JP4129605B2 - Manufacturing method of Ni porous plate - Google Patents

Manufacturing method of Ni porous plate Download PDF

Info

Publication number
JP4129605B2
JP4129605B2 JP22699098A JP22699098A JP4129605B2 JP 4129605 B2 JP4129605 B2 JP 4129605B2 JP 22699098 A JP22699098 A JP 22699098A JP 22699098 A JP22699098 A JP 22699098A JP 4129605 B2 JP4129605 B2 JP 4129605B2
Authority
JP
Japan
Prior art keywords
green
fine powder
porous plate
fibers
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22699098A
Other languages
Japanese (ja)
Other versions
JP2000054006A (en
Inventor
義和 山桝
威光 柴橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP22699098A priority Critical patent/JP4129605B2/en
Publication of JP2000054006A publication Critical patent/JP2000054006A/en
Application granted granted Critical
Publication of JP4129605B2 publication Critical patent/JP4129605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/801Sintered carriers
    • H01M4/805Sintered carriers of powdered and fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はニッケル水素電池の正極または高温固体電解質型燃料電池の集電板の材料などとして使用するNi多孔板の製造方法に関する。
【0002】
【従来の技術】
ニッケル水素電池の正極などにNi多孔板が使用される。ニッケル水素電池の正極は、導電基材となるNi多孔板に、正電極活物質として動作する水酸化ニッケルを充填してなるものである。Ni多孔板は、通常厚さが1〜3mmであり、空孔の平均径は50〜300μm、空隙率は85〜98%のものが多く使用される。
【0003】
ニッケル水素電池は上記正極と負極とセパレータ(絶縁膜)とを重ね合わせてスパイラルに巻き付け、缶体内に配置しアルカリ電解液を注入してなるものであるから、正極を構成するニッケル多孔板は伸びと強度が要求される。
【0004】
【発明が解決しようとする課題】
かかる金属多孔質板の製造方法には、種々の方法があるが、それぞれ次のような問題がある。
(1)平均粒径が2〜5μmの金属粉に結合剤と分散剤を添加し、攪拌混合してスラリとし、スラリをグリーンシートに成形して乾燥・焼成することにより金属多孔質板を製造する方法があるが、その方法で製造した金属多孔質板は、平均空孔径が約10μmで、空隙率もせいぜい85%までのものしかできない。
【0005】
(2)特開昭57−174484号公報には、金属多孔質板の製造に関し、ポリウレタンなどの発泡樹脂の骨格表面を導電化処理し、その上に電気メッキにより金属を電析させ、その後発泡樹脂を焼成して発泡樹脂の樹脂分を消失させ、電析された金属を焼結させる方法が記載されている。しかし、この方法では、発泡樹脂の骨格表面の導電化処理が煩雑であり、多孔金属の骨格は、空洞のある骨格となるため、骨格が折れやすいという欠点がある。さらに、脱脂する際、焼成炉内で500℃前後まで加熱して、ウレタンを酸化除去後1000℃で還元雰囲気内で加熱して、ニッケルなどの金属粉を還元後焼結させているが、ウレタン除去を行うには、十分酸化させる必要があり、この処理時に酸化されるニッケルなどの金属粉の還元および焼結に長時間を要する。また、メッキ浴の廃液処理にも費用が蒿む。
【0006】
(3)特開平1−215932号公報には、金属多孔質板の製造に関し、溶融した金属に増粘剤および発泡剤を加えて攪拌することにより、多数の独立気泡の集合体(セル構造)よりなる鋳塊を製造し、それを切断して板状にし、その片面にショットブラストをかけて、独立気泡の気泡壁面の一部を破損させることにより、各独立気泡を連通させて三次元網状多孔質金属を形成する技術が開示されている。しかし、炭酸塩のような熱分解してガスを発生させる発泡剤を添加すると塩を形成する金属が不純物として残るため、金属多孔板としての性能が損なわれる。
【0007】
(4)金属粉スラリにアクリル樹脂等の球状の粉末を加えて成形し、それを焼成して樹脂分を消失させた後、焼結することにより、消失した樹脂の跡が空孔となる金属多孔板の製造方法がある。しかし、この方法では、粒径が100μm程度のサイズの樹脂を安価に得ることが難しく、また、スラリ乾燥時に樹脂がスラリ上層部に浮き上り、分布が不均一になる。さらに、(2)と同様に樹脂の酸化除去による問題がある。
【0008】
かかる問題を解決するため、本願出願人は特許出願(特願平10−16497号(未公開))を行った。上記出願に開示された発明の1つは、水に整泡剤と結合剤を添加して混合液を調整し、攪拌機によりメレンゲ状に泡立てる工程と、泡立てた混合液中に直径が20〜120μm、長さが200〜2000μmのグリーン短繊維と分散剤とを投入して混合したスラリをグリーンテープに成形して乾燥する工程と、乾燥したグリーンテープを還元性雰囲気で脱脂し、焼結して金属多孔体にする工程を有しており、グリーン短繊維は平均粒径が1〜3μmの金属粉とポリビニールブチラールなどの有機溶剤系の結合剤とを混合してなる高粘度のスラリを押し出し成形したのち乾燥し上記長さに切断したものである。
【0009】
このように、気泡を混入させた混合液にグリーン短繊維を混入させて調整したスラリを成形したグリーンテープを還元性雰囲気で脱脂、焼結するだけなので、従来技術のように空孔を作るために、発泡ウレタンや球状のアクリル樹脂粉末が不要であり、したがって、焼成によって樹脂を酸化除去する際、同時に酸化してしまう金属粉を還元するために長時間を要することがない。また、スラリに気泡を混入させる方法を適当に選ぶことにより、金属多孔板に形成される空孔の大きさや空隙率を自由に調節することができる。グリーン短繊維を用いることにより金属多孔板の伸びが増加し、曲げ加工したときに割れが生じにくくなる。なお、グリーン短繊維を製造する際、有機溶剤系の結合剤としたのはグリーン短繊維を水に溶けにくくし、焼結するまで繊維状の原形を保持するようにするためである

【0010】
【発明が解決しようとする課題】
以上説明した金属多孔板をニッケル水素電池の正極の基板として用いる場合には、次のような問題がある。
(1)ポリビニールブチラール樹脂は高価であり、製造コストが高くなってしまう。
(2)ニッケル水素電池を製造する場合に、Ni多孔板dを曲げ加工する必要があるが、そのとき、図4(A)に示すようにグリーン短繊維を焼結したNi短繊維aの先端が曲がらずに突起してNi多孔板dの表面が毛羽立ってしまい、電極間に存在する絶縁膜bを破壊してショートを起す。なお、cは活物質である。
【0011】
本発明は上記問題点に鑑み案出されたもので、Ni多孔板を安価に、かつ、曲げ加工したときにも表面の毛羽立ちを起すことのないNi多孔板の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するため請求項1記載発明のNi多孔板の製造方法は、ポリエチレンまたはポリプロピレンなどの熱可塑性樹脂にNi微粉を混合後押し出し成形する溶融紡糸法によりグリーン繊維にする工程と、グリーン繊維に紫外線を照射して硬化させ樹脂が熱可塑性を持たないようにする工程と、紫外線を照射したグリーン繊維を切断してグリーン短繊維にする工程と、水に整泡剤と結合剤を添加して混合液を調整し攪拌機によりメレンゲ状に泡立てる工程と、泡立てた混合液中に上記グリーン短繊維とNi微粉とを分散剤とともに投入し混合して調整したスラリをグリーンテープに成形する工程と、成形したグリーンテープを常温で放置してNi微粉を浮上させ上層部に偏在させて乾燥する工程と、上層部にNi微粉が偏在したグリーンテープを還元性の雰囲気で脱脂して焼結する工程とを有している。
【0013】
また、請求項2記載発明のNi多孔板の製造方法は、ポリエチレンまたはポリプロピレンなどの熱可塑性樹脂にNi微粉を混合後押し出し成形する溶融紡糸法によりグリーン繊維にする工程と、該グリーン繊維を切断してグリーン短繊維にする工程と、水に整泡剤と結合剤を添加して攪拌機によりメレンゲ状に泡立てる工程と、泡立てた混合液中に上記グリーン短繊維と分散剤とを投入し混合して調整したスラリをグリーンテープに成形する工程と、該グリーンテープを乾燥後上面または下面のいずれか一方から紫外線を照射して、照射した面の樹脂を硬化させて熱可塑性を失わせるとともに、照射しなかった面の樹脂の熱可塑性を維持するようにする工程と、紫外線を照射したグリーンテープを還元性雰囲気で脱脂して焼結する工程とを有している。
【0014】
上記Ni微粉は平均粒径が1〜3μmであるのが好ましい。
【0015】
上記グリーン短繊維は直径が20〜120μmであり、長さが2〜10mmであるのが好ましい。
【0016】
上記方法で製造されたNi多孔板は空孔の平均径が50〜300μm、空隙率が85〜98%とすることができる。
【0017】
グリーン短繊維と混合してグリーンテープにするNi微粉の平均粒径は1〜7μmであり、グリーン短繊維に対する混合割合は重量比で1〜400%であるのが好ましい。
【0018】
次に、本発明の作用を説明する。
請求項1に記載された発明のNi多孔板の製造方法では、使用するグリーン繊維は安価なポリプロピレンやポリエチレンなどの熱可塑性樹脂を使用し、グリーン繊維に紫外線を照射して硬化させることにより、脱脂時に可塑化して繊維形状を保たなくなることを防止するようにしたので、ポリビニールブチラールなど有機溶剤系の結合剤を使用しなくてよくコストダウンができる。
【0019】
水に整泡剤と結合剤を添加して攪拌機により、泡立てる際に攪拌翼の位置や空気の吹き込みの有無などにより製品である金属多孔板の空孔の大きさや空隙率を調整することができる。
【0020】
グリーン短繊維を用いることにより、金属多孔板の伸びが得やすくなり、曲げ加工したときに割れが生じにくくなる。
【0021】
メレンゲ状に泡立てたスラリ中に上記グリーン短繊維とNi微粉を混合したスラリをグリーンテープに成形し、それを常温で放置するとグリーンテープの上層部にNi微粉が浮上して上層部にはNi微粉が偏在した状態になり、そのまま乾燥する。この状態でグリーンテープを還元性雰囲気で脱脂して焼結することにより50〜100μmの厚さのNi層を片側に持つNi多孔体が製造できる。このNi層は泡を内包するため断面に貫通孔が存在し、その貫通孔を電解液が流通する。そしてこのNi層が外側になるように曲げ加工すると、グリーン短繊維を焼結してできたNi短繊維が毛羽立つことがなく絶縁膜も保護される。
【0022】
請求項2に記載された発明のNi多孔板の製造方法では、請求項1記載の発明と異り、グリーン繊維の状態では、紫外線を照射することなく、グリーンテープを成形し、そのグリーンテープの片面に紫外線を照射する。照射された面のグリーン短繊維は硬化して形状を維持したまま焼結するが、紫外線を照射していない裏面のグリーン短繊維は脱脂・焼結時に加熱溶解して50〜100μmの厚さのNi薄膜を形成する。したがって、請求項1の発明と同様に曲げ加工したときにNi短繊維が毛羽立つことがなく、絶縁膜も保護される。なお、使用するグリーン短繊維は長さ4mm以上のものを使用する。
【0023】
【発明の実施の形態】
以下、請求項1記載の発明の1実施形態について図面を参照しつつ説明する。図1は本発明の実施のため、水に整泡剤、結合剤を混入して泡立て、短繊維とNi微粉のスラリを作るための装置の断面図である。図において1は容器、2は攪拌翼、3は水、4はメレンゲ状の発泡体、5は空気配管、6はフィルタである。図2はエスクトルーダ式溶融紡糸法の原理図である。図において11はホッパ、12はエスクトルーダ、13はスクリュ、14はギヤポンプ、15は紡糸口金、16は冷却空気、17はグリーン繊維、18は紫外線、19は巻取機である。図3(A)は本製造方法のフローシートである。
【0024】
ポリプロピレンまたはポリエチレンなどの熱可塑性樹脂にNi微粉を混合溶融し、それを数mmのチップに切断してホッパ11に投入する。チップはスクリュ13により移動するが、この間加熱されて溶融し、脱泡されてギヤポンプ14に送られる。ギヤポンプ14で定量されたNi微粉と樹脂の混合物は紡糸口金15を経て空気中に押し出しされる。側面から冷却空気16を均一に吹き付けて凝固させてグリーン繊維17にする。グリーン繊維17に紫外線18を1方向または両方向から全表面に均一に当るように照射する。紫外線18を照射すると、熱可塑性の樹脂は硬化し、熱可塑性が失われ、加熱しても溶融することがなくなり、原形を保ったままの脱脂・焼結が可能になる。
【0025】
紫外線18を照射して、硬化したグリーン繊維17に一定の張力を与えて、ガイドロールなどを経て巻取機19により巻き取る。
【0026】
巻き取られたグリーン繊維17は、適宜の長さに切断しグリーン短繊維とする。グリーン短繊維の形状は後処理の都合に合せて直径が20〜120μm、長さが2〜10mmとする。なお、紫外線の照射を巻取機19による巻き取り前に行うのに代えて、巻き取ったグリーン繊維17を短繊維に切断する前に行ってもよい。
【0027】
次に、図1(A)に示すように水3に整泡剤と結合剤を添加して混合液を調整し、攪拌翼2を液体表面近傍にセットして回転させることにより、混合液を微細な気泡を含むメレンゲ状に泡立てる。メレンゲ状の発泡体4は、容積が約2倍になっている。これにグリーン短繊維とそれの1〜400重量%のNi微粉と分散剤を投入してさらに混合を続け、微細な気泡を含むスラリにする。ドクタ法などの通常の方法でチープ状に成形してグリーンテープにする。グリーンテープを常温で放置するとNi微粉が浮上して上層部にNi微粉が偏在した状態になり、そのまま乾燥する。乾燥したグリーンテープを還元性雰囲気で脱脂および焼結することにより、50〜100μm厚さのNi層を片側に持ち、平均径が50〜100μmの空孔を有し、空隙率が85〜98%のNi多孔板を製造することできる。
【0028】
図1(B)は、図1(A)で説明したものに加えて、空気配管5の先端に取り付けた微細な孔径のフィルタ6を通して、圧縮空気を断続的に注入する。メレンゲ状の発泡体4の気泡の平均径は、図1(A)のものに比べてさらに大きくなっているので、得られるNi多孔質板の空孔の平均径は100〜300μm、空隙率は85〜98%になる。
【0029】
次に、請求項2記載の発明の1実施形態について図3(B)のフローシートを参照しつつ説明する。この発明が請求項1に記載された発明と異る点はグリーン繊維には紫外線を照射せずグリーンテープに片面から紫外線を照射して裏面に熱可塑性を有するグリーン短繊維を残しておくことにより脱脂・焼結時に裏面は加熱溶融し50〜100μmのNi薄膜を形成するようにしたので、メレンゲ状に泡立てた混合液に添加するのはグリーン短繊維のみでNi微粉は添加していない。しかし、製造されるNi多孔体は請求項1の発明で製造されるものとほぼ同じである。
【0030】
このように、請求項1および請求項2に記載された発明により製造されたNi多孔板は50〜100μm厚さのNi薄膜を片側に有し、このNi薄膜には電解液が流通可能な貫通孔を有している。したがって、このNi薄膜が外側になるように曲げ加工すると図4(B)に示すようにこのNi薄膜によりグリーン短繊維を焼結してできたNi短繊維が毛羽立って絶縁膜に突き刺さることを防ぎ、ニッケル水素電池がショートを起すことがなくなる。
【0031】
【実施例】
以下、請求項1記載の発明の金属多孔板を製造した例について、具体的に説明する。グリーン短繊維は、平均粒径が2μmのNi粉をポリプロピレンと混合し、押し出し成形した後切断して製造した。グリーン短繊維は直径が40〜50μm、長さが8〜10mmのものを使用した。
【0032】
グリーン繊維は、平均粒径2μmのNi粉70重量%、ポリプロピレン30重量%を混合した後、通常のポリプロピレン繊維を製造するのと同様の条件で加熱溶融後押し出し紡糸して製造した。紫外線照射による硬化は、ウシオ電気製のスポット紫外線照射装置(紫外線照度 max 4W/cm2 )を用いて1分間照射した。
【0033】
グリーン短繊維15gと平均粒径7μmのNi粉60gと12gの整泡剤と3gの結合剤と100gの水とを混合して気泡入りのスラリとした。スラリをドクタ法により15mmの厚さのグリーンテープに成形した。グリーンテープを常温で約3h放置して乾燥した。
【0034】
成形したグリーンテープの焼成は、5%H2 ーN2 雰囲気炉で1000℃、30分加熱して行った。焼成後のNi多孔体の厚さは1mm、片側のNi層の厚さは50μm、空孔の平均径は50〜80μmであった。
【0035】
本発明は以上述べた実施形態や実施例に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
【0036】
【発明の効果】
以上説明したように、本発明のNi多孔体の製造方法は熱可塑性樹脂によりNi微粉を含むグリーン繊維を製造し、それを紫外線により硬化させて熱可塑性を失わせるようにしたので、コストダウンが可能であり、片面にNi層を形成してNi繊維の毛羽立ちを防ぐようにしたので、Ni水素電池を製造する際に絶縁膜を破壊することがないなどの優れた高価を有する。
【図面の簡単な説明】
【図1】グリーン短繊維を含む気泡入りスラリの製造方法の説明図である。
【図2】エクストルーダ式溶融紡糸法の原理図である。
【図3】本発明の製造方法のフローシートである。
【図4】本発明の有効性を示す説明図である。
【符号の説明】
1 容器
2 攪拌翼
3 水
4 メレンゲ状の発泡体
12 エクストルーダ
17 グリーン繊維
18 紫外線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a Ni porous plate used as a material for a positive electrode of a nickel metal hydride battery or a current collector plate of a high temperature solid oxide fuel cell.
[0002]
[Prior art]
A Ni porous plate is used for a positive electrode of a nickel metal hydride battery. The positive electrode of the nickel metal hydride battery is formed by filling a nickel porous plate serving as a conductive base material with nickel hydroxide that operates as a positive electrode active material. Ni porous plates usually have a thickness of 1 to 3 mm, and an average pore diameter of 50 to 300 μm and a porosity of 85 to 98% are often used.
[0003]
The nickel metal hydride battery is formed by superposing the positive electrode, the negative electrode, and the separator (insulating film) on a spiral, placing it in a can and injecting an alkaline electrolyte, so that the nickel porous plate constituting the positive electrode is elongated. And strength is required.
[0004]
[Problems to be solved by the invention]
There are various methods for producing such a metal porous plate, but each has the following problems.
(1) A metal porous plate is produced by adding a binder and a dispersant to metal powder having an average particle size of 2 to 5 μm, stirring and mixing to form a slurry, forming the slurry into a green sheet, drying and firing. However, the metal porous plate manufactured by this method can only have an average pore diameter of about 10 μm and a porosity of up to 85%.
[0005]
(2) Japanese Patent Application Laid-Open No. 57-174484 relates to the production of a metal porous plate, the skeleton surface of a foamed resin such as polyurethane is subjected to a conductive treatment, the metal is electrodeposited thereon by electroplating, and then foamed. A method is described in which the resin is fired to eliminate the resin content of the foamed resin, and the electrodeposited metal is sintered. However, this method has a drawback that the conductive treatment on the surface of the skeleton of the foamed resin is complicated, and the skeleton of the porous metal becomes a skeleton having voids, so that the skeleton is easily broken. Furthermore, when degreasing, it is heated to around 500 ° C. in a baking furnace, and after urethane is removed by oxidation, it is heated in a reducing atmosphere at 1000 ° C. to reduce metal powder such as nickel and sinter after reduction. In order to perform the removal, it is necessary to oxidize sufficiently, and it takes a long time to reduce and sinter metal powder such as nickel which is oxidized during this treatment. In addition, there is a cost for treating the waste solution of the plating bath.
[0006]
(3) JP-A-1-215932 discloses a method for producing a porous metal plate by adding a thickener and a foaming agent to a molten metal and stirring it to obtain an aggregate of a large number of closed cells (cell structure). The ingot is made of, cut into a plate shape, shot blasted on one side, and a part of the cell wall of the closed cell is broken to connect each closed cell to form a three-dimensional network Techniques for forming porous metals have been disclosed. However, when a foaming agent that generates gas by thermal decomposition, such as carbonate, is added, the metal forming the salt remains as an impurity, so that the performance as a metal porous plate is impaired.
[0007]
(4) Metal powder slurry is formed by adding spherical powder such as acrylic resin, fired to dissipate the resin component, and then sintered, so that the trace of the lost resin becomes a void. There is a method for producing a perforated plate. However, with this method, it is difficult to obtain a resin having a particle size of about 100 μm at a low cost, and the resin floats on the upper layer of the slurry during slurry drying, resulting in uneven distribution. Furthermore, there is a problem due to oxidation removal of the resin as in (2).
[0008]
In order to solve such a problem, the present applicant filed a patent application (Japanese Patent Application No. 10-16497 (unpublished)). One of the inventions disclosed in the above application is the step of preparing a liquid mixture by adding a foam stabilizer and a binder to water and foaming it in a meringue form with a stirrer, and a diameter of 20 to 120 μm in the foamed liquid mixture , A step of molding and drying slurry mixed with green short fibers having a length of 200 to 2000 μm and a dispersing agent into green tape, and degreasing and sintering the dried green tape in a reducing atmosphere It has a process to make a metal porous body, and the green short fiber extrudes a high-viscosity slurry made by mixing metal powder with an average particle diameter of 1 to 3 μm and organic solvent binder such as polyvinyl butyral. After molding, it is dried and cut to the above length.
[0009]
In this way, the green tape formed with the slurry prepared by mixing the green short fibers into the mixed liquid containing bubbles is simply degreased and sintered in a reducing atmosphere. In addition, urethane foam and spherical acrylic resin powder are unnecessary, and therefore, when the resin is oxidized and removed by firing, it does not take a long time to reduce the metal powder that is oxidized at the same time. Further, by appropriately selecting a method of mixing bubbles in the slurry, the size and porosity of the pores formed in the metal porous plate can be freely adjusted. By using the green short fiber, the elongation of the metal porous plate is increased, and cracking hardly occurs when bending. In addition, when manufacturing the green short fiber, the organic solvent-based binder is used so that the green short fiber is hardly dissolved in water and the fibrous original shape is retained until it is sintered.
[0010]
[Problems to be solved by the invention]
When the metal porous plate described above is used as a positive electrode substrate of a nickel metal hydride battery, there are the following problems.
(1) Polyvinyl butyral resin is expensive and expensive to manufacture.
(2) When manufacturing a nickel metal hydride battery, it is necessary to bend the Ni porous plate d. At that time, as shown in FIG. 4 (A), the tip of the Ni short fiber a obtained by sintering the green short fiber Projecting without bending and the surface of the Ni porous plate d becomes fuzzy, destroying the insulating film b existing between the electrodes and causing a short circuit. Note that c is an active material.
[0011]
The present invention has been devised in view of the above problems, and an object of the present invention is to provide a method for producing a Ni porous plate that does not cause fuzz on the surface even when the Ni porous plate is bent at a low cost. And
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing a Ni porous plate according to claim 1 comprises a step of forming green fibers by a melt spinning method in which Ni fine powder is mixed with a thermoplastic resin such as polyethylene or polypropylene and then extrusion molding, Add a foam stabilizer and a binder to water, a process of curing the resin by irradiating it with ultraviolet rays to prevent the resin from having thermoplasticity, a process of cutting the green fibers irradiated with ultraviolet rays into green short fibers, and Adjusting the mixed solution and foaming it into a meringue shape with a stirrer; and adding the green short fiber and Ni fine powder together with a dispersant into the foamed mixed solution and mixing the adjusted slurry into a green tape; and A process in which the formed green tape is allowed to stand at room temperature, Ni fine powder floats up and is unevenly distributed in the upper layer part, and a green in which Ni fine powder is unevenly distributed in the upper layer part And a step of sintering degreased tape in an atmosphere of a reducing.
[0013]
According to a second aspect of the present invention, there is provided a method for producing a Ni porous plate comprising a step of forming green fibers by a melt spinning method in which Ni fine powder is mixed with a thermoplastic resin such as polyethylene or polypropylene and then extruded, and the green fibers are cut. A step of making green short fibers, a step of adding a foam stabilizer and a binder to water and foaming into a meringue form with a stirrer, and mixing the green short fibers and the dispersant into the foamed mixture A process of forming the adjusted slurry into green tape, and after drying the green tape, irradiate ultraviolet rays from either the upper surface or the lower surface to cure the resin on the irradiated surface, thereby losing thermoplasticity and irradiating. There are a process for maintaining the thermoplasticity of the resin on the surface that was not present, and a process for degreasing and sintering the green tape irradiated with ultraviolet rays in a reducing atmosphere. To have.
[0014]
The Ni fine powder preferably has an average particle size of 1 to 3 μm.
[0015]
The green short fiber preferably has a diameter of 20 to 120 μm and a length of 2 to 10 mm.
[0016]
The Ni porous plate manufactured by the above method can have an average pore diameter of 50 to 300 μm and a porosity of 85 to 98%.
[0017]
The average particle diameter of the Ni fine powder mixed with the green short fiber to form a green tape is 1 to 7 μm, and the mixing ratio with respect to the green short fiber is preferably 1 to 400% by weight.
[0018]
Next, the operation of the present invention will be described.
In the manufacturing method of the Ni porous plate of the invention described in claim 1, the green fiber to be used is an inexpensive thermoplastic resin such as polypropylene or polyethylene, and the green fiber is irradiated with ultraviolet rays to be cured, thereby degreasing. Since it is prevented that the fiber shape is sometimes lost due to plasticization, the cost can be reduced without using an organic solvent-based binder such as polyvinyl butyral.
[0019]
When foaming with a stirrer by adding a foam stabilizer and a binder to water, the size and porosity of the porous metal plate can be adjusted depending on the position of the stirring blade and the presence or absence of air blowing. .
[0020]
By using the green short fibers, it becomes easy to obtain the elongation of the metal porous plate, and cracking hardly occurs when bending.
[0021]
A slurry in which green short fibers and Ni fine powder are mixed in a meringue-like foamed slurry is formed into a green tape, and when left at room temperature, Ni fine powder floats on the upper layer of the green tape and Ni fine powder on the upper layer. Becomes unevenly distributed and dried as it is. In this state, the green tape is degreased in a reducing atmosphere and sintered to produce a Ni porous body having a Ni layer having a thickness of 50 to 100 μm on one side. Since this Ni layer encloses bubbles, there are through holes in the cross section, and the electrolytic solution flows through the through holes. When the Ni layer is bent so that the Ni layer is on the outside, the Ni short fibers obtained by sintering the green short fibers are not fuzzed and the insulating film is protected.
[0022]
In the manufacturing method of the Ni porous plate of the invention described in claim 2, unlike the invention of claim 1, in the state of green fiber, a green tape is formed without irradiating ultraviolet rays, and the green tape One side is irradiated with ultraviolet rays. The green short fibers on the irradiated surface are cured and sintered while maintaining the shape, but the green short fibers on the back surface not irradiated with ultraviolet rays are heated and dissolved during degreasing and sintering to a thickness of 50 to 100 μm. A Ni thin film is formed. Therefore, the Ni short fibers do not fluff when bent as in the first aspect of the invention, and the insulating film is protected. In addition, the green short fiber to use uses a thing of length 4mm or more.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of an apparatus for producing a slurry of short fibers and Ni fine powder by mixing a foam stabilizer and a binder into water for carrying out the present invention. In the figure, 1 is a container, 2 is a stirring blade, 3 is water, 4 is a meringue foam, 5 is an air pipe, and 6 is a filter. FIG. 2 is a principle diagram of the estruder type melt spinning method. In the figure, 11 is a hopper, 12 is an estruder, 13 is a screw, 14 is a gear pump, 15 is a spinneret, 16 is cooling air, 17 is green fiber, 18 is ultraviolet light, and 19 is a winder. FIG. 3A is a flow sheet of this manufacturing method.
[0024]
Ni fine powder is mixed and melted in a thermoplastic resin such as polypropylene or polyethylene, cut into chips of several mm, and put into the hopper 11. The chip is moved by the screw 13, but is heated and melted during this time, defoamed, and sent to the gear pump 14. The mixture of Ni fine powder and resin quantified by the gear pump 14 is extruded into the air through the spinneret 15. Cooling air 16 is uniformly blown from the side to be solidified into green fibers 17. The green fiber 17 is irradiated with ultraviolet rays 18 from one or both directions so as to uniformly strike the entire surface. When the ultraviolet ray 18 is irradiated, the thermoplastic resin is cured, the thermoplasticity is lost, the thermoplastic resin is not melted even when heated, and degreasing and sintering can be performed while maintaining the original shape.
[0025]
A certain tension is applied to the cured green fiber 17 by irradiating ultraviolet rays 18, and it is wound by a winder 19 through a guide roll or the like.
[0026]
The wound green fiber 17 is cut into an appropriate length to obtain a green short fiber. The shape of the green short fiber is 20 to 120 μm in diameter and 2 to 10 mm in length for convenience of post-treatment. Instead of performing the ultraviolet irradiation before winding by the winder 19, it may be performed before cutting the wound green fiber 17 into short fibers.
[0027]
Next, as shown in FIG. 1 (A), the liquid mixture is adjusted by adding a foam stabilizer and a binder to water 3, and the liquid mixture is set by rotating the stirring blade 2 near the liquid surface. Foam in the shape of meringue containing fine bubbles. The meringue-like foam 4 has a volume approximately doubled. Green short fibers, 1 to 400% by weight of Ni fine powder and a dispersing agent are added thereto, and further mixing is continued to form a slurry containing fine bubbles. It is formed into a cheap shape by a usual method such as a doctor method and is made into green tape. When the green tape is left at room temperature, the Ni fine powder floats up and the Ni fine powder is unevenly distributed in the upper layer portion, and is dried as it is. By degreasing and sintering the dried green tape in a reducing atmosphere, it has a Ni layer with a thickness of 50 to 100 μm on one side, pores with an average diameter of 50 to 100 μm, and a porosity of 85 to 98%. Ni perforated plate can be manufactured.
[0028]
In FIG. 1 (B), in addition to what has been described with reference to FIG. 1 (A), compressed air is intermittently injected through a filter 6 having a fine pore diameter attached to the tip of the air pipe 5. Since the average diameter of the bubbles of the meringue-like foam 4 is larger than that of FIG. 1A, the average diameter of the pores of the obtained Ni porous plate is 100 to 300 μm, and the porosity is 85-98%.
[0029]
Next, an embodiment of the invention described in claim 2 will be described with reference to the flow sheet of FIG. The present invention is different from the invention described in claim 1 in that the green fiber is not irradiated with ultraviolet rays, but the green tape is irradiated with ultraviolet rays from one side to leave thermoplastic green fibers on the back surface. At the time of degreasing and sintering, the back surface is heated and melted to form a Ni thin film of 50 to 100 μm. Therefore, only the green short fibers are added to the mixed solution foamed in a meringue form, and Ni fine powder is not added. However, the manufactured Ni porous body is substantially the same as that manufactured in the invention of claim 1.
[0030]
Thus, the Ni porous plate manufactured by the invention described in claims 1 and 2 has a Ni thin film having a thickness of 50 to 100 μm on one side, and the Ni thin film penetrates through which the electrolyte can circulate. It has a hole. Therefore, when the Ni thin film is bent so that it is on the outside, as shown in FIG. 4B, the Ni short fibers formed by sintering the green short fibers with this Ni thin film are prevented from fluffing and sticking into the insulating film. The nickel metal hydride battery will not cause a short circuit.
[0031]
【Example】
Hereinafter, the example which manufactured the metal porous plate of invention of Claim 1 is demonstrated concretely. The green short fibers were manufactured by mixing Ni powder having an average particle diameter of 2 μm with polypropylene, extrusion molding, and cutting. Green short fibers having a diameter of 40 to 50 μm and a length of 8 to 10 mm were used.
[0032]
The green fiber was produced by mixing 70% by weight of Ni powder having an average particle diameter of 2 μm and 30% by weight of polypropylene, followed by heat-melting and extrusion spinning under the same conditions as for producing ordinary polypropylene fiber. Curing by ultraviolet irradiation was performed for 1 minute using a spot ultraviolet irradiation device (ultraviolet illuminance max. 4 W / cm 2 ) manufactured by Ushio Electric.
[0033]
15 g of green short fibers, 60 g of Ni powder having an average particle diameter of 7 μm, 12 g of a foam stabilizer, 3 g of a binder, and 100 g of water were mixed to obtain a slurry containing bubbles. The slurry was formed into a green tape having a thickness of 15 mm by the doctor method. The green tape was left to dry at room temperature for about 3 hours.
[0034]
Firing of the molded green tape was performed by heating at 1000 ° C. for 30 minutes in a 5% H 2 -N 2 atmosphere furnace. The thickness of the Ni porous body after firing was 1 mm, the thickness of the Ni layer on one side was 50 μm, and the average diameter of the pores was 50 to 80 μm.
[0035]
The present invention is not limited to the embodiments and examples described above, and various modifications can be made without departing from the scope of the invention.
[0036]
【The invention's effect】
As described above, the method for producing a Ni porous body according to the present invention produces green fibers containing Ni fine powder with a thermoplastic resin, and cures it with ultraviolet rays so that the thermoplasticity is lost. The Ni layer is formed on one side to prevent the fluffing of the Ni fibers, so that it has an excellent cost of not destroying the insulating film when manufacturing the Ni hydrogen battery.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of a method for producing an aerated slurry containing short green fibers.
FIG. 2 is a principle diagram of an extruder type melt spinning method.
FIG. 3 is a flow sheet of the production method of the present invention.
FIG. 4 is an explanatory diagram showing the effectiveness of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Container 2 Stirring blade 3 Water 4 Meringue-shaped foam 12 Extruder 17 Green fiber 18 Ultraviolet

Claims (6)

ポリエチレンまたはポリプロピレンなどの熱可塑性樹脂にNi微粉を混合後押し出し成形する溶融紡糸法によりグリーン繊維にする工程と、該グリーン繊維に紫外線を照射して硬化させ樹脂が熱可塑性を持たないようにする工程と、紫外線を照射したグリーン繊維を切断してグリーン短繊維にする工程と、水に整泡剤と結合剤を添加して混合液を調整し攪拌機によりメレンゲ状に泡立てる工程と、泡立てた混合液中に上記グリーン短繊維とNi微粉とを分散剤とともに投入し混合して調整したスラリをグリーンテープに成形する工程と、成形したグリーンテープを常温で放置してNi微粉を浮上させ上層部に偏在させて乾燥する工程と、上層部にNi微粉が偏在したグリーンテープを還元性の雰囲気で脱脂して焼結する工程とを有することを特徴とするNi多孔板の製造方法。A step of forming green fibers by melt spinning method in which Ni fine powder is mixed with a thermoplastic resin such as polyethylene or polypropylene and then extrusion molding, and a step of curing the green fibers by irradiating with ultraviolet rays so that the resin does not have thermoplasticity A step of cutting green fibers irradiated with ultraviolet rays to form short green fibers, a step of adding a foam stabilizer and a binder to water to prepare a mixed solution, and foaming into a meringue shape with a stirrer, and a foamed mixed solution The step of forming the green short fiber and Ni fine powder together with a dispersant into the green tape and forming the slurry into green tape, and leaving the formed green tape at room temperature to float the Ni fine powder and unevenly distribute in the upper layer And drying, and a step of degreasing and sintering the green tape in which Ni fine powder is unevenly distributed in the upper layer portion in a reducing atmosphere. Method for producing a porous Ni plate to symptoms. ポリエチレンまたはポリプロピレンなどの熱可塑性樹脂にNi微粉を混合後押し出し成形する溶融紡糸法によりグリーン繊維にする工程と、該グリーン繊維を切断してグリーン短繊維にする工程と、水に整泡剤と結合剤を添加して攪拌機によりメレンゲ状に泡立てる工程と、泡立てた混合液中に上記グリーン短繊維と分散剤とを投入し、混合して調整したスラリをグリーンテープに成形する工程と、該グリーンテープを乾燥後上面または下面のいずれか一方から紫外線を照射して、照射した面の樹脂を硬化させて熱可塑性を失わせるとともに、照射しなかった面の樹脂の熱可塑性を維持するようにする工程と、紫外線を照射したグリーンテープを還元性雰囲気で脱脂して焼結する工程とを有することを特徴とするNi多孔板の製造方法。Bonding Ni fine powder to a thermoplastic resin such as polyethylene or polypropylene to form a green fiber by a melt spinning method in which extrusion molding is performed, cutting the green fiber into a green short fiber, and binding a foam stabilizer to water A step of adding an agent and foaming into a meringue form with a stirrer, a step of charging the green short fiber and the dispersant into the foamed mixed liquid, mixing the mixture into a green tape, and forming the green tape The process of irradiating ultraviolet rays from either the upper surface or the lower surface after drying and curing the resin on the irradiated surface to lose the thermoplasticity and maintaining the thermoplasticity of the resin on the non-irradiated surface And a step of degreasing and sintering the green tape irradiated with ultraviolet rays in a reducing atmosphere. グリーン繊維の製造に使用するNi微粉は平均粒径が1〜3μmである請求項1または請求項2記載のNi多孔板の製造方法。The method for producing a Ni porous plate according to claim 1 or 2, wherein the Ni fine powder used for producing the green fiber has an average particle diameter of 1 to 3 µm. 上記グリーン短繊維は直径が20〜120μmであり長さが2〜10mmである請求項1ないし3記載のNi多孔板の製造方法。4. The method for producing a Ni porous plate according to claim 1, wherein the green short fibers have a diameter of 20 to 120 [mu] m and a length of 2 to 10 mm. 上記方法で製造されたNi多孔板は空孔の平均径が50〜300μm、空隙率が85〜98%である請求項1ないし請求項4記載のNi多孔板の製造方法。5. The method for producing a Ni porous plate according to claim 1, wherein the Ni porous plate produced by the above method has an average pore diameter of 50 to 300 μm and a porosity of 85 to 98%. グリーン短繊維と混合してグリーンテープにするNi微粉の平均径は1〜7μmであり、グリーン短繊維に対する割合は重量比で1〜400%である請求項1記載のNi多孔板の製造方法。2. The method for producing a Ni porous plate according to claim 1, wherein an average diameter of Ni fine powder mixed with green short fibers to form a green tape is 1 to 7 μm, and a ratio with respect to the green short fibers is 1 to 400% by weight.
JP22699098A 1998-08-11 1998-08-11 Manufacturing method of Ni porous plate Expired - Fee Related JP4129605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22699098A JP4129605B2 (en) 1998-08-11 1998-08-11 Manufacturing method of Ni porous plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22699098A JP4129605B2 (en) 1998-08-11 1998-08-11 Manufacturing method of Ni porous plate

Publications (2)

Publication Number Publication Date
JP2000054006A JP2000054006A (en) 2000-02-22
JP4129605B2 true JP4129605B2 (en) 2008-08-06

Family

ID=16853790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22699098A Expired - Fee Related JP4129605B2 (en) 1998-08-11 1998-08-11 Manufacturing method of Ni porous plate

Country Status (1)

Country Link
JP (1) JP4129605B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993914B (en) * 2019-12-11 2020-11-06 内蒙古科技大学 Nickel-hydrogen battery cathode slurry and preparation method thereof

Also Published As

Publication number Publication date
JP2000054006A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
CN1114963C (en) Process for preparing metallic porous body, electrody substrate for battery and process for preparing the same
EP0858853B1 (en) method for manufacturing a metallic porous body
CN1230932C (en) Collector for alkali secondary battery, manufacture thereof and alkali secondary battery
JP4292436B2 (en) Metal porous body, method for producing the same and battery current collector using the same
JPS6381767A (en) Electrode for battery and manufacture thereof
JP2010037569A (en) Metal porous electrode base material and method for producing the same
JP4129605B2 (en) Manufacturing method of Ni porous plate
CN110277560B (en) Current collector and preparation method thereof, electrode plate and preparation method thereof, and lead-acid battery
DE3210770C2 (en) Metallic, essentially spherical, light-weight particles, and the use and process for their production
CN112599784A (en) Porous aluminum alloy current collector and preparation method thereof, and porous aluminum alloy composite sodium negative electrode and preparation method thereof
JP2000268827A (en) Metal pseudo porous substance and its manufacture, electrode plate for battery using the same and manufacture of plates, and battery using electrode plates
CN115364852B (en) Porous ceramic loaded with nano noble metal oxide catalyst and preparation method and application thereof
JP2000054005A (en) Production of metallic porous sheet
JPH11193405A (en) Manufacture of porous metal sheet
CN116162279B (en) Porous polyolefin and preparation method and application thereof
JP4079667B2 (en) Sintered substrate for alkaline storage battery and manufacturing method thereof
JP3218845B2 (en) Method for manufacturing three-dimensional copper network structure
JPS63105469A (en) Manufacture of nickel substrate for alkaline battery
CN1228868C (en) Method for mfg. foamed metal substrate and electrode for alkali battery
CN114583386B (en) Lithium-sulfur battery composite integrated diaphragm, preparation method thereof and lithium-sulfur battery
CN111193030B (en) Three-dimensional porous aluminum strip, preparation method and anode
CN116162279A (en) Porous polyolefin and preparation method and application thereof
CN107437645B (en) Method for manufacturing porous high-performance oxygen electrode of metal fuel cell
JP3015455B2 (en) Electrode plate for battery
JPS62147660A (en) Manufacture of electrode for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees