JP2010221401A - Method and apparatus for manufacturing composite container - Google Patents

Method and apparatus for manufacturing composite container Download PDF

Info

Publication number
JP2010221401A
JP2010221401A JP2009067786A JP2009067786A JP2010221401A JP 2010221401 A JP2010221401 A JP 2010221401A JP 2009067786 A JP2009067786 A JP 2009067786A JP 2009067786 A JP2009067786 A JP 2009067786A JP 2010221401 A JP2010221401 A JP 2010221401A
Authority
JP
Japan
Prior art keywords
liner
resin
viscosity
fibers
tow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009067786A
Other languages
Japanese (ja)
Inventor
Hiromichi Onikura
宏猷 鬼鞍
Takao Sajima
隆生 佐島
Junji Okazaki
順二 岡崎
Kojiro Nakagawa
幸次郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Eneos Corp
Original Assignee
Kyushu University NUC
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, JX Nippon Oil and Energy Corp filed Critical Kyushu University NUC
Priority to JP2009067786A priority Critical patent/JP2010221401A/en
Priority to PCT/JP2010/054858 priority patent/WO2010107119A1/en
Publication of JP2010221401A publication Critical patent/JP2010221401A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing a composite container having a desired shape and strength. <P>SOLUTION: In the manufacturing method, a fiber layer is formed by winding a tow prepreg 20 onto a liner 5 (step S4), the viscosity of the resin of fibers wound onto the liner 5 is decreased to be lower than the viscosity of the resin before the fibers are wound onto the liner 5 by carrying out heating from the inside of the liner 5 (step S5), and the resin, the viscosity of which is decreased, in the fiber layer is heated from the inside of the liner 5 and cured gradually from a side close to the surface of the liner 5 toward a side separated from the surface (step S6). Since the resin whose viscosity is decreased is made easy to penetrate between the fibers, it is not voided between the fibers, so that the adhesion between the fibers is improved. In the manufacturing method, since the resin can be wound onto the cured fibers, the slide between the fibers can be suppressed. In the manufacturing method, since heating is carried out from the inside of the liner 5, the resin in a part inside the composite container can enough be cured. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高圧の気体あるいは液体を収納する複合容器の製造方法及び複合容器の製造装置に関する。   The present invention relates to a method for manufacturing a composite container that stores high-pressure gas or liquid, and a composite container manufacturing apparatus.

従来、ガラス繊維、炭素繊維、芳香族ポリアミド繊維等を強化材とし、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂等をマトリックス樹脂とした複合材料は、スポーツ用品、自動車部品を始め広く使用されている。   Conventionally, composite materials using glass fibers, carbon fibers, aromatic polyamide fibers, etc. as reinforcements and epoxy resins, unsaturated polyester resins, vinyl ester resins, etc. as matrix resins have been widely used for sports equipment and automobile parts. Yes.

複合材料の製造方法には、繊維強化材に未硬化のマトリックス樹脂を含浸させてプリプレグとし、該プリプレグを成形硬化させる方法が広く採用されている。一方で、FWによる中空物の成形方法、いわゆるFW法も複合材料の製造方法として多く採用されている。   As a method for producing a composite material, a method is widely adopted in which a fiber reinforced material is impregnated with an uncured matrix resin to form a prepreg, and the prepreg is molded and cured. On the other hand, a hollow material forming method using FW, a so-called FW method, is also widely used as a method for producing a composite material.

FW(フィラメントワインディング)法には、あらかじめ熱硬化性樹脂マトリックスを含浸したストランドプリプレグを用意し、これをマンドレルに巻き付けて成形する方法(Dry FW法)、とストランドに低粘度樹脂を含浸させながら、マンドレルに巻き付けて成形する方法(Wet FW法)とがあることは広く知られている。更にこのWet FW法は、ストランドに低粘度樹脂を含浸させる方法の種類によって、キスタッチ法、浸漬法その他の方法に分類されている。   In the FW (filament winding) method, a strand prepreg impregnated with a thermosetting resin matrix is prepared in advance, and this is wound around a mandrel (Dry FW method), and while the strand is impregnated with a low-viscosity resin, It is well known that there is a method (Wet FW method) in which a mandrel is wound around and formed. Furthermore, the Wet FW method is classified into a kiss touch method, a dipping method, and other methods depending on the type of method in which the strand is impregnated with the low viscosity resin.

FW成形における現在の主流は、液状の樹脂を用いる、レジンバス法等のいわゆるWet法である。図1にWet法に用いられるレジンバスを有するタンクの製造装置の一例の模式的な概念図を示す。   The current mainstream in FW molding is a so-called Wet method such as a resin bath method using a liquid resin. FIG. 1 shows a schematic conceptual diagram of an example of a production apparatus for a tank having a resin bath used in the Wet method.

図1に示す製造装置は、炭素繊維等のトウを巻廻した供給ロール101と、樹脂102を収納したレジンバス103と、レジンバス103内に回転可能に設けられた回転ロール104と、樹脂を含浸させたトウを巻き取り、タンクを成形するライナ105とを有する。   The manufacturing apparatus shown in FIG. 1 impregnates a supply roll 101 in which a tow of carbon fiber or the like is wound, a resin bath 103 in which a resin 102 is stored, a rotary roll 104 that is rotatably provided in the resin bath 103, and a resin. And a liner 105 for winding a tow and forming a tank.

複数の供給ロール101から供給されたトウはレジンバス103内へと案内される。レジンバス103内の炭素繊維は回転ロール104の周縁を案内されながら樹脂が含浸される。樹脂含有量調ロール106によって余剰の樹脂が搾り取られ、樹脂含有量の調整がなされる。樹脂含有量の調整がなされたトウは、巻付張力調整部107により、巻き付け時の張力が調整されながらライナ105に巻き付けられる。   Tows supplied from a plurality of supply rolls 101 are guided into the resin bus 103. The carbon fibers in the resin bath 103 are impregnated with resin while being guided along the periphery of the rotary roll 104. Excess resin is squeezed out by the resin content adjusting roll 106, and the resin content is adjusted. The tow whose resin content has been adjusted is wound around the liner 105 while the tension at the time of winding is adjusted by the winding tension adjusting unit 107.

レジンバス法は、トウをレジンバス103内に通過させて樹脂含浸させた後、樹脂含有量調ロール106によって余剰の樹脂を搾り取り樹脂含有量を調整する際、トウとの摩擦が生じ、糸切れ、毛羽立ち等を伴うトウの損傷が生じる。また樹脂を搾り取ることによって樹脂含有量を調整するため、樹脂含有量を高精度で調整するのが困難である。   In the resin bath method, after the tow is passed through the resin bath 103 and impregnated with resin, excess resin is squeezed out by the resin content adjusting roll 106 to adjust the resin content, resulting in friction with the tow, yarn breakage, Tow damage with fuzzing occurs. Moreover, since resin content is adjusted by squeezing out resin, it is difficult to adjust resin content with high precision.

また、レジンバス法は、レジンバス103内に直接トウを通過させるので、レジンバス103内が毛羽等で汚損してしまう問題がある。   Moreover, since the resin bath method allows the tow to pass directly through the resin bath 103, there is a problem that the inside of the resin bath 103 is fouled by fuzz or the like.

さらに、レジンバス103内に収納されている樹脂は、例えば、0.1Pa・S程度の低粘度のものである。このような低粘度の樹脂内で回転ロール104を高速回転させると樹脂が飛散してしまうため、回転ロール104の回転速度は制限を受けてしまう。また、低粘度の樹脂を用いることから、ライナ105に巻き付けられたトウが滑りやすい状態にある。このため、Wet法は、成形品の形状を所望の形状にすべく、装置を一旦停止して樹脂を固め、固化されたら再度装置を駆動する、といった制御を繰り返す必要がある。これらが原因でWet法は生産性を向上させるのが困難となる。   Furthermore, the resin accommodated in the resin bath 103 has a low viscosity of, for example, about 0.1 Pa · S. If the rotating roll 104 is rotated at high speed in such a low-viscosity resin, the resin is scattered, and therefore the rotation speed of the rotating roll 104 is limited. In addition, since a low-viscosity resin is used, the tow wound around the liner 105 is in a slippery state. For this reason, in the Wet method, it is necessary to repeat such control that the apparatus is temporarily stopped to solidify the resin, and the apparatus is driven again when solidified in order to obtain a desired shape of the molded product. For these reasons, it is difficult to improve the productivity of the Wet method.

また、レジンバス法では、反応性の高い樹脂を用いることが多く、このため室温で徐々に硬化反応が進行し、ワインディング中に樹脂粘度が増加する傾向がある。このような粘度変化は樹脂のピックアップ量に影響するため、結果として樹脂含量の均一性が損なわれることになる。   In the resin bath method, a highly reactive resin is often used, so that the curing reaction gradually proceeds at room temperature, and the resin viscosity tends to increase during winding. Such a change in viscosity affects the amount of resin pick-up, and as a result, the uniformity of the resin content is impaired.

このように、レジンバス法により製造された成型品は、繊維と樹脂との重量比を精度良く一定にすることが困難であることによる品質安定性の低さ、またトウの摩擦による損傷を防ぐために生産速度が低いことによる製造コストの高さ等の問題がある。   In this way, molded products manufactured by the resin bath method have low quality stability due to the difficulty of maintaining a constant weight ratio between fiber and resin, and to prevent damage caused by tow friction. There are problems such as high manufacturing costs due to low production speed.

そこで、予め樹脂が含浸されたトウプリプレグを用いてFWを行う、いわゆるDry法が用いられることがある。図2にトウプリプレグを用いたタンクの製造装置の一例の模式的な概念図を示す。ここで、「トウプリプレグ」とは、繊維束に樹脂を含浸し、半硬化状態としたものを意味する。   Therefore, a so-called Dry method in which FW is performed using a tow prepreg impregnated with a resin in advance may be used. FIG. 2 shows a schematic conceptual diagram of an example of a tank manufacturing apparatus using a tow prepreg. Here, the “tow prepreg” means a fiber bundle impregnated with a resin to be in a semi-cured state.

図2に示す製造装置は、トウプリプレグを巻廻した供給ロール201と、巻付張力調整部207と、タンクを成形するライナ205とを有する。なお、トウプリプレグの製造法としては、例えば、特許文献1において、ノズルを介してマトリックス樹脂を一定の供給量でトウに供給し、かつ該ノズルを通過するトウを一定速度に制御することにより、トウへの樹脂含浸量の均一性を実現しうる製造法が提案されている。   The manufacturing apparatus shown in FIG. 2 includes a supply roll 201 around which a tow prepreg is wound, a winding tension adjusting unit 207, and a liner 205 that forms a tank. In addition, as a method for producing a tow prepreg, for example, in Patent Document 1, a matrix resin is supplied to a tow at a constant supply amount via a nozzle, and the tow passing through the nozzle is controlled at a constant speed. There has been proposed a production method capable of realizing the uniformity of the resin impregnation amount in tow.

供給ロール201から供給されたトウプリプレグは、すでに樹脂が含浸されているため、レジンバスを通過することなく、巻付張力調整部207により、巻き付け時の張力が調整されながらライナ205に巻き付けられる。ライナ205へのトウプリプレグの巻き付け時に、ライナ205外部からトウプリプレグを加熱することでトウプリプレグを硬化させる。なお、トウプリプレグに含浸されている樹脂の粘度は供給ロール201部分で5〜100Pa・S程度であり、ライナ205に巻き付ける時点で10Pa・S程度となっており、Wet法のトウに比べ粘度が高い。   Since the tow prepreg supplied from the supply roll 201 is already impregnated with resin, the tow prepreg is wound around the liner 205 while adjusting the winding tension by the winding tension adjusting unit 207 without passing through the resin bath. At the time of winding the tow prepreg around the liner 205, the tow prepreg is cured by heating the tow prepreg from the outside of the liner 205. The viscosity of the resin impregnated in the tow prepreg is about 5 to 100 Pa · S at the portion of the supply roll 201, and is about 10 Pa · S when wound around the liner 205, and the viscosity is higher than that of the wet method tow. high.

トウプリプレグを用いたDry法によれば、Wet法の問題点が解消される。すなわち、本方法によれば、含有樹脂量の高精度化が可能であり、樹脂を絞り取る際に生じる糸切れ、毛羽立ち等を伴うトウの損傷を生じることもない。また、レジンバスを用いないので、レジンバスの汚損、樹脂の粘度に起因する生産性向上の制限もない。   According to the Dry method using a tow prepreg, the problems of the Wet method are solved. That is, according to this method, it is possible to increase the accuracy of the amount of resin contained, and tow damage that occurs when the resin is squeezed out, such as yarn breakage and fluffing, does not occur. In addition, since no resin bath is used, there is no limitation on productivity improvement due to the contamination of the resin bath and the viscosity of the resin.

特開2006−300194号公報JP 2006-300194 A WO2004/070258WO2004 / 070258

しかしながら、トウプリプレグを用いたDry法によりタンクを製造する場合、比較的樹脂粘度が高いことからFW時に繊維が浸透しにくい、という問題があった。   However, when a tank is manufactured by the Dry method using a tow prepreg, there is a problem that fibers are difficult to permeate during FW because the resin viscosity is relatively high.

また、Dry法においては、樹脂の粘度がWet法に比べ高いため、樹脂が繊維間に浸透しにくい。そのため、繊維間の密着性が低く、タンクの強度を確保するのが困難となる場合があった。また、トウプリプレグは、樹脂が半硬化状態のため、積層されたトウプリプレグ間には樹脂が未硬化の場合より空隙(ボイド)が生じ易い。   Further, in the Dry method, the resin has a higher viscosity than the Wet method, so that the resin is less likely to penetrate between the fibers. Therefore, the adhesion between the fibers is low, and it may be difficult to ensure the strength of the tank. In addition, since the resin is semi-cured in the tow prepreg, voids (voids) are more easily generated between the laminated tow prepregs than in the case where the resin is uncured.

また、外側からのみの加熱では、巻き付け後、内側の繊維が室温に戻ってしまう。温度が低下することで内側を十分に固化しにくいため、タンクの強度を確保するのが困難となる場合があった。   In addition, in heating only from the outside, the inner fibers return to room temperature after winding. Since the inside is not sufficiently solidified due to a decrease in temperature, it may be difficult to ensure the strength of the tank.

さらに、外側からのみ加熱するDry法においては、繊維の巻量が多くなると、内側に巻かれた樹脂が硬化する前に繊維が重ねて巻かれてしまうことになる。そのため、繊維間で滑りを生じてしまい、所望の形状のタンクを形成するのが困難となる場合があった。   Furthermore, in the Dry method in which heating is performed only from the outside, if the amount of winding of the fiber is increased, the fiber is overlapped and wound before the resin wound inside is cured. For this reason, slipping occurs between the fibers, and it may be difficult to form a tank having a desired shape.

そこで、本発明は、所望の形状および強度を有する複合容器の製造方法及び複合容器の製造装置を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the composite container which has a desired shape and intensity | strength, and the manufacturing apparatus of a composite container.

そこで上記目的を達成するため、本発明の複合容器の製造方法は、熱硬化性の樹脂が予め含浸された繊維をライナに巻き付けて繊維層を形成する工程と、ライナの内部から加熱することで、ライナに巻き付けられた繊維の樹脂の粘度を、ライナに巻き付ける前の粘度よりも低下させる工程と、粘度を低下させた後、ライナの内部から加熱することで、繊維層の樹脂をライナの表面に近い側から離れる側に向けて徐々に硬化させる工程と、を含むものとしている。   Therefore, in order to achieve the above object, the method for manufacturing a composite container of the present invention includes a step of winding a fiber pre-impregnated with a thermosetting resin around a liner to form a fiber layer, and heating from the inside of the liner. The step of lowering the viscosity of the fiber resin wound around the liner below the viscosity before winding around the liner, and after reducing the viscosity, heating the fiber layer resin from the liner surface And a step of gradually curing toward the side away from the side close to.

上記のとおり、本発明の複合容器の製造方法は、ライナの内部から加熱するため、ライナに巻き付けられた繊維の樹脂の粘度をライナに巻き付ける前の粘度よりも低下させている。粘度が低下した樹脂は、繊維間に樹脂が浸透しやすくなるので繊維間に空隙されず、繊維どうしの密着性が向上し、その結果、複合容器としての強度を高めることができる。   As described above, in the method for manufacturing a composite container of the present invention, since the heating is performed from the inside of the liner, the viscosity of the resin of the fiber wound around the liner is made lower than the viscosity before being wound around the liner. The resin having a lowered viscosity is easy to permeate between the fibers, so that there is no space between the fibers, and the adhesion between the fibers is improved. As a result, the strength as a composite container can be increased.

また、本発明の複合容器の製造方法は、ライナの内部から加熱するため、繊維層をライナの表面に近い側から離れる側に向けて樹脂を徐々に硬化させることができる。このため、硬化した繊維の上に樹脂を巻き付けていくことができるので繊維間における滑りを抑制できることとなり、その結果、複合容器を所望の形状に形成することができる。また、本製造方法は、ライナの内部から加熱するため、複合容器の内側部分の樹脂も十分に硬化することができるので、複合容器としての強度を高めることができる。   Moreover, since the manufacturing method of the composite container of this invention heats from the inside of a liner, resin can be hardened gradually toward the side which leaves | separates the fiber layer from the side close | similar to the surface of a liner. For this reason, since resin can be wound around the hardened | cured fiber, the slip between fibers can be suppressed, As a result, a composite container can be formed in a desired shape. Moreover, since this manufacturing method heats from the inside of a liner, since the resin of the inner part of a composite container can also fully harden | cure, the intensity | strength as a composite container can be raised.

本発明によれば、所望の形状および強度を有する複合容器を製造することができる。   According to the present invention, a composite container having a desired shape and strength can be manufactured.

Wet法に用いられるレジンバスを有するタンクの製造装置の一例の模式的な概念図である。It is a typical conceptual diagram of an example of the manufacturing apparatus of the tank which has a resin bath used for the Wet method. トウプリプレグを用いたタンクの製造装置の一例の模式的な概念図である。It is a schematic conceptual diagram of an example of the manufacturing apparatus of the tank using a tow prepreg. 本発明の一実施形態に係る複合容器の製造装置の模式的概念図である。It is a typical conceptual diagram of the manufacturing apparatus of the composite container which concerns on one Embodiment of this invention. 本発明の一実施形態に係る複合容器の製造方法の製造フローを示す図である。It is a figure which shows the manufacture flow of the manufacturing method of the composite container which concerns on one Embodiment of this invention.

図3に、本実施形態にかかる複合容器の製造方法に用いられる製造装置を説明するための概略図である。なお、以下の説明において「繊維層の内側」とは、ライナ5に巻き付けられて形成されたトウプリプレグ20の層のうち、ライナ5に近い側の層を意味する。   FIG. 3 is a schematic diagram for explaining a manufacturing apparatus used in the method for manufacturing a composite container according to the present embodiment. In the following description, “inside of the fiber layer” means a layer closer to the liner 5 among the layers of the tow prepreg 20 formed by being wound around the liner 5.

本実施形態の製造装置10は、供給部1と、巻付張力調整部2と、速度センサプーリ3、デリバリーアイ4と、ライナ5と、駆動装置6と、外部加熱装置7と、内部加熱装置8と、制御部9とを有する。   The manufacturing apparatus 10 of the present embodiment includes a supply unit 1, a winding tension adjustment unit 2, a speed sensor pulley 3, a delivery eye 4, a liner 5, a drive device 6, an external heating device 7, and an internal heating device 8. And a control unit 9.

供給部1は、トウプリプレグ20を供給する装置であり、トウプリプレグ20が巻廻された複数の供給ロール11を有する。供給ロール11に巻廻されたトウプリプレグ20は5Pa・S〜100Pa・S、好ましくは7Pa・S〜50Pa・Sの粘度を維持した状態で保持されている。供給部1からのトウプリプレグ20の供給速度は制御部9により制御される。なお、本実施形態における供給部1は、すでに製造されたトウプリプレグが供給ロール11に巻廻された状態で供給される方式を例に説明するが、本発明はこれに限定されるものではなく、例えば、供給部1において、トウに樹脂供給してトウプリプレグを製造し、この製造されたトウプリプレグを供給する方式を採用するものであってもよい。   The supply unit 1 is a device that supplies the tow prepreg 20 and includes a plurality of supply rolls 11 around which the tow prepreg 20 is wound. The tow prepreg 20 wound around the supply roll 11 is held in a state of maintaining a viscosity of 5 Pa · S to 100 Pa · S, preferably 7 Pa · S to 50 Pa · S. The supply speed of the tow prepreg 20 from the supply unit 1 is controlled by the control unit 9. In addition, although the supply part 1 in this embodiment demonstrates to an example the system by which the tow prepreg already manufactured is supplied in the state wound by the supply roll 11, this invention is not limited to this. For example, the supply unit 1 may employ a method in which a tow prepreg is manufactured by supplying resin to the tow and the manufactured tow prepreg is supplied.

巻付張力調整部2及び速度センサプーリ3は供給部1とライナ5との間に配置されている。巻付張力調整部2は、ライナ5に巻き付けるトウプリプレグ20に所要の巻付張力を付与することができるように構成されており、制御部9によって付与する巻付張力が制御される。速度センサプーリ3は、トウプリプレグ20の線速度を感知する速度センサである。速度センサプーリ3で検出されたトウプリプレグ20の線速度は、不図示の信号送信器から制御部9に送信される。制御部9は、信号送信器からの信号に基づき、供給部1からのトウプリプレグ20の供給速度を制御する。すなわち、トウプリプレグ20の線速度は、速度センサプーリ3により常時測定され、リアルタイムで信号送信器から制御部9にフィードバックされるため、例えば、デリバリーアイ4の折り返し時に速度が低下した際も、あるいは、巻き始めから巻き終わりまでにおけるワインディング成形体の径が変化した場合でも、樹脂供給量が制御され、トウに対する樹脂含浸量は終始一定に制御されてFW成形が実施される。   The winding tension adjusting unit 2 and the speed sensor pulley 3 are disposed between the supply unit 1 and the liner 5. The winding tension adjusting unit 2 is configured to be able to apply a required winding tension to the tow prepreg 20 wound around the liner 5, and the winding tension applied by the control unit 9 is controlled. The speed sensor pulley 3 is a speed sensor that senses the linear speed of the tow prepreg 20. The linear velocity of the tow prepreg 20 detected by the velocity sensor pulley 3 is transmitted to the control unit 9 from a signal transmitter (not shown). The control unit 9 controls the supply speed of the tow prepreg 20 from the supply unit 1 based on the signal from the signal transmitter. That is, the linear velocity of the tow prepreg 20 is constantly measured by the velocity sensor pulley 3 and fed back to the control unit 9 from the signal transmitter in real time. For example, when the velocity drops when the delivery eye 4 is turned back, or Even when the diameter of the winding molded body changes from the start of winding to the end of winding, the amount of resin supply is controlled, and the amount of resin impregnation with respect to the tow is controlled to be constant throughout the FW molding.

デリバリーアイ4は、供給部1から供給されたトウプリプレグ20を集束させ、FWでライナ5に巻きつける装置であり、ライナ5の軸方向と平行な方向に往復移動可能に設けられている。トウプリプレグ20の配向角度は、ライナ5の回転速度とデリバリーアイ4の移動速度の比により決定される。デリバリーアイ4の移動速度は制御部9により制御される。   The delivery eye 4 is a device that focuses the tow prepreg 20 supplied from the supply unit 1 and winds the tow prepreg 20 around the liner 5 by FW, and is provided so as to be reciprocally movable in a direction parallel to the axial direction of the liner 5. The orientation angle of the tow prepreg 20 is determined by the ratio of the rotational speed of the liner 5 and the moving speed of the delivery eye 4. The moving speed of the delivery eye 4 is controlled by the control unit 9.

ライナ5は、金属製の中空円筒部材であり、駆動装置6により回転駆動される。デリバリーアイ4を通過してきたトウプリプレグ20はライナ5の外周面にFWで巻廻される。ライナ5を回転駆動する駆動装置6の制御は制御部9によりなされる。   The liner 5 is a metal hollow cylindrical member, and is rotationally driven by a driving device 6. The tow prepreg 20 that has passed through the delivery eye 4 is wound around the outer peripheral surface of the liner 5 by FW. The controller 9 controls the driving device 6 that rotationally drives the liner 5.

外部加熱装置7は、ライナ5の外周面に巻廻されたトウプリプレグ20を加熱するヒータである。外部加熱装置7の温度制御は、制御部9によりなされる。   The external heating device 7 is a heater that heats the tow prepreg 20 wound around the outer peripheral surface of the liner 5. The temperature control of the external heating device 7 is performed by the control unit 9.

内部加熱装置8は、ヒータ8aと、流体供給部8bとを有し、配管8cを介してライナ5に接続されている。内部加熱装置8はヒータ8aにより流体を加熱し、加熱された流体を流体供給部8bにより配管8cを介してライナ5内に供給することでライナ5の内側からトウプリプレグ20を加熱するための装置である。配管8cは、ライナ5の両端部5aに接続されており、内部加熱装置8からライナ5に供給された流体が再び内部加熱装置8に戻されるように循環経路を構成している。本実施形態では、加熱用の流体として空気が用いられている。加熱用の流体として空気を用いることで、回転駆動されるライナ5と配管8cとの接続部分のシール構造を、加熱用の流体として液体や空気以外の他の気体を用いた場合に比べ、簡素化することが可能である。もっとも、本発明は、加熱用の流体として液体や空気以外の他の気体を適用を排除するものではない。ヒータ8aとしては、例えば電熱ヒータ等を用いることができ、流体供給部8bとしては、例えばポンプ、ファン等を用いることができる。   The internal heating device 8 includes a heater 8a and a fluid supply unit 8b, and is connected to the liner 5 via a pipe 8c. The internal heating device 8 heats the fluid by the heater 8a, and supplies the heated fluid to the liner 5 through the pipe 8c by the fluid supply unit 8b, thereby heating the tow prepreg 20 from the inside of the liner 5. It is. The pipe 8 c is connected to both ends 5 a of the liner 5, and constitutes a circulation path so that the fluid supplied from the internal heating device 8 to the liner 5 is returned to the internal heating device 8 again. In the present embodiment, air is used as a heating fluid. By using air as the heating fluid, the sealing structure of the connecting portion between the linearly driven liner 5 and the pipe 8c is simpler than when a gas other than liquid or air is used as the heating fluid. It is possible to However, the present invention does not exclude application of a gas other than liquid or air as a heating fluid. For example, an electric heater or the like can be used as the heater 8a, and a pump, a fan, or the like can be used as the fluid supply unit 8b.

ライナ5内の流体温度は温度センサ8dにより検知される。温度センサ8dで検知した流体温度は制御部9に送信される。制御部9は、温度センサ8dから送信されてきた信号に基づき、流体温度が所定の温度となるようヒータ8aを制御する。本実施形態においては、流体温度は、約40℃〜130℃の温度範囲内で制御されるが、本発明における温度制御範囲はこれに限定されるものではなく、適用されるトウプリプレグ20の特性に応じて適宜変更されるものであってもよい。   The fluid temperature in the liner 5 is detected by a temperature sensor 8d. The fluid temperature detected by the temperature sensor 8d is transmitted to the control unit 9. Based on the signal transmitted from the temperature sensor 8d, the controller 9 controls the heater 8a so that the fluid temperature becomes a predetermined temperature. In the present embodiment, the fluid temperature is controlled within a temperature range of about 40 ° C. to 130 ° C., but the temperature control range in the present invention is not limited to this, and the characteristics of the tow prepreg 20 to be applied. It may be appropriately changed depending on the situation.

また、本実施形態では、温度制御をヒータ8aの制御により行うものとして説明するが、本発明はこれに限定されるものではなく、例えば、流体供給部8bによる流体の供給量により制御するものであってもよいし、あるいは配管8cの途中に不図示の弁を設け、この弁の開度を調整することにより行うものであってもよい。これら流体供給部8b及び弁の開度の制御も温度センサ8dから送信されてきた信号に基づき制御部9により行われる。   In the present embodiment, the temperature control is described as being performed by controlling the heater 8a. However, the present invention is not limited to this, and for example, the temperature is controlled by the amount of fluid supplied by the fluid supply unit 8b. Alternatively, a valve (not shown) may be provided in the middle of the pipe 8c, and the opening of the valve may be adjusted. Control of the opening degree of the fluid supply unit 8b and the valve is also performed by the control unit 9 based on a signal transmitted from the temperature sensor 8d.

制御部9は、上述したように、供給部1、巻付張力調整部2、デリバリーアイ4、ライナ5、外部加熱装置7及び内部加熱装置8等を駆動制御する。   As described above, the control unit 9 drives and controls the supply unit 1, the winding tension adjusting unit 2, the delivery eye 4, the liner 5, the external heating device 7, the internal heating device 8, and the like.

本実施形態に適用可能なトウプリプレグ20の強化繊維は特に限定されず、例えば、炭素繊維、ガラス繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、アラミド繊維等が具体的に挙げられ、特に炭素繊維が好ましく用いられる。更に好ましくは、樹脂が含浸し難い、繊維径が6μm以下でかつ繊度が800g/km以上の炭素繊維が挙げられる。また、トウに含浸される樹脂も特に限定されず、例えば、熱硬化性の樹脂、特にエポキシ樹脂が取り扱い易いので好ましく挙げられる。エポキシ樹脂としては、潜在型硬化剤を用いた一液型のエポキシ樹脂でもよいが、より低粘度の2液型エポキシ樹脂をスタティックミキサにより混合しながら用いることが好ましい。スタティックミキサの使用により、従来のWet法FWにおける問題点の1つであった、ワインディング中に樹脂が徐々に反応して粘度が上昇し、従って樹脂含浸量が増加してしまうという問題が解決できる。   The reinforcing fiber of the tow prepreg 20 applicable to the present embodiment is not particularly limited, and specific examples include carbon fiber, glass fiber, alumina fiber, silicon carbide fiber, boron fiber, and aramid fiber, and particularly carbon fiber. Is preferably used. More preferably, carbon fibers that are difficult to be impregnated with resin, have a fiber diameter of 6 μm or less, and a fineness of 800 g / km or more can be used. Further, the resin impregnated in the tow is not particularly limited, and for example, a thermosetting resin, particularly an epoxy resin is preferable because it is easy to handle. The epoxy resin may be a one-component type epoxy resin using a latent curing agent, but it is preferable to use a two-component type epoxy resin having a lower viscosity while mixing with a static mixer. By using a static mixer, one of the problems in the conventional Wet method FW can be solved that the resin gradually reacts during winding to increase the viscosity, and therefore the resin impregnation amount increases. .

次に、図4を用いて本実施形態にかかる複合容器の製造方法について説明する。図4は、本実施形態の製造方法の製造フローを示す図である。   Next, the manufacturing method of the composite container concerning this embodiment is demonstrated using FIG. FIG. 4 is a diagram showing a manufacturing flow of the manufacturing method of the present embodiment.

まず、制御部9は、内部加熱装置8により温風をライナ5内へと供給し、ライナ5を所定の温度にまで昇温させておく(ステップS1)。なお、本実施形態の場合、ライナ5は、30℃〜220℃の範囲内で温度制御がなされる。   First, the controller 9 supplies warm air into the liner 5 by the internal heating device 8 and raises the temperature of the liner 5 to a predetermined temperature (step S1). In the case of this embodiment, the liner 5 is temperature-controlled within a range of 30 ° C to 220 ° C.

次に、供給部1は、5Pa・S〜100Pa・S、好ましくは7Pa・S〜50Pa・Sの粘度のトウプリプレグ20を巻付張力調整部2へと供給する(ステップS2)。続いて、トウプリプレグ20は巻付張力調整部2により張力を調整されながらデリバリーアイ4へと供給されることで集束される(ステップS3)。さらに、トウプリプレグ20は、デリバリーアイ4でライナ5の軸方向と平行な方向に往復移動させられつつ、回転駆動されているライナ5へと巻き付けられる(ステップS4)。   Next, the supply unit 1 supplies the tow prepreg 20 having a viscosity of 5 Pa · S to 100 Pa · S, preferably 7 Pa · S to 50 Pa · S, to the winding tension adjusting unit 2 (step S2). Subsequently, the tow prepreg 20 is focused by being supplied to the delivery eye 4 while adjusting the tension by the winding tension adjusting unit 2 (step S3). Further, the tow prepreg 20 is wound around the liner 5 being rotationally driven while being reciprocated in the direction parallel to the axial direction of the liner 5 by the delivery eye 4 (step S4).

制御部9は、ライナ5へと巻き付けられたトウプリプレグ20の樹脂を、ライナ5を内部から加熱することで低粘度化させるべく、内部加熱装置8を温度制御する(ステップS5)。例えば、加熱温度の制御については、熱画像センサを用いて、外表面温度を測定し、ヒータ8aを制御する。なお、このときのライナ5内の温度は30℃以上100℃以下に設定しておく。   The controller 9 controls the temperature of the internal heating device 8 so as to reduce the viscosity of the resin of the tow prepreg 20 wound around the liner 5 by heating the liner 5 from the inside (step S5). For example, for the control of the heating temperature, the outer surface temperature is measured using a thermal image sensor, and the heater 8a is controlled. The temperature in the liner 5 at this time is set to 30 ° C. or higher and 100 ° C. or lower.

樹脂は、低粘度化されることで流動性が高い状態となるが、特に本実施形態の場合、内部加熱装置8によりライナ5の内側から加熱しているため、巻き付けが進行することでライナ5上に形成された繊維層の内側部分の樹脂についても流動性の高い状態を維持することができる。流動性が高くなったトウプリプレグ20の樹脂は、トウプリプレグ20間に浸透しやすい状態となり、トウプリプレグ20間の気泡が除去されるとともにトウプリプレグ20どうしの密着性が高められる。   The resin is in a state of high fluidity due to the reduced viscosity. Particularly in the case of this embodiment, since the internal heating device 8 heats the resin from the inner side of the liner 5, the winding progresses to the liner 5. The state of high fluidity can also be maintained for the resin in the inner portion of the fiber layer formed above. The resin of the tow prepreg 20 having improved fluidity is in a state where it easily penetrates between the tow prepregs 20, air bubbles between the tow prepregs 20 are removed, and adhesion between the tow prepregs 20 is enhanced.

巻き付けが進行することでライナ5上に繊維層が形成されていくと、制御部9は、ライナ5に巻き付けられたトウプリプレグ20の樹脂を硬化させるべく、内部加熱装置8を温度制御する(ステップS6)。本実施形態の場合、ライナの容量と樹脂の粘度によってライナ5内の温度を30℃〜220℃の範囲内、好ましくは60℃以上220℃以下となるように設定しておく。   When the fiber layer is formed on the liner 5 as the winding progresses, the controller 9 controls the temperature of the internal heating device 8 to cure the resin of the tow prepreg 20 wound around the liner 5 (step) S6). In the case of this embodiment, the temperature in the liner 5 is set in the range of 30 ° C. to 220 ° C., preferably 60 ° C. or more and 220 ° C. or less, depending on the capacity of the liner and the viscosity of the resin.

本実施形態の製造方法は、ライナ5の内部を温風で加熱することで繊維層の内側から徐々に熱を加えるため、トウプリプレグ20の繊維層の内側から外側に向けて(ライナ5に近い側から離れていく側に向けて)徐々に樹脂を硬化させていくことができる。繊維層の内側部分から樹脂を確実に硬化させることで、巻量が多くなったときのトウプリプレグ20間における滑りが抑制され、複合容器を所望の形状に成形することができる。また、本製造方法は、ライナ5の内部から繊維層を加熱するため、複合容器の内側部分の樹脂も十分に硬化することができるので、複合容器としての強度を高めることができる。   In the manufacturing method of the present embodiment, heat is gradually applied from the inside of the fiber layer by heating the inside of the liner 5 with warm air, so that the fiber layer of the tow prepreg 20 is directed from the inside to the outside (close to the liner 5). The resin can be gradually cured (toward the side away from the side). By reliably curing the resin from the inner part of the fiber layer, slipping between the tow prepregs 20 when the winding amount is increased is suppressed, and the composite container can be formed into a desired shape. Moreover, since this manufacturing method heats a fiber layer from the inside of the liner 5, since the resin of the inner part of a composite container can also fully harden | cure, the intensity | strength as a composite container can be improved.

以上、本実施形態の製造方法によれば、トウプリプレグ20間の密着性が極めて高く、かつ容器内側部分の樹脂も十分に硬化されているため高耐圧性を有するとともに、繊維の滑りを抑制しつつ成形されているため所望の形状に成形された複合容器を製造することができる。   As described above, according to the manufacturing method of the present embodiment, the adhesion between the tow prepregs 20 is extremely high, and the resin inside the container is sufficiently cured, so that it has high pressure resistance and suppresses fiber slip. Therefore, a composite container molded into a desired shape can be manufactured.

本実施例では、以下の条件において、本発明の複合容器の製造方法により円筒管を製造し、その破裂強度を測定した。   In this example, a cylindrical tube was manufactured by the method for manufacturing a composite container of the present invention under the following conditions, and its burst strength was measured.

トウに含浸させる樹脂としては、ビスフェノールA型エポキシ樹脂80重量部、ビスフェノールF型エポキシ樹脂20重量部にジシアンジアミド(DICY)18重量部および3−(3、4−ジクロロフェニル)−1、1−ジメチルウレア(DCMU)9重量部を混合した樹脂組成物を用いた。この樹脂組成物の粘度は25℃で7Pa・s、80℃で0.1Pa・sであった。この樹脂組成物を東レ社製炭素繊維T800SCの24000フィラメントに含浸し、ボビンに巻き取り、樹脂含有率29%のトウプリプレグとした。   The resin impregnated in tow is 80 parts by weight of bisphenol A type epoxy resin, 20 parts by weight of bisphenol F type epoxy resin, 18 parts by weight of dicyandiamide (DICY), and 3- (3,4-dichlorophenyl) -1,1-dimethylurea. A resin composition in which 9 parts by weight of (DCMU) was mixed was used. The viscosity of this resin composition was 7 Pa · s at 25 ° C. and 0.1 Pa · s at 80 ° C. This resin composition was impregnated with 24000 filaments of carbon fiber T800SC manufactured by Toray Industries, Inc. and wound on a bobbin to obtain a tow prepreg having a resin content of 29%.

上述のトウプリプレグを中央部分の外径99mm、内径95mmのアルミ製円筒管にフィラメントワインディング(FW)した。なお、FW条件は、回転数200rpm、張力50Nのヘリカル巻、内部加熱温度は80℃とした。樹脂硬化のため、FW終了後、内部加熱温度を130℃とし、2時間保持した後、放冷した。   The above-mentioned tow prepreg was filament wound (FW) into an aluminum cylindrical tube having an outer diameter of 99 mm and an inner diameter of 95 mm in the central portion. The FW conditions were helical rotation with a rotation speed of 200 rpm and a tension of 50 N, and the internal heating temperature was 80 ° C. In order to cure the resin, the internal heating temperature was set to 130 ° C. after the FW was completed, and the mixture was held for 2 hours and then allowed to cool.

以上のようにして作製した円筒管の破裂強度を測定したところ、その破裂圧力は120MPaであった。   When the burst strength of the cylindrical tube produced as described above was measured, the burst pressure was 120 MPa.

本実施例では、以下の条件において、本発明の複合容器の製造方法により円筒管を製造し、その破裂強度を測定した。   In this example, a cylindrical tube was manufactured by the method for manufacturing a composite container of the present invention under the following conditions, and its burst strength was measured.

トウに含浸させる樹脂としては、ビスフェノールA型エポキシ樹脂80重量部、フェノールノボラック型エポキシ樹脂20重量部にジシアンジアミド(DICY)18重量部およびDCMU9重量部を混合した樹脂組成物を用いた。この樹脂組成物の粘度は25℃で50Pa・s、80℃で0.2Pa・sであった。この樹脂組成物を東レ社製炭素繊維T800SCの24000フィラメントに含浸し、ボビンに巻き取り、樹脂含有率28%のトウプリプレグとした。   As the resin to be impregnated with tow, a resin composition in which 80 parts by weight of bisphenol A type epoxy resin, 20 parts by weight of phenol novolac type epoxy resin, 18 parts by weight of dicyandiamide (DICY) and 9 parts by weight of DCMU were used. The viscosity of this resin composition was 50 Pa · s at 25 ° C. and 0.2 Pa · s at 80 ° C. This resin composition was impregnated with 24000 filaments of carbon fiber T800SC manufactured by Toray Industries, Inc., wound up on a bobbin, and made into a tow prepreg having a resin content of 28%.

上述のトウプリプレグを中央部分の外径99mm、内径95mmのアルミ製円筒管にフィラメントワインディング(FW)した。なお、FW条件は、回転数200rpm、張力50Nのヘリカル巻、内部加熱温度は80℃とした。また、FWの際に、あらかじめトウプリプレグのボビンを赤外線ランプで約40℃に保温し、巻き付け時の瞬間的な温度変化を和らげた。樹脂硬化のため、FW終了後、内部加熱温度を130℃とし、2時間保持した後、放冷した。   The above-mentioned tow prepreg was filament wound (FW) into an aluminum cylindrical tube having an outer diameter of 99 mm and an inner diameter of 95 mm in the central portion. The FW conditions were helical rotation with a rotation speed of 200 rpm and a tension of 50 N, and the internal heating temperature was 80 ° C. In addition, at the time of FW, the bobbin of the tow prepreg was kept warm at about 40 ° C. with an infrared lamp in advance, and the instantaneous temperature change at the time of winding was alleviated. In order to cure the resin, the internal heating temperature was set to 130 ° C. after the FW was completed, and the mixture was held for 2 hours and then allowed to cool.

以上のようにして作製した円筒管の破裂強度を測定したところ、その破裂圧力は125MPaであった。   When the burst strength of the cylindrical tube produced as described above was measured, the burst pressure was 125 MPa.

本実施例では、以下の条件において、本発明の複合容器の製造方法により円筒管を製造し、その破裂強度を測定した。   In this example, a cylindrical tube was manufactured by the method for manufacturing a composite container of the present invention under the following conditions, and its burst strength was measured.

本実施例では、新日本石油株式会社製トウプリプレグT800S−24−RC27−SY2を中央部分の外径99mm、内径95mmのアルミ製円筒管にフィラメントワインディング(FW)した。なお、FW条件は、回転数200rpm、張力50Nのヘリカル巻、内部加熱温度は80℃とした。樹脂硬化のため、FW終了後、内部加熱温度を130℃とし、2時間保持した後、放冷した。   In this example, Tow prepreg T800S-24-RC27-SY2 manufactured by Nippon Oil Corporation was filament wound (FW) into an aluminum cylindrical tube having an outer diameter of 99 mm and an inner diameter of 95 mm at the center. The FW conditions were helical rotation with a rotation speed of 200 rpm and a tension of 50 N, and the internal heating temperature was 80 ° C. In order to cure the resin, the internal heating temperature was set to 130 ° C. after the FW was completed, and the mixture was held for 2 hours and then allowed to cool.

以上のようにして作製した円筒管の破裂強度を測定したところ、その破裂圧力は129MPaであった。   When the burst strength of the cylindrical tube produced as described above was measured, the burst pressure was 129 MPa.

比較例1Comparative Example 1

本比較例では、以下の条件において、内部加熱を行わずに円筒管を製造し、その破裂強度を測定した。   In this comparative example, a cylindrical tube was manufactured without performing internal heating under the following conditions, and its burst strength was measured.

本比較例では、実施例1と同じトウプリプレグを使用し、温度条件以外は同じ条件で円筒管にFWを行った。なお、本比較例では、内部加熱は行わず、室温でFWを行い、樹脂硬化のため、FW終了後、内部加熱温度を130℃とし、2時間保持した後、放冷した。   In this comparative example, the same tow prepreg as in Example 1 was used, and FW was performed on the cylindrical tube under the same conditions except for the temperature conditions. In this comparative example, internal heating was not performed, FW was performed at room temperature, and for resin curing, the internal heating temperature was set to 130 ° C. for 2 hours after the completion of FW, and then allowed to cool.

以上のようにして作製した円筒管の破裂強度を測定したところ、その破裂圧力は100MPaであった。   When the burst strength of the cylindrical tube produced as described above was measured, the burst pressure was 100 MPa.

比較例2Comparative Example 2

本比較例では、以下の条件において、WET法により円筒管を製造し、その破裂強度を測定した。   In this comparative example, a cylindrical tube was manufactured by the WET method under the following conditions, and its burst strength was measured.

本比較例では、市販の希釈タイプエポキシ樹脂(商品名:エピコート801P、ジャパン エポキシ レジン(株)製)100重量部および市販イミダゾール系硬化剤(商品名:EMI24、ジャパン エポキシ レジン(株)製)4重量部を混合した樹脂組成物を用いた。この樹脂組成物の粘度は25℃で1Pa・s、80℃で0.02Pa・sであった。なお、本比較例では、この樹脂組成物をWET用樹脂として使用した。東レ社製炭素繊維T800SCの24000フィラメントをFWする工程内で、この樹脂組成物に含浸させ、実施例1と同じ条件(張力50Nのヘリカル巻、内部加熱温度は80℃)でFWし、樹脂硬化のため、FW終了後、内部加熱温度を80℃とし、2時間保持した後、放冷した。但し、樹脂が飛散するため回転数は60rpmとした。   In this comparative example, 100 parts by weight of a commercially available dilution type epoxy resin (trade name: Epicoat 801P, manufactured by Japan Epoxy Resin Co., Ltd.) and a commercially available imidazole curing agent (trade name: EMI24, manufactured by Japan Epoxy Resin Co., Ltd.) 4 A resin composition mixed with parts by weight was used. The viscosity of this resin composition was 1 Pa · s at 25 ° C. and 0.02 Pa · s at 80 ° C. In this comparative example, this resin composition was used as a WET resin. This resin composition was impregnated in the process of FW 24000 filaments of carbon fiber T800SC manufactured by Toray Industries, Inc., and FW was performed under the same conditions as in Example 1 (helical winding with a tension of 50 N, internal heating temperature was 80 ° C.) to cure the resin. Therefore, after completion of FW, the internal heating temperature was set to 80 ° C., held for 2 hours, and then allowed to cool. However, since the resin was scattered, the rotation speed was 60 rpm.

以上のようにして作製した円筒管の破裂強度を測定したところ、その破裂圧力は110MPaであった。   When the burst strength of the cylindrical tube produced as described above was measured, the burst pressure was 110 MPa.

1 供給部
2 巻付張力調整部
3 速度センサプーリ
4 デリバリーアイ
5 ライナ
5a 両端部
6 駆動装置
7 外部加熱装置
8 内部加熱装置
8a ヒータ
8b 流体供給部
8d 温度センサ
8c 配管
9 制御部
10 製造装置
11 供給ロール
20 トウプリプレグ
DESCRIPTION OF SYMBOLS 1 Supply part 2 Winding tension adjustment part 3 Speed sensor pulley 4 Delivery eye 5 Liner 5a Both ends 6 Drive apparatus 7 External heating apparatus 8 Internal heating apparatus 8a Heater 8b Fluid supply part 8d Temperature sensor 8c Piping 9 Control part 10 Manufacturing apparatus 11 Supply Roll 20 toe prepreg

Claims (5)

熱硬化性の樹脂が予め含浸された繊維をライナに巻き付けて繊維層を形成する工程と、
前記ライナの内部から加熱することで、前記ライナに巻き付けられた前記繊維の前記樹脂の粘度を、前記ライナに巻き付ける前の粘度よりも低下させる工程と、
前記粘度を低下させた後、前記ライナの内部から加熱することで、前記繊維層の樹脂を前記ライナの表面に近い側から離れる側に向けて徐々に硬化させる工程と、を含む複合容器の製造方法。
Winding a fiber pre-impregnated with a thermosetting resin around a liner to form a fiber layer;
Heating from the inside of the liner to reduce the viscosity of the resin of the fiber wound around the liner below the viscosity before winding around the liner;
A step of gradually curing the resin of the fiber layer toward the side away from the side close to the surface of the liner by heating from the inside of the liner after reducing the viscosity. Method.
前記ライナに巻き付ける前の粘度よりも低下させる工程における前記ライナ内の温度は30℃以上100℃以下であり、
前記樹脂を硬化させていく工程における前記ライナ内の温度は、60℃以上220℃以下である、請求項1に記載の複合容器の製造方法。
The temperature in the liner in the step of lowering the viscosity before winding around the liner is 30 ° C. or more and 100 ° C. or less,
The method for producing a composite container according to claim 1, wherein the temperature in the liner in the step of curing the resin is 60 ° C or higher and 220 ° C or lower.
前記熱硬化性の樹脂が予め含浸された繊維はトウプリプレグである、請求項1または2に記載の複合容器の製造方法。   The method for producing a composite container according to claim 1, wherein the fiber pre-impregnated with the thermosetting resin is a tow prepreg. 前記ライナの内部に加熱された流体を供給する、請求項1ないし3のいずれか1項に記載の複合容器の製造方法。   The manufacturing method of the composite container of any one of Claim 1 thru | or 3 which supplies the heated fluid to the inside of the said liner. 熱硬化性の樹脂が予め含浸された繊維を供給する供給部と、
前記供給部から供給された前記繊維を巻き取り、外周面に繊維層を形成させるライナと、
前記ライナの内部を加熱する内部加熱部と、
前記ライナに巻き付けられた前記繊維の前記樹脂の粘度を、前記ライナに巻き付ける前の粘度よりも低下させ、かつ前記粘度を低下させた後、前記繊維層を前記ライナの表面に近い側から前記樹脂を硬化させるように、前記内部加熱部の温度制御を行う制御部と、を有する複合容器の製造装置。
A supply unit for supplying fibers pre-impregnated with thermosetting resin;
A liner that winds up the fibers supplied from the supply unit and forms a fiber layer on the outer peripheral surface;
An internal heating unit for heating the interior of the liner;
After reducing the viscosity of the resin of the fiber wound around the liner to be lower than the viscosity before winding around the liner, and reducing the viscosity, the resin layer from the side close to the surface of the liner And a control unit that controls the temperature of the internal heating unit so as to harden the container.
JP2009067786A 2009-03-19 2009-03-19 Method and apparatus for manufacturing composite container Pending JP2010221401A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009067786A JP2010221401A (en) 2009-03-19 2009-03-19 Method and apparatus for manufacturing composite container
PCT/JP2010/054858 WO2010107119A1 (en) 2009-03-19 2010-03-19 Process and device for producing composite container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067786A JP2010221401A (en) 2009-03-19 2009-03-19 Method and apparatus for manufacturing composite container

Publications (1)

Publication Number Publication Date
JP2010221401A true JP2010221401A (en) 2010-10-07

Family

ID=43039129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067786A Pending JP2010221401A (en) 2009-03-19 2009-03-19 Method and apparatus for manufacturing composite container

Country Status (1)

Country Link
JP (1) JP2010221401A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234658A (en) * 2009-03-31 2010-10-21 Jx Nippon Oil & Energy Corp Method of manufacturing composite container
JP2016107408A (en) * 2014-12-02 2016-06-20 トヨタ自動車株式会社 Method of manufacturing high pressure tank
US9868253B2 (en) 2013-07-16 2018-01-16 Toyota Jidosha Kabushiki Kaisha Method of manufacturing tank, heat curing method and heat curing apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154333A (en) * 1986-12-18 1988-06-27 Sumitomo Electric Ind Ltd Continuous curing equipment for cylinder made of fiber-reinforced plastics
JPH04329120A (en) * 1991-04-30 1992-11-17 Mitsubishi Heavy Ind Ltd Filament winding method
JP2002192623A (en) * 1994-12-06 2002-07-10 Daiwa Seiko Inc Tubular body
JP2004034661A (en) * 2002-07-08 2004-02-05 Showa Highpolymer Co Ltd Forming method for fiber reinforced plastic pressure vessel
WO2004070258A1 (en) * 2003-02-03 2004-08-19 Kyushu Tlo Company, Limited Pressure shell, high-pressure tank with the pressure shell, and method and apparatus for manufacturing the high-pressure tank
JP2004268339A (en) * 2003-03-06 2004-09-30 Toyota Motor Corp Method for manufacturing propeller shaft made of fiber reinforced plastic
JP2006300194A (en) * 2005-04-20 2006-11-02 Kyushu Univ High pressure tank, its manufacturing device, and manufacturing method of high pressure tank

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154333A (en) * 1986-12-18 1988-06-27 Sumitomo Electric Ind Ltd Continuous curing equipment for cylinder made of fiber-reinforced plastics
JPH04329120A (en) * 1991-04-30 1992-11-17 Mitsubishi Heavy Ind Ltd Filament winding method
JP2002192623A (en) * 1994-12-06 2002-07-10 Daiwa Seiko Inc Tubular body
JP2004034661A (en) * 2002-07-08 2004-02-05 Showa Highpolymer Co Ltd Forming method for fiber reinforced plastic pressure vessel
WO2004070258A1 (en) * 2003-02-03 2004-08-19 Kyushu Tlo Company, Limited Pressure shell, high-pressure tank with the pressure shell, and method and apparatus for manufacturing the high-pressure tank
JP2004268339A (en) * 2003-03-06 2004-09-30 Toyota Motor Corp Method for manufacturing propeller shaft made of fiber reinforced plastic
JP2006300194A (en) * 2005-04-20 2006-11-02 Kyushu Univ High pressure tank, its manufacturing device, and manufacturing method of high pressure tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234658A (en) * 2009-03-31 2010-10-21 Jx Nippon Oil & Energy Corp Method of manufacturing composite container
US9868253B2 (en) 2013-07-16 2018-01-16 Toyota Jidosha Kabushiki Kaisha Method of manufacturing tank, heat curing method and heat curing apparatus
DE112014003324B4 (en) 2013-07-16 2019-10-17 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a tank and heat-curing method
JP2016107408A (en) * 2014-12-02 2016-06-20 トヨタ自動車株式会社 Method of manufacturing high pressure tank

Similar Documents

Publication Publication Date Title
CN108368281B (en) Tow prepreg, composite material-reinforced pressure vessel, and method for producing composite material-reinforced pressure vessel
US20170151730A1 (en) Method and apparatus for resin film infusion
US6609674B2 (en) High-speed manufacturing method for composite flywheels
CN103707496B (en) A kind of Wrapping formed tubing of thermoplastic fibre and its moulding process
WO2010107119A1 (en) Process and device for producing composite container
KR20150106703A (en) A linerless pressure vessel by centrifugal forced weaving and a method for manufacturing thereof
JP5261264B2 (en) Manufacturing method of composite container
JP2011206933A (en) Method for manufacturing composite container and composite container
JP2014113755A (en) Production method of composite container
WO2022057298A1 (en) Long basalt fiber thermoplastic consumable for 3d printing, preparation method therefor and preparation device therefor
JPS62244621A (en) Continuous molding of carbon fiber reinforced plastic pipe and device therefor
JP2011136491A (en) Process of producing composite container
JP2010221401A (en) Method and apparatus for manufacturing composite container
JP5737047B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
KR102032819B1 (en) Apparatus for manufacturing tow prepreg and method for the same
JP2008296494A (en) Fiber-reinforced composite material molding system and method, and fiber-reinforced composite material
JP2018158963A (en) Tow prepreg, and composite material reinforcement pressure container
JP2006063173A (en) Method for producing fiber-reinforced composite material and apparatus for producing fiber-reinforced composite material
JPH09255799A (en) Process and apparatus for preparing yarn prepreg
JP2018027836A (en) Method for producing resin-impregnated fiber bundle wound body
JP2005131838A (en) Tubular body and its manufacturing method
JP6900742B2 (en) Manufacturing method of tow prepreg and manufacturing method of fiber reinforced composite material
JPH08290487A (en) Manufacture of frp cylinder
US20180304561A1 (en) Device for impregnation and curing of continuous fibers with resin
JP2011240666A (en) Device and method for manufacturing prepreg

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150210