JP4128341B2 - Flexible wiring board substrate - Google Patents

Flexible wiring board substrate Download PDF

Info

Publication number
JP4128341B2
JP4128341B2 JP2001215174A JP2001215174A JP4128341B2 JP 4128341 B2 JP4128341 B2 JP 4128341B2 JP 2001215174 A JP2001215174 A JP 2001215174A JP 2001215174 A JP2001215174 A JP 2001215174A JP 4128341 B2 JP4128341 B2 JP 4128341B2
Authority
JP
Japan
Prior art keywords
sheet
graphite
wiring board
woven
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001215174A
Other languages
Japanese (ja)
Other versions
JP2003031913A (en
Inventor
幹育 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taica Corp
Original Assignee
Taica Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taica Corp filed Critical Taica Corp
Priority to JP2001215174A priority Critical patent/JP4128341B2/en
Publication of JP2003031913A publication Critical patent/JP2003031913A/en
Application granted granted Critical
Publication of JP4128341B2 publication Critical patent/JP4128341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、配線板用基板に関する。
【0002】
【従来の技術】
従来、基板に対して銅箔などの金属箔を積層させた配線板用基板が広く用いられている。この配線板用基板は、金属箔の部分に配線パターンを描き、それに沿ってエッチング等を行うフォトリソグラフィー技術によってプリント配線板とされ、種々の電気・電子機器に使用されている。
【0003】
上記プリント配線板は、一般に、使用に伴って回路から発熱することがある。その場合、熱が回路近傍に蓄積され温度が上昇すると、熱暴走などの不測の障害が発生する恐れがあるため、発生した熱は速やかに放散させることが必要となる。しかしながら、従来のプリント配線板の基板(すなわち配線板用基板の基板)は、フェノール樹脂などの合成樹脂製のものが多く、このような合成樹脂は熱伝導性が劣るので、発生した熱を十分に放散できないという問題があった。
【0004】
ところで、近年の電子機器の小型化・薄型化に伴い、より狭い空間に実装可能なプリント配線板の開発が望まれている。これに対し、例えば、ポリイミドフィルムに金属回路を形成し全体的に可撓性をもたせたフレキシブルプリント配線板が知られている。しかしながら、このフレキシブルプリント配線板も、上述の例と同様に、基板が樹脂フィルムであるため熱伝導性が低く、放熱性が不十分であるという問題があった。
【0005】
【発明が解決しようとする課題】
そこで本発明は、上記従来の状況に鑑み、全体に可撓性を有し任意に折り曲げ可能であって、かつ優れた熱伝導性を有し、発生した熱を速やかに放散することができる、新規なフレキシブル配線板用基板を提供することを目的とする。
【0006】
上記課題を解決するため、本発明のフレキシブル配線板用基板は、厚さが100〜300μmである可撓性を有するシート状黒鉛の少なくとも片面に、前記シート状黒鉛の可撓性を損わないように、接着剤が含浸されて絶縁性を有する織布又は不織布を介して、導電金属層が積層されて構成され、
前記織布又は不織布は、厚さが50〜200μmであり、かつ引張強度(日本化学繊維協会の合繊長繊維不織布試験方法による)が20〜400N/5cmであり、かつ目付が10g/m 2 以上であ
ことを特徴とする。
【0007】
上記構成によれば、シート状黒鉛と、導電金属層とが、絶縁性の織布又は不織布を介して一体化される。そして、使用の際に発生した熱は、熱伝導性に優れるシート状黒鉛によって速やかに放熱される。また、製造した配線板用基板を例えば折り曲げる等しても、その大きな変形に対して配線板用基板が柔軟に追従し、特にシート状黒鉛が、織布又は不織布によって補強されるため、劈開、剥離等の欠陥を生じない。さらに、シート状黒鉛と、金属箔又は金属めっき層とが、織布又は不織布の厚さの分だけ確実に離間するため、ショート等の事故が防止される。
【0009】
上記構成によれば、フレキシブル配線板用基板全体の高い熱伝導性を維持しつつ、織布又は不織布による補強効果を十分に発揮させる観点から、織布又は不織布の厚さが最適化される。
【0011】
上記構成によれば、配線板用基板を任意に折り曲げ、大きな変形を加えても、配線板用基板に欠陥を生じないように、織布又は不織布の引張強度が最適化される。また、織布又は不織布の引張強度が十分に高ければ、フレキシブル配線板用基板を、巻き取りテンション装置等により連続的に製造することが可能となる。
【0013】
上記構成によれば、フレキシブル配線板用基板の放熱性、および可撓性のバランスを考慮して、シート状黒鉛の厚さが最適化される。
【0014】
【発明の実施の形態】
以下、本発明を詳細に説明する。
図1は、本発明のフレキシブル配線板用基板の実施の形態(1)における断面を模式的に示したものである。図1のフレキシブル配線板用基板1は、シート状黒鉛2の片面に、絶縁性の織布又は不織布3を介して、導電金属層4が積層され概略構成されている。積層に当たっては、例えば、接着剤5などを用いて貼着することができる。なお、図1では便宜的に、シート状黒鉛2と導電金属層4との間に、織布又は不織布3が接着剤5で挟まれた3層構造が存在するように描いているが、実際には、接着剤5は、織布又は不織布3に含浸した状態で硬化することが好ましく、その場合には、上記3層構造は重なり合って1層となる。
【0015】
シート状黒鉛2としては、可撓性を有することを条件として、従来から知られた各種の黒鉛シートを適宜選択して用いることができる。例えば、天然黒鉛から誘導されたものや、高分子化合物を黒鉛化して誘導されたもの等を挙げることができ、その製造由来は問わない。なお、ここで「可撓性を有する」とは、シート状黒鉛2をR=10mmで90°折り曲げたときに外観上ひび割れを生じない程度を意味するものである。
【0016】
シート状黒鉛2の厚さは、厚すぎると可撓性が低下し、逆に薄すぎると織布又は不織布3の厚さの影響が大きくなって放熱性が十分に得られないので、これらのバランスを考慮して適宜設定される。具体的には、100〜300μm程度とすることが好ましいが、これに限定されるものではない。
【0017】
また、シート状黒鉛2の表面には、織布又は不織布3との接着性を向上させるため、必要に応じて、予めプライマーを塗布しておくこともできる。このプライマーの例として、プライマーC(商品名:信越シリコーン社製)、プライマーX(商品名:東レ・ダウコーニング・シリコーン社製)、プライマーY(商品名:東レ・ダウコーニング・シリコーン社製)、ME151(商品名:東芝シリコーン社製)等を挙げることができる。
【0018】
次に、織布又は不織布3としては、電気絶縁性を有することを条件として、種々の合成繊維、天然繊維、ガラス繊維等の織布又は不織布の中から適宜選択し用いることができる。このような織布又は不織布の好適な例として、メタ・アラミドペーパー(商品名:デュポン帝人アドバンスドペーパー社製)等のアラミド系繊維からなる不織布を挙げることができる。織布又は不織布3を積層させることにより、フレキシブル配線板用基板1全体を撓ませたときの安全性が高まり、大きな変形に対してシート状黒鉛2がひび割れたりすることがなくなる。また、織布又は不織布3を介在させることによって、シート状黒鉛2と導電金属層4とを確実に離間させ、ショート等の事故を防止することができる。
【0019】
織布又は不織布3の厚さは、厚すぎると熱伝導性シート1全体の熱伝導率が低下するので好ましくなく、逆に薄すぎるとシート状黒鉛2に対する補強効果が十分に得られず、また、ショートする可能性があるので、これらのバランスを考慮して適宜設定される。具体的には50〜200μm程度が適当であり、好ましくは50〜100μmである。
【0020】
また、織布又は不織布3は、メッシュなどの目の粗いものを用いることもできるが、目が粗すぎると、その目の通孔の部分で、シート状黒鉛2と導電金属層4とがショートする可能性があるので注意を要する。具体的な目の粗さは、織布又は不織布3の厚さとの関係もあり一概にはいえないが、少なくとも目付が10g/m2以上であることが好ましい。
【0021】
また、本発明のフレキシブル配線板用基板1を、例えば巻取りテンション装置により連続シートとして製造するような場合を考慮し、本発明における織布又は不織布3としては、外力に対して強靱なものを用いることが望ましい。具体的には、織布又は不織布3の引張強度が20〜400N/5cm程度のものを用いることが好ましい。なお、上記引張強度は、日本化学繊維協会の合繊長繊維不織布試験方法によって得られる値である。
【0022】
そして、導電金属層4は、配線板用基板に従来使用される各種の金属から構成され、配線板用基板の変形に対し追従できる程度に柔軟性を有している。図1の例は、導電金属層4として、金属箔41を用いた場合である。金属層41としては、一般に、銅やニッケルの箔が好ましく用いられる。また、金属箔41の厚さは、特に限定されるものではないが、本発明は可撓性を有する配線板用基板であることを特徴の一つとするので、全体の可撓性を妨げないように比較的薄い方が好ましい。なお、ここでいう金属箔41には、フォトリソグラフィー等の手段により回路パターンを形成する前のいわゆる金属箔のみならず、予め回路パターンを打ち抜く等して作製したリードフレームをも含む。
【0023】
次に、フレキシブル配線板用基板1の製造方法について説明する。フレキシブル配線板用基板1を製造するに当たっては、例えば導線金属層4として金属箔41を用いる場合、シート状黒鉛2に対し、接着剤5を用いて、織布又は不織布3及び金属箔41を貼着させることにより製造することができる。具体的には、シート状黒鉛2に接着剤5を塗布した後に、織布又は不織布3を積層させ、その上に接着剤5を塗布し、さらに金属箔41を積層させて硬化させる方法や、あるいは予め織布又は不織布3に対し接着剤5を塗布もしくは含浸させたものを、シート状黒鉛2と金属箔41で挟み込んで硬化させる方法などを適宜採用することができる。
【0024】
製造の際に用いる接着剤5としては、回路から発熱する温度で溶融や劣化を起こさないことを条件として、従来知られた各種の接着剤の中から適宜選択して用いることができる。具体例としては、ゴム系、アクリル樹脂系、ポリアミド系、ポリイミド系、エポキシ系、エチレン−酢酸ビニル共重合体、シリコーン樹脂系等の接着剤を挙げることができる。
【0025】
接着剤5を、シート状黒鉛2、金属箔41、あるいは織布又は不織布4に対して塗布もしくは含浸させる方法としては、スプレー法、カレンダリング法、ワイヤーバーコート法、ディッピング法等の公知の手段を適宜用いることができる。
【0026】
シート状黒鉛2、織布又は不織布3、及び金属箔41を積層させ、硬化させる際には、全体を加圧しつつ行うことができる。加圧する方法としては、ロールや平板プレス等の各種プレス機を用い、必要に応じて加熱しながら適宜行われる。加圧する際の圧力は、硬化温度や、シート状黒鉛2の厚さ等によって適宜調整する。加圧することにより、シート状黒鉛2、織布又は不織布3、及び金属箔41が互いに強く密着したまま硬化が進むので、後に剥離や空隙を生じる層間の欠陥が除かれ、高い熱伝導性が維持される。
【0027】
次に、図2は、本発明のフレキシブル配線板用基板の実施の形態(2)である。この実施の形態は、導電金属層4として、上記金属箔41の代わりに金属めっき層42を設けた例である。この場合、上記金属箔41の場合とは製造方法が異なり、通常は、まずシート状黒鉛2と織布又は不織布3とを接着剤5で貼着・硬化させ、その後に金属めっき層42を形成して製造する。
【0028】
金属めっき層42は、従来から知られた無電解めっき方法を適宜選択、採用して形成することができる。なお、本発明でいう金属めっき層42には、蒸着により形成した金属層をも含む。また、めっきする金属の例としては、銅、ニッケル等が挙げられる。
【0029】
その他の構成、すなわちシート状黒鉛2、織布又は不織布3等についての具体的な構成は、上記実施の形態(1)の場合に準ずる。
【0030】
上記実施の形態(1)(2)では、織布又は不織布3及び金属箔41等を、シート状黒鉛2の片面に設ける場合について説明したが、この他に、織布又は不織布3及び金属箔41等を、シート状黒鉛2の両面に設けることもできる。また、別の例として、シート状黒鉛2の一方の面には織布又は不織布3及び金属箔41等を順次積層させ、他方の面には織布又は不織布3のみを積層させた構成にすることもできる。この場合には、上記実施の形態(1)(2)に比べると、織布又は不織布3が一枚多い分だけ熱伝導性は若干低下するが、シート状黒鉛2を補強する効果が高まり、可撓性が向上する。
【0031】
以上のフレキシブル配線板用基板は、従来知られたフォトリソグラフィー技術に従って回路を形成し、プリント配線板とされる。このプリント配線板は、全体に可撓性を有しつつ放熱性に優れるという特徴を生かして、特に小型・薄型の電子機器等に好適に使用することができる。
【0032】
【実施例】
以下、実施例を示して本発明をさらに詳細に説明するが、これに限定されるものではない。
(実施例1)
まず、厚さ160μmのポリエステル不織布(ユニチカ社製;ラブシート(商品名))を、市販の一般的なシリコーンワニス中に浸漬し、ポリエステル不織布にシリコーンワニスを含浸させた。なお、含浸の割合は、ポリエステル不織布に対し、シリコーンワニスが固形分として120wt%となるように含浸させた。これを、厚さ200μmのシート状黒鉛(日本カーボン社製;ニカフィルムFL−401(商品名))の両面に積層させ、平板プレス機を用いて加圧加熱して、接着剤であるシリコーンワニスが硬化したことを確認し、ベースのシートを得た。そして、上記ベースのシートの片面上に、シリコーン系接着剤(信越シリコーン社製;KE1800T(商品名))を塗布した厚さ50μmの銅箔を、接着剤塗布面が上記ベースのシートの片面に接触するように積層させた。なお、積層に当たっては、ベースのシートの片面及び接着剤を塗布する前の銅箔に対して、予めプライマーA(商品名;東レ・ダウコーニング・シリコーン社製)を刷毛塗りすることによりプライマー処理を施しておいた。続いて、120℃で3分間ヒートプレスにて294N/cm2の押圧状態としてエアーや余剰の接着剤を排除し、その後押圧状態から開放して120℃で60分間加熱処理することにより接着剤を硬化させ、目的のフレキシブル配線板用基板を得た。
【0033】
得られたフレキシブル配線板用基板を、20mm直径の丸棒に沿って直角に折り曲げたところ、その形状を保持し、かつ層間の剥離やシート状黒鉛のひび割れ等は観察されなかった。さらに、指での折り曲げを繰り返したところ、シート状黒鉛の部分にひび割れや劈開等が起こらず、破片の欠落もなかった。そして、爪で完全に折れ筋が付くくらい折り曲げることにより、初めてひび割れが観察されたが、その場合でも破片の欠落はなく、厳しい条件での使用に十分耐えるものであることが確認された。
また、フレキシブル配線板用基板から銅箔を除いたベースのシートについて、熱伝導率計(京都電子工業社製;QTM500)を用いて熱伝導率を測定した。その結果、熱伝導率は5W/mKであり、十分に高い数値を示した。また、その体積抵抗率は6×1013Ω・cm、絶縁破壊強度は1.0kVであり、フレキシブル配線板用基板として適用可能なものであった。
【0034】
さらに、作製したフレキシブル配線板用基板に適当な回路パターンでエッチングを施したところ、十分に回路パターンを再現、形成し得るものであった。このフレキシブルなプリント配線板は、従来のものに比べて同等以上のフレキシビリティを有しながら放熱性に優れており、特に、種々の電気、電子機器の屈曲部等において発熱を伴う回路を配する場合や、熱が蓄積し易いような狭い場所に複数の配線板を高密度で配する場合等に好適に採用することができる。
【0035】
【発明の効果】
以上、本発明のフレキシブル配線板用基板は、織布又は不織布を介して、導電金属層と、可撓性を有するシート状黒鉛とを一体に積層させたので、全体として可撓性を有し、任意に折り曲げることが可能となり、加えてシート状黒鉛が熱伝導性に優れるために、回路から発生する熱を速やかに放散することができ、熱の蓄積による回路の誤動作等を防止することができる。すなわち、全体のフレキシビリティを確保しつつ放熱性を高めたため、例えば、小型の電子機器内に、折り曲げた状態で高密度に実装することが可能となる。
【図面の簡単な説明】
【図1】 本発明のフレキシブル配線板用基板の実施の形態(1)における断面図である。
【図2】 本発明のフレキシブル配線板用基板の実施の形態(2)における断面図である。
【符号の説明】
1 フレキシブル配線板用基板
2 シート状黒鉛
3 織布又は不織布
4 導電金属層
41 金属箔
42 金属めっき層
5 接着剤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wiring board substrate.
[0002]
[Prior art]
Conventionally, a wiring board substrate in which a metal foil such as a copper foil is laminated on a substrate has been widely used. This wiring board substrate is used as a printed wiring board by a photolithography technique in which a wiring pattern is drawn on a metal foil portion and etching or the like is performed along the wiring pattern, and is used in various electric / electronic devices.
[0003]
In general, the printed wiring board may generate heat from a circuit with use. In that case, if heat accumulates in the vicinity of the circuit and the temperature rises, an unexpected failure such as thermal runaway may occur, and thus the generated heat needs to be quickly dissipated. However, many conventional printed wiring board substrates (that is, wiring board substrates) are made of synthetic resin such as phenol resin, and such synthetic resin is inferior in thermal conductivity, so that the generated heat is sufficient. There was a problem that could not be released.
[0004]
By the way, with recent downsizing and thinning of electronic devices, development of printed wiring boards that can be mounted in a narrower space is desired. On the other hand, for example, a flexible printed wiring board in which a metal circuit is formed on a polyimide film to give flexibility as a whole is known. However, this flexible printed wiring board also has the problem that the thermal conductivity is low and the heat dissipation is insufficient because the substrate is a resin film, as in the above example.
[0005]
[Problems to be solved by the invention]
Therefore, in view of the above-described conventional situation, the present invention is flexible as a whole and can be arbitrarily bent, has excellent thermal conductivity, and can quickly dissipate generated heat. It is an object of the present invention to provide a novel flexible wiring board substrate.
[0006]
To solve the above problems, a substrate for flexible wiring board of the present invention, the at least one surface of the sheet-like graphite having a flexibility which is 100 to 300 [mu] m, not impaired flexibility of the sheet-like graphite thickness The conductive metal layer is laminated through a woven or non-woven fabric impregnated with an adhesive and having an insulating property ,
The woven or non-woven fabric has a thickness of 50 to 200 μm, a tensile strength (according to the synthetic fiber nonwoven fabric test method of the Japan Chemical Fiber Association) of 20 to 400 N / 5 cm, and a basis weight of 10 g / m 2 or more. and wherein the der Rukoto.
[0007]
According to the said structure, a sheet-like graphite and a conductive metal layer are integrated via an insulating woven fabric or a nonwoven fabric. And the heat | fever generate | occur | produced in the case of use is rapidly thermally radiated with the sheet-like graphite excellent in thermal conductivity. In addition, even if the manufactured wiring board substrate is bent, for example, the wiring board substrate flexibly follows the large deformation, and in particular, the sheet-like graphite is reinforced by a woven fabric or a non-woven fabric. Defects such as peeling do not occur. Furthermore, since the sheet-like graphite and the metal foil or the metal plating layer are reliably separated by the thickness of the woven or non-woven fabric, an accident such as a short circuit is prevented.
[0009]
According to the said structure, the thickness of a woven fabric or a nonwoven fabric is optimized from a viewpoint of fully exhibiting the reinforcement effect by a woven fabric or a nonwoven fabric, maintaining the high thermal conductivity of the whole board | substrate for flexible wiring boards.
[0011]
According to the above configuration, the tensile strength of the woven fabric or the non-woven fabric is optimized so that even if the wiring board substrate is arbitrarily bent and a large deformation is applied, the wiring board substrate is not defective. Moreover, if the tensile strength of the woven fabric or the nonwoven fabric is sufficiently high, the flexible wiring board substrate can be continuously manufactured by a winding tension device or the like.
[0013]
According to the said structure, the thickness of sheet-like graphite is optimized considering the heat dissipation of the board | substrate for flexible wiring boards, and the balance of flexibility.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
FIG. 1 schematically shows a cross section in the embodiment (1) of the substrate for flexible wiring board of the present invention. The flexible wiring board substrate 1 in FIG. 1 is generally configured by laminating a conductive metal layer 4 on one side of a sheet-like graphite 2 with an insulating woven or nonwoven fabric 3 interposed therebetween. In laminating, for example, the adhesive 5 can be used for attachment. In FIG. 1, for convenience, a three-layer structure in which a woven or non-woven fabric 3 is sandwiched between adhesives 5 between the sheet-like graphite 2 and the conductive metal layer 4 is depicted. In this case, the adhesive 5 is preferably cured while being impregnated in the woven or non-woven fabric 3, and in this case, the three-layer structure is overlapped to form one layer.
[0015]
As the sheet-like graphite 2, various conventionally known graphite sheets can be appropriately selected and used on condition that they are flexible. For example, those derived from natural graphite, those derived by graphitizing a polymer compound, and the like can be mentioned. Here, “having flexibility” means that the sheet-like graphite 2 is not cracked in appearance when it is bent 90 ° at R = 10 mm.
[0016]
If the thickness of the sheet-like graphite 2 is too thick, the flexibility is lowered. On the other hand, if the thickness is too thin, the influence of the thickness of the woven fabric or the nonwoven fabric 3 is increased, and sufficient heat dissipation cannot be obtained. It is set as appropriate in consideration of balance. Specifically, the thickness is preferably about 100 to 300 μm, but is not limited thereto.
[0017]
Moreover, in order to improve adhesiveness with the woven fabric or the nonwoven fabric 3, the primer can also be beforehand apply | coated to the surface of the sheet-like graphite 2 as needed. As an example of this primer, primer C (trade name: manufactured by Shin-Etsu Silicone), primer X (trade name: manufactured by Toray Dow Corning Silicone), primer Y (trade name: manufactured by Toray Dow Corning Silicone), ME151 (trade name: manufactured by Toshiba Silicone) and the like can be mentioned.
[0018]
Next, the woven or non-woven fabric 3 can be appropriately selected from woven or non-woven fabrics such as various synthetic fibers, natural fibers, and glass fibers on the condition that it has electrical insulation. As a suitable example of such a woven or non-woven fabric, there can be mentioned a non-woven fabric made of aramid fibers such as meta-aramid paper (trade name: manufactured by DuPont Teijin Advanced Paper). By laminating the woven fabric or the non-woven fabric 3, the safety when the entire flexible wiring board substrate 1 is bent is increased, and the sheet-like graphite 2 is not cracked against a large deformation. Further, by interposing the woven fabric or the non-woven fabric 3, the sheet-like graphite 2 and the conductive metal layer 4 can be reliably separated, and an accident such as a short circuit can be prevented.
[0019]
When the thickness of the woven fabric or the nonwoven fabric 3 is too thick, the thermal conductivity of the entire heat conductive sheet 1 is lowered, which is not preferable. On the other hand, when the thickness is too thin, a sufficient reinforcing effect on the sheet-like graphite 2 cannot be obtained. Since there is a possibility of short-circuiting, it is appropriately set in consideration of these balances. Specifically, about 50-200 micrometers is suitable, Preferably it is 50-100 micrometers.
[0020]
The woven fabric or non-woven fabric 3 may be a coarse mesh or the like, but if the mesh is too coarse, the sheet-like graphite 2 and the conductive metal layer 4 are short-circuited at the through-hole portion of the mesh. It is necessary to be careful. The specific roughness of the mesh is not unequivocally related to the thickness of the woven fabric or the nonwoven fabric 3, but it is preferable that the basis weight is at least 10 g / m 2 or more.
[0021]
In consideration of the case where the flexible wiring board substrate 1 of the present invention is manufactured as a continuous sheet by a winding tension device, for example, the woven fabric or the nonwoven fabric 3 in the present invention is strong against external force. It is desirable to use it. Specifically, it is preferable to use a woven fabric or a nonwoven fabric 3 having a tensile strength of about 20 to 400 N / 5 cm. In addition, the said tensile strength is a value obtained by the synthetic fiber long-fiber nonwoven fabric test method of Japan Chemical Fiber Association.
[0022]
And the conductive metal layer 4 is comprised from the various metals conventionally used for the board | substrate for wiring boards, and has a softness | flexibility to the extent which can follow the deformation | transformation of the board | substrate for wiring boards. The example of FIG. 1 is a case where a metal foil 41 is used as the conductive metal layer 4. In general, a copper or nickel foil is preferably used as the metal layer 41. In addition, the thickness of the metal foil 41 is not particularly limited, but the present invention is one of the characteristics that is a flexible wiring board substrate, and therefore does not hinder the overall flexibility. A relatively thin layer is preferable. Here, the metal foil 41 includes not only a so-called metal foil before the circuit pattern is formed by means such as photolithography but also a lead frame produced by punching the circuit pattern in advance.
[0023]
Next, a method for manufacturing the flexible wiring board substrate 1 will be described. In manufacturing the flexible wiring board substrate 1, for example, when a metal foil 41 is used as the conductive metal layer 4, the woven or non-woven fabric 3 and the metal foil 41 are affixed to the sheet-like graphite 2 using the adhesive 5. It can be manufactured by wearing. Specifically, after applying the adhesive 5 to the sheet-like graphite 2, the woven fabric or the nonwoven fabric 3 is laminated, the adhesive 5 is applied thereon, and the metal foil 41 is further laminated and cured, Alternatively, a method in which a woven fabric or a nonwoven fabric 3 previously coated or impregnated with the adhesive 5 is sandwiched between the sheet-like graphite 2 and the metal foil 41 and cured can be appropriately employed.
[0024]
The adhesive 5 used in the production can be appropriately selected and used from various conventionally known adhesives on the condition that melting and deterioration do not occur at a temperature at which heat is generated from the circuit. Specific examples include adhesives such as rubber, acrylic resin, polyamide, polyimide, epoxy, ethylene-vinyl acetate copolymer, and silicone resin.
[0025]
As a method of applying or impregnating the adhesive 5 to the sheet-like graphite 2, the metal foil 41, or the woven or non-woven fabric 4, known means such as a spray method, a calendering method, a wire bar coating method, a dipping method, etc. Can be used as appropriate.
[0026]
When the sheet-like graphite 2, the woven or nonwoven fabric 3, and the metal foil 41 are laminated and cured, the entire process can be performed while applying pressure. As a method of pressurizing, various press machines, such as a roll and a flat plate press, are used suitably while heating as needed. The pressure at the time of pressurization is appropriately adjusted according to the curing temperature, the thickness of the sheet-like graphite 2, and the like. By applying pressure, curing proceeds while the sheet-like graphite 2, the woven or non-woven fabric 3, and the metal foil 41 are in close contact with each other, so that defects between layers that later cause separation and voids are removed, and high thermal conductivity is maintained. Is done.
[0027]
Next, FIG. 2 is Embodiment (2) of the board | substrate for flexible wiring boards of this invention. This embodiment is an example in which a metal plating layer 42 is provided instead of the metal foil 41 as the conductive metal layer 4. In this case, the manufacturing method is different from the case of the metal foil 41. Usually, the sheet-like graphite 2 and the woven or non-woven fabric 3 are first adhered and cured with the adhesive 5, and then the metal plating layer 42 is formed. To manufacture.
[0028]
The metal plating layer 42 can be formed by appropriately selecting and employing a conventionally known electroless plating method. The metal plating layer 42 in the present invention includes a metal layer formed by vapor deposition. Examples of the metal to be plated include copper and nickel.
[0029]
Other configurations, that is, specific configurations of the sheet-like graphite 2, the woven fabric, or the nonwoven fabric 3 are the same as those in the above embodiment (1).
[0030]
In the above embodiments (1) and (2), the case where the woven or non-woven fabric 3 and the metal foil 41 are provided on one side of the sheet-like graphite 2 has been described, but in addition to this, the woven or non-woven fabric 3 and the metal foil 41 etc. can also be provided on both surfaces of the sheet-like graphite 2. As another example, a woven or nonwoven fabric 3 and a metal foil 41 are sequentially laminated on one surface of the sheet-like graphite 2 and only the woven or nonwoven fabric 3 is laminated on the other surface. You can also. In this case, compared to the above embodiments (1) and (2), the thermal conductivity is slightly reduced by the amount of one woven fabric or nonwoven fabric 3, but the effect of reinforcing the sheet-like graphite 2 is increased. Flexibility is improved.
[0031]
The above-described flexible wiring board substrate forms a circuit according to a conventionally known photolithography technique to form a printed wiring board. This printed wiring board can be suitably used particularly for small and thin electronic devices and the like by taking advantage of its excellent flexibility and heat dissipation while having flexibility as a whole.
[0032]
【Example】
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, it is not limited to this.
(Example 1)
First, a 160 μm thick polyester nonwoven fabric (manufactured by Unitika; Love Sheet (trade name)) was immersed in a commercially available general silicone varnish, and the polyester nonwoven fabric was impregnated with the silicone varnish. The impregnation ratio was such that the polyester woven fabric was impregnated so that the silicone varnish was 120 wt% as a solid content. This is laminated on both sides of a 200 μm thick sheet-like graphite (manufactured by Nippon Carbon Co., Ltd .; Nika Film FL-401 (trade name)), and is heated under pressure using a flat plate press machine to form a silicone varnish as an adhesive. Was confirmed to be cured, and a base sheet was obtained. And, on one side of the base sheet, a copper foil having a thickness of 50 μm coated with a silicone adhesive (manufactured by Shin-Etsu Silicone; KE1800T (trade name)) is applied to one side of the base sheet. Lamination was done in contact. For lamination, primer treatment is performed by brushing primer A (trade name; manufactured by Toray Dow Corning Silicone) on one side of the base sheet and the copper foil before applying the adhesive. I gave it. Subsequently, air and excess adhesive are removed as a pressed state of 294 N / cm 2 by a heat press at 120 ° C. for 3 minutes, and then the adhesive is released from the pressed state and heat-treated at 120 ° C. for 60 minutes. Curing was performed to obtain the desired flexible wiring board substrate.
[0033]
When the obtained flexible wiring board substrate was bent at a right angle along a 20 mm diameter round bar, its shape was maintained and no delamination between layers or cracks in sheet-like graphite were observed. Furthermore, when bending with a finger was repeated, no cracks, cleavage, etc. occurred in the sheet-like graphite portion, and no fragments were missing. The cracks were observed for the first time by bending the claws so that they were completely bent, but even in that case, it was confirmed that the cracks were not lost and that they were sufficiently resistant to use under severe conditions.
Moreover, about the sheet | seat of the base which remove | excluded copper foil from the board | substrate for flexible wiring boards, the thermal conductivity was measured using the thermal conductivity meter (Kyoto Electronics Industry Co., Ltd .; QTM500). As a result, the thermal conductivity was 5 W / mK, which was a sufficiently high value. Further, the volume resistivity was 6 × 10 13 Ω · cm, and the dielectric breakdown strength was 1.0 kV, which was applicable as a substrate for a flexible wiring board.
[0034]
Furthermore, when the produced flexible wiring board substrate was etched with an appropriate circuit pattern, the circuit pattern could be sufficiently reproduced and formed. This flexible printed wiring board is excellent in heat dissipation while having the same or higher flexibility than the conventional one, and in particular, a circuit with heat generation is arranged in a bent portion of various electric and electronic devices. It can be suitably used for cases where a plurality of wiring boards are arranged at high density in a narrow place where heat is likely to accumulate.
[0035]
【The invention's effect】
As described above, the flexible wiring board substrate of the present invention has flexibility as a whole because the conductive metal layer and the flexible sheet-like graphite are laminated together via a woven fabric or a non-woven fabric. It can be bent arbitrarily, and in addition, sheet-shaped graphite has excellent thermal conductivity, so heat generated from the circuit can be quickly dissipated, and malfunction of the circuit due to heat accumulation can be prevented. it can. That is, since heat dissipation is improved while ensuring the overall flexibility, for example, it is possible to mount in a small electronic device in a folded state with high density.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a flexible wiring board substrate according to an embodiment (1) of the present invention.
FIG. 2 is a cross-sectional view of a flexible wiring board substrate according to an embodiment (2) of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Board | substrate for flexible wiring boards 2 Sheet-like graphite 3 Woven cloth or nonwoven fabric 4 Conductive metal layer 41 Metal foil 42 Metal plating layer 5 Adhesive

Claims (1)

厚さが100〜300μmである可撓性を有するシート状黒鉛の少なくとも片面に、前記シート状黒鉛の可撓性を損わないように、接着剤が含浸されて絶縁性を有する織布又は不織布を介して、導電金属層が積層されて構成され、
前記織布又は不織布は、厚さが50〜200μmであり、かつ引張強度(日本化学繊維協会の合繊長繊維不織布試験方法による)が20〜400N/5cmであり、かつ目付が10g/m 2 以上であるフレキシブル配線板用基板。
A woven or non-woven fabric having insulating properties by impregnating at least one surface of a flexible sheet-like graphite having a thickness of 100 to 300 μm with an adhesive so as not to impair the flexibility of the sheet-like graphite. via a conductive metal layer is formed by laminating,
The woven or non-woven fabric has a thickness of 50 to 200 μm, a tensile strength (according to the synthetic fiber nonwoven fabric test method of the Japan Chemical Fiber Association) of 20 to 400 N / 5 cm, and a basis weight of 10 g / m 2 or more. der Ru flexible wiring board substrate.
JP2001215174A 2001-07-16 2001-07-16 Flexible wiring board substrate Expired - Fee Related JP4128341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001215174A JP4128341B2 (en) 2001-07-16 2001-07-16 Flexible wiring board substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001215174A JP4128341B2 (en) 2001-07-16 2001-07-16 Flexible wiring board substrate

Publications (2)

Publication Number Publication Date
JP2003031913A JP2003031913A (en) 2003-01-31
JP4128341B2 true JP4128341B2 (en) 2008-07-30

Family

ID=19049864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215174A Expired - Fee Related JP4128341B2 (en) 2001-07-16 2001-07-16 Flexible wiring board substrate

Country Status (1)

Country Link
JP (1) JP4128341B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838193B2 (en) * 2006-02-14 2010-11-23 Ricoh Company Limited Toner and image forming method using the toner
US9231239B2 (en) 2007-05-30 2016-01-05 Prologium Holding Inc. Electricity supply element and ceramic separator thereof
TWI437931B (en) * 2011-12-16 2014-05-11 Prologium Technology Co Ltd Pcb structure
US11089693B2 (en) 2011-12-16 2021-08-10 Prologium Technology Co., Ltd. PCB structure with a silicone layer as adhesive
JP2015528756A (en) 2012-06-28 2015-10-01 スリーエム イノベイティブ プロパティズ カンパニー Thermally conductive substrate article

Also Published As

Publication number Publication date
JP2003031913A (en) 2003-01-31

Similar Documents

Publication Publication Date Title
JP5170253B2 (en) Wiring board and method of manufacturing wiring board
JP4128341B2 (en) Flexible wiring board substrate
TWI412313B (en) Multilayer printing wire board and method for producting the same
JP5098572B2 (en) Metal foil-clad laminate and multilayer printed wiring board
JP2010040934A (en) Rigid flex circuit board
JPH06252555A (en) Multilayered wiring board
JPH11251703A (en) Circuit board, both-sided circuit board, multilayered circuit board, and manufacture of circuit board
JPH05327209A (en) Manufacture of bonding sheet for multiple layer and of multilayer substrate
JP2000068620A (en) Circuit substrate and manufacture thereof
JP2001127389A (en) Circuit board, insulation material therefor, and method for manufacturing the same
JP2006348225A (en) Composite, prepreg, metallic foil clad laminate and printed wiring substrate using the same, and method for manufacturing printed wiring substrate
JP2017059616A (en) Electronic component, adhesive sheet and method of manufacturing electronic component
JP4349882B2 (en) Wiring board and semiconductor device
JP2000013024A (en) Manufacture of multilayer board and plate for multilayer board manufacture
JP2011165843A (en) Cushioning member for lamination
JP2002361772A (en) Heat conductive sheet
JP5625635B2 (en) MULTILAYER PRINTED WIRING BOARD AND METHOD FOR MANUFACTURING THE SAME, PREPREG, METAL FILMS WITH RESIN, RESIN FILM
JP3915260B2 (en) Multilayer board manufacturing method
JP2008244325A (en) Printed wiring board and ball grid array package
JP4492071B2 (en) Wiring board manufacturing method
JPS63246897A (en) Manufacture of metal base double-layer interconnection board
JP2004152869A (en) Wiring board
JP2004165321A (en) Wiring board and its manufacturing method
JP4738430B2 (en) Wiring board manufacturing method
JP2004031814A (en) Wiring board and electronic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees