JP4130885B2 - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
JP4130885B2
JP4130885B2 JP2002267955A JP2002267955A JP4130885B2 JP 4130885 B2 JP4130885 B2 JP 4130885B2 JP 2002267955 A JP2002267955 A JP 2002267955A JP 2002267955 A JP2002267955 A JP 2002267955A JP 4130885 B2 JP4130885 B2 JP 4130885B2
Authority
JP
Japan
Prior art keywords
signal
contour
circuit
generation circuit
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002267955A
Other languages
Japanese (ja)
Other versions
JP2004112024A (en
Inventor
勇一郎 杉岡
圭司 豊田
憲治 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002267955A priority Critical patent/JP4130885B2/en
Publication of JP2004112024A publication Critical patent/JP2004112024A/en
Application granted granted Critical
Publication of JP4130885B2 publication Critical patent/JP4130885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、CMOS等の固体撮像素子からの読み出し信号に対して輪郭強調処理を施す固体撮像装置に関するものである。
【0002】
【従来の技術】
従来の輪郭強調装置は、例えば特許文献1の「固体撮像装置」に開示されている。以下に従来の輪郭強調装置について説明する。図11は従来の輪郭強調装置の構成を示すもので、レンズ20、固体撮像素子21、CDS回路22、AGC回路23、ホワイトバランス回路24、輝度信号合成回路25、原信号アパコン回路26、色信号比検出回路27、色信号合成回路28、輝度信号アパコン回路29、遅延回路30、可変利得増幅回路311,312、加算回路321,322からなる。R画素、G画素、B画素の信号から輪郭強調信号を形成する原信号アパコン回路26と、R画素、G画素、B画素の信号より合成した輝度信号から輪郭強調信号を形成する輝度信号アパコン回路29を有し、色信号比検出回路27の検出出力に応じて、原信号アパコン回路の出力信号および輝度信号アパコン回路の出力信号にそれぞれ重み付けをし、この後、この重み付けされたそれぞれの信号を加算して輪郭強調信号を得ている。
【0003】
【特許文献1】
特開平10−23437号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記公報に見られるような従来の輪郭強調装置では、単板カラーカメラに用いられる市松模様状に配置された色フィルタを用いた場合、有彩色の境界に対しては輝度信号に重みをおいた輪郭強調信号の生成をおこなっているため、有彩色の境界でギザが発生し画質の低下の原因となっていた。
【0005】
本発明は、有彩色の境界に発生するギザを低減することができ、また、解像度の向上を図ることができる固定撮像装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の固体撮像装置は、固体撮像素子のR画素、G画素、B画素のそれぞれの色信号のうち、G画素の信号(G信号)から輪郭強調信号を生成するG信号輪郭強調信号生成回路と、すべての色信号から輪郭強調信号を生成する全信号輪郭強調信号生成回路と、G信号輪郭強調信号生成回路の出力信号と全信号輪郭強調信号生成回路の出力信号との合成比を、すべての色信号の出力結果により決定して合成する輪郭強調信号合成回路とを有し、輪郭強調信号合成回路で合成した信号を輪郭強調信号として固体撮像素子からの輝度信号に加算する輪郭強調装置を備える構成を有している。
この構成により、市松模様上に配置された色フィルタを配した固体撮像装置において輪郭強調信号を生成することができる。
【0007】
また、本発明の固体撮像装置は、G信号輪郭強調信号生成回路が、G信号から水平の輪郭強調信号を生成する水平輪郭強調信号生成回路と、水平輪郭強調信号生成回路の前段に設けられた垂直方向のローパスフィルタと、G信号から垂直の輪郭強調信号を生成する垂直輪郭強調信号生成回路と、垂直輪郭強調信号生成回路の後段に設けられた水平方向のローパスフィルタとを備える構成を有している。
この構成により、ギザが目立ちやすい被写体の斜めエッジに対してのみ輪郭強調信号の平滑化を行うことができるため、解像度の低下を最小限に抑えつつギザを低減することができる。
【0008】
さらに、本発明の固体撮像装置は、垂直方向のローパスフィルタおよび水平方向のローパスフィルタが、水平輪郭強調および垂直輪郭強調に適用するかしないかをそれぞれ独立に決定できる構成を有している。
この構成により、本発明の輪郭強調装置を備えた固体撮像装置の使用用途等により被写体の斜めエッジに発生するギザの低減を優先するか被写体の解像度を優先するかを容易に選択することができる。
【0009】
さらに、本発明の固体撮像装置は、輪郭強調信号合成回路が、G信号輪郭強調信号生成回路の出力信号と全信号輪郭強調信号生成回路の出力信号との合成比を、R画素の色信号(R信号)とG信号とのレベル差及びB画素の信号(B信号)とG信号とのレベル差により決定する構成を有している。
この構成により、色分離した後のR信号とG信号とのレベル差及びB信号とG信号とのレベル差を有彩色及び無彩色判定に用いるため、有彩色、無彩色の判定を精度良く行うことができる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を用いて説明する。
図1は本発明の実施の形態に係る輪郭強調装置を備えた固体撮像装置の構成図である。この固体撮像装置は、レンズ1を介して映像を取り込む固体撮像素子2と、固体撮像素子2からの出力信号に対して黒レベルを調整するOB補正回路(OB)3と、OB補正回路3の出力信号に対してレンズの周辺光量落ち補正を行うシェーディング補正回路(shad)4と、シェーディング補正回路4の出力信号に対してホワイトバランスを調整するホワイトバランス回路(WB)5と、ホワイトバランス回路5の出力信号に対して自動利得制御を行うAGC回路(AGC)6と、AGC回路6の出力信号に対してガンマ補正を行うガンマ補正回路(γ)7と、ガンマ補正回路7の出力信号に対して水平方向の逆読み出しをするかしないかを制御する左右反転回路8と左右反転回路8の出力信号を1Hから3Hまで遅延する第1〜第3の1H遅延回路(1HRAM)91〜93と、左右反転回路8の出力信号および1H遅延回路91〜93の出力信号を用いて欠陥画素の補正を行う欠陥画素補正回路10を備えている。図2に示すような色フィルタ配列を持つ固体撮像素子を想定した場合、図1のa信号、b信号、c信号、d信号は図3に示すような信号になる。
【0011】
さらに、欠陥画素補正回路10の出力信号を用いて輝度信号を生成する輝度信号生成回路11と、輝度信号生成回路の出力信号の遅延調整を行う遅延調整回路(delay)12を備え、また、欠陥画素補正回路10の出力信号のG画素のみをサンプリングするG画素サンプル・ホールド回路(G S/H)13と、G画素サンプル・ホールド回路13の出力信号の上下2ラインを加算する加算回路202〜203と加算回路202〜203の出力信号から輪郭強調信号を生成するG信号輪郭強調信号生成回路14備え、また、欠陥画素補正回路10の出力信号のR画素、G画素、B画素の3種類の画素のすべての信号を用いて輪郭強調信号を生成する全信号輪郭強調生成回路15と、G信号輪郭強調信号生成回路14および全信号輪郭強調生成回路15から出力されるそれぞれの輪郭強調信号を合成する輪郭強調信号合成回路16、遅延調整回路12の出力信号と輪郭強調信号合成回路16の出力信号とを加算する加算回路201を備えている。具体的には、欠陥画素補正回路10から出力される信号(図1のb信号、c信号)は輝度信号生成回路11に入力され、輝度信号生成回路11において、
輝度信号Y´=(R+2G+B)/4
が計算され、ゲイン調整、オフセット調整等の処理が施された後出力される。輝度信号Y´は遅延調整回路12により色差信号とのタイミング調整が施され、加算回路201により輪郭強調信号と加算されて最終的な輝度信号Yとして出力される。
【0012】
また、欠陥画素補正回路10の出力信号を用いて色分離を行う色分離回路17と色分離回路17の出力信号から色差信号を生成する色差信号生成回路18と色差信号生成回路18の出力信号の多重化を行う色差信号多重化回路19を備えている。具体的には、欠陥画素補正回路10の出力である図1のa信号、b信号、c信号、d信号は、色分離回路17に入力される。色分離回路17では、a信号、b信号、c信号、d信号の4ラインの信号から、R画素からの信号(R信号)とG画素からの信号(G信号)とのレベル差(R−G)、B画素からの信号(B信号)とG画素からの信号(G信号)とのレベル差(B−G)を計算し出力する。
色差信号生成回路18では、入力されたR−G、B−Gから、
U=(B−G)−α(R−G)
V=(R−G)−β(B−G)
に従いU、Vに変換され出力される。
さらに、色差信号生成回路18によって出力された2つの信号U、Vは色差信号多重化回路19により多重化されU、V、U、V・・・と交互に出力される。
【0013】
次に本発明における輪郭強調装置について説明する。
欠陥画素補正回路10の出力である図1のa信号、b信号、c信号、d信号は、G画素サンプル・ホールド回路13に入力される。図4にG画素サンプル・ホールド回路の動作の様子を示す。図4に示されるFH2は1ラインご毎に”1”、”0”を繰り返す信号であり、CK2は1画素毎に”1”、”0”を繰り返す信号である。また、CK2はFH2の極性により正転、反転を繰り返す。すなわちCK2は、図3のa信号、b信号、c信号、d信号の信号においてG画素のタイミングで必ず”1”となる様な信号である。G画素サンプル・ホールド回路13では、CK2に従い、CK2が”1”の時には画素のサンプリングを行い、”0”の時には画素のホールドを行う(図4(a))。その結果、G画素サンプル・ホールド回路13の出力は図4(b)のe信号、f信号、g信号、h信号となる。ここで、e信号、f信号、g信号、h信号はそれぞれa信号、b信号、c信号、d信号に対応した出力である。このようにして、G、B、G、B・・・(またはR、G、R、G・・・)と交互に入力される信号からGのみを抽出することができる。
【0014】
G画素サンプル・ホールド回路13の出力e信号、f信号、g信号、h信号は図4(c)に示すように第2〜第4の加算器202〜204によって上下ラインの加算が行われる。第2〜第4の加算器202〜204の出力信号i信号、j信号、k信号はG信号輪郭強調信号生成回路14に入力される。図5にG信号輪郭強調信号生成回路の詳細を示す。垂直ローパスフィルタ(以下、垂直LPF)141は3タップで構成されており、水平輪郭強調信号による斜めエッジのギザを低減する作用がある。この垂直LPF141を適用するかしないかはセレクタ149で選択可能だが、適用した方が斜めエッジのギザをより低減できる。水平輪郭強調信号生成回路142は水平方向の輪郭強調信号を生成するフィルタで3タップで構成されている。垂直輪郭強調信号生成回路143は垂直方向の輪郭強調信号を生成するフィルタで3タップで構成されている。
【0015】
水平ローパスフィルタ(以下、水平LPF)144および水平LPF145はいずれも3タップで構成されており、垂直輪郭強調信号による斜めエッジのギザを低減する効果がある。この水平LPF144、水平LPF145を輪郭強調信号に適用するかしないかはセレクタ1410で選択可能だが、水平LPF144、水平LPF145の両方のフィルタを適用した場合が最もギザを低減できる。上記フィルタにより生成された水平輪郭強調信号および垂直輪郭強調信号はコアリング回路1411、1412でノイズの除去、乗算回路1413、1414でゲイン調整が施され、加算回路1415で水平輪郭強調信号と垂直輪郭強調信号が加算された後出力される。
【0016】
図6は被写体として斜めエッジが入力された場合の各フィルタにおける輪郭強調信号の生成の様子を示した説明図である。図6において、フィルタ係数FIL1は、図5の垂直LPF143及び水平LPF144、水平LPF145を全て通さなかった場合のフィルタ係数で、図7(a)のように計算されることで導かれる。また、フィルタ係数FIL2は、垂直LPF143、水平LPF144を通した場合のフィルタ係数で、図7(b)のように計算されることで導かれる。また、フィルタ係数FIL3は、垂直LPF143、水平LPF144、水平LPF145を全て通した場合のフィルタ係数で、図7(c)のように計算されることで導かれる。ここで、図7にある2つのフィルタ係数の加算は、同一行、同一列にあるフィルタ係数を足し合わせることでそれぞれ行う。例えば図7(a)において、フィルタFIT1の2行2列のフィルタ係数は、2+2=4となる。また、2つにフィルタ係数の乗算は、一般的な行列計算と同様に、それぞれのフィルタ係数の行と列とを乗算、加算することで求めていく。
【0017】
図6の輪郭強調信号AP1,AP2,AP3は、エリアAにおいてフィルタ係数FIL1,FIL2,FIL3をそれぞれ通した時の輪郭強調信号の値を示した図である。図6のエリアAにおいてフィルタ係数FIL1,FIL2,FIL3を通すとは、エリアAのそれぞれの画素に対して各フィルターの係数を乗算、加算していくことである。例えば、図6のエリアAの右上角の画素に対してフィルタ係数FIL1を通した場合、その計算式は、輪郭強調信号AP1の右上角の画素値=4×1+0×0+(−1)×1+0×1+(−1)×1+(−1)×1+0×1+(−1)×1+0×1=0となる。エリアA内のその他の画素についても同様の計算を行い輪郭強調信号AP1,AP2,AP3を算出している。図6に示すように、輪郭強調信号AP1では被写体の斜めエッジ部の輪郭強調信号の振幅が大きく変化の度合いも大きいのに対し、垂直LPF143、水平LPF144、水平LPF145の全てを通した時の輪郭強調信号AP3は輪郭強調信号の振幅、変化の度合い共に輪郭強調信号AP1に比べ小さく、その結果、斜めエッジに発生するギザを低減できることがわかる。
【0018】
図8は、被写体として垂直エッジが入力された場合の各フィルタにおける輪郭強調信号の生成の様子を示した説明図である。図8において、輪郭強調信号AP4,AP5,AP6はエリアAにおいてファイル係数FIL1,FIL2,FIL3をそれぞれ通した時の輪郭強調信号の値を示した図である。図8に示すように、ファイル係数FIL1,FIL2,FIL3いずれを通した場合にも垂直エッジに対しては輪郭強調信号の振幅および変化の度合いが変わらないことがわかる。また、図9は、被写体として水平エッジが入力された場合の各フィルタにおける輪郭強調信号の生成の様子を示した説明図である。図9において、輪郭強調信号AP4,AP5,AP6は、エリアAにおいてフィルタ係数FIL1,FIL2,FIL3をそれぞれ通した時の輪郭強調信号の値を示した図である。図9に示すように、フィルタ係数FIL1,FIL2,FIL3いずれを通した場合にも水平エッジに対しても垂直エッジの時と同じ原理で、輪郭強調信号の振幅および変化の度合いが変わらないことがわかる。以上のことから、図4における垂直LPF141および水平LPF144、水平LPF145はギザが目立ちやすい被写体の斜めエッジに対してのみ輪郭強調信号の平滑化を行う効果があり、これらのLPFにより、解像度の低下を最小限に抑えつつギザを低減することができる。
【0019】
また、欠陥画素補正回路10の出力である図1のb信号、c信号は、全信号輪郭強調信号生成回路15に入力される。図10は、全信号輪郭強調信号生成回路の詳細を示した図である。水平ハイパスフィルタ(以下、水平HPF)151,152は、2タップで構成されている。水平輪郭強調信号は、b信号、c信号にそれぞれ水平HPF151、152を通した後、加算回路154により2ラインの信号を加算することにより生成される。垂直ハイパスフィルタ(以下、垂直HPF)153は、2タップで構成されている。垂直輪郭強調信号は、信号b、信号cを入力として垂直HPF153を通した後、垂直HPF153を通した後の信号及び垂直HPF153を通した後の信号を1T遅延回路1513で1T遅延させた信号を加算回路155で加算することにより生成される。上記、水平輪郭強調信号および垂直輪郭強調信号はそれぞれ、コアリング回路158、159でノイズの除去、乗算回路1510、1511でゲイン調整が施され、加算回路1512で水平輪郭強調信号と垂直輪郭強調信号が加算された後出力される。
【0020】
上記、G信号輪郭強調生成回路14の出力信号(図1のl信号)および全信号輪郭強調生成回路15の出力信号(図1のm信号)は輪郭強調信号合成回路16に入力される。輪郭強調信号合成回路16では、色分離回路17の出力であるR信号とG信号とのレベル差(R−G)、B信号とG信号とのレベル差(B−G)をもとに、被写体が有彩色であるか無彩色であるかの判定を行い、この判定結果に基づきG信号輪郭強調生成回路14の出力のl信号と全信号輪郭強調生成回路15の出力のm信号の合成比を決定する。G信号輪郭強調生成回路14の出力のl信号と全信号輪郭強調生成回路15の出力のm信号の合成式は、例えば以下のように表すことができる。
輪郭強調信号=k×{G信号輪郭強調生成回路の出力のl信号}+(1−k)×{全信号輪郭強調生成回路の出力のm信号}
【0021】
ここで、k信号は、R信号とG信号とのレベル差(R−G)、B信号とG信号とのレベル差(B−G)により計算された値で、0<=k<=1の間で変化する係数であり、被写体が完全な無彩色と判定されたときにはk=0、完全な有彩色と判定されたときにはk=1となるような係数である。上記の計算式によると、例えば被写体が完全な無彩色と判定された場合、
輪郭強調信号=全信号輪郭強調生成回路の出力のm信号
となり、被写体が完全な有彩色と判定された場合、
輪郭強調信号=G信号輪郭強調生成回路の出力のl信号
となる。すなわち、上記式は、被写体の色成分の比率によりG信号から生成した輪郭強調信号と全ての信号から生成した輪郭強調信号とをその重みを変化させて合成するものである。これにより、有彩色のエッジのギザを低減するのに有効なG信号からの輪郭強調生成と無彩色のエッジのギザを低減するのに有効な全ての信号からの輪郭強調生成を被写体の色成分の比率によって滑らかに切り替えることができる。また、無彩色の被写体に対しては原信号からの輪郭強調生成に重みを置くため、無彩色の被写体の解像度を向上することができる。さらに、R信号とG信号とのレベル差(R−G)、B信号とG信号とのレベル差(B−G)は、色分離回路17により生成された信号であるため、有彩色、無彩色の判定を精度良く行うことができる。
【0022】
【発明の効果】
以上により、本発明によれば、輪郭強調信号合成回路で合成した信号を輪郭強調信号として固体撮像素子からの輝度信号に加算する輪郭強調装置を備えることで、市松模様状に配置された画素フィルタを用いた場合に、有彩色の境界に発生するギザを低減することができ、解像度の向上を図ることができる固体撮像装置を提供することができるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態における、輪郭強調装置を備えた固体撮像装置の構成図
【図2】本発明の実施の形態における、固体撮像素子の色フィルタ配列の例を示す説明図
【図3】本発明の実施の形態における、固体撮像素子の出力信号を示す説明図
【図4】G画素サンプル・ホールド回路のタイミング図
【図5】G画素輪郭強調信号生成回路の構成図
【図6】G画素輪郭強調信号生成回路のフィルタ係数と斜めエッジを持つ被写体に対する輪郭強調信号の生成の様子を示した説明図
【図7】フィルタ係数の計算方法を示した説明図
【図8】G画素輪郭強調信号生成回路のフィルタ係数と垂直エッジを持つ被写体に対する輪郭強調信号の生成の様子を示した説明図
【図9】被写体として水平エッジが入力された場合の各フィルタにおける輪郭強調信号の生成の様子を示した説明図
【図10】全信号輪郭強調信号生成回路の構成図
【図11】従来の輪郭強調装置を備えた固体撮像装置の構成図
【符号の説明】
1 レンズ
2 固体撮像素子
3 OB補正回路
4 シェーディング補正回路
5 ホワイトバランス回路
6 AGC回路
7 ガンマ補正回路
8 信号左右反転回路
91、92、93 1H遅延回路
10 欠陥画素補正回路
11 輝度信号生成回路
12 遅延調整回路
13 G画素サンプル/ホールド回路
14 G信号輪郭強調信号生成回路
141、144、145 LPF
142 水平輪郭強調信号生成回路
143 垂直輪郭強調信号生成回路
146、147、148 ビットシフト回路
149、1410 セレクタ回路
1411、1412 コアリング回路
1413,1414 乗算回路
1415 加算回路
15 全信号輪郭強調生成回路
151、152、153 HPF
154、155 加算回路
156、157 ビットシフト回路
158、159 コアリング回路
1510、1511 乗算回路
1512 加算回路
1513 1T遅延回路
16 輪郭強調信号合成回路
17 色分離回路
18 色差信号生成回路
19 色差信号多重化回路
201、202、203、204 加算回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid-state imaging device that performs contour enhancement processing on a readout signal from a solid-state imaging device such as a CMOS.
[0002]
[Prior art]
A conventional contour enhancement device is disclosed in, for example, “Solid-State Imaging Device” of Patent Document 1. A conventional contour emphasis device will be described below. FIG. 11 shows a configuration of a conventional contour emphasizing device, which includes a lens 20, a solid-state imaging device 21, a CDS circuit 22, an AGC circuit 23, a white balance circuit 24, a luminance signal synthesis circuit 25, an original signal aperture circuit 26, and a color signal. The circuit includes a ratio detection circuit 27, a color signal synthesis circuit 28, a luminance signal aperture control circuit 29, a delay circuit 30, variable gain amplification circuits 311 and 312, and addition circuits 321 and 322. An original signal aperture control circuit 26 that forms an edge enhancement signal from the signals of the R pixel, G pixel, and B pixel, and a luminance signal aperture control circuit that forms an edge enhancement signal from the luminance signal synthesized from the signals of the R pixel, G pixel, and B pixel. 29, and weights the output signal of the original signal aperture control circuit and the output signal of the luminance signal aperture control circuit in accordance with the detection output of the color signal ratio detection circuit 27, and then weights each of the weighted signals. An edge emphasis signal is obtained by addition.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-23437
[Problems to be solved by the invention]
However, in the conventional contour emphasizing apparatus as shown in the above publication, when color filters arranged in a checkered pattern used in a single-panel color camera are used, the luminance signal is weighted for the boundary of chromatic colors. Since the generated outline emphasis signal is generated, a jagged edge is generated at the boundary of the chromatic color, causing the image quality to deteriorate.
[0005]
An object of the present invention is to provide a fixed imaging device that can reduce the jaggedness that occurs at the boundary of chromatic colors and that can improve the resolution.
[0006]
[Means for Solving the Problems]
The solid-state imaging device according to the present invention includes a G signal contour enhancement signal generation circuit that generates a contour enhancement signal from a G pixel signal (G signal) among the color signals of the R pixel, G pixel, and B pixel of the solid-state imaging device. And a synthesis ratio of the output signal of the all-signal contour enhancement signal generation circuit and the output signal of the all-signal contour enhancement signal generation circuit, all the contour enhancement signal generation circuit that generates the contour enhancement signal from all the color signals, An edge emphasis signal synthesizing circuit that determines and synthesizes the output signal of the color signal, and adds a signal synthesized by the edge emphasis signal synthesizing circuit to the luminance signal from the solid-state imaging device as an edge emphasis signal. It has the composition to provide.
With this configuration, an edge emphasis signal can be generated in a solid-state imaging device provided with color filters arranged on a checkered pattern.
[0007]
In the solid-state imaging device according to the present invention, the G signal edge enhancement signal generation circuit is provided in a stage preceding the horizontal edge enhancement signal generation circuit that generates a horizontal edge enhancement signal from the G signal and the horizontal edge enhancement signal generation circuit. A configuration including a vertical low-pass filter, a vertical contour emphasis signal generation circuit that generates a vertical contour emphasis signal from the G signal, and a horizontal low-pass filter that is provided at a subsequent stage of the vertical contour emphasis signal generation circuit ing.
With this configuration, the contour emphasis signal can be smoothed only with respect to the oblique edge of the subject that is prominent, so that the jaggedness can be reduced while minimizing the decrease in resolution.
[0008]
Furthermore, the solid-state imaging device of the present invention has a configuration in which the vertical low-pass filter and the horizontal low-pass filter can independently determine whether to apply horizontal contour enhancement and vertical contour enhancement.
With this configuration, it is possible to easily select whether to give priority to reduction of the jaggedness generated at the oblique edge of the subject or to give priority to the resolution of the subject depending on the usage application of the solid-state imaging device including the contour enhancement device of the present invention. .
[0009]
Furthermore, in the solid-state imaging device of the present invention, the contour emphasis signal synthesizing circuit determines the synthesis ratio of the output signal of the G signal contour emphasis signal generation circuit and the output signal of the all signal contour emphasis signal generation circuit as the color signal ( It is determined by the level difference between the R signal and the G signal and the level difference between the B pixel signal (B signal) and the G signal.
With this configuration, since the level difference between the R signal and the G signal after color separation and the level difference between the B signal and the G signal are used for chromatic color and achromatic color determination, the determination of chromatic color and achromatic color is performed with high accuracy. be able to.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a solid-state imaging device including an edge emphasis device according to an embodiment of the present invention. The solid-state imaging device includes a solid-state imaging device 2 that captures an image through a lens 1, an OB correction circuit (OB) 3 that adjusts a black level with respect to an output signal from the solid-state imaging device 2, and an OB correction circuit 3. A shading correction circuit (shad) 4 that corrects the peripheral light loss of the lens with respect to the output signal, a white balance circuit (WB) 5 that adjusts white balance with respect to the output signal of the shading correction circuit 4, and a white balance circuit 5 An AGC circuit (AGC) 6 that performs automatic gain control on the output signal, a gamma correction circuit (γ) 7 that performs gamma correction on the output signal of the AGC circuit 6, and an output signal of the gamma correction circuit 7 The horizontal inversion circuit 8 that controls whether or not to perform reverse readout in the horizontal direction and the output signals of the left and right inversion circuit 8 are delayed from 1H to 3H. And H delay circuit (1HRAM) 91~93, and a defective pixel correction circuit 10 for correcting the defective pixel by using the output signal of the output signal and the 1H delay circuit 91 to 93 of the left and right inversion circuit 8. Assuming a solid-state imaging device having a color filter array as shown in FIG. 2, the a signal, b signal, c signal, and d signal in FIG. 1 are signals as shown in FIG.
[0011]
Furthermore, a luminance signal generation circuit 11 that generates a luminance signal using the output signal of the defective pixel correction circuit 10 and a delay adjustment circuit (delay) 12 that adjusts the delay of the output signal of the luminance signal generation circuit are provided. A G pixel sample and hold circuit (GS / H) 13 that samples only G pixels of the output signal of the pixel correction circuit 10 and an addition circuit 202 to add two upper and lower lines of the output signal of the G pixel sample and hold circuit 13 203 and a G signal contour emphasis signal generation circuit 14 for generating an edge emphasis signal from the output signals of the adder circuits 202 to 203, and three types of R pixel, G pixel, and B pixel of the output signal of the defective pixel correction circuit 10 An all-signal contour emphasis generating circuit 15 that generates an edge emphasizing signal using all the signals of the pixels, a G signal contour emphasizing signal generating circuit 14, and an all-signal contour emphasizing signal. An edge emphasis signal synthesis circuit 16 that synthesizes the respective edge emphasis signals output from the synthesis circuit 15, and an addition circuit 201 that adds the output signal of the delay adjustment circuit 12 and the output signal of the edge emphasis signal synthesis circuit 16. . Specifically, signals (b signal and c signal in FIG. 1) output from the defective pixel correction circuit 10 are input to the luminance signal generation circuit 11.
Luminance signal Y ′ = (R + 2G + B) / 4
Is output after being subjected to processing such as gain adjustment and offset adjustment. The luminance signal Y ′ is subjected to timing adjustment with the color difference signal by the delay adjustment circuit 12, added to the contour enhancement signal by the addition circuit 201, and output as the final luminance signal Y.
[0012]
The color separation circuit 17 that performs color separation using the output signal of the defective pixel correction circuit 10, the color difference signal generation circuit 18 that generates a color difference signal from the output signal of the color separation circuit 17, and the output signal of the color difference signal generation circuit 18 A color difference signal multiplexing circuit 19 for multiplexing is provided. Specifically, the a signal, b signal, c signal, and d signal in FIG. 1 that are the outputs of the defective pixel correction circuit 10 are input to the color separation circuit 17. In the color separation circuit 17, the level difference (R−) between the signal from the R pixel (R signal) and the signal from the G pixel (G signal) from the four signals of the a signal, b signal, c signal, and d signal. G), the level difference (B−G) between the signal from the B pixel (B signal) and the signal from the G pixel (G signal) is calculated and output.
In the color difference signal generation circuit 18, from the input RG and BG,
U = (B−G) −α (R−G)
V = (R−G) −β (B−G)
And converted to U and V and output.
Further, the two signals U and V output from the color difference signal generation circuit 18 are multiplexed by the color difference signal multiplexing circuit 19 and output alternately as U, V, U, V.
[0013]
Next, the outline emphasis device in the present invention will be described.
The a signal, b signal, c signal, and d signal in FIG. 1 that are the outputs of the defective pixel correction circuit 10 are input to the G pixel sample and hold circuit 13. FIG. 4 shows the operation of the G pixel sample and hold circuit. FH2 shown in FIG. 4 is a signal that repeats “1” and “0” for each line, and CK2 is a signal that repeats “1” and “0” for each pixel. CK2 repeats normal rotation and inversion according to the polarity of FH2. That is, CK2 is a signal that is always “1” at the timing of the G pixel in the signals a, b, c, and d in FIG. According to CK2, the G pixel sample / hold circuit 13 samples the pixel when CK2 is “1”, and holds the pixel when it is “0” (FIG. 4A). As a result, the output of the G pixel sample and hold circuit 13 becomes the e signal, the f signal, the g signal, and the h signal in FIG. Here, the e signal, the f signal, the g signal, and the h signal are outputs corresponding to the a signal, the b signal, the c signal, and the d signal, respectively. In this way, it is possible to extract only G from the signals input alternately with G, B, G, B... (Or R, G, R, G...).
[0014]
The output e signal, f signal, g signal, and h signal of the G pixel sample and hold circuit 13 are added to the upper and lower lines by the second to fourth adders 202 to 204 as shown in FIG. The output signals i, j, and k of the second to fourth adders 202 to 204 are input to the G signal contour emphasis signal generation circuit 14. FIG. 5 shows details of the G signal outline emphasis signal generation circuit. A vertical low-pass filter (hereinafter, referred to as a vertical LPF) 141 is composed of three taps, and has an effect of reducing the jagged edges of a horizontal edge enhancement signal. Whether the vertical LPF 141 is applied or not can be selected by the selector 149, but the application of the vertical LPF 141 can further reduce the jagged edges. The horizontal outline emphasis signal generation circuit 142 is a filter that generates an outline emphasis signal in the horizontal direction, and is configured with three taps. The vertical outline emphasis signal generation circuit 143 is a filter that generates an outline emphasis signal in the vertical direction, and is configured with three taps.
[0015]
Each of the horizontal low-pass filter (hereinafter referred to as horizontal LPF) 144 and the horizontal LPF 145 is composed of three taps, and has an effect of reducing the jagged edges of the vertical edge enhancement signal. Whether or not to apply the horizontal LPF 144 and the horizontal LPF 145 to the contour emphasis signal can be selected by the selector 1410. However, when both the horizontal LPF 144 and the horizontal LPF 145 are applied, the jaggedness can be reduced most. The horizontal contour emphasis signal and the vertical contour emphasis signal generated by the filter are subjected to noise removal by the coring circuits 1411 and 1412, gain adjustment is performed by the multiplication circuits 1413 and 1414, and the horizontal contour emphasis signal and the vertical contour are added by the addition circuit 1415. It is output after the enhancement signal is added.
[0016]
FIG. 6 is an explanatory diagram showing how a contour emphasis signal is generated in each filter when an oblique edge is input as a subject. In FIG. 6, the filter coefficient FIL1 is a filter coefficient when all of the vertical LPF 143, the horizontal LPF 144, and the horizontal LPF 145 of FIG. 5 are not passed, and is derived by being calculated as shown in FIG. The filter coefficient FIL2 is a filter coefficient when passing through the vertical LPF 143 and the horizontal LPF 144, and is derived by calculation as shown in FIG. 7B. The filter coefficient FIL3 is a filter coefficient when all of the vertical LPF 143, the horizontal LPF 144, and the horizontal LPF 145 are passed through and is derived by being calculated as shown in FIG. Here, the addition of the two filter coefficients shown in FIG. 7 is performed by adding together the filter coefficients in the same row and the same column. For example, in FIG. 7A, the filter coefficient of 2 rows and 2 columns of the filter FIT1 is 2 + 2 = 4. Also, the multiplication of the two filter coefficients is obtained by multiplying and adding the rows and columns of the respective filter coefficients in the same manner as general matrix calculation.
[0017]
The contour emphasis signals AP1, AP2, and AP3 in FIG. 6 are diagrams showing the values of the contour emphasis signal when the filter coefficients FIL1, FIL2, and FIL3 are passed through the area A, respectively. Passing filter coefficients FIL1, FIL2, and FIL3 in area A in FIG. 6 means multiplying and adding the coefficients of each filter to each pixel in area A. For example, when the filter coefficient FIL1 is passed through the pixel in the upper right corner of the area A in FIG. 6, the calculation formula is the pixel value in the upper right corner of the contour enhancement signal AP1 = 4 × 1 + 0 × 0 + (− 1) × 1 + 0. X1 + (-1) x1 + (-1) x1 + 0x1 + (-1) x1 + 0x1 = 0. Similar calculations are performed for the other pixels in area A to calculate contour emphasis signals AP1, AP2, AP3. As shown in FIG. 6, in the contour emphasis signal AP1, the amplitude of the contour emphasis signal at the oblique edge portion of the subject is large and the degree of change is large, whereas the contour when passing through all of the vertical LPF 143, horizontal LPF 144, and horizontal LPF 145 is shown. It can be seen that the emphasis signal AP3 is smaller than the contour emphasis signal AP1 in both the amplitude and the degree of change of the contour emphasis signal, and as a result, it is possible to reduce the jaggedness generated at the oblique edge.
[0018]
FIG. 8 is an explanatory diagram showing how a contour emphasis signal is generated in each filter when a vertical edge is input as a subject. In FIG. 8, contour emphasis signals AP4, AP5, AP6 are diagrams showing values of the contour emphasis signal when the file coefficients FIL1, FIL2, and FIL3 are passed through area A, respectively. As shown in FIG. 8, it can be seen that the amplitude and the degree of change of the edge emphasis signal do not change with respect to the vertical edge when any of the file coefficients FIL1, FIL2, and FIL3 is passed. FIG. 9 is an explanatory diagram showing how a contour emphasis signal is generated in each filter when a horizontal edge is input as a subject. In FIG. 9, contour emphasis signals AP4, AP5, AP6 are diagrams showing the values of the contour emphasis signal when filter coefficients FIL1, FIL2, FIL3 are passed through area A, respectively. As shown in FIG. 9, the amplitude and the degree of change of the contour emphasis signal are not changed on the basis of the same principle as that of the vertical edge even when the filter coefficients FIL1, FIL2, and FIL3 are passed. Recognize. From the above, the vertical LPF 141, the horizontal LPF 144, and the horizontal LPF 145 in FIG. 4 have the effect of smoothing the contour enhancement signal only for the oblique edge of the subject that is easily noticeable, and these LPFs reduce the resolution. Giza can be reduced while minimizing.
[0019]
Further, the b signal and the c signal in FIG. 1 which are the outputs of the defective pixel correction circuit 10 are input to the all-signal outline enhancement signal generation circuit 15. FIG. 10 is a diagram showing details of the all-signal outline enhancement signal generation circuit. Horizontal high-pass filters (hereinafter referred to as horizontal HPFs) 151 and 152 are configured with two taps. The horizontal contour emphasizing signal is generated by passing the horizontal HPFs 151 and 152 to the b signal and the c signal, respectively, and then adding the two lines of signals by the adding circuit 154. The vertical high-pass filter (hereinafter referred to as vertical HPF) 153 is composed of 2 taps. The vertical contour emphasis signal is a signal obtained by delaying the signal after passing through the vertical HPF 153 and the signal after passing through the vertical HPF 153 by 1T delay circuit 1513 by the 1T delay circuit 1513 after receiving the signals b and c as inputs. It is generated by adding in the adding circuit 155. The horizontal contour emphasis signal and the vertical contour emphasis signal are respectively subjected to noise removal by coring circuits 158 and 159, gain adjustment is performed by multiplication circuits 1510 and 1511, and horizontal contour emphasis signal and vertical contour emphasis signal are added by an adder circuit 1512. Is output after addition.
[0020]
The output signal of the G signal contour enhancement generation circuit 14 (the l signal in FIG. 1) and the output signal of the entire signal contour enhancement generation circuit 15 (the m signal in FIG. 1) are input to the contour enhancement signal synthesis circuit 16. In the edge emphasis signal synthesis circuit 16, based on the level difference (R−G) between the R signal and the G signal, which is the output of the color separation circuit 17, and the level difference (B−G) between the B signal and the G signal, It is determined whether the subject is a chromatic color or an achromatic color, and based on the determination result, the synthesis ratio of the l signal output from the G signal edge enhancement generation circuit 14 and the m signal output from the all signal edge enhancement generation circuit 15 is determined. To decide. A synthesis formula of the l signal output from the G signal contour enhancement generation circuit 14 and the m signal output from the all signal contour enhancement generation circuit 15 can be expressed as follows, for example.
Edge enhancement signal = k × {l signal output from G signal edge enhancement generation circuit} + (1−k) × {m signal output from all signal edge enhancement generation circuit}
[0021]
Here, the k signal is a value calculated by a level difference (R−G) between the R signal and the G signal and a level difference (B−G) between the B signal and the G signal, and 0 <= k <= 1. The coefficient is such that k = 0 when the subject is determined to be a complete achromatic color, and k = 1 when the subject is determined to be a complete chromatic color. According to the above formula, for example, if the subject is determined to be completely achromatic,
Outline enhancement signal = m signal of the output of all signal outline enhancement generation circuit, and when the subject is determined to be a complete chromatic color,
Outline enhancement signal = G signal The l signal output from the outline enhancement generation circuit. In other words, the above expression combines the edge emphasis signal generated from the G signal and the edge emphasis signal generated from all signals by changing the weight according to the ratio of the color components of the subject. As a result, the contour enhancement generation from the G signal effective for reducing the chromatic edge jaggedness and the contour enhancement generation from all the signals effective for reducing the achromatic edge jaggedness are performed. It is possible to switch smoothly depending on the ratio. In addition, for achromatic subjects, weight is given to the generation of contour enhancement from the original signal, so that the resolution of achromatic subjects can be improved. Further, the level difference (R−G) between the R signal and the G signal, and the level difference (B−G) between the B signal and the G signal are signals generated by the color separation circuit 17, so that the chromatic color, no The determination of coloring can be performed with high accuracy.
[0022]
【The invention's effect】
As described above, according to the present invention, the pixel filter arranged in a checkered pattern is provided by including the contour emphasizing device that adds the signal synthesized by the contour emphasizing signal synthesizing circuit to the luminance signal from the solid-state imaging device as the contour emphasizing signal. Thus, it is possible to provide a solid-state imaging device that can reduce the jaggedness that occurs at the boundary of chromatic colors and can improve the resolution.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a solid-state imaging device provided with a contour emphasizing device in an embodiment of the present invention. FIG. 2 is an explanatory diagram showing an example of a color filter array of a solid-state imaging device in an embodiment of the present invention. FIG. 3 is an explanatory diagram showing an output signal of a solid-state imaging device in an embodiment of the present invention. FIG. 4 is a timing diagram of a G pixel sample and hold circuit. FIG. 6 is an explanatory diagram showing a filter coefficient of a G pixel contour emphasizing signal generation circuit and how an edge emphasis signal is generated for a subject having an oblique edge. FIG. 7 is an explanatory diagram showing a filter coefficient calculation method. FIG. 9 is a diagram illustrating a state in which a contour enhancement signal is generated for a subject having a vertical edge with a filter coefficient of a pixel contour enhancement signal generation circuit. FIG. Configuration diagram of a solid-state imaging apparatus having a configuration diagram [11] Conventional edge enhancement device illustration Figure 10 total signal edge enhancement signal generation circuit showing a state of generation of the enhancement signal [Description of symbols]
DESCRIPTION OF SYMBOLS 1 Lens 2 Solid-state image sensor 3 OB correction circuit 4 Shading correction circuit 5 White balance circuit 6 AGC circuit 7 Gamma correction circuit 8 Signal horizontal inversion circuit 91, 92, 93 1H delay circuit 10 Defective pixel correction circuit 11 Luminance signal generation circuit 12 Delay Adjustment circuit 13 G pixel sample / hold circuit 14 G signal edge enhancement signal generation circuit 141, 144, 145 LPF
142 Horizontal edge enhancement signal generation circuit 143 Vertical edge enhancement signal generation circuits 146, 147, 148 Bit shift circuits 149, 1410 Selector circuits 1411, 1412 Coring circuits 1413, 1414 Multiplication circuit 1415 Addition circuit 15 All signal outline enhancement generation circuit 151, 152, 153 HPF
154, 155 Adder circuit 156, 157 Bit shift circuit 158, 159 Coring circuit 1510, 1511 Multiplier circuit 1512 Adder circuit 1513 1T delay circuit 16 Outline emphasis signal synthesis circuit 17 Color separation circuit 18 Color difference signal generation circuit 19 Color difference signal multiplexing circuit 201, 202, 203, 204 Adder circuit

Claims (4)

被写体を結像するためのレンズと、前記結像した画像を光電変換するR(赤)、G(緑)、B(青)のそれぞれの色フィルタを市松模様状に配した固体撮像装置において、固体撮像素子のR画素、G画素、B画素のそれぞれの色信号のうち、有彩色のエッジのギザを低減するのに有効なG画素の信号(G信号)から斜めエッジに対して平滑化を行うローパスフィルタを通して輪郭強調信号を生成するG信号輪郭強調信号生成回路と、すべての前記色信号から輪郭強調信号を生成する全信号輪郭強調信号生成回路と、前記G信号輪郭強調信号生成回路の出力信号と前記全信号輪郭強調信号生成回路の出力信号との合成比を、すべての前記色信号が有彩色であるか無彩色であるかの判定結果により決定して合成する輪郭強調信号合成回路とを有し、前記輪郭強調信号合成回路で合成した信号を輪郭強調信号として前記固体撮像素子からの輝度信号に加算する輪郭強調装置を備えることを特徴とする固体撮像装置。 In a solid-state imaging device in which a lens for forming a subject and R (red), G (green), and B (blue) color filters for photoelectrically converting the formed image are arranged in a checkered pattern, Of the color signals of the R pixel, G pixel, and B pixel of the solid-state imaging device , smoothing is performed on the diagonal edge from the G pixel signal (G signal) that is effective in reducing chromatic edge jaggedness. A G signal contour enhancement signal generation circuit for generating a contour enhancement signal through a low-pass filter, an all signal contour enhancement signal generation circuit for generating a contour enhancement signal from all the color signals, and an output of the G signal contour enhancement signal generation circuit A contour emphasis signal synthesizing circuit that determines a synthesis ratio of a signal and an output signal of the all-signal contour emphasis signal generation circuit based on a determination result of whether all the color signals are chromatic or achromatic, and Have The solid-state imaging device characterized by comprising an edge enhancement device to be added to the luminance signal from the solid-state imaging device of the combined signal by the contour enhancement signal synthesizing circuit as contour enhancement signal. 前記G信号輪郭強調信号生成回路は、前記G信号から水平の輪郭強調信号を生成する水平輪郭強調信号生成回路と、前記水平輪郭強調信号生成回路の前段に設けられた垂直方向のローパスフィルタと、前記G信号から垂直の輪郭強調信号を生成する垂直輪郭強調信号生成回路と、前記垂直輪郭強調信号生成回路の後段に設けられた水平方向のローパスフィルタとを備えることを特徴とする請求項1記載の固体撮像装置。  The G signal contour emphasis signal generation circuit includes a horizontal contour emphasis signal generation circuit that generates a horizontal contour emphasis signal from the G signal, a vertical low-pass filter provided in a preceding stage of the horizontal contour emphasis signal generation circuit, 2. A vertical contour emphasis signal generation circuit that generates a vertical contour emphasis signal from the G signal, and a horizontal low-pass filter provided at a stage subsequent to the vertical contour emphasis signal generation circuit. Solid-state imaging device. 前記垂直方向のローパスフィルタおよび前記水平方向のローパスフィルタは、水平輪郭強調および垂直輪郭強調に適用するかしないかをそれぞれ独立に決定できることを特徴とする請求項2記載の固体撮像装置。  3. The solid-state imaging device according to claim 2, wherein the vertical low-pass filter and the horizontal low-pass filter can be independently determined as to whether or not to apply horizontal contour enhancement and vertical contour enhancement. 前記輪郭強調信号合成回路は、前記G信号輪郭強調信号生成回路の出力信号と前記全信号輪郭強調信号生成回路の出力信号との合成比を、前記R画素の色信号(R信号)と前記G信号とのレベル差及び前記B画素の信号(B信号)と前記G信号とのレベル差により決定することを特徴とする請求項1記載の固体撮像装置。  The contour emphasis signal synthesizing circuit determines a synthesis ratio between the output signal of the G signal contour emphasis signal generation circuit and the output signal of the all-signal contour emphasis signal generation circuit, and the color signal (R signal) of the R pixel and the G signal. 2. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is determined by a level difference between the signal and a level difference between the B pixel signal (B signal) and the G signal.
JP2002267955A 2002-09-13 2002-09-13 Solid-state imaging device Expired - Fee Related JP4130885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267955A JP4130885B2 (en) 2002-09-13 2002-09-13 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267955A JP4130885B2 (en) 2002-09-13 2002-09-13 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2004112024A JP2004112024A (en) 2004-04-08
JP4130885B2 true JP4130885B2 (en) 2008-08-06

Family

ID=32266319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267955A Expired - Fee Related JP4130885B2 (en) 2002-09-13 2002-09-13 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4130885B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900435B2 (en) * 2009-08-10 2012-03-21 株式会社Jvcケンウッド Defective pixel output signal correction method
JP6032964B2 (en) * 2012-06-22 2016-11-30 キヤノン株式会社 Image processing apparatus and control method thereof

Also Published As

Publication number Publication date
JP2004112024A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP4273428B2 (en) Image processing apparatus, image processing method, program for image processing method, and recording medium recording program for image processing method
JP4869653B2 (en) Image processing device
JP5223742B2 (en) Edge-enhanced image processing apparatus
JP2008289090A (en) Imaging signal processor
US7982787B2 (en) Image apparatus and method and program for producing interpolation signal
JP4548390B2 (en) Imaging apparatus and signal processing method
JP2006319460A (en) Luminance signal processor
JP2007318280A (en) Image processor
JP2004363853A (en) Method and device for reducing noise of image signal
JP4980132B2 (en) Image processing apparatus and image processing method
JP5814610B2 (en) Image processing apparatus, control method therefor, and program
JP4130885B2 (en) Solid-state imaging device
JP3863808B2 (en) Outline enhancement circuit
JP4320807B2 (en) Camera signal processing apparatus and camera signal processing method
JP4779536B2 (en) Imaging device
JP2009022044A (en) Image processing apparatus and image processing program
JP4269367B2 (en) Camera signal processing apparatus and camera signal processing method
JP2009065691A (en) Image processing apparatus, recording medium and image processing program
JP2006332732A (en) Apparatus for suppressing color shift noise
JP4269366B2 (en) Camera signal processing apparatus and camera signal processing method
JPH11220749A (en) Camera signal processor and camera signal processing method
JP4133179B2 (en) Image signal processing device
JP2004289558A (en) Solid-state imaging apparatus
JP4269369B2 (en) Camera signal processing apparatus and camera signal processing method
JP2013247597A (en) Image processing apparatus, imaging apparatus, and image processing program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees