JP4124629B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4124629B2
JP4124629B2 JP2002301469A JP2002301469A JP4124629B2 JP 4124629 B2 JP4124629 B2 JP 4124629B2 JP 2002301469 A JP2002301469 A JP 2002301469A JP 2002301469 A JP2002301469 A JP 2002301469A JP 4124629 B2 JP4124629 B2 JP 4124629B2
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon film
film
manufacturing
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002301469A
Other languages
Japanese (ja)
Other versions
JP2004140062A (en
Inventor
潤 小山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2002301469A priority Critical patent/JP4124629B2/en
Publication of JP2004140062A publication Critical patent/JP2004140062A/en
Application granted granted Critical
Publication of JP4124629B2 publication Critical patent/JP4124629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は多結晶シリコン膜で構成された高精度な抵抗体を有する半導体装置の製造方法に関する。
【0002】
【従来の技術】
アナログ半導体装置に用いられる抵抗体として高精度、高抵抗値かつ温度係数が良好な特性が求められる。抵抗体を多結晶シリコン膜で構成する場合、高精度と温度特性を満足するためには多結晶シリコン膜中へ導入する不純物量を多くする必要があるが、その場合抵抗値を高抵抗とすることは難しい。従って多結晶シリコン膜をより薄膜化することで精度と抵抗値と温度特性を満足しているが、薄膜化した際にコンタクト開孔時のエッチングにおいて多結晶シリコン膜を突き抜けてエッチングしてしまう問題が生じる。
【0003】
その対策として図7に示すように、半導体基板101上にフィールド絶縁膜102を形成し、その上の抵抗部分は薄膜化した第2の多結晶シリコン膜210で構成する。そして、コンタクトを開孔する部分には厚い第1の多結晶シリコン膜103とその上の第1の酸化膜104を第2の多結晶シリコン膜膜210下に配して突き抜けが生じないようにする方法がある(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開平6−69207(図1)
【0005】
【発明が解決しようとする課題】
上記の従来の製造方法において、第2の多結晶シリコン膜と第1の多結晶シリコン膜との電気的結合は、第1の多結晶シリコン膜側面での第2の多結晶シリコン膜との接触により行われるが、第1の多結晶シリコン膜エッチング時に側壁に形成されるポリマーないし反応生成物を十分に除去し、第2の多結晶シリコン膜膜被着前の自然酸化膜除去も十分に行われていないと良好な電気的結合が得られないという問題を有している。
【0006】
本発明は多結晶シリコン膜で構成された高精度な抵抗体を有する半導体装置の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明は次の手段を用いた。
【0008】
(1)多結晶シリコン膜からなる抵抗体を有する半導体装置の製造方法において、半導体基板上の絶縁膜上に多結晶シリコン膜を形成する工程と、前記多結晶シリコン膜上に酸化膜を形成する工程と、前記酸化膜上に窒化膜を形成する工程と、前記窒化膜を抵抗体となる部分を開口するようにパターニングする工程と、熱酸化する工程と、前記窒化膜を除去する工程と、前記多結晶シリコン膜中に不純物を導入する工程とからなることを特徴とする半導体装置の製造方法とした。
【0009】
(2)前記多結晶シリコン膜上の酸化膜を除去する工程を含む半導体装置の製造方法とした。
【0010】
(3)抵抗体となる前記多結晶シリコン膜と抵抗体となる部分以外の前記多結晶シリコン膜とへの不純物導入の工程が異なる工程である半導体装置の製造方法とした。
【0011】
(4)前記多結晶シリコン膜の形成時の膜厚が100nmから400nmの範囲である半導体装置の製造方法とした。
【0012】
【発明の実施の形態】
以下本発明による半導体装置の製造方法の実施例を図面を用いて説明する。
【0013】
図1から図5には本発明の第1の実施例の半導体装置の製造方法を示している。
図1は半導体基板101に素子分離領域であるフィールド絶縁膜102を形成し、その後CVD法(Chemical Vapor Deposition)により多結晶シリコン膜103を被着した後、例えば電気炉中での熱酸化により第1の酸化膜104形成した様子を示している。多結晶シリコン膜の膜厚はMOSのゲート電極も同一層で兼ねる場合には300nmから400nmと比較的厚くし、抵抗体形成のためだけの場合には100nmから200nm程度と薄くしておく。
【0014】
第1の酸化膜の膜厚は数十nm程度である。また第1の酸化膜はCVD法による形成でも構わない。次に窒化膜を第1の酸化膜上にCVD法により被着した後、フォトリソグラフィー法により後に抵抗体となる領域を開口するようにフォトレジストをパターニングし、そのフォトレジストをマスクとして窒化膜105をエッチングしフォトレジストを除去して2図に示す構造を得る。
【0015】
窒化膜の膜厚は100nmから200nm程度であり、パターニングの際のエッチングはドライエッチングにより行われる。次に熱酸化法により窒化膜が開口している部分を選択的に酸化することで図3に示す構造を得る。
【0016】
窒化膜に覆われている領域は窒化膜の耐酸化性により厚い多結晶シリコン膜のままであり、抵抗体となる部分は薄膜化した多結晶シリコン膜106となる。
本工程において酸化する量は多結晶シリコン膜の膜厚と抵抗体となる部分の最終的な膜厚をいくつにするかによるが、例えば多結晶シリコン膜の膜厚が100nmであり、最終的な抵抗体の膜厚を20nmとする場合、150nm程度酸化を行う。
【0017】
次に燐酸によるウェットエッチングにより窒化膜を除去し、フッ酸により多結晶シリコン膜上の酸化膜をウェットエッチングすることで図4に示した構造を得る。
ドライエッチによる多結晶シリコン膜抵抗体への損傷を回避するため本工程ではウェットエッチングを用いる。次に、オン注入法により所望の不純物を多結晶シリコン膜全域に導入した後、フォトリソグラフィー法とドライエッチング法により多結晶シリコン膜抵抗体をパターニングし図5に示す構造を得る。
【0018】
不純物としては抵抗体をN型とする場合ドーパントとして砒素ないしリンを用い、P型とする場合はドーパントとしてボロンないしBF2を用いる。導入量は抵抗値にもよるが通常ドーズ量で1×1014/cm2から5×1015/cm2の範囲である。
またコンタクト開孔領域109の不純物濃度はコンタクト抵抗を小さくするため高濃度とし、抵抗体領域108は高シート抵抗値とするため不純物濃度を低濃度とする必要がある場合、低濃度の不純物を多結晶シリコン膜全域中に導入した後、フォトリソグラフィー法によりコンタクト開孔領域を開口する様にフォトレジストをパターニングして高濃度に不純物をイオン注入することで所望の構造が得られる。
【0019】
また不純物導入は以上で説明した多結晶シリコン膜のパターニング直前ではなく図1に示した多結晶シリコン膜被着直後に行っても構わない。
【0020】
以上の工程によりコンタクト開孔部は突き抜けの問題が生じない十分な厚さを保ち、抵抗体の部分は薄膜化しているため高精度、高抵抗かつ温度特性も良好な抵抗体とすることが可能となる。また本抵抗体とコンタクト開孔部とは連続体であるため、従来の製造方法で生じる問題の心配もない。
【0021】
次に図6を用いて本発明の第2の実施例の半導体装置の製造方法を説明する。図6は本発明の第1の実施例で示した製造方法の図3の工程までを行った後窒化膜を除去し、その後フォトリソグラフィー法とドライエッチング法により絶縁膜と多結晶シリコン膜を同一フォトレジストパターンによりエッチングし、その後フォトレジストを除去した様子を示している。
【0022】
第2の酸化膜107と多結晶シリコン膜103の膜厚が比較的薄い場合、このような製造法が可能となり、第1の実施例に比べ工程数を減らせるメリットがある。ただし本実施例の場合第2の酸化膜は除去しないため、多結晶シリコン膜への不純物導入はそれ以前の工程で行っておく必要がある。
【0023】
以上の実施例により従来では困難であった最終的な多結晶シリコン膜抵抗体の厚さが10nmから20nmで、シート抵抗値が数kΩ/□から10KΩ/□程度で、かつ温度係数が0±100ppm/℃というハイスペックな多結晶シリコン膜抵抗体の実現が可能となった。
【0024】
【発明の効果】
上述したように、本発明は多結晶シリコン膜で構成された高精度な抵抗体を有する半導体装置の製造方法において、多結晶シリコン膜上に酸化膜と窒化膜を被着し抵抗体となる部分を開口するように窒化膜をパターニングした後熱酸化することにより、抵抗体となる部分の多結晶シリコン膜は薄膜化し、それ以外のコンタクト開孔部などは厚いままとすることができ、コンタクトの突き抜けがなく高精度、高抵抗でかつ温度係数が良好である抵抗体を有する半導体装置を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施例の半導体装置の製造方法を示す模式的断面図である。
【図2】本発明の第1の実施例の半導体装置の製造方法を示す模式的断面図である。
【図3】本発明の第1実施例の製造方法を示す模式的断面図である。
【図4】本発明の第1実施例の製造方法を示す模式的断面図である。
【図5】本発明の第1実施例の製造方法を示す模式的断面図である。
【図6】本発明の第2実施例の製造方法を示す模式的断面図である。
【図7】従来の半導体装置を示す模式的断面図である。
【符号の説明】
101 半導体基板
102 フィールド絶縁膜
103 多結晶シリコン膜
104 第1の酸化膜
105 窒化膜
106 薄膜多結晶シリコン膜
107 第2の酸化膜
108 抵抗体領域
109 コンタクト開孔領域
210 第2の多結晶シリコン膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor device having a highly accurate resistor composed of a polycrystalline silicon film.
[0002]
[Prior art]
As a resistor used in an analog semiconductor device, characteristics with high accuracy, high resistance value, and good temperature coefficient are required. When the resistor is composed of a polycrystalline silicon film, it is necessary to increase the amount of impurities introduced into the polycrystalline silicon film in order to satisfy high accuracy and temperature characteristics. In this case, the resistance value is set to a high resistance. It ’s difficult. Therefore, accuracy, resistance, and temperature characteristics are satisfied by making the polycrystalline silicon film thinner, but the problem of etching through the polycrystalline silicon film during contact opening when the thickness is reduced. Occurs.
[0003]
As a countermeasure, as shown in FIG. 7, a field insulating film 102 is formed on a semiconductor substrate 101, and a resistance portion thereon is constituted by a thinned second polycrystalline silicon film 210. Then, the thick first polycrystalline silicon film 103 and the first oxide film 104 thereon are arranged under the second polycrystalline silicon film 210 at the portion where the contact is opened so that no penetration occurs. (For example, refer to Patent Document 1).
[0004]
[Patent Document 1]
JP-A-6-69207 (FIG. 1)
[0005]
[Problems to be solved by the invention]
In the above-described conventional manufacturing method, the electrical connection between the second polycrystalline silicon film and the first polycrystalline silicon film is in contact with the second polycrystalline silicon film on the side of the first polycrystalline silicon film. However, the polymer or reaction product formed on the side wall during the etching of the first polycrystalline silicon film is sufficiently removed, and the natural oxide film is sufficiently removed before the second polycrystalline silicon film is deposited. Otherwise, there is a problem that good electrical coupling cannot be obtained.
[0006]
An object of this invention is to provide the manufacturing method of the semiconductor device which has a highly accurate resistor comprised with the polycrystalline-silicon film.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention uses the following means.
[0008]
(1) In a method of manufacturing a semiconductor device having a resistor made of a polycrystalline silicon film, a step of forming a polycrystalline silicon film on an insulating film on a semiconductor substrate and an oxide film on the polycrystalline silicon film A step, a step of forming a nitride film on the oxide film, a step of patterning the nitride film so as to open a portion serving as a resistor, a step of thermal oxidation, a step of removing the nitride film, The semiconductor device manufacturing method is characterized by comprising a step of introducing impurities into the polycrystalline silicon film.
[0009]
(2) A semiconductor device manufacturing method including a step of removing the oxide film on the polycrystalline silicon film.
[0010]
(3) The semiconductor device manufacturing method is a process in which the process of introducing impurities into the polycrystalline silicon film to be the resistor and the polycrystalline silicon film other than the part to be the resistor are different.
[0011]
(4) A method of manufacturing a semiconductor device in which the film thickness when forming the polycrystalline silicon film ranges from 100 nm to 400 nm.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a semiconductor device manufacturing method according to the present invention will be described below with reference to the drawings.
[0013]
1 to 5 show a semiconductor device manufacturing method according to the first embodiment of the present invention.
In FIG. 1, a field insulating film 102 as an element isolation region is formed on a semiconductor substrate 101, and then a polycrystalline silicon film 103 is deposited by a CVD method (Chemical Vapor Deposition), and then, for example, thermally oxidized in an electric furnace. A state where one oxide film 104 is formed is shown. The film thickness of the polycrystalline silicon film is relatively thick from 300 nm to 400 nm when the MOS gate electrode is also used as the same layer, and is thinned from about 100 nm to 200 nm only for the resistor formation.
[0014]
The thickness of the first oxide film is about several tens of nm. The first oxide film may be formed by a CVD method. Next, after depositing a nitride film on the first oxide film by the CVD method, the photoresist is patterned by photolithography so as to open a region to be a resistor later, and the nitride film 105 is formed using the photoresist as a mask. Is etched to remove the photoresist to obtain the structure shown in FIG.
[0015]
The thickness of the nitride film is about 100 nm to 200 nm, and the etching at the time of patterning is performed by dry etching. Next, the structure shown in FIG. 3 is obtained by selectively oxidizing the opening of the nitride film by thermal oxidation.
[0016]
The region covered with the nitride film remains a thick polycrystalline silicon film due to the oxidation resistance of the nitride film, and the portion serving as the resistor becomes the thin polycrystalline silicon film 106.
The amount of oxidation in this step depends on the thickness of the polycrystalline silicon film and the final thickness of the resistor portion. For example, the thickness of the polycrystalline silicon film is 100 nm. When the film thickness of the resistor is 20 nm, oxidation is performed at about 150 nm.
[0017]
Next, the nitride film is removed by wet etching with phosphoric acid, and the oxide film on the polycrystalline silicon film is wet etched with hydrofluoric acid to obtain the structure shown in FIG.
In order to avoid damage to the polycrystalline silicon film resistor due to dry etching, wet etching is used in this step. Then, after introducing the desired impurity in the polycrystalline silicon film throughout the ion-injection method to obtain a structure shown polycrystalline silicon film resistor on patterned Figure 5 by photolithography and dry etching.
[0018]
As the impurity, arsenic or phosphorus is used as a dopant when the resistor is N-type, and boron or BF 2 is used as a dopant when the resistor is P-type. The amount of introduction is usually in the range of 1 × 10 14 / cm 2 to 5 × 10 15 / cm 2 in terms of dose although it depends on the resistance value.
Further, when the contact hole region 109 has a high impurity concentration in order to reduce the contact resistance and the resistor region 108 has a high sheet resistance value, the impurity concentration needs to be low. After introduction into the entire region of the crystalline silicon film, a desired structure is obtained by ion-implanting impurities at a high concentration by patterning a photoresist so as to open the contact hole region by photolithography.
[0019]
Impurity introduction may be performed not immediately before the patterning of the polycrystalline silicon film described above but immediately after the deposition of the polycrystalline silicon film shown in FIG.
[0020]
With the above process, the contact hole has a sufficient thickness that does not cause a problem of penetration, and the resistor portion is thinned so that the resistor can have high accuracy, high resistance, and good temperature characteristics. It becomes. In addition, since the resistor and the contact opening are continuous, there is no worry of problems caused by the conventional manufacturing method.
[0021]
Next, a method for manufacturing a semiconductor device according to the second embodiment of the present invention will be described with reference to FIG. FIG. 6 shows the manufacturing method shown in the first embodiment of the present invention up to the step shown in FIG. 3, after which the nitride film is removed, and then the insulating film and the polycrystalline silicon film are made the same by photolithography and dry etching. It shows a state in which etching is performed using a photoresist pattern, and then the photoresist is removed.
[0022]
When the thickness of the second oxide film 107 and the polycrystalline silicon film 103 is relatively thin, such a manufacturing method becomes possible, and there is an advantage that the number of steps can be reduced as compared with the first embodiment. However, in this embodiment, since the second oxide film is not removed, it is necessary to introduce impurities into the polycrystalline silicon film in the previous process.
[0023]
The final polycrystalline silicon film resistor having a thickness of 10 nm to 20 nm, a sheet resistance value of about several kΩ / □ to about 10 KΩ / □, and a temperature coefficient of 0 ±± A high-spec polycrystalline silicon film resistor of 100ppm / ° C has been realized.
[0024]
【The invention's effect】
As described above, the present invention provides a method for manufacturing a semiconductor device having a high-precision resistor composed of a polycrystalline silicon film, and depositing an oxide film and a nitride film on the polycrystalline silicon film to form a resistor. By patterning the nitride film so as to open the hole and then thermally oxidizing, the polycrystalline silicon film that becomes the resistor can be thinned, and other contact openings can be kept thick. It is possible to provide a semiconductor device having a resistor that does not penetrate, has high accuracy, high resistance, and a good temperature coefficient.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a method for manufacturing a semiconductor device according to a first embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing the method for manufacturing the semiconductor device according to the first example of the present invention.
FIG. 3 is a schematic cross-sectional view showing the manufacturing method of the first embodiment of the present invention.
FIG. 4 is a schematic cross-sectional view showing the manufacturing method of the first embodiment of the present invention.
FIG. 5 is a schematic cross-sectional view showing the manufacturing method of the first embodiment of the present invention.
FIG. 6 is a schematic cross-sectional view showing the manufacturing method of the second embodiment of the present invention.
FIG. 7 is a schematic cross-sectional view showing a conventional semiconductor device.
[Explanation of symbols]
101 Semiconductor substrate 102 Field insulating film 103 Polycrystalline silicon film 104 First oxide film 105 Nitride film 106 Thin film polycrystalline silicon film 107 Second oxide film 108 Resistor region 109 Contact hole region 210 Second polycrystalline silicon film

Claims (4)

多結晶シリコン膜からなる抵抗体を有する半導体装置の製造方法であって、
半導体基板上の絶縁膜上に前記多結晶シリコン膜を形成する工程と、
前記多結晶シリコン膜上に酸化膜を形成する工程と、
前記酸化膜上に窒化膜を形成する工程と、
前記窒化膜を抵抗体となる部分を開口するようにパターニングする工程と、
前記開口された部分を選択的に熱酸化する工程と、
前記熱酸化の後に前記窒化膜を除去する工程と、
前記窒化膜の除去の後に前記多結晶シリコン上に形成された酸化膜を除去する工程と、
前記酸化膜を除去する工程の後に前記多結晶シリコン膜中に不純物を導入する工程と、
前記不純物が導入された前記多結晶シリコン膜をパターニングする工程とからなる半導体装置の製造方法。
A method of manufacturing a semiconductor device having a resistor made of a polycrystalline silicon film,
A step of forming the polycrystalline silicon film on an insulating film on a semiconductor substrate,
Forming an oxide film on the polycrystalline silicon film;
Forming a nitride film on the oxide film;
Patterning the nitride film so as to open a portion serving as a resistor;
Selectively thermally oxidizing the opened portion;
Removing the nitride film after the thermal oxidation;
Removing an oxide film formed on the polycrystalline silicon film after removing the nitride film;
Introducing an impurity into the polycrystalline silicon film after the step of removing the oxide film,
A method of manufacturing a semiconductor device, comprising: patterning the polycrystalline silicon film into which the impurity is introduced.
前記酸化膜を除去する工程はフッ酸を用いたウェットエッチングによりなされる請求項1記載の半導体装置の製造方法。  The method of manufacturing a semiconductor device according to claim 1, wherein the step of removing the oxide film is performed by wet etching using hydrofluoric acid. 抵抗体となる前記多結晶シリコン膜と抵抗体となる部分以外の前記多結晶シリコン膜とへの不純物導入の工程が異なる工程である請求項1記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, wherein the steps of introducing impurities into the polycrystalline silicon film to be a resistor and the polycrystalline silicon film other than the portion to be a resistor are different. 前記多結晶シリコン膜の形成時の膜厚が100nmから400nmの範囲である請求項1記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, wherein the thickness of the polycrystalline silicon film when formed is in the range of 100 nm to 400 nm.
JP2002301469A 2002-10-16 2002-10-16 Manufacturing method of semiconductor device Expired - Fee Related JP4124629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301469A JP4124629B2 (en) 2002-10-16 2002-10-16 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301469A JP4124629B2 (en) 2002-10-16 2002-10-16 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004140062A JP2004140062A (en) 2004-05-13
JP4124629B2 true JP4124629B2 (en) 2008-07-23

Family

ID=32449798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301469A Expired - Fee Related JP4124629B2 (en) 2002-10-16 2002-10-16 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4124629B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122946A (en) * 2011-12-09 2013-06-20 Seiko Instruments Inc Semiconductor device
JP2013122947A (en) * 2011-12-09 2013-06-20 Seiko Instruments Inc Semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2004140062A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US5369052A (en) Method of forming dual field oxide isolation
JPH08330511A (en) Semiconductor device and its manufacture
JPH06163532A (en) Method for isolation of semiconductor element
JP4174579B2 (en) Process for doping two levels of a double poly bipolar transistor after formation of a second poly layer
JP4124629B2 (en) Manufacturing method of semiconductor device
US6524910B1 (en) Method of forming dual thickness gate dielectric structures via use of silicon nitride layers
JPS62194673A (en) Manufacture of semiconductor device
KR100356807B1 (en) Method for forming gate of semicoductor device
JPH11186401A (en) Manufacture of semiconductor device
JP2707536B2 (en) Method for manufacturing semiconductor device
KR100233264B1 (en) Manufacturing method of analog semiconductor device
JPH08162523A (en) Semiconductor device, and its manufacture
JPH0618185B2 (en) Method of forming fine holes in semiconductor device and method of manufacturing semiconductor device
JP2707538B2 (en) Method for manufacturing semiconductor device
KR100278997B1 (en) Manufacturing Method of Semiconductor Device
JP3229790B2 (en) Manufacturing method of semiconductor integrated circuit
JP2817184B2 (en) Method for manufacturing semiconductor device
JP2685448B2 (en) Method for manufacturing semiconductor device
JPH1126756A (en) Manufacture of semiconductor device
JPS61251164A (en) Manufacture of bi-mis integrated circuit
KR20010008564A (en) Method for manufacturing transistor of a semiconductor device
JPH02216834A (en) Manufacture of semiconductor device
JPH0239093B2 (en)
JPH0810696B2 (en) Method for manufacturing semiconductor device
JPH10303210A (en) Manufacture of semiconductor integrated circuit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080502

R150 Certificate of patent or registration of utility model

Ref document number: 4124629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees