JP4130904B2 - 平行磁場型ラザフォード後方散乱分析装置 - Google Patents

平行磁場型ラザフォード後方散乱分析装置 Download PDF

Info

Publication number
JP4130904B2
JP4130904B2 JP2003161013A JP2003161013A JP4130904B2 JP 4130904 B2 JP4130904 B2 JP 4130904B2 JP 2003161013 A JP2003161013 A JP 2003161013A JP 2003161013 A JP2003161013 A JP 2003161013A JP 4130904 B2 JP4130904 B2 JP 4130904B2
Authority
JP
Japan
Prior art keywords
scattered
magnetic field
ion detector
energy
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003161013A
Other languages
English (en)
Other versions
JP2004361283A (ja
Inventor
主税 一原
明 小林
憲一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003161013A priority Critical patent/JP4130904B2/ja
Publication of JP2004361283A publication Critical patent/JP2004361283A/ja
Application granted granted Critical
Publication of JP4130904B2 publication Critical patent/JP4130904B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2446Position sensitive detectors
    • H01J2237/24465Sectored detectors, e.g. quadrants

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、イオンビーム照射による分析装置に係り、詳しくは、ヘリウムや水素等の単一エネルギーのイオンを照射し、試料中の原子核との弾性散乱によって後方に跳ね返されたイオンのエネルギースペクトルを測定することにより、試料成分元素の同定や深さ方向の組成分析を行なうイオン散乱分析装置に関する。
【0002】
【従来の技術】
上記のイオン散乱分析装置として、例えば、高エネルギーまたは中エネルギーのイオンビームが入射した試料中の原子核で後方に跳ね返された散乱イオンを、前記イオンビームと平行な磁場を用いてビーム軸に収束させ、散乱イオンを検出する平行磁場型ラザフォード後方散乱分析装置が知られている(特許文献1参照)。このラザフォード後方散乱分析装置は、図5に示すように、400kv程度の高電圧が給電されたイオン源21からヘリウムイオンビーム22が発せられ、このヘリウムイオンビーム22は、加速管23に印加された電圧によって加速され、試料24に照射される。試料24の表面で弾性散乱された散乱イオン25は、ソレノイドコイル26およびマグネットコイル27からなる、磁場発生手段の電磁石28によって発生した、イオンビーム22のビーム軸に平行な磁場により軌道が曲げられて、螺旋運動を繰り返しながらビーム軸に収束する。特定のエネルギーと散乱角とをもった散乱イオン25がビーム軸に収束する位置に板状のアパーチャ29が配置され、このアパーチャ29の中心部にはイオンビーム22を通すように開口部が設けられている。前記試料24の配設位置に対して、アパーチャ29の配置位置を変化させる方法、または、前記磁場強度を変化させる方法等によって、特定のエネルギーを有する散乱イオン25のみが弁別され、アパーチャ29を通過して再度発散していく散乱イオン25が散乱イオン検出器30により検出され、そのエネルギースペクトルが測定される。このようにして得られたエネルギースペクトルに基づいて、試料24の成分元素の同定、および深さ方向の組成分析、即ちイオンチャネリング分析を行なうことができる。
【0003】
前記散乱イオン検出器30としては、例えば、2次元状に微細検出管が多数配列されたマイクロチャンネルプレート(MCP)が用いられている。図6は、このマイクロチャンネルプレートを用いた散乱イオン検出器30の外観を簡略的に示したもので、散乱イオン検出器30は、その中心部に、イオンビーム22を通過させるための小さな開口31を設けたドーナツ型の形状をしている。イオンビーム22の照射により、試料24の表面から散乱した同一散乱角、同一エネルギーの散乱イオン29は、一旦、アパーチャ29の位置で収束した後、再度発散して散乱イオン検出器30の中心から距離Rの位置に入射する。エネルギーの異なる散乱イオン25が同じアパーチャ29の位置で収束すれば、散乱角度が異なることになるため、前記の距離Rの位置には入射せず、従って、同一エネルギーを有する散乱イオンを選別することができる。
【0004】
前記特許文献1に開示された散乱イオンのエネルギーの選別方法では、収束回数が異なる散乱イオンが同一散乱角でアパーチャ29を通過すると、結局エネルギーの異なる散乱イオンが散乱イオン検出器30に入射することになり、エネルギー分析が困難となる。このため、アパーチャ29を通過し、前記散乱イオン検出器30の同一R上に入射する散乱イオンから、収束回数の異なる散乱イオンを弁別してエネルギースペクトル測定を高分解能で容易に行なう散乱イオンの弁別方法が開示されている(特許文献2参照)。この方法では、イオンビームのビーム軸に沿ってイオンビームを通過させる開口をそれぞれ備え、イオンビームと平行に移動し得る、可動板スリットと筒状の可動筒状スリットとを所要の間隔を設けて配置し、検出対象とする特定の収束回数の散乱イオン以外の異なる収束回数の散乱イオンが検出器に到達することが防止される。
【0005】
【特許文献1】
特開平7−190963号公報(第4頁〜第5頁)
【特許文献2】
特開2003−21609号公報([0011]〜[0013])
【0006】
【発明が解決しようとする課題】
しかし、前述の従来技術のエネルギースペクトル測定には、以下のような問題があった。
【0007】
即ち、2次元イオン検出器として、マイクロチャンネルプレート(MCP)を用いる場合、
(1)イオンビームとして)数百keVのヘリウムイオンを用いた場合、散乱イオンの検出効率が約10%と小さい。
(2)所要の検出効率を得るためには数kVの高圧印加が必要であり、装置が大掛かりとなる。
(3)エネルギースペクトルのエネルギーレンジを広くとるためには検出器の大面積化が必要であるが、マイクロチャンネルプレートではφ40mm程度以上の大径化が困難である。
(4)2次元の位置出力方法としては、図7に簡略して示した、上下全面がシート抵抗であり、上下に直交して端部電極X1、X2およびY1、Y2を配置した位置検出器32をマイクロチャンネルプレートの出側に配置し、この位置検出器32を用いて、マイクロチャンネルプレートから出力される電子群位置信号、即ち散乱イオンの入射位置に対応し生じる電圧降下を測定し、4チャンネル位置演算法により測定結果を解析して位置検出を行なう方法がよく用いられる。しかし、マイクロチャンネルプレートの大面積化に伴って前記位置検出器32が大面積化されると、検出部の歪、即ち抵抗の歪が大きくなり、位置検出精度が低下する。また、イオンビーム通過のための開口を有する、マイクロチャンネルプレート型のイオン検出器で上記4チャンネル位置演算法を用いると、前記位置検出器32にもイオンビーム通過用の開口が必要となるため、その抵抗の歪が増加し、位置検出精度がますます低下する。
【0008】
一方、特許文献2に開示されたように、可動筒状スリットを用いて収束回数の異なる散乱イオンを弁別する方法では、前記可動筒状スリットに散乱イオンが衝突した際に発生する不要粒子がノイズとなり、エネルギースペクトルのS/Nが低下する。また、測定したい散乱イオンのエネルギーや散乱角度および収束回数により、可動筒状スリットの長さおよびその位置を前記ビーム軸に平行方向に可変にする必要があり、装置構成および検出操作が煩雑になる。
【0009】
そこで、この発明の課題は、装置構成および検出操作が煩雑にならず、散乱イオンの位置検出精度が良好で、かつ、収束回数の異なる散乱イオンを弁別してそのエネルギー量を検出でき、エネルギースペクトルのレンジを広くとれる散乱イオン検出器を備えた平行磁場型ラザフォード後方散乱分析装置を提供することである。
【0010】
【課題を解決するための手段】
前記の課題を解決するために、この発明では以下の構成を採用したのである。
【0011】
即ち、請求項1に係る平行磁場型ラザフォード後方散乱分析装置は、イオンビームが入射した試料により後方散乱された散乱イオンを検出するための散乱イオン検出器と、前記イオンビームの入射方向と平行な磁場を少なくとも前記試料から散乱イオン検出器にかけて発生させる磁場発生手段と、前記試料と散乱イオン検出器との間に、この散乱イオン検出器に対して所要の位置に配置され、前記イオンビームを通過させ、かつ、前記磁場発生手段によりイオンビームのビーム軸に収束した特定のエネルギーと散乱角とを有する散乱イオンを、散乱イオン検出器側に通過させるための開口を設けた弁別用アパーチャを備えた平行磁場型ラザフォード後方散乱分析装置において、前記散乱イオン検出器が、半導体材料で形成され、イオンビーム通過用の開口を有し、散乱イオン検出器の中心からの距離と、中心角との2次元位置情報をそれぞれ独立に検出するように形成され、この散乱イオン検出器の出力側にエネルギー弁別回路および位置演算回路を設けて、散乱イオンの2次元の位置検出機能と、散乱イオンのエネルギー量および収束回数を弁別する機能とを兼ね備えるようにしたことを特徴とする。
【0012】
このようにすれば、2次元の位置検出のみならず、上記エネルギー検出機能により、イオン検出器の同一R上(図6参照)に入射した散乱イオンについて、エネルギー量や、散乱角度および収束回数などのエネルギー情報を得ることができる。それにより、収束回数の弁別のための前記可動板スリットや可動筒状スリットの配置も不要となり、装置構成が簡略化され、また、前記可動筒状スリットに衝突した散乱イオンによる不要粒子が発生しないため、エネルギースペトルのS/Nの低下を防止できる。また、散乱イオン検出器の位置演算機能、即ち前記検出器の出力側に設ける位置演算回路が、イオンビーム通過用の開口の影響を受けず、前述の全面シート抵抗型の2次元(X−Y座標系)検出器では不可能であった、イオンビーム通過用開口を設けた状態での、位置演算歪の小さい大面積の散乱イオン検出器での位置検出が可能となる。さらに、前記散乱イオン検出器をSiやGeなどの半導体材料で検出すれば、散乱イオンの検出効率(単位時間あたりのカウント数/単位時間あたりの入射する散乱イオンの数)をほぼ100%まで高めることができ、入射した散乱イオンのエネルギー量を測定できる。また、入射した散乱イオンにより生起される電子・正孔対を電気信号に変換するために、散乱イオン検出器に印加するバイアス電圧も100V以下で済んで、検出器の大面積化が可能となる。そして、散乱イオン検出器に位置演算機能のみならず、エネルギー弁別機能をも付与することにより、所望のエネルギー、散乱角および収束回数の散乱イオンについての情報だけを取得することが可能となる。
【0017】
請求項2に係る平行磁場型ラザフォード後方散乱分析装置は、前記散乱イオン検出器の一方の検出面に、複数の同心円状の環状電極が、他方の検出面に、周方向に分割された複数の扇形状電極がそれぞれ装着されたことを特徴とする。
【0018】
このようにすれば、上記環状電極により、半径方向の位置検出が可能となり、上記扇形状電極により、中心角、即ち周方向の位置検出が可能となる。
【0021】
【発明の実施の形態】
以下に、この発明の実施形態を添付の図1から図4に基づいて説明する。
【0022】
図1((a)および(b))は、本発明の実施形態に係る平行磁場型ラザフォード後方散乱分析装置に用いられる2次元の散乱イオン検出器である半導体検出器1を示したもので、この平行磁場型ラザフォード後方散乱分析装置の基本的構成は、図5で示した平行磁場型ラザフォード後方散乱分析装置と同様である。前記2次元の散乱イオン検出器1は放射線検出用のSiなどの半導体材料で形成され、その中心部にイオンビーム通過用の開口2が設けられている。そして、この検出器1の一方の検出面1aには、複数の同心円状の環状電極3が、他方の検出面1bには、周方向に分割された複数の扇形状電極4がそれぞれ形成されており、各電極3、3a、3bおよび4、4a、4bは抵抗5aおよび5bで接続され、いずれの面でも、抵抗5aおよび5bの両端側、即ち端部電極3a、3bおよび4a、4bに、パルス増幅器6a、6bおよび6c、6dが、直流カット用のコンデンサ7を介してそれぞれ接続され、A〜Dの各チャンネル(ch)が形成されている。環状電極3を設けた検出面1a側には、入射した散乱イオンにより生起される電子・正孔対を電気信号に変換するために、抵抗5aを介して直流電源8で、バイアス電圧が印加されるようになっている。そして、前記パルス増幅器6a〜6dの出力は、図2に示すように、エネルギー弁別機能を有する弁別回路9、パルスの同期性を判断するコインシデンス機能(同期機能)を有する回路10、位置演算機能を有する演算回路11を経て信号処理され、試料とした固体物質表層部の原子素性等の分析データが得られる。なお、前記パルス増幅器6a〜6dの出力側に、多チャンネル波高分析器を接続し、蓄積したデータをパソコンで解析してエネルギ量を決定することも可能である。
【0023】
既に図5で示したように、試料24により後方散乱され、弁別用アパーチャ29の開口を通過して、半導体材料で形成された散乱イオン検出器30に入射したヘリウムイオンにより、散乱イオン検出器30として用いられ、バイアス電圧が印加された前記半導体検出器1(図1参照)に電子・正孔対が生起されると、正と負のパルスがそれぞれ発生する。この正負のパルスは、半導体検出器1のそれぞれの面1a、1bに形成した、前記複数の環状電極3、および扇形状電極4の中の1つに到達し、各電極3、3a、3bおよび4、4a、4bをそれぞれ接続した抵抗5a、5bを介してそれぞれの面の端部電極3a、3bおよび4a、4bまでの総抵抗値に応じて電荷分割され、端部電極3a、3bおよび4a、4bにそれぞれ接続されたパルス増幅器6a、6bおよび6c、6dに到達する。この電荷分割により、後方散乱されたヘリウムイオンの半導体検出器1への入射位置を正確に算出することが可能となる。
【0024】
前記入射位置の算出は、具体的には、前記A〜Dチャンネルに現れるパルス増幅器6a、6b、6c、6dの出力波高値をそれぞれ、A、B、C、Dとすると、コインシデンス回路10で、各出力が同期された後、位置演算回路11により、比率A/(A+B)が演算されて半径方向の位置Rが決定される。同様に比率C/(C+D)が演算されて半導体検出器1上での中心角、即ち周方向の位置が決定される。なお、前記環状電極3や扇形状電極4の数は多い程、位置の分解能は高くなる。
【0025】
また、前記半導体検出器1では、環状電極3を設けた面側のパルス増幅器6a、6bの出力波高値の和(A+B)、扇形状電極4を設けた面側のパルス増幅器6c、6d側の出力波高値の和(C+D)に基づいて、入射したヘリウムイオンのエネルギー量も求めることができるため、位置演算回路11により算出した位置へ入射したヘリウムイオンのエネルギー量の大小を、前記弁別回路9で弁別、比較することにより、入射したヘリウムイオンの収束回数も判定することができる。
【0026】
上記収束回数の判定を具体的に説明するために、散乱イオン、即ち散乱粒子のエネルギーと、マイクロチャンネルプレート(MCP)中心、即ち半導体検出器1の中心からの距離Rとの関係の一例を、分析条件とともに、図3に示す。図3に示した例では、半導体検出器1の中心からの距離Rが15mmの位置に収束回数Nが1〜4回の散乱イオンが入射した場合のエネルギーが示され、R=15mmの位置では、収束回数N=1の散乱イオンのエネルギーは400eV、N=2の散乱イオンのエネルギーは100eV、N=3およびN=4では散乱イオンのエネルギーは50eV以下となっている。従って、距離R=15mmの位置に入射した場合のパルス増幅器6a、6bおよび6c、6dの出力波高値の和、(A+B)および(C+D)の解析から求めた散乱イオンのエネルギーと、図5に示したR=15mmの位置での散乱イオンのエネルギーとを比較することにより、入射散乱イオンの収束回数を判定することができる。
【0027】
さらに、図2に示したように、パルス増幅器6a、6b、6c、6dの出力側に設けたパルス波高を弁別するエネルギー弁別回路9で、例えば、200keV以上のエネルギーに相当するパルス波高だけを通すようにすれば、収束回数が1回(N=1)の散乱イオンだけのエネルギースペクトルを得ることができる。
【0028】
なお、上述のように、散乱イオンの周方向の入射位置の検出が可能なことにより、試料の結晶軸(チャンネル軸)を簡便に検出でき、散乱分析前の前記結晶軸とイオンビームのビーム軸との軸合わせが容易となる。
【0029】
図4は、他の実施形態の2次元の半導体イオン検出器12を示したものである。この2次元の半導体イオン検出器12では、その一方の検出面に設けた内周側および外周側の同心円状の環状電極13aおよび13bを抵抗膜14で接続している点が、図1に示した2次元散乱イオン検出器1とは異なる。このように、抵抗5a(図1(c)参照)の代わりに抵抗膜14を用いると、検出面の構造が簡素化され、図1に示した2次元の散乱イオン検出器1の場合と同様に、入射する散乱イオンの位置およびエネルギーの分解機能および収束回数の判定機能が得られる。
【0030】
【発明の効果】
以上のように、この発明では、平行磁場型ラザフォード後方散乱分析装置に用いられる、イオンビーム通過用開口を設けた散乱イオン検出器を半導体材料から形成し、2次元(R−θ座標系)位置検出機能と、弁別機能を有するエネルギー検出機能とを兼ね備えるようにしたので、前記開口を設けた状態で、入射する散乱イオンの位置を精度よく検出でき、かつ、散乱イオンのエネルギースペクトルのみならずエネルギー量を検出でき、また、装置構成を煩雑にする可動板スリットや可動筒状スリットを配置しなくても、所望のエネルギー、散乱角および収束回数の散乱イオンについての情報だけを弁別し、取得することが可能となる。
【0031】
さらに、位置演算歪を小さくできるため、検出器の大面積化が可能となって、散乱イオンのエネルギースペクトルのエネルギーレンジをより広く取ることができる。そして、検出効率が著しく向上するため、イオンビーム生成用に特に高圧印加を必要としない。これらによって、装置構成が大掛かりならず、また、煩雑化せずに、分析範囲および精度が向上した平行磁場型ラザフォード後方散乱装置を実現することができる。
【図面の簡単な説明】
【図1】(a)、(b)この発明の実施形態の散乱イオン検出器の正面図
(c)同上の側面図
【図2】図1の散乱イオン検出器のエネルギー弁別機能を有する出力制御回路を示す説明図
【図3】図1の散乱イオン検出器に入射する散乱イオンのエネルギーが収束回数により異なる状況を示す説明図
【図4】(a)他の実施形態の散乱イオン検出器の正面図
(b)同上の側面図
【図5】従来の平行磁場型ラザフォード後方散乱分析装置の概略構成例を示す説明図
【図6】散乱イオン検出器の外観を簡略して示した説明図
【図7】従来の2次元(X−Y)位置検出器を簡略して示した説明図
【符号の説明】
1:半導体検出器 1a、1b:検出面 2:開口
3:環状電極 3a、3b:端部電極 4:扇形状電極
4a、4b:端部電極 5a、5b:抵抗 6a〜6d:パルス増幅器
7:コンデンサ 8:直流電源 9:弁別回路
10:コインシデンス回路 11:演算回路 12:半導体検出器
13:環状電極 14:抵抗膜
X1、X2、Y1、Y2:端部電極

Claims (2)

  1. イオンビームが入射した試料により後方散乱された散乱イオンを検出するための散乱イオン検出器と、前記イオンビームの入射方向と平行な磁場を少なくとも前記試料から散乱イオン検出器にかけて発生させる磁場発生手段と、前記試料と散乱イオン検出器との間に、この散乱イオン検出器に対して所要の位置に配置され、前記イオンビームを通過させ、かつ、前記磁場発生手段によりイオンビームのビーム軸に収束した特定のエネルギーと散乱角とを有する散乱イオンを、散乱イオン検出器側に通過させるための開口を設けた弁別用アパーチャを備えた平行磁場型ラザフォード後方散乱分析装置において、前記散乱イオン検出器が、半導体材料で形成され、イオンビーム通過用の開口を有し、散乱イオン検出器の中心からの距離と、中心角との2次元位置情報をそれぞれ独立に検出するように形成され、この散乱イオン検出器の出力側にエネルギー弁別回路および位置演算回路を設けて、散乱イオンの2次元の位置検出機能と、散乱イオンのエネルギー量および収束回数を弁別する機能とを兼ね備えるようにしたことを特徴とする平行磁場型ラザフォード後方散乱分析装置。
  2. 前記散乱イオン検出器の一方の検出面に、複数の同心円状の環状電極が、他方の検出面に、周方向に分割された複数の扇形状電極がそれぞれ装着されたことを特徴とする請求項に記載の平行磁場型ラザフォード後方散乱分析装置。
JP2003161013A 2003-06-05 2003-06-05 平行磁場型ラザフォード後方散乱分析装置 Expired - Fee Related JP4130904B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161013A JP4130904B2 (ja) 2003-06-05 2003-06-05 平行磁場型ラザフォード後方散乱分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161013A JP4130904B2 (ja) 2003-06-05 2003-06-05 平行磁場型ラザフォード後方散乱分析装置

Publications (2)

Publication Number Publication Date
JP2004361283A JP2004361283A (ja) 2004-12-24
JP4130904B2 true JP4130904B2 (ja) 2008-08-13

Family

ID=34053619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161013A Expired - Fee Related JP4130904B2 (ja) 2003-06-05 2003-06-05 平行磁場型ラザフォード後方散乱分析装置

Country Status (1)

Country Link
JP (1) JP4130904B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601545B2 (ja) * 2005-12-02 2010-12-22 株式会社神戸製鋼所 平行磁場型ラザフォード後方散乱イオン測定装置
EP2194565A1 (en) 2008-12-03 2010-06-09 FEI Company Dark field detector for use in a charged-particle optical apparatus
JP6103684B2 (ja) * 2012-08-21 2017-03-29 国立研究開発法人量子科学技術研究開発機構 放射線測定装置、放射線測定方法及び電離箱
WO2016047538A1 (ja) 2014-09-24 2016-03-31 国立研究開発法人物質・材料研究機構 エネルギー弁別電子検出器及びそれを用いた走査電子顕微鏡
CN105405733B (zh) * 2015-12-25 2017-06-06 中国航空工业集团公司北京航空制造工程研究所 背散射电子接收传感器以及电子束加工过程的观察系统

Also Published As

Publication number Publication date
JP2004361283A (ja) 2004-12-24

Similar Documents

Publication Publication Date Title
Hall et al. A penetrating field electron-ion coincidence spectrometer for use in photoionization studies
US7932491B2 (en) Quantitative measurement of isotope ratios by time-of-flight mass spectrometry
Fricke et al. Single particle counting of heavy ions with a channeltron detector
JP2567736B2 (ja) イオン散乱分析装置
JP3840558B2 (ja) 同時検出同位体比質量分析計
EP0559202B1 (en) Secondary ion mass spectrometer for analyzing positive and negative ions
US3970849A (en) Device for mass analysis and structure analysis of a surface layer by means of ion scattering
JP4130904B2 (ja) 平行磁場型ラザフォード後方散乱分析装置
US3670172A (en) Charged particle generating and utilizing
JP3898826B2 (ja) 粒子線結像装置、粒子線結像装置に設けられるスペクトロメータ、粒子線結像方法及び粒子線結像装置の使用方法
JP6692108B2 (ja) 分析装置及び分析システム
EP1012587B1 (en) Charged particle analysis
Vampola Measuring energetic electrons—What works and what doesn't
WO1989006436A1 (en) Secondary ion mass spectrometer
JP2678059B2 (ja) 電子ビーム装置
Tietsch et al. High density windowless gas jet target
JP3273844B2 (ja) 散乱イオンによる分析装置
JP4368698B2 (ja) 試料分析装置及びその方法
EP0567139A1 (en) Electron beam diffraction measuring apparatus
Petrov et al. Energy analyzer for spin polarized Auger electron spectroscopy
Abazov et al. Comparative analysis of the performance characteristics of mini-drift tubes with different design
Guerrieri et al. A focal-plane detector for the recoil-mass spectrometer of LNL
JP2007505308A (ja) 例えばexafs(広帯域x線吸収微細構造)測定での蛍光収率(fy)と全電子収率(tey)との分離を可能にする電離粒子分析器
JP2895860B2 (ja) 質量分析方法
Olsen Position-sensitive detector for heavy atomic particles in the keV energy range

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees