JP2005131838A - Tubular body and its manufacturing method - Google Patents

Tubular body and its manufacturing method Download PDF

Info

Publication number
JP2005131838A
JP2005131838A JP2003368154A JP2003368154A JP2005131838A JP 2005131838 A JP2005131838 A JP 2005131838A JP 2003368154 A JP2003368154 A JP 2003368154A JP 2003368154 A JP2003368154 A JP 2003368154A JP 2005131838 A JP2005131838 A JP 2005131838A
Authority
JP
Japan
Prior art keywords
resin
tubular body
preform
resin content
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003368154A
Other languages
Japanese (ja)
Other versions
JP4330977B2 (en
Inventor
Hiroshi Hasegawa
宏 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2003368154A priority Critical patent/JP4330977B2/en
Publication of JP2005131838A publication Critical patent/JP2005131838A/en
Application granted granted Critical
Publication of JP4330977B2 publication Critical patent/JP4330977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily manufacture a tubular body having lightweight properties and high rigidity with good moldability. <P>SOLUTION: The tubular body is manufactured by a process for laminating fiber-reinforced resin layers each of which comprises reinforcing fibers and a thermosetting resin to form a tubular preform, a rotation control process for rotating the preform while heating the same to a temperature below the curring temperature of the thermosetting resin to allow the resin in the preform to flow to the outside in the diametric direction of the preform by centrifugal force not only to fill the gap, which is not filled with the resin in the preform, with the resin but also to control the resin content on the outer surface side so as to increase the same, a curing process for heating the preform controlled in resin content to the curing temperature of the thermosetting resin during or after rotation to cure the same to obtain the tubular body and a grinding process for grinding the outer surface increased in resin content of the tubular body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、管状体の製造方法および管状体に関し、詳しくは、ゴルフクラブシャフト等に用いられる繊維強化樹脂製の管状体の製造工程において樹脂の分布を改良し、軽量で高剛性の管状体を容易に成形するものである。   The present invention relates to a tubular body manufacturing method and a tubular body, and more particularly, to improve the resin distribution in a manufacturing process of a fiber reinforced resin tubular body used for a golf club shaft or the like, and to obtain a lightweight and highly rigid tubular body. It is easy to mold.

ゴルフクラブシャフト、テニスやバトミントンのラケット、釣竿等に使用される管状体は、主としてカーボンプリプレグ等の繊維強化樹脂材料を用いて形成されている。これらの材料は、高い強度と適度な撓み性を有し、かつ軽量であるため、目的に合わせた機能を有する様々なタイプの管状体が提案されている。
操作性向上の点からは、軽量化の要求が強く、近年、高齢者や女性等のユーザーの増加に伴い、その要求が一段と高まっており、特に、ゴルフクラブシャフトでは、軽量化に加え強度も要求されている。
Tubular bodies used for golf club shafts, tennis and badminton rackets, fishing rods and the like are mainly formed using a fiber reinforced resin material such as carbon prepreg. Since these materials have high strength, moderate flexibility, and are light in weight, various types of tubular bodies having functions suited to the purpose have been proposed.
From the viewpoint of improving operability, there is a strong demand for weight reduction, and in recent years, the demand has further increased with the increase of users such as elderly people and women. It is requested.

このようなゴルフクラブシャフトは、炭素繊維等の強化繊維にエポキシ樹脂等の合成樹脂を含浸させたプリプレグをマンドレルに巻き付け、加圧加熱して成形されている。軽量で高強度なシャフトを作製するには、強化繊維の含有量を高めるため、樹脂含有率が小さいプリプレグが用いられている。
上記樹脂含有率が小さいプリプレグを用いると、繊維分が多いため剛性を高めることができると共に軽量化を実現できるが、その反面、樹脂分が少ないためプリプレグの巻き付けにくく且つ成形性が悪くなる問題がある。また、プリプレグの巻回層の境界において密着性が悪くなり境界にボイド(空隙)が発生し、強度が低下しやすいという問題がある。
Such a golf club shaft is formed by winding a prepreg obtained by impregnating a reinforcing fiber such as carbon fiber with a synthetic resin such as an epoxy resin around a mandrel, and applying pressure and heating. In order to produce a lightweight and high-strength shaft, a prepreg having a low resin content is used in order to increase the content of reinforcing fibers.
When a prepreg having a low resin content is used, the rigidity can be increased and the weight can be reduced because of a large amount of fiber, but on the other hand, there is a problem that the prepreg is difficult to wind and the moldability is poor because the resin content is small. is there. In addition, there is a problem that the adhesion is deteriorated at the boundary of the prepreg winding layer, voids (voids) are generated at the boundary, and the strength is easily lowered.

一方、樹脂含有率が大きいプリプレグを用いると、樹脂分が多いためプリプレグが巻き付けやすく成形性が良くなるが、その反面、重量増を招くと共に、繊維分が相対的に少なくなるため剛性が小さくなるという問題がある。また、繊維が存在しない又は繊維の存在が極端に少なく樹脂溜りとなる部分が形成され、層間剥離やクラックが生じやすいという問題がある。   On the other hand, when a prepreg having a high resin content is used, since the resin content is large, the prepreg is easy to wind and the moldability is improved. However, on the other hand, the weight is increased and the fiber content is relatively small, resulting in low rigidity. There is a problem. In addition, there is a problem that there is no fiber or a portion where the presence of fiber is extremely small and a resin pool is formed, and delamination or cracks are likely to occur.

上記した観点より、従来、異なる樹脂含有率のプリプレグを併用することで所望の性能の管状体を成形する場合がある。
例えば、特開平8−207166号公報(特許文献1)では、厚さ方向に樹脂量プアーな領域と樹脂量リッチな領域とを有し、樹脂の平均含浸量を10wt%〜20wt%の範囲内の値としたプリプレグを巻き回して、外側から緊締体によって加圧加熱して管状体を製造することが提案されている。
また、特開平8−98906号公報(特許文献2)では、シャフト本体の最外層の上から、有機重合体からなるテープ状またはシート状のフィルムを補強材としてチップ側の部分にのみ巻回積層するゴルフクラブシャフトの製造方法が提案されている。
From the viewpoint described above, conventionally, a tubular body having a desired performance may be formed by using prepregs having different resin contents.
For example, in Japanese Patent Application Laid-Open No. 8-207166 (Patent Document 1), there are a resin amount poor region and a resin amount rich region in the thickness direction, and the average impregnation amount of the resin is within a range of 10 wt% to 20 wt%. It has been proposed to manufacture a tubular body by winding a prepreg having the above value and pressurizing and heating from the outside with a tightening body.
In JP-A-8-98906 (Patent Document 2), a tape-like or sheet-like film made of an organic polymer is used as a reinforcing material on the outermost layer of the shaft main body and wound only on the chip side. A golf club shaft manufacturing method has been proposed.

しかしながら、特許文献1では、プリプレグ中に樹脂量リッチな部分が存在するため、その分だけ重量増を招くこととなる。また、管状体の外周面の研磨時に最外層のプリプレグ中の樹脂分と共に繊維分も削られるため、研磨前よりも剛性や強度が低くなるという問題がある。さらには、厚さ方向に樹脂量プアーな領域と樹脂量リッチな領域とを有するプリプレグを別途作製しておく必要があり、成形性が悪いという問題がある。   However, in Patent Document 1, since there is a resin-rich portion in the prepreg, the weight increases accordingly. Further, when the outer peripheral surface of the tubular body is polished, the fiber component is also scraped together with the resin component in the outermost prepreg, so that there is a problem that rigidity and strength are lower than before the polishing. Furthermore, it is necessary to separately prepare a prepreg having a resin amount poor region and a resin amount rich region in the thickness direction, and there is a problem that the moldability is poor.

また、特許文献2では、繊維分を含まない樹脂フィルムをチップ側の最外層にのみ巻きつけているが、繊維分を含まないため剛性を向上することができず、衝撃強度の向上が不十分である。また、樹脂フィルムにより重量増を招くことになり、管状体全体として軽量化と高剛性を両立できないという問題がある。
特開平8−207166号公報 特開平8−98906号公報
Further, in Patent Document 2, a resin film not containing fiber is wound only on the outermost layer on the chip side, but since it does not contain fiber, rigidity cannot be improved, and improvement in impact strength is insufficient. It is. Moreover, a weight increase is caused by the resin film, and there exists a problem that weight reduction and high rigidity cannot be made compatible as a whole tubular body.
JP-A-8-207166 JP-A-8-98906

本発明は上記した問題に鑑みてなされたものであり、軽量であり剛性が高い管状体を容易に得ることができ、成形性に優れた管状体の製造方法を提供することを課題としている。   The present invention has been made in view of the above-described problems, and it is an object of the present invention to provide a method for producing a tubular body that can easily obtain a lightweight and highly rigid tubular body and has excellent moldability.

上記課題を解決するため、本発明は、強化繊維と熱硬化性樹脂とからなる繊維強化樹脂層を積層して管状の予備成形体を形成する工程と、
上記熱硬化性樹脂の硬化温度未満で加熱しながら上記予備成形体を回転させて遠心力で該予備成形体中の樹脂を径方向外側に流動させて、該予備成形体中の樹脂が充填させていない空隙に樹脂を充填させると共に外表面側の樹脂含有率を大きくなるように制御する回転制御工程と、
上記樹脂含有率が制御された予備成形体を、上記回転中又は回転後に上記熱硬化性樹脂の硬化温度以上で加熱して硬化させ管状体を得る硬化工程と、
上記管状体の樹脂含有率を高くした外表面を研磨する研磨工程と、
を含む管状体の製造方法を提供している。
In order to solve the above problems, the present invention includes a step of laminating a fiber reinforced resin layer composed of a reinforced fiber and a thermosetting resin to form a tubular preform,
The preform is rotated while being heated below the curing temperature of the thermosetting resin, and the resin in the preform is caused to flow radially outward by centrifugal force so that the resin in the preform is filled. A rotation control step for controlling the outer surface side resin content to be increased while filling the voids not filled with resin;
A curing step in which the preform with the resin content controlled is heated at or above the curing temperature of the thermosetting resin during or after the rotation to obtain a tubular body;
A polishing step for polishing the outer surface of the tubular body having a high resin content;
The manufacturing method of the tubular body containing this is provided.

未硬化状態である繊維強化樹脂の管状の予備成形体を、その軸心を回転軸として回転させることで、予備成形体に遠心力が作用し、径方向において、繊維強化樹脂中で繊維分よりも比重の大きな樹脂分が、繊維分に対して相対的に外周側に流動する。このため、回転前に比べ、内周側の樹脂含有率が減少させると共に、外周側の樹脂含有率を増加させることができる。また、樹脂が充填されていない空隙(ボイド)に樹脂が充填させることができ、上記回転制御工程で予備成形体の周方向において樹脂含有率の均一化を実現することができる。
また、樹脂含有率を高くした外表面が研磨されるため、重量増を招く樹脂分が削られて重量を減少できると同時に繊維分は削られないため、剛性を低下させることなく軽量化を実現することができる。さらに、管状体の強度低下の原因となる樹脂溜りやボイドの発生も防止することができ、高強度とすることができる。
By rotating an uncured fiber reinforced resin tubular preform with its axis as the axis of rotation, centrifugal force acts on the preform, and in the radial direction, the fiber component in the fiber reinforced resin However, a resin component having a large specific gravity flows toward the outer peripheral side relative to the fiber component. For this reason, the resin content rate on the inner peripheral side can be decreased and the resin content rate on the outer peripheral side can be increased as compared to before rotation. Further, the resin can be filled into voids that are not filled with the resin, and the resin content can be made uniform in the circumferential direction of the preform in the rotation control step.
Also, since the outer surface with a high resin content is polished, the resin component that causes an increase in weight can be cut and the weight can be reduced. At the same time, the fiber component is not cut, thus reducing the weight without reducing the rigidity. can do. Furthermore, it is possible to prevent the occurrence of resin pools and voids that cause a decrease in the strength of the tubular body, and the strength can be increased.

上記繊維強化樹脂層を積層した管状の予備成形体の形成工程はシートワインディング法で形成しても良いし、フィラメントワインディング法で形成してもよい。また、回転制御工程は、予備成形体をマンドレルに巻き付けた状態でマンドレルを回転させても良いし、円筒容器に収容して円筒容器を回転させてもよい。   The forming step of the tubular preform with the fiber reinforced resin layer laminated may be formed by a sheet winding method or a filament winding method. In the rotation control step, the mandrel may be rotated in a state where the preform is wound around the mandrel, or the cylindrical container may be rotated by being accommodated in the cylindrical container.

好ましくは、上記予備成形体は、マンドレルに強化繊維に熱硬化性樹脂を含浸させたプリプレグを複数層巻き回すことにより形成した後、上記マンドレルを回転させる方法が採用できる。このマンドレルの回転により、マンドレルの外周の予備成形体が回転されて、回転速度、加熱温度を制御することで、樹脂含有率を内周側から外周側にむけて所要の割合で漸増させていることができる。
内周側に対して外周側の樹脂含有率が大きくなることにより、大きな曲げ応力やねじれ応力のかかる外周側において特にボイドを無くして、耐久性を高めることができる。
Preferably, the preform may be formed by winding a plurality of prepregs in which a mandrel is impregnated with a thermosetting resin in a reinforcing fiber and then rotating the mandrel. By the rotation of the mandrel, the preform on the outer periphery of the mandrel is rotated, and the resin content is gradually increased from the inner periphery side to the outer periphery side by controlling the rotation speed and the heating temperature. be able to.
By increasing the resin content on the outer peripheral side relative to the inner peripheral side, voids can be eliminated particularly on the outer peripheral side where a large bending stress or torsional stress is applied, and durability can be improved.

上記複数のプリプレグは、樹脂含有率が略同等のものを用いている。
本発明では、樹脂含有率が同等のプリプレグを用いても回転制御工程により予備成形体中の樹脂含有率の径方向の制御が可能であるため、樹脂含有率の異なる複数のプリプレグを準備する必要がなく、材料種を削減することができ、材料コストの低下および製造効率が向上する。また、樹脂含有率の大きいプリプレグを用いた場合でも、研磨する外表面の樹脂量を大とするため、高剛性で軽量化を実現できる樹脂含有率の小さい管状体を成形することができる。
なお、製造する管状体の要求性能等に応じて樹脂含有率の異なるプリプレグを用いても良いことは言うまでもない。
As the plurality of prepregs, those having approximately the same resin content are used.
In the present invention, it is necessary to prepare a plurality of prepregs having different resin contents because the resin content ratio in the preform can be controlled in the radial direction by the rotation control step even if prepregs having the same resin content are used. Therefore, the material type can be reduced, the material cost is reduced, and the production efficiency is improved. Further, even when a prepreg having a high resin content is used, the amount of resin on the outer surface to be polished is increased, so that a tubular body having a low rigidity and a low resin content that can realize weight reduction can be formed.
It goes without saying that prepregs having different resin contents may be used according to the required performance of the tubular body to be manufactured.

上記研磨工程前における管状体の全体厚みに対して外表面から20%まで厚さ部分において、上記回転制御工程前の樹脂含有率に対して上記回転制御工程後の樹脂含有率が120%〜200%となるように制御している   In the thickness portion from the outer surface to 20% of the entire thickness of the tubular body before the polishing step, the resin content after the rotation control step is 120% to 200% with respect to the resin content before the rotation control step. It is controlled to become%

研磨工程において、外表面から径方向に厚みの20%の距離までの範囲が、研磨される可能性がある領域である。よって、この部分の樹脂含有率を大きくすると、研磨による管状体の剛性変化を抑制することができ、研磨後の管状体の樹脂含有率が低下し、軽量、高剛性の管状体を得ることができる。研磨量は管状体の要求性能に応じて変更可能であり、管状体の外周面の全面を研磨しても良いし、部分的に研磨してもよい。
また、上記領域において、樹脂量調整工程後の樹脂含有率を、回転制御工程前の樹脂含有率の120%〜200%と増加しているのは、120%未満だと樹脂分に対して繊維分が多く研磨により剛性や強度が変化しやすくなるためである。一方、200%より大きくしようとすると樹脂量の変化が大きくなりすぎ回転制御工程に要する時間が長くなり生産性が悪化するためである。なお、上記回転制御工程による樹脂含有率を120%〜150%とするのが好ましい。
In the polishing step, the range from the outer surface to a distance of 20% of the thickness in the radial direction is a region that may be polished. Therefore, when the resin content of this portion is increased, the change in rigidity of the tubular body due to polishing can be suppressed, the resin content of the tubular body after polishing is reduced, and a lightweight, high-rigidity tubular body can be obtained. it can. The amount of polishing can be changed according to the required performance of the tubular body, and the entire outer peripheral surface of the tubular body may be polished or partially polished.
In the above region, the resin content after the resin amount adjustment step is increased to 120% to 200% of the resin content before the rotation control step. This is because the rigidity and strength are easily changed by polishing. On the other hand, if it is made larger than 200%, the change in the resin amount becomes too large, and the time required for the rotation control process becomes longer and the productivity deteriorates. In addition, it is preferable that the resin content rate by the said rotation control process shall be 120%-150%.

マンドレルを軸方向の一端を小径とし他端を大径とし、該小径側から大径側に向かい外径及び内径が漸次増大するテーパ状に形成し、該マンドレルに巻き付けて形成する予備成形体はテーパ状の管状体として形成しておくと、上記回転制御工程で、内周から外周への樹脂の流動が大径側が小径側より多いため、小径側より大径側が、外周側の樹脂含有率が高い管状体を得ることができる。   A mandrel is formed with a small diameter at one end in the axial direction and a large diameter at the other end. If it is formed as a tapered tubular body, the resin flow rate from the inner diameter to the outer periphery is larger on the larger diameter side than on the smaller diameter side in the rotation control step. A tubular body having a high height can be obtained.

上記回転制御工程および加熱硬化工程後で、研磨工程前において、管状体の外周面から径方向へ厚みの10%までの範囲の樹脂含有率は50%〜100%、好ましくは80%〜100%としている。これは、研磨される可能性がある領域において、樹脂含有率が50%より小さいと繊維分が多いため、繊維分研磨されて剛性や強度が低下しやすいためである。この観点より上記範囲は100%樹脂分とされるのが最適である。   After the rotation control step and the heat curing step, and before the polishing step, the resin content in the range from the outer peripheral surface of the tubular body to 10% of the thickness in the radial direction is 50% to 100%, preferably 80% to 100%. It is said. This is because in a region that may be polished, if the resin content is less than 50%, the fiber content is large, so that the fiber component is polished and the rigidity and strength are likely to decrease. From this viewpoint, the above range is optimally set to 100% resin content.

上記回転制御工程における回転速度は30rpm〜1500rpm、好ましくは300rpm〜1500rpmである。これは、回転速度が30rpmより小さいと遠心力が十分に作用せず、樹脂が外周側へ流動させにくいためである。一方、1500rpmより大きくしても樹脂の外周側への流動を加速出来ず、金属製のマンドレルの高速回転が困難なためである。回転速度は一定としても良いし、段階的に変更しても良い。   The rotation speed in the rotation control step is 30 rpm to 1500 rpm, preferably 300 rpm to 1500 rpm. This is because if the rotational speed is less than 30 rpm, the centrifugal force does not act sufficiently, and the resin is difficult to flow to the outer peripheral side. On the other hand, even if it exceeds 1500 rpm, the flow of the resin to the outer peripheral side cannot be accelerated, and high-speed rotation of the metal mandrel is difficult. The rotation speed may be constant or may be changed in stages.

上記熱可塑性樹脂を流動させる回転制御工程での加熱温度は、使用樹脂の硬化温度未満で、かつ、使用樹脂の粘度が低くなる温度が好ましい。例えば、熱硬化性樹脂がエポキシ樹脂の場合は、樹脂温度が40℃〜100℃、好ましくは50℃〜80℃の状態で加熱しながら回転制御するのが良く、その後、硬化温度まで段階的に加熱を行うのが良い。
なお、回転制御工程では、予備成形体の外周面にポリプロピレン,ポリエチレン等の樹脂フィルムを巻き付けて加圧しておき、その後、加熱、回転することが好ましい。
The heating temperature in the rotation control step for causing the thermoplastic resin to flow is preferably lower than the curing temperature of the resin used and the temperature at which the viscosity of the resin used decreases. For example, when the thermosetting resin is an epoxy resin, the rotation is good while heating at a resin temperature of 40 ° C. to 100 ° C., preferably 50 ° C. to 80 ° C., and then stepwise up to the curing temperature. Heating is good.
In the rotation control step, it is preferable that a resin film such as polypropylene or polyethylene is wound around the outer peripheral surface of the preform and pressurized, and then heated and rotated.

上記積層するプリプレグは、軸線方向に対し繊維角度を10度〜70度としたバイアス層、0度〜10度としたストレート層、70度〜90度としたフープ層等のプリプレグを組み合わせて用いることができ、強化繊維の繊維角度や、各層の配置位置、長さ、幅、厚み等の積層構成は管状体の要求性能に応じて設定することができる。軸方向の全長に渡るプリプレグと、部分的に配置されるプリプレグを組み合わせても良い。   The prepreg to be laminated is used in combination with a prepreg such as a bias layer having a fiber angle of 10 to 70 degrees, a straight layer having a fiber angle of 0 to 10 degrees, and a hoop layer having a fiber angle of 70 to 90 degrees relative to the axial direction. The fiber configuration of the reinforcing fibers, the laminated position such as the arrangement position, length, width, and thickness of each layer can be set according to the required performance of the tubular body. You may combine the prepreg over the full length of an axial direction, and the prepreg arrange | positioned partially.

上記プリプレグの厚みは0.01mm〜0.3mm、さらには0.05mm〜0.15mmが好ましく、プリプレグの弾性率は5ton/mm2〜100ton/mm2が好ましい。また、軸方向に対して0度での曲げ強度は100kgf/mm2〜200kgf/mm2が好ましく、プリプレグの樹脂目付量は5g/m2〜500g/m2、炭素繊維目付量は5g/m2〜300g/m2が好ましい。 The thickness of the prepreg is preferably 0.01 mm to 0.3 mm, more preferably 0.05 mm to 0.15 mm, and the elastic modulus of the prepreg is preferably 5 ton / mm 2 to 100 ton / mm 2 . Furthermore, the bending strength is preferably from 100kgf / mm 2 ~200kgf / mm 2 at 0 degrees with respect to the axial direction, the resin weight per unit area of the prepreg is 5g / m 2 ~500g / m 2 , carbon fiber basis weight is 5 g / m 2 to 300 g / m 2 is preferable.

また、上記使用するプリプレグの樹脂含有率は10重量%〜50重量%が好ましい。この範囲より小さいと、タック性が小さくプリプレグの巻き付けが困難になるためであり、この範囲より大きいと研磨量が多くなり生産性が悪くなると共に軽量化を実現しにくいためである。更に好ましくは20重量%〜40重量%、より好ましくは20重量%〜30重量%である。   The resin content of the prepreg used is preferably 10% by weight to 50% by weight. This is because if the thickness is smaller than this range, the tackiness is small and it is difficult to wind the prepreg, and if it is larger than this range, the polishing amount increases, the productivity is deteriorated, and the weight reduction is difficult to realize. More preferably, it is 20 to 40 weight%, More preferably, it is 20 to 30 weight%.

強化繊維の繊維としては、カーボン繊維、ガラス繊維、各種セラミックス繊維、ボロン繊維、銅,ステンレス等の金属繊維、アモルファス繊維、芳香族ポリアミド等の有機繊維(例えば、ケブラー繊維、チラノ繊維)、それらの混織物等を用いることができる。中でも、カーボン繊維、ガラス繊維が好ましく、カーボン繊維が特に好ましい。なお、強化繊維の太さは3μm〜13μmが好ましく、さらには3μm〜4μmが好ましい。強化繊維は、単一方向、ランダム方向、シート状、マット状、織物(クロス)状、組み紐状等のいずれの形状・配列でも使用可能である。   Examples of reinforcing fibers include carbon fibers, glass fibers, various ceramic fibers, boron fibers, metal fibers such as copper and stainless steel, amorphous fibers, organic fibers such as aromatic polyamides (for example, Kevlar fibers, Tyranno fibers), and the like. A mixed fabric or the like can be used. Among these, carbon fiber and glass fiber are preferable, and carbon fiber is particularly preferable. The thickness of the reinforcing fiber is preferably 3 μm to 13 μm, and more preferably 3 μm to 4 μm. The reinforcing fibers can be used in any shape / arrangement such as a single direction, a random direction, a sheet shape, a mat shape, a woven (cross) shape, a braided shape, and the like.

熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂等を用いることができ、比重の大きいものが好ましい。中でもエポキシ樹脂、フェノール樹脂が好ましく、特にエポキシ樹脂が好ましい。   As the thermosetting resin, an epoxy resin, a phenol resin, a vinyl ester resin, a polyester resin, an unsaturated polyester resin, or the like can be used, and a resin having a large specific gravity is preferable. Of these, epoxy resins and phenol resins are preferable, and epoxy resins are particularly preferable.

本発明は、上記製造方法により製造される管状体を提供している。
上記管状体は、樹脂分が回転制御工程で遠心力で径方向の外周へ流動するため、管状体中に樹脂が充填されていないボイドを無くすことが出来ると同時に、樹脂溜りの樹脂も外径側へと流動させて、樹脂溜まりも無くすことができ、物性が均一化すると共に耐久性の高い管状体を提供できる。また、外表面の樹脂含有率の高い部分が研磨されるため、全体として樹脂含有率が低く軽量で、高剛性の管状体とすることができる。
その結果、ゴルフクラブシャフトとして特に好適に用いることができるほか、テニスやバトミントンのラケット、釣竿、スキーのストック等に用いることができる。
The present invention provides a tubular body manufactured by the above manufacturing method.
In the tubular body, since the resin component flows to the outer periphery in the radial direction by centrifugal force in the rotation control process, voids that are not filled with the resin in the tubular body can be eliminated, and at the same time, the resin in the resin reservoir has an outer diameter. By flowing to the side, it is possible to eliminate a resin reservoir, and it is possible to provide a tubular body with uniform physical properties and high durability. Moreover, since the part with high resin content rate of an outer surface is grind | polished, it can be set as a highly rigid tubular body with low resin content rate as a whole, and lightweight.
As a result, it can be particularly suitably used as a golf club shaft, and can also be used for tennis or badminton rackets, fishing rods, ski stocks, and the like.

上述したように、本発明によれば、未硬化状態の予備成形体を加熱しながら軸心を回転軸として回転させることで、予備成形体中の周方向においては樹脂含有率を均一にできると共に、径方向においては樹脂含有率を内周側から外周側に向かって漸次大きくすることができる。   As described above, according to the present invention, the resin content can be made uniform in the circumferential direction in the preform by rotating the shaft center as the rotation axis while heating the uncured preform. In the radial direction, the resin content can be gradually increased from the inner peripheral side toward the outer peripheral side.

このように樹脂含有率が制御された予備成形体を硬化後、樹脂含有率の大きな外周側を研磨することで、研磨により繊維分が削られることがなく、剛性を有する管状体を容易に得ることができる。また、従来のように成形が困難な樹脂含有率が小さいプリプレグを用いることなく、軽量かつ高剛性の管状体を容易に製造することができる。さらに、ボイドや樹脂溜りの発生がないため、管状体の耐久性を向上することができる。   After curing the preform with the resin content controlled in this way, the outer peripheral side having a large resin content is polished, so that the fiber portion is not scraped by polishing, and a rigid tubular body is easily obtained. be able to. Moreover, a lightweight and highly rigid tubular body can be easily manufactured without using a prepreg having a low resin content that is difficult to mold as in the prior art. Furthermore, since no voids or resin pools are generated, the durability of the tubular body can be improved.

さらに、管状の予備成形体を軸方向の一端を小径とし他端を大径としたテーパ状とした場合には、大径側を小径側より外周の樹脂含有率を高くすることができる。言い換えれば、小径側の外周の繊維含有率を大径側より高くできるため、耐衝撃力を高めることができ、大径側は樹脂含有率を高くできるため耐久性を高めることができる。よって、ゴルフクラブシャフトに適用した場合、小径側のヘッド取付側の耐衝撃性を向上させることができる一方、大径側のグリップ取付側の外周が樹脂含有率が高いため耐久性を向上させることができ、しかも、小径側及び大径側を問わず、樹脂分が高い外表面が研磨されるため、軽量化を図ることができ、特にゴルフクラブシャフトに好適に適用できる。   Further, when the tubular preform is tapered with one end in the axial direction having a small diameter and the other end having a large diameter, the resin content of the outer periphery can be increased on the large diameter side than on the small diameter side. In other words, since the fiber content of the outer periphery on the small diameter side can be made higher than that on the large diameter side, the impact resistance can be increased, and the resin content can be increased on the large diameter side, so that the durability can be increased. Therefore, when applied to a golf club shaft, the impact resistance on the head mounting side on the small diameter side can be improved, while the outer periphery on the grip mounting side on the large diameter side has a high resin content to improve durability. Moreover, since the outer surface having a high resin content is polished regardless of the small-diameter side and the large-diameter side, the weight can be reduced, and it can be suitably applied particularly to a golf club shaft.

以下、本発明の実施形態として管状物の製造方法について図面を参照して説明する。
まず、予備成形体の形成工程で、強化繊維と熱硬化性樹脂とを備えた繊維強化樹脂の積層体からなる予備成形体を形成する。
予備成形体は、図1(A)(B)に示すように、強化繊維に熱硬化性樹脂を含浸させたプリプレグ11〜14をマンドレル10に複数層巻き回して形成している。マンドレル10は、断面が円形状であり、一端10aを小径とし、他端10bを大径とし、小径側から大径側に漸次外径が増大するテーパ形状としている。プリプレグ11〜14の強化繊維F11〜F14はいずれも炭素繊維を用い、マトリクス樹脂としてエポキシ樹脂を用いている。
Hereinafter, the manufacturing method of a tubular thing is explained with reference to drawings as an embodiment of the present invention.
First, in the preforming step, a preform formed of a laminate of fiber reinforced resin including reinforced fibers and a thermosetting resin is formed.
As shown in FIGS. 1A and 1B, the preform is formed by winding a plurality of layers of prepregs 11 to 14 in which reinforcing fibers are impregnated with a thermosetting resin around a mandrel 10. The mandrel 10 has a circular cross section, and has a tapered shape in which one end 10a has a small diameter, the other end 10b has a large diameter, and the outer diameter gradually increases from the small diameter side to the large diameter side. The reinforcing fibers F11 to F14 of the prepregs 11 to 14 are all made of carbon fiber, and an epoxy resin is used as the matrix resin.

プリプレグ11、12は、強化繊維F11、F12が軸線方向に対してなす繊維角度を各々+45°、−45°(アングル層)とし、各々3周巻きとしている。 プリプレグ13は、強化繊維F11が軸線方向に対してなす繊維角度を0°(ストレート層)とし、2周巻きとしている。
プリプレグ14は、強化繊維F14が軸線方向に対してなす繊維角度を0°とし、3周巻きとしている。
プリプレグ11〜14の巻き数は先端から後端まで共通としている。各プリプレグ11〜14の樹脂含有率はいずれも20重量%とし、厚みは0.1mmとし、弾性率は30ton/mm2としている。また、上記プリプレグの樹脂目付量は150g/m2とし、炭素繊維目付量は100g/m2とし、軸方向に対して0度での曲げ強度は155kgf/mm2としている。
In the prepregs 11 and 12, the fiber angles formed by the reinforcing fibers F11 and F12 with respect to the axial direction are + 45 ° and −45 ° (angle layer), respectively, and each of the prepregs 11 and 12 has three turns. The prepreg 13 has a fiber angle of 0 ° (straight layer) formed by the reinforcing fibers F11 with respect to the axial direction and is wound twice.
The prepreg 14 has a fiber angle formed by the reinforcing fiber F14 with respect to the axial direction of 0 ° and is wound three times.
The number of windings of the prepregs 11 to 14 is common from the front end to the rear end. Each prepreg 11-14 has a resin content of 20% by weight, a thickness of 0.1 mm, and an elastic modulus of 30 ton / mm 2 . Further, the resin basis weight of the prepreg is 150 g / m 2 , the carbon fiber basis weight is 100 g / m 2, and the bending strength at 0 degrees with respect to the axial direction is 155 kgf / mm 2 .

具体的には、マンドレル10の外周面10cに、内層側から順にプリプレグ11〜14を巻き付けて積層し、管状の予備成形体20を形成する。予備成形体20は、軸方向の一端20aを小径とし他端20bを大径とし、一端20aから他端20bに向かい外径及び内径が漸次増大するように積層され、厚みは一定としている。   Specifically, the prepregs 11 to 14 are wound around the outer peripheral surface 10 c of the mandrel 10 in order from the inner layer side and laminated to form a tubular preform 20. The preform 20 is laminated so that one end 20a in the axial direction has a small diameter and the other end 20b has a large diameter, and the outer diameter and inner diameter gradually increase from the one end 20a to the other end 20b, and the thickness is constant.

図2に示すように、回転制御工程前の予備成形体20の径方向の樹脂含有率は、予備成形体の内周側20aから外周側20bにいたるまで均一で、樹脂分21と繊維分22との割合は一定となっている。   As shown in FIG. 2, the resin content in the radial direction of the preform 20 before the rotation control step is uniform from the inner peripheral side 20 a to the outer peripheral side 20 b of the preform, and the resin content 21 and the fiber content 22. The ratio is constant.

上記したプリプレグを用いたシートワインディング製法により予備成形体20を成形した後、予備成形体20の外周面にポリプロピレン製のテープ(図示せず)を、一定の張力をかけながら数mmピッチで巻きつけてラッピングし、予備成形体20を外周面側から加圧する。   After the preform 20 is formed by the sheet winding method using the prepreg described above, a polypropylene tape (not shown) is wound around the outer peripheral surface of the preform 20 at a pitch of several mm while applying a certain tension. The preform 20 is pressed from the outer peripheral surface side.

次に、図3及び図4に示すように、回転制御工程で、マンドレル10を回転させ、 マンドレル10の外周面上の予備成形体20を回転させる。このとき、熱硬化性樹脂を硬化温度未満で流動性を保持した状態で加熱保持し、軸心iを回転軸として図中矢印に示すように回転させる。この回転で、予備成形体20の遠心力が作用し、繊維強化樹脂中で繊維分22よりも比重の大きな樹脂分21が、繊維分22に対して相対的に外周側22bに流動し、これにより、図2(A)の状態から図4の状態に樹脂含有率を制御している。
その後、硬化工程で樹脂の硬化温度まで上昇させて硬化させ、樹脂含有率が調整された予備成形体20’を、回転させながら熱硬化性樹脂の硬化温度以上で加熱硬化させて管状体を得る。
Next, as shown in FIGS. 3 and 4, in the rotation control step, the mandrel 10 is rotated, and the preform 20 on the outer peripheral surface of the mandrel 10 is rotated. At this time, the thermosetting resin is heated and held in a state where the fluidity is maintained at a temperature lower than the curing temperature, and is rotated as indicated by an arrow in the drawing with the axis i as the rotation axis. With this rotation, the centrifugal force of the preform 20 acts, and the resin portion 21 having a specific gravity larger than the fiber portion 22 in the fiber reinforced resin flows relative to the fiber portion 22 toward the outer peripheral side 22b. Thus, the resin content is controlled from the state of FIG. 2A to the state of FIG.
Thereafter, the preform 20 'having the resin content adjusted is heated and cured at a temperature equal to or higher than the curing temperature of the thermosetting resin while rotating to obtain a tubular body. .

図4に示すように、回転制御工程で樹脂分が外径に流動され、この状態で硬化された管状体20’の径方向の樹脂含有率は、内周側20a’から外周側20b’に向かって漸次高くなっており、回転制御工程前に比べ、内周側20a’では繊維分22が多く、外周側20b’では樹脂分21が多くなっている。   As shown in FIG. 4, the resin content in the tubular body 20 ′ cured in this state is flowed from the inner peripheral side 20 a ′ to the outer peripheral side 20 b ′. As compared to before the rotation control step, the fiber portion 22 is larger on the inner peripheral side 20a ′ and the resin portion 21 is larger on the outer peripheral side 20b ′.

具体的には、本実施形態では、マンドレル10の大径側を把持してモーター(図示せず)により回転トルクを与えてマンドレル10を軸回りに回転させ、マンドレル10と共に予備成形体20を軸心iを回転軸として、500rpmで回転させている。
回転の開始と共に加熱を行い、50分間で80℃まで昇温し、その後30分間80℃を維持し、樹脂の流動性を保持して回転に伴う遠心力で樹脂分を外周側へ流動させている。その後、30分間かけて130℃まで昇温して、予備成形体20を段階的に加熱し、樹脂量の調整と樹脂の硬化を行っている。130℃まで昇温した後、徐々に降温し、降温と同時に回転を停止させている。
Specifically, in the present embodiment, the mandrel 10 is gripped on the large diameter side, and a rotational torque is applied by a motor (not shown) to rotate the mandrel 10 around the axis. The center i is rotated at 500 rpm about the rotation axis.
Heating is started at the start of rotation, the temperature is raised to 80 ° C. in 50 minutes, and then maintained at 80 ° C. for 30 minutes, and the resin content is flowed to the outer peripheral side by centrifugal force accompanying rotation while maintaining the fluidity of the resin. Yes. Thereafter, the temperature is raised to 130 ° C. over 30 minutes, and the preform 20 is heated stepwise to adjust the resin amount and cure the resin. After the temperature is raised to 130 ° C., the temperature is gradually lowered and the rotation is stopped simultaneously with the temperature fall.

上記した加熱と回転とで、外表面から径方向に20%までの領域において、回転制御工程前の樹脂含有率に対して回転制御工程後の樹脂含有率を180%と増加している。かつ、回転制御工程後において、外表面から厚みの10%の領域までの繊維強化樹脂の樹脂含有率を65%としている。
常温まで降温した後、加熱硬化された管状体からポリプロピレン製のテープを剥がし取る。その後、図5(A)(B)に示すように、硬化された管状体20’をマンドレル10から抜き取り、研磨工程で管状体20’の外表面を研磨している。
本実施形態では、外表面20c’から0.06mmの位置までの範囲の樹脂含有率が高い外周面を全面に渡って均一に研磨して、管状体30を製造している。
上記研磨時には樹脂分21が主として除去され繊維分22は殆ど削られない。
なお、管状体を研磨後にマンドレルから抜き取っても良く、研磨後に装飾等のため塗装を行うこともできる。
With the heating and rotation described above, the resin content after the rotation control process is increased to 180% with respect to the resin content before the rotation control process in the region from the outer surface to 20% in the radial direction. And after the rotation control process, the resin content of the fiber reinforced resin from the outer surface to the region of 10% of the thickness is set to 65%.
After cooling to room temperature, the polypropylene tape is peeled off from the heat-cured tubular body. Thereafter, as shown in FIGS. 5A and 5B, the cured tubular body 20 ′ is extracted from the mandrel 10, and the outer surface of the tubular body 20 ′ is polished in a polishing process.
In the present embodiment, the tubular body 30 is manufactured by uniformly polishing the outer peripheral surface having a high resin content in the range from the outer surface 20c ′ to the position of 0.06 mm over the entire surface.
During the polishing, the resin component 21 is mainly removed and the fiber component 22 is hardly scraped.
The tubular body may be extracted from the mandrel after polishing, or may be coated for decoration or the like after polishing.

このように、樹脂含有率が均一である予備成形体20を、上記のように加熱しながら回転させることで、遠心力で樹脂分を外周側へ流動させることで、樹脂が充填されていないボイドに樹脂が充填されると共に、樹脂溜まり部分の樹脂も外周側へと流動するため、周方向においては樹脂含有率を均一にすることができる。かつ、径方向においては樹脂含有率を内周側から外周側に向かって漸次大きくすることができる。かつ、樹脂含有率を高くした外周部を硬化後に研磨することにより、軽量かつ高剛性の管状体30を容易に得ることができる。   In this way, by rotating the preform 20 with a uniform resin content while heating as described above, the void is not filled with the resin by flowing the resin component to the outer peripheral side by centrifugal force. In addition, the resin in the resin reservoir portion also flows toward the outer peripheral side, so that the resin content can be made uniform in the circumferential direction. In the radial direction, the resin content can be gradually increased from the inner peripheral side toward the outer peripheral side. And the lightweight and highly rigid tubular body 30 can be easily obtained by grind | polishing after hardening the outer peripheral part which made resin content high.

図6は、本発明の管状体をゴルフクラブ用のシャフト31として用いており、シャフト31の小径端側にヘッド32が取り付けられ、大径端側にグリップ33が取り付けられている。   In FIG. 6, the tubular body of the present invention is used as a shaft 31 for a golf club. A head 32 is attached to the small diameter end side of the shaft 31, and a grip 33 is attached to the large diameter end side.

以下、本発明の管状体の製造方法の実施例、比較例について詳述する。   Hereinafter, the Example of the manufacturing method of the tubular body of this invention and a comparative example are explained in full detail.

(実施例1)
上記実施形態と同様の方法で、予備成形体の樹脂含有率を調整して管状体を製造した。
(Example 1)
A tubular body was manufactured by adjusting the resin content of the preform by the same method as in the above embodiment.

(比較例1)
マンドレル及び予備成形体を回転せずに、プリプレグの積層状態のままで加熱硬化した。その他は実施例1と同様とした。
(Comparative Example 1)
Without rotating the mandrel and the preform, the mandrel and the preform were heated and cured with the prepreg laminated. Others were the same as in Example 1.

プリプレグ11、12、14はMR350C 125S(三菱レイヨン製)を用い、プリプレグ13は8255S−12(東レ製)を用いた。
加熱硬化後、研磨前の管状体の厚みは一定で3.0mm、小径側の外径が9.5mm、大径側の外径が16.0mmであり、外周面から0.06mmの位置までを外周面全面に渡って研磨した。
The prepregs 11, 12, and 14 used MR350C 125S (manufactured by Mitsubishi Rayon), and the prepreg 13 used 8255S-12 (manufactured by Toray).
After heat curing, the thickness of the tubular body before polishing is constant, 3.0 mm, the outer diameter on the small diameter side is 9.5 mm, the outer diameter on the large diameter side is 16.0 mm, and from the outer peripheral surface to the position of 0.06 mm Was polished over the entire outer peripheral surface.

予備成形体の外周面から径方向に予備成形体の厚みの20%の距離を隔てた位置及び10%の距離を隔てた位置における樹脂含有率を測定し、加熱成形前と加熱成形後で比較し表1に記載した。
また、外周面から最外層の繊維までの距離を測定し、管状体の小径側から大径側までの平均値を表1の「距離」の欄に記載した。
Measure the resin content in the radial direction from the outer peripheral surface of the preform and measure the resin content at a position separated by 20% of the thickness of the preform and at a distance of 10%, and compare before and after molding The results are shown in Table 1.
Further, the distance from the outer peripheral surface to the outermost fiber was measured, and the average value from the small diameter side to the large diameter side of the tubular body was described in the column of “Distance” in Table 1.

Figure 2005131838
Figure 2005131838

(3点曲げ強度の測定)
研磨後の管状体の3点曲げ強度を測定した。3点曲げ強度とは、製品安全協会が定めるSG式の破壊強度である。図7に示すように、3点で管状体40を支え、上方から荷重圧子41により荷重Fを加え、管状体40が破断した時の荷重値(ピーク値)を測定した。測定点は、管状体40の細径端から90mm(T点)、175mm(A点)、525mm(B点)、の各位置を、太径端から175mm(C点)の4ヶ所について行った。2ヵ所の支持点42のスパンをT点測定時のみ150mmとし、A〜C点測定時は300mmとした。荷重圧子41の先端半径は75mm、支持点42の先端半径は12.5mmとし、荷重圧子41は支持点42の中心位置で管状体40に荷重Fを加えた。
(Measurement of 3-point bending strength)
The three-point bending strength of the polished tubular body was measured. The three-point bending strength is an SG type breaking strength determined by the Product Safety Association. As shown in FIG. 7, the tubular body 40 was supported at three points, a load F was applied from above by a load indenter 41, and a load value (peak value) when the tubular body 40 was broken was measured. The measurement points were 90 mm (point T), 175 mm (point A), and 525 mm (point B) from the small diameter end of the tubular body 40 at four positions 175 mm (point C) from the large diameter end. . The span of the two support points 42 was 150 mm only when measuring the T point, and 300 mm when measuring the points A to C. The tip radius of the load indenter 41 was 75 mm, the tip radius of the support point 42 was 12.5 mm, and the load indenter 41 applied a load F to the tubular body 40 at the center position of the support point 42.

実施例1は、
T点:205N、A点:87N、B点:108N、C点:122Nであった。
比較例1は、
T点:181N、A点:75N、B点: 93N、C点:101Nであった。
Example 1
T point: 205N, A point: 87N, B point: 108N, C point: 122N.
Comparative Example 1
T point: 181N, A point: 75N, B point: 93N, C point: 101N.

また、加熱硬化後の管状体の断面観察を行った。断面における樹脂分と繊維分との面積比により樹脂含有率を測定した。
実施例1は、断面の外周側半分の樹脂含有率の平均値が35重量%であり、内周側半分の樹脂含有率の平均が5重量%であった。
比較例1は、断面の外周側半分及び内周側半分の樹脂含有率の平均値が、共に20重量%であった。
Moreover, the cross-section observation of the tubular body after heat-hardening was performed. The resin content was measured by the area ratio of the resin content and the fiber content in the cross section.
In Example 1, the average value of the resin content in the outer half of the cross section was 35% by weight, and the average of the resin content in the inner half was 5% by weight.
In Comparative Example 1, both of the average values of the resin content in the outer peripheral side half and the inner peripheral side half of the cross section were 20% by weight.

表1及び実験結果に示すように、実施例1は、樹脂含有率の制御を行ったため、外周側の樹脂含有率が大きくなっており、外周面から最外層の繊維までの距離が0.05mmであり、研磨を行っても繊維分が研磨されることはほとんどなく、研磨による剛性や強度の低下が生じないことが確認できた。   As shown in Table 1 and the experimental results, in Example 1, since the resin content was controlled, the resin content on the outer peripheral side was increased, and the distance from the outer peripheral surface to the outermost fiber was 0.05 mm. Thus, it was confirmed that even if polishing was performed, the fiber was hardly polished, and the rigidity and strength were not reduced by polishing.

一方、比較例1は、プリプレグを巻き付けた状態のままで加熱硬化されているため、管状体中の樹脂含有率が一定であり、外周面から最外層の繊維までの距離が0.005mmであり、研磨を行うことにより繊維分が研磨されることとなり、研磨により剛性や強度が低下することが確認できた。   On the other hand, since the comparative example 1 is heat-cured with the prepreg wound, the resin content in the tubular body is constant, and the distance from the outer peripheral surface to the outermost fiber is 0.005 mm. It was confirmed that the fiber portion was polished by polishing, and the rigidity and strength were reduced by polishing.

(A)(B)は、本発明の管状体の製造方法に用いたマンドレルとプリプレグの概略図である。(A) (B) is the schematic of the mandrel and prepreg which were used for the manufacturing method of the tubular body of this invention. (A)は樹脂含有率調整前の予備成形体中の樹脂分と繊維分の存在状況の概略説明図であり、(B)はマンドレルと予備成形体の断面図である。(A) is schematic explanatory drawing of the presence condition of the resin part and fiber part in a preform before resin content rate adjustment, (B) is sectional drawing of a mandrel and a preform. マンドレルと予備成形体の回転状況の説明図である。It is explanatory drawing of the rotation state of a mandrel and a preforming body. 樹脂含有率調整後の予備成形体中の樹脂分と繊維分の存在状況の概略説明図である。It is a schematic explanatory drawing of the presence condition of the resin part and fiber part in the preforming body after resin content rate adjustment. (A)は成形後の管状体とマンドレルを示し、(B)は管状体の研磨状況の概略説明図である。(A) shows the tubular body and mandrel after molding, and (B) is a schematic explanatory view of the polishing state of the tubular body. 管状体を用いたゴルフクラブシャフトの概略図である。It is the schematic of the golf club shaft using a tubular body. 3点曲げ強度の測定方法の説明図である。It is explanatory drawing of the measuring method of 3 point | piece bending strength.

符号の説明Explanation of symbols

10 マンドレル
11〜14 プリプレグ
20 予備成形体
21 樹脂分
22 繊維分
30 管状体
DESCRIPTION OF SYMBOLS 10 Mandrel 11-14 Prepreg 20 Preformed body 21 Resin content 22 Fiber content 30 Tubular body

Claims (7)

強化繊維と熱硬化性樹脂とからなる繊維強化樹脂層を積層して管状の予備成形体を形成する工程と、
上記熱硬化性樹脂の硬化温度未満で加熱しながら上記予備成形体を回転させて遠心力で該予備成形体中の樹脂を径方向外側に流動させて、該予備成形体中の樹脂が充填させていない空隙に樹脂を充填させると共に外表面側の樹脂含有率を大きくなるように制御する回転制御工程と、
上記樹脂含有率が制御された予備成形体を、上記回転中又は回転後に上記熱硬化性樹脂の硬化温度以上で加熱して硬化させ管状体を得る硬化工程と、
上記管状体の樹脂含有率を高くした外表面を研磨する研磨工程と、
を含む管状体の製造方法。
Forming a tubular preform by laminating a fiber reinforced resin layer composed of reinforced fibers and a thermosetting resin;
The preform is rotated while being heated below the curing temperature of the thermosetting resin, and the resin in the preform is caused to flow radially outward by centrifugal force so that the resin in the preform is filled. A rotation control step for controlling the outer surface side resin content to be increased while filling the voids not filled with resin;
A curing step in which the preform with the resin content controlled is heated at or above the curing temperature of the thermosetting resin during or after the rotation to obtain a tubular body;
A polishing step for polishing the outer surface of the tubular body having a high resin content;
The manufacturing method of the tubular body containing this.
上記予備成形体は、マンドレルに強化繊維に熱硬化性樹脂を含浸させたプリプレグを複数層巻き回すことにより形成した後、上記マンドレルを回転させ、樹脂含有率が内周側から外周側にむけて漸増させている請求項1に記載の管状体の製造方法。   The preform is formed by winding a plurality of layers of a prepreg in which a mandrel is impregnated with a thermosetting resin in a reinforcing fiber, and then rotating the mandrel so that the resin content is directed from the inner peripheral side to the outer peripheral side. The manufacturing method of the tubular body of Claim 1 which is made to increase gradually. 上記複数のプリプレグは、樹脂含有率が同等のものを用いている請求項2に記載の管状体の製造方法。   The tubular body manufacturing method according to claim 2, wherein the plurality of prepregs have the same resin content. 上記研磨工程前の管状体の全体厚みに対して外表面から20%まで厚さ部分において、上記回転制御工程前の樹脂含有率に対して上記回転制御工程後の樹脂含有率が120%〜200%となるように制御している請求項1乃至請求項3のいずれか1項に記載の管状体の製造方法。   In the thickness portion from the outer surface to 20% of the entire thickness of the tubular body before the polishing step, the resin content after the rotation control step is 120% to 200% with respect to the resin content before the rotation control step. The manufacturing method of the tubular body of any one of Claim 1 thru | or 3 currently controlled to become%. 上記予備成形体は、軸方向の一端を小径とし他端を大径としなるテーパ状に形成し、上記回転制御工程後の予備成形体では大径側が小径側より外周部の樹脂含有率を高くしている請求項1乃至請求項4のいずれか1項に記載の管状体の製造方法。   The preform is formed in a tapered shape with one end in the axial direction having a small diameter and the other end having a large diameter, and in the preform after the rotation control step, the large diameter side has a higher resin content in the outer peripheral portion than the small diameter side. The manufacturing method of the tubular body of any one of Claim 1 thru | or 4. 請求項1乃至請求項5のいずれか1項に記載の管状体の製造方法により製造されることを特徴とする管状体。   A tubular body manufactured by the method for manufacturing a tubular body according to any one of claims 1 to 5. ゴルフクラブシャフトとして用いられる請求項6に記載の管状体。   The tubular body according to claim 6, which is used as a golf club shaft.
JP2003368154A 2003-10-28 2003-10-28 Method for manufacturing tubular body Expired - Fee Related JP4330977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368154A JP4330977B2 (en) 2003-10-28 2003-10-28 Method for manufacturing tubular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368154A JP4330977B2 (en) 2003-10-28 2003-10-28 Method for manufacturing tubular body

Publications (2)

Publication Number Publication Date
JP2005131838A true JP2005131838A (en) 2005-05-26
JP4330977B2 JP4330977B2 (en) 2009-09-16

Family

ID=34645908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368154A Expired - Fee Related JP4330977B2 (en) 2003-10-28 2003-10-28 Method for manufacturing tubular body

Country Status (1)

Country Link
JP (1) JP4330977B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090603A (en) * 2007-10-11 2009-04-30 Sri Sports Ltd Method for manufacturing tubular body, and tubular body
JP2010120189A (en) * 2008-11-17 2010-06-03 Sri Sports Ltd Tube and method for producing the same
JP2010120191A (en) * 2008-11-17 2010-06-03 Sri Sports Ltd Tube and method for producing the same
JP2010125826A (en) * 2008-12-01 2010-06-10 Toyota Motor Corp Method and apparatus for manufacturing high-pressure gas tank
JP2010136908A (en) * 2008-12-12 2010-06-24 Yokohama Rubber Co Ltd:The Method of manufacturing golf club shaft
JP2010260344A (en) * 2009-04-09 2010-11-18 Sri Sports Ltd Tubular body and production method thereof
WO2014034803A1 (en) * 2012-08-31 2014-03-06 三菱レイヨン株式会社 Golf club shaft
US8821668B2 (en) 2007-10-11 2014-09-02 Sri Sports Limited Tubular body manufacturing method and tubular body
JP2015217573A (en) * 2014-05-16 2015-12-07 トヨタ自動車株式会社 Method for producing tank
JPWO2015105021A1 (en) * 2014-01-08 2017-03-23 三菱レイヨン株式会社 Golf club shaft and golf club

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864370U (en) * 1982-07-20 1983-04-30 日東電工株式会社 golf club shaft
JPH06270268A (en) * 1993-03-19 1994-09-27 Mazda Motor Corp Molding of liquid crystal resin composite
JPH10329247A (en) * 1997-06-02 1998-12-15 Toray Ind Inc Composite material tubular member
JP2002046937A (en) * 2000-07-27 2002-02-12 Nkk Corp Method and device for winding fiber on cylindrical body and fiber winding goods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864370U (en) * 1982-07-20 1983-04-30 日東電工株式会社 golf club shaft
JPH06270268A (en) * 1993-03-19 1994-09-27 Mazda Motor Corp Molding of liquid crystal resin composite
JPH10329247A (en) * 1997-06-02 1998-12-15 Toray Ind Inc Composite material tubular member
JP2002046937A (en) * 2000-07-27 2002-02-12 Nkk Corp Method and device for winding fiber on cylindrical body and fiber winding goods

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090603A (en) * 2007-10-11 2009-04-30 Sri Sports Ltd Method for manufacturing tubular body, and tubular body
US8821668B2 (en) 2007-10-11 2014-09-02 Sri Sports Limited Tubular body manufacturing method and tubular body
JP2010120189A (en) * 2008-11-17 2010-06-03 Sri Sports Ltd Tube and method for producing the same
JP2010120191A (en) * 2008-11-17 2010-06-03 Sri Sports Ltd Tube and method for producing the same
JP2010125826A (en) * 2008-12-01 2010-06-10 Toyota Motor Corp Method and apparatus for manufacturing high-pressure gas tank
JP2010136908A (en) * 2008-12-12 2010-06-24 Yokohama Rubber Co Ltd:The Method of manufacturing golf club shaft
JP2010260344A (en) * 2009-04-09 2010-11-18 Sri Sports Ltd Tubular body and production method thereof
WO2014034803A1 (en) * 2012-08-31 2014-03-06 三菱レイヨン株式会社 Golf club shaft
JP5633654B2 (en) * 2012-08-31 2014-12-03 三菱レイヨン株式会社 Golf club shaft
KR101557615B1 (en) 2012-08-31 2015-10-05 미쯔비시 레이온 가부시끼가이샤 Golf club shaft
JPWO2015105021A1 (en) * 2014-01-08 2017-03-23 三菱レイヨン株式会社 Golf club shaft and golf club
JP2015217573A (en) * 2014-05-16 2015-12-07 トヨタ自動車株式会社 Method for producing tank

Also Published As

Publication number Publication date
JP4330977B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
US5437450A (en) Golf club shaft and process of preparing same
JP4732103B2 (en) Manufacturing method of tubular member made of fiber reinforced resin
JP4330977B2 (en) Method for manufacturing tubular body
EP0733469A2 (en) Composite structural member with high bending strength and method of manufacture
JPH09267400A (en) Frp bent pipe
JP6804240B2 (en) A method for manufacturing a hollow tubular body, a tubular molded body having a bent portion, and a tubular molded body having a bent portion.
JP5261264B2 (en) Manufacturing method of composite container
WO2010107119A1 (en) Process and device for producing composite container
JP5342171B2 (en) Fiber reinforced plastic stepped pipe and method of manufacturing the same
JPH11342233A (en) Carbon fiber reinforced plastic golf shaft
JP2013116208A (en) Golf club shaft and golf club
JP2013116207A (en) Golf club shaft and golf club
JPH10272699A (en) Manufacture of fiber reinforced resin tubular body
JP2008295940A (en) Manufacturing method of golf club shaft and golf club shaft
JP4241416B2 (en) FRP shaft manufacturing method and FRP shaft
JP3692691B2 (en) Fiber reinforced plastic tubular body
CN111758685B (en) Shaft for sporting goods or fishing tackle
JP2003275355A (en) Golf shaft
JP2004188191A (en) Golf shaft
JP2003102884A (en) Golf club shaft and method for manufacturing golf club shaft
JP6482841B2 (en) Golf club shaft and golf club shaft manufacturing method
JP3384936B2 (en) Golf club shaft manufacturing method
JP7218517B2 (en) Fiber-reinforced plastic molding and method for producing the same
JP2015008818A (en) Shaft for golf club and manufacturing method thereof
WO2022211050A1 (en) Shaft, method for manufacturing same, and shaft for golf club

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees