the same
US6207726B1 (en) Photocurable prepreg composition and production method thereof
JP4133049B2 (en) FRP pressure vessel molding method
JPH11210981A (en) Photo-curing material for covering or repairing inside face of tubular molded product and its covering method
JP4490554B2 (en) FRP pressure vessel molding method
JP3806209B2 (en) Filament winding molding method
JP2001294687A (en) Curable prepreg composition, method for producing the same and method for curing the same
JP2001335612A (en) Curing material for covering or repairing inside face of tubular molded product and its covering method
JP3644608B2 (en) Photo-curable composite material composition
JPH0239525B2 (en)
JP4421373B2 (en) Filament winding molding method
JP3806210B2 (en) Filament winding molding method
JPH0857971A (en) Fiber reinforced composite material and production thereof
EP1092744B1 (en) Thermosetting prepreg composition and process for producing the same
JP2000297127A (en) Method for forming anti-corrosive frp
JP3497922B2 (en) Photocurable composite material composition and molding method thereof
JPH10182767A (en) Filament winding process
JP4316101B2 (en) Process for producing cast cured products
WO2015125875A1 (en) Method for producing fiber-reinforced resin composite material
JPH11106459A (en) Thermoset prepreg composition and its production
JP2017132133A (en) Method for manufacturing pressure container
JPH10316728A (en) Curable composition and method for curing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4133049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees