JP4123013B2 - Body front structure - Google Patents

Body front structure Download PDF

Info

Publication number
JP4123013B2
JP4123013B2 JP2003059016A JP2003059016A JP4123013B2 JP 4123013 B2 JP4123013 B2 JP 4123013B2 JP 2003059016 A JP2003059016 A JP 2003059016A JP 2003059016 A JP2003059016 A JP 2003059016A JP 4123013 B2 JP4123013 B2 JP 4123013B2
Authority
JP
Japan
Prior art keywords
vehicle width
width direction
vehicle
vehicle body
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003059016A
Other languages
Japanese (ja)
Other versions
JP2004268636A (en
Inventor
匡史 牧田
パル チンモイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003059016A priority Critical patent/JP4123013B2/en
Priority to US10/766,025 priority patent/US6948767B2/en
Publication of JP2004268636A publication Critical patent/JP2004268636A/en
Application granted granted Critical
Publication of JP4123013B2 publication Critical patent/JP4123013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は自動車の車体前部構造に関する。
【0002】
【従来の技術】
自動車の車体前部構造の中には、前後方向骨格部材であるフロントサイドメンバの前端と、車幅方向骨格部材であるファーストクロスメンバとを、フロントサイドメンバの軸線上に配置したクラッシュボックスを介して結合して、車両の前面衝突の際には該クラッシュボックスが潰れ変形することによって初期エネルギーを吸収すると共に、フロントサイドメンバの軸方向の座屈変形(軸圧潰)を安定化させるようにしたものがある(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2002−356179号公報(第3頁、図4)
【0004】
【発明が解決しようとする課題】
車両の前面衝突時におけるキャビンの変形を小さく抑制させるためには、前述のように前後方向骨格部材の軸圧潰によるエネルギー吸収が有効であるが、前面衝突時に前後方向骨格部材の軸方向に荷重が集中する傾向となる。
【0005】
一方、車両の前面衝突時には、自車両および相手車両の損壊度合いを共に小さく抑制できることが望まれるが、例えば大型車両と小型車両のように前端部形状が不一致の車両の前面衝突等では、前述のように前後方向骨格部材に軸方向荷重が集中することも相俟ってインタラクション不足になる可能性がある。
【0006】
そこで、本発明は車両の前面衝突時には荷重を分散できて前後方向骨格部材の軸方向に荷重が集中するのを回避できると共に、ラップ率が小さな衝突でも前後方向骨格部材への軸方向荷重伝達を良好に行わせることができる車体前部構造を提供するものである。
【0007】
【課題を解決するための手段】
本発明の車体前部構造にあっては、車幅方向両側部で車体前後方向に延在する一対の前後方向骨格部材を上下方向に複数組設けてあって、
少なくとも一組の一対の前後方向骨格部材の前端を、車幅方向に延在する車幅方向骨格部材の背面に結合して前端間を連結し、
各前後方向骨格部材の前端部に弯曲部を設けると共に、少なくとも一組の前後方向骨格部材の前端部の弯曲部の曲がり方向を他組のものと異ならせたことを特徴としている。
【0008】
【発明の効果】
本発明によれば、上下複数組の各一対の前後方向骨格部材は、何れもその前端部に弯曲部を設けると共に、一組の前後方向骨格部材の前端部の弯曲部の曲がり方向を他組のものと異ならせているため、車両の前面衝突時にこれらの前後方向骨格部材の前端部が弯曲部の曲率中心と反対側に倒れながら徐々に曲げ変形が進行して曲げ変形方向に衝突接触面積が増加し、この接触面積の増加方向に荷重が分散されると共に、弯曲部の曲がり方向が各組で異方向となることでお互いの強度的な弱点を補うことができる。
【0009】
特に、少なくとも一組の一対の前後方向骨格部材の前端は、車幅方向骨格部材の背面に結合してあることにより、前後方向骨格部材の前端は該車幅方向骨格部材の背面に接するように前記曲げ変形が進行して確実に衝突接触面積を増大させることができるから、これを衝突エネルギー吸収のための主要な前後方向骨格部材に適用することにより、該主要前後方向骨格部材の軸方向に荷重が集中するのを回避して車体前部の損壊度合いを低く抑制することができる。
【0010】
【発明の実施の形態】
図1は本発明の第1実施形態を適用した自動車の車体骨格構造を示す斜視図、図2は本発明の第1実施形態を示す斜視図、図3は図2におけるフロントサイドメンバとセンタークロスメンバとを示す斜視図、図4は図3の要部を示す平面図、図5はフロントサイドメンバとセンタークロスメンバとの結合部分を示す分解斜視図、図6は図5のA−A線に沿う断面図、図7はフロントサイドメンバとセンタークロスメンバとの結合部分の異なる例を示す分解斜視図、図8はフロントサイドメンバの一般部と弯曲部との結合部分を示す分解斜視図、図9は図8のB−B線に沿う断面図、図10はフロントサイドメンバの一般部と弯曲部との結合部分の異なる例を示す分解斜視図、図11は本発明に対する比較例の作用を示す説明図である。
【0011】
本実施形態の車体前部構造は図1に示すように、フロントコンパートメントF・Cの左右側壁を構成するフードリッジパネル1の下端部に、車体前後方向に延在する前後方向骨格部材としてのフロントサイドメンバ2を接合配置してある。
【0012】
このフロントサイドメンバ2は車両の前面衝突時における主要なエネルギー吸収部材となるもので閉断面に形成され、その後端部はダッシュパネル13からフロアパネル6の下側に廻り込んでエクステンションサイドメンバとして後方へ延設してある。
【0013】
フードリッジパネル1の上端部には、同じく車体前後方向に延在する前後方向骨格部材としての閉断面構造のフードリッジメンバ3を接合配置してある。
【0014】
左右一対のフロントサイドメンバ2の前端部間、および左右一対のフードリッジメンバ3の前端部間に跨って、閉断面構造の車幅方向骨格部材としてのセンタークロスメンバ4、アッパークロスメンバ5を結合配置してある。
【0015】
キャビン骨格は、フロアパネル6の左右両側部に配設したサイドシル7、ルーフパネル8の左右両側部に配設したルーフサイドレール9、これらサイドシル7とルーフサイドレール9とに跨って上下方向に配設したフロントピラー10、センターピラー11、リヤピラー12の各種ピラー、およびダッシュパネル13の上端部で左右のフロントピラー10に跨って配設したカウルボックス14等により構成してある。
【0016】
前記フロントサイドメンバ2は、エクステンションサイドメンバとの連設部分でアウトリガー14を介してサイドシル7の前端部に結合してある。
【0017】
また、フードリッジメンバ3は本実施形態ではその後端部をフードリッジパネル1の骨格部であるストラットタワー1aに結合して、該ストラットタワー1aを介してカウルボックス14およびフロントピラー10に連設してある。
【0018】
また、フロントコンパートメントF・Cの底部には、パワーユニット等を搭載支持するためのサブフレーム16を配設してある。
【0019】
サブフレーム16は前後方向骨格部材としての左右のサイドフレーム17と、左右のサイドフレーム17の前端部間に跨って結合した車幅方向骨格部材としてのロアクロスメンバ18とを備え、本実施形態では左右のサイドフレーム17の後端部をリヤフレーム19で連設して平面井桁状に形成してある。
【0020】
このサブフレーム16は前記各フレーム17,19およびロアクロスメンバ18の何れも閉断面構造としてあり、サイドフレーム17の前後方向中間部をフロントサイドメンバ2の下面にマウント部材を介して結合すると共に、該サイドフレーム17の後端部をアウトリガー14の下面にマウント部材を介して結合してある。
【0021】
前記車幅方向骨格部材としてのセンタークロスメンバ4,アッパークロスメンバ5,およびロアクロスメンバ18は、図2に示すように前端位置を上下方向に揃えて配設してあり、両側部分で上下方向のステイメンバ20により結合して連設してある。
【0022】
前述の前後方向骨格部材2,3,17は、それらの前端を前記車幅方向骨格部材4,5,18の背面に結合してある。
【0023】
そして、これらの前後方向骨格部材2,3,17は、それらの前端部分に車幅方向骨格部材4,5,18との結合部分よりも車体後方位置に設定した曲率変化点Kから前端部分を、それぞれPを曲率中心として所要の曲率を付与して弯曲させた弯曲部2A,3A,17Aを備えていて、車幅方向骨格部材4,5,18の背面4a,5a,18aと、これに対向する弯曲部2A,3A,17Aの壁面との間にくさび状の開放空間Sを形成してある。
【0024】
本実施形態では前記弯曲部2A,3Aを、何れも曲率変化点Kから車幅方向内側に向けて弯曲して形成してある一方、弯曲部17Aを曲率変化点Kから上方向に向けて弯曲して形成してある。
【0025】
サイドフレーム17,17は平面視して車両前方側で車幅方向外側に所要の開き角度をもって形成してある関係で、前記弯曲部17Aは前記曲率変化点Kから車幅方向外側に向けても所要の曲率で弯曲して形成し、弯曲部2A,17Aが平面視して車幅方向内側,外側に向けて交差するようになっている。
【0026】
図3〜図10に何れも前後方向骨格部材、および車幅方向骨格部材として、フロントサイドメンバ2とセンタークロスメンバ4の構造を代表して示しているが、フードリッジメンバ3とアッパークロスメンバ5、およびサイドフレーム17とロアクロスメンバ18も同様の構造が採用される。
【0027】
図5,図6に示す例では、センタークロスメンバ4の背面4aにT字状のブラケット21をボルト22固定し、該ブラケット21の突片21Aの側面に突設したプラグ部21Bに弯曲部2Aの端末開口12を嵌合すると共に、その周縁部を受片21Aに溶接して、センタークロスメンバ4とフロントサイドメンバ2とを結合している。
【0028】
また、図7に示す例では、センタークロスメンバ4の背面4aに複数のスタッドボルト23を配設し、弯曲部2Aの対向面に設けたボルト挿通孔24をこのスタッドボルト23に挿通してナット25で締結することにより、センタークロスメンバ4とフロントサイドメンバ2とを結合している。
【0029】
フロントサイドメンバ2の弯曲部2Aは一般部2Bと一体成形してもよいが、図8〜図10の例では弯曲部2Aを例えば曲率変化点K部分を境として一般部2Bと別体に形成して、該一般部2Bの前端部に結合するようにしている。
【0030】
図8,図9に示す例では、一般部2Bの前端部に板厚相当の段差をもって小径部2B′を形成し、該小径部2B′を弯曲部2Aの後端末開口に嵌合すると共に、その差込み周縁部を溶接してこれら弯曲部2Aと一般部2Bとを結合している。
【0031】
図10に示す例では、弯曲部2Aの後端末に複数のスタッドボルト27を突設した端蓋26を固設する一方、一般部2Bの前端末に複数のボルト挿通孔28aを設けた端蓋28を固設し、これらボルト挿通孔28aをスタッドボルト27に挿通して端蓋26,28同士を突合わせて、ナット29で締結することによってこれら弯曲部2Aと一般部2Bとを結合している。
【0032】
一方、車幅方向骨格部材である前記センタークロスメンバ4,アッパークロスメンバ5,ロアクロスメンバ18は、少なくとも前後方向骨格部材であるフロントサイドメンバ2,フードリッジメンバ3,サイドフレーム17の前端を結合する両側端部を、平面視して車体後方に向けて弯曲して形成してある。
【0033】
以上の実施形態の構造によれば、上下方向に複数組配設した各一対の前後方向骨格部材であるフロントサイドメンバ2,フードリッジメンバ3,およびサイドフレーム17の各前端部は、何れも曲率を付与して弯曲させた弯曲部2A,3A,17Aを備えているため、車両の前面衝突時にこれらの前後方向骨格部材の前端部がその曲率中心Pと反対側に倒れながら徐々に曲げ変形が進行して曲げ変形方向に衝突荷重が分散される。
【0034】
これは、例えば車両の前面衝突時における主要なエネルギー吸収部材として機能する前後方向骨格部材であるフロントサイドメンバ2にあっては、その前端を車幅方向骨格部材であるセンタークロスメンバ4の背面4aに結合してあって、この背面4aとこれに対向する前記弯曲部2Aの対向壁面との間にくさび状の開放空間Sが存在しているため、車両の前面衝突時に図11の(A)に示す状態から(B)に示すように、センタークロスメンバ4の後退に伴ってその背面4aに対して前記弯曲部2Aの対向壁面が該背面4aに接するように倒れながら徐々に曲げ変形が進行し、弯曲部2Aの曲率中心Pと反対側の部分で衝突接触面積SAが図11のLaからLbへと確実に拡大して、この接触面積SAの増加方向に荷重が分散されてフロントサイドメンバ2の軸方向に荷重が集中するのを回避することができる。
【0035】
図12は本発明の対比例の作用を示しており、この対比例はフロントサイドメンバ2′をその先端に至るまで直状に形成して、この先端をセンタークロスメンバ4′の背面4a′に結合して構成したもので、この対比例の構造では車両の前面衝突時にセンタークロスメンバ4′が後退すると、フロントサイドメンバ2′は図12の(A)に示す状態から(B)に示すように、その先端部分が軸方向に蛇腹状に座屈変形するようになり、該フロントサイドメンバ2′の前端の衝突接触面積SA′は同図の(C)に示すように変形前と殆ど変わらず、フロントサイドメンバ2の軸方向に荷重が集中する傾向となる。
【0036】
本実施形態にあっては、フードリッジメンバ3およびサイドフレーム17も、それらの前端をアッパークロスメンバ5,ロアクロスメンバ18の各背面に結合して、フロントサイドメンバ2とセンタークロスメンバ4との関係と同様構造としてあるため、前記衝突接触面積の拡大作用はこれらフードリッジメンバ3およびサイドフレーム17においても全く同様に確実に行われる。
【0037】
この結果、衝突物Mの衝突初期では前記弯曲部2A,3A,17Aが曲げ変形し、該弯曲部2A,3A,17Aがそれらの曲率変化点Kまで曲げ変形すると、続いて一般部2B,3B,17Bが軸方向に蛇腹状に座屈変形を開始し、これら曲げ変形と軸圧潰変形とによって効率よく衝突エネルギーを吸収する。
【0038】
しかも、前述のように前後方向骨格部材2,3,17への軸方向の荷重集中を回避するため、車体前部の損壊度合いを小さく抑制することができ、衝突物Mが車両であった場合には、相対的にこの相手車両の損壊度合いも小さく抑制することができる。
【0039】
特に、前記弯曲部2A,3Aと17Aとは曲率付与方向を異ならせているため、これら弯曲部2A,3Aと17Aとでお互いの強度的な弱点を補うことができる。即ち、弯曲部2A,3Aの曲率付与方向の曲げ変形作用と、弯曲部17Aの曲率付与方向の曲げ変形作用との相殺によって、車体前端部の損壊度合いをより小さく抑制することができる。
【0040】
また、前述のように前記弯曲部2A,3A,17Aがくさび状の開放空間Sの部分で曲げ変形して、該開放空間S側で衝突接触面積を拡大できるため、自車両と相手車両の前後方向骨格部材同士のラップ率が小さな衝突であっても、この衝突接触面積の拡大により前後方向骨格部材2,3,17に軸方向荷重を確実に伝達させて、効率的な衝突エネルギー吸収機能を発揮させることができる。
【0041】
具体的には、本実施形態では前記弯曲部2A,3Aを、曲率変化点Kから車幅方向内側に向けて弯曲して形成してあるため、自車両の前後方向骨格部材2,3に対して相手車両の前後方向骨格部材が車幅方向外側にずれていても、前記弯曲部2A,3Aの曲げ変形によって衝突接触面積が時間とともに車幅方向外側に向けて拡大することにより、前後方向骨格部材相互に軸方向荷重を安定して作用させることができる。
【0042】
一方、前記弯曲部17Aはその曲率変化点Kから上方向に向けて弯曲して形成してあるため、自車両の前後方向骨格部材17に対して相手車両の前後方向骨格部材が下側にずれていても、前記弯曲部17Aの曲げ変形によって衝突接触面積が時間とともに下側に向けて拡大することにより、前後方向骨格部材相互に軸方向荷重を安定して作用させることができる。
【0043】
この弯曲部17Aは本実施形態では車幅方向外側に向けても弯曲しているため、前述のように相手車両が自車両に対して車幅方向外側にずれていた場合に、前述と同様の理由によりこの弯曲部17Aによって衝突中心を捕捉して効率的なエネルギー吸収作用を行わせることができる。
【0044】
とりわけ、本実施形態では車幅方向骨格部材4,5,18の両側端部を平面視して車体後方に向けて弯曲して形成してあるため、前記車幅方向外側に向けての衝突接触面積の拡大をより良好に行わせることができる。
【0045】
また、このような衝突性能上の効果とは別に、弯曲部2A,3A,17Aをほぼ曲率変化点Kを境として一般部2B,3B,17Bと別体に形成してあるので、これら弯曲部2A,3A,17Aを要求特性に応じた曲率で容易に形成することができる。
【0046】
図13は本発明の第2実施形態を示すもので、本実施形態にあっては前記第一実施形態における主要エネルギー吸収骨格部材であるフロントサイドメンバ2の弯曲部2Aを、曲率変化点Kから車幅方向外側に向けて弯曲して形成してあって、その他の構成については前記第1実施形態と同様である。
【0047】
従って、この第2実施形態の構造によれば、前記第1実施形態と同様の作用効果が得られるが、本実施形態ではくさび状の開放空間Sが車幅方向内側に形成されて、弯曲部2Aの曲げ変形による衝突接触面積の拡大化が車幅中央に向けて行われるため、前面衝突時に自車両のフロントサイドメンバ2に対して相手車両のフロントサイドメンバが車幅中央側にずれていても、前記弯曲部2Aの曲げ変形による車幅中央側への衝突接触面積の拡大により、フロントサイドメンバ相互に軸方向荷重を安定して作用させることができる。
【0048】
この第2実施形態の場合、サイドフレーム17の弯曲部17Aを前記第1実施形態のものと変えて平面視して車幅方向内側に向けて弯曲させて、弯曲部2Aと曲率付与方向を異ならせることが望ましい。
【0049】
図14は本発明の第3実施形態を示すもので、本実施形態では前記第1実施形態におけるフロントサイドメンバ2の弯曲部2Aを、曲率変化点Kから上方向に向けて弯曲して形成してあって、その他の構成については前記第1実施形態と同様である。
【0050】
従って、この第3実施形態によれば、前記第1実施形態と同様の作用効果が得られるが、本実施形態ではくさび状の開放空間Sが下側に形成されて、弯曲部2Aの曲げ変形による衝突接触面積の拡大化が下側に向けて行われるため、前面衝突時に自車両のフロントサイドメンバ2に対して相手車両のフロントサイドメンバが下側にずれていても、前記弯曲部2Aの曲げ変形による下側への衝突接触面積の拡大により、フロントサイドメンバ相互に軸方向荷重を安定して作用させることができる。
【0051】
図15は本発明の第4実施形態を示すもので、本実施形態では前記第1実施形態におけるフロントサイドメンバ2の弯曲部2Aを、曲率変化点Kから下方向に向けて弯曲して形成してあって、その他の構成については前記第1実施形態と同様である。
【0052】
従って、この第4実施形態によれば、前記第1実施形態と同様の作用効果が得られるが、本実施形態ではくさび状の開放空間Sが上側に形成されて、弯曲部2Aの曲げ変形による衝突接触面積の拡大化が上側に向けて行われるため、前面衝突時に自車両のフロントサイドメンバ2に対して相手車両のフロントサイドメンバが上側にずれていても、前記弯曲部2Aの曲げ変形による下側への衝突接触面積の拡大により、フロントサイドメンバ相互に軸方向荷重を安定して作用させることができる。
【0053】
これらのことはフードリッジメンバ3についても同様で、例えば図16に示す第5実施形態では前記第1実施形態におけるフードリッジメンバ3の弯曲部2Aを、曲率変化点Kから下方向に向けて弯曲して形成してある。
【0054】
従って、この第5実施形態では前面衝突時に自車両のフードリッジメンバ3に対して相手車両のフードリッジメンバが上側にずれていても、弯曲部3Aの曲げ変形による上側への衝突接触面積の拡大により、フードリッジメンバ相互に軸方向荷重を安定して作用させることができる。
【0055】
なお、本実施形態ではフードリッジメンバ3の弯曲部3Aの前端をアッパークロスメンバ5の背面5aに結合しているが、該アッパークロスメンバ5の上面に結合して造形上の要求に応えるようにしてもよい。
【0056】
ところで、本発明の車体前部構造を前記実施形態を例にとって説明したが、この実施形態に限ることなく本発明の要旨を逸脱しない範囲で他の実施形態を各種採ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を採用した自動車の車体骨格構造を示す斜視図。
【図2】本発明の第1実施形態を示す斜視図。
【図3】図2におけるフロントサイドメンバとセンタークロスメンバとを示す斜視図。
【図4】図3の要部を示す平面図。
【図5】フロントサイドメンバとセンタークロスメンバとの結合部分を示す分解斜視図。
【図6】図5のA−A線に沿う断面図。
【図7】フロントサイドメンバとセンタークロスメンバとの結合部分の異なる例を示す分解斜視図。
【図8】フロントサイドメンバの一般部と弯曲部との結合部分を示す分解斜視図。
【図9】図8のB−B線に沿う断面図。
【図10】フロントサイドメンバの一般部と弯曲部との結合部分の異なる例を示す分解斜視図。
【図11】本発明の第1実施形態の作用を示す説明図。
【図12】本発明に対する比較例の作用を示す説明図。
【図13】本発明の第2実施形態におけるフロントサイドメンバとセンタークロスメンバとを示す斜視図。
【図14】本発明の第3実施形態におけるフロントサイドメンバとセンタークロスメンバとを示す斜視図。
【図15】本発明の第4実施形態におけるフロントサイドメンバとセンタークロスメンバとを示す斜視図。
【図16】本発明の第5実施形態を示す斜視図。
【符号の説明】
1 フードリッジパネル
2 フロントサイドメンバ(前後方向骨格部材)
2A 弯曲部
2B 一般部
3 フードリッジメンバ(前後方向骨格部材)
3A 弯曲部
3B 一般部
4 センタークロスメンバ(車幅方向骨格部材)
4a 背面
5 アッパークロスメンバ(前後方向骨格部材)
5a 背面
16 サブフレーム
17 サイドフレーム(前後方向骨格部材)
17A 弯曲部
17B 一般部
18 ロアクロスメンバ(車幅方向骨格部材)
18a 背面
F・C フロントコンパートメント
K 曲率変化点
S くさび状の開放空間
P 曲率中心
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle body front structure.
[0002]
[Prior art]
In the vehicle body front structure, the front end of the front side member, which is a longitudinal skeleton member, and the first cross member, which is a vehicle width direction skeleton member, are disposed via a crash box arranged on the axis of the front side member. In the event of a frontal collision of the vehicle, the crash box is crushed and deformed to absorb the initial energy and stabilize the axial buckling deformation (axial crushing) of the front side member. There are some (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP 2002-356179 A (page 3, FIG. 4)
[0004]
[Problems to be solved by the invention]
In order to suppress the deformation of the cabin at the time of a frontal collision of the vehicle, it is effective to absorb energy by axial crushing of the front-rear frame member as described above. However, a load is applied in the axial direction of the front-rear frame member at the frontal collision. It tends to concentrate.
[0005]
On the other hand, at the time of a frontal collision of the vehicle, it is desired that both the degree of damage of the host vehicle and the opponent vehicle can be suppressed to be small.For example, in the case of a frontal collision of a vehicle whose front end shape does not match, such as a large vehicle and a small vehicle, As described above, there is a possibility that the interaction is insufficient due to the fact that the axial load is concentrated on the longitudinal frame member.
[0006]
Therefore, the present invention can distribute the load at the time of a frontal collision of the vehicle and can prevent the load from concentrating in the axial direction of the longitudinal frame member, and can transmit the axial load to the longitudinal frame member even in a collision with a small lap ratio. It is an object of the present invention to provide a vehicle body front structure that can be satisfactorily performed.
[0007]
[Means for Solving the Problems]
In the vehicle body front structure of the present invention, a plurality of pairs of front and rear direction skeleton members extending in the vehicle body front and rear direction at both sides in the vehicle width direction are provided in the vertical direction,
The front ends of at least one pair of front and rear direction skeleton members are coupled to the back surface of the vehicle width direction skeleton members extending in the vehicle width direction, and the front ends are connected.
A curved portion is provided at a front end portion of each front-rear direction skeleton member, and a bending direction of at least one front end portion of the front-rear direction skeleton member is different from that of another set.
[0008]
【The invention's effect】
According to the present invention, each of the pair of front and rear skeletal members in a plurality of upper and lower sets is provided with a bent portion at the front end portion thereof, and the bending direction of the bent portion at the front end portion of the set of front and rear skeleton members is set in another set. Therefore, when the frontal collision of the vehicle, the front end of these longitudinal skeletal members collapses to the side opposite to the center of curvature of the curved part , and the bending deformation gradually progresses, and the collision contact area in the bending deformation direction And the load is distributed in the direction of increasing the contact area, and the bending direction of the bent portion is different in each group, so that the strength weakness of each other can be compensated.
[0009]
In particular, the front ends of at least one pair of the front and rear frame members are coupled to the back surface of the vehicle width direction frame member so that the front ends of the front and rear frame members are in contact with the rear surface of the vehicle width direction frame member. As the bending deformation progresses and the collision contact area can be surely increased, by applying this to the main anteroposterior skeleton member for absorbing collision energy, the axial direction of the main anteroposterior skeleton member can be increased. The concentration of the load can be avoided and the degree of damage to the front portion of the vehicle body can be suppressed low.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a perspective view showing a vehicle body skeleton structure to which the first embodiment of the present invention is applied, FIG. 2 is a perspective view showing the first embodiment of the present invention, and FIG. 3 is a front side member and a center cross in FIG. 4 is a plan view showing the main part of FIG. 3, FIG. 5 is an exploded perspective view showing a connecting portion between the front side member and the center cross member, and FIG. 6 is an AA line in FIG. FIG. 7 is an exploded perspective view showing a different example of the coupling portion between the front side member and the center cross member, and FIG. 8 is an exploded perspective view showing the coupling portion between the general portion and the bent portion of the front side member. 9 is a cross-sectional view taken along line B-B in FIG. 8, FIG. 10 is an exploded perspective view showing a different example of the coupling portion between the general portion and the bent portion of the front side member, and FIG. It is explanatory drawing which shows.
[0011]
As shown in FIG. 1, the vehicle body front structure of the present embodiment is a front skeleton member that extends in the vehicle longitudinal direction at the lower end of the hood ridge panel 1 that constitutes the left and right side walls of the front compartments F and C. Side members 2 are joined and arranged.
[0012]
The front side member 2 is a main energy absorbing member at the time of a frontal collision of the vehicle, and is formed in a closed cross section. A rear end portion of the front side member 2 extends from the dash panel 13 to the lower side of the floor panel 6 and is rearward as an extension side member. It is extended to.
[0013]
A hood ridge member 3 having a closed cross-sectional structure as a longitudinal skeleton member that extends in the longitudinal direction of the vehicle body is joined and disposed at the upper end of the hood ridge panel 1.
[0014]
A center cross member 4 and an upper cross member 5 as a vehicle width direction skeleton member having a closed cross-section structure are coupled across the front end portions of the pair of left and right front side members 2 and between the front end portions of the pair of left and right hood ridge members 3. It is arranged.
[0015]
The cabin skeleton is arranged in the vertical direction across the side sill 7 disposed on the left and right sides of the floor panel 6, the roof side rail 9 disposed on the left and right sides of the roof panel 8, and the side sill 7 and the roof side rail 9. The front pillar 10, the center pillar 11, and the rear pillar 12 that are provided, and the cowl box 14 that is disposed at the upper end of the dash panel 13 so as to straddle the left and right front pillars 10 are configured.
[0016]
The front side member 2 is connected to the front end portion of the side sill 7 via an outrigger 14 at a portion where it is connected to the extension side member.
[0017]
Further, in this embodiment, the hood ridge member 3 is connected at its rear end to a strut tower 1a which is a skeleton part of the hood ridge panel 1, and is connected to the cowl box 14 and the front pillar 10 via the strut tower 1a. It is.
[0018]
A subframe 16 for mounting and supporting a power unit and the like is disposed at the bottom of the front compartments F and C.
[0019]
The sub-frame 16 includes left and right side frames 17 as front and rear direction skeleton members, and a lower cross member 18 as a vehicle width direction skeleton member joined across the front end portions of the left and right side frames 17. The rear end portions of the left and right side frames 17 are connected to each other by a rear frame 19 and are formed in a plane well shape.
[0020]
The sub-frame 16 has a closed cross-sectional structure for each of the frames 17, 19 and the lower cross member 18, and connects the middle part in the front-rear direction of the side frame 17 to the lower surface of the front side member 2 via a mount member. The rear end of the side frame 17 is coupled to the lower surface of the outrigger 14 via a mount member.
[0021]
The center cross member 4, the upper cross member 5, and the lower cross member 18 as the vehicle width direction skeleton members are arranged with their front end positions aligned vertically as shown in FIG. The stay members 20 are connected and connected.
[0022]
The front and rear direction skeleton members 2, 3, and 17 have their front ends coupled to the back surfaces of the vehicle width direction skeleton members 4, 5, and 18.
[0023]
And these front-back direction frame members 2, 3, and 17 have the front-end part from the curvature change point K set in the vehicle body rear position rather than the coupling | bond part with the vehicle width direction frame members 4, 5, and 18 in those front-end parts. , Each of which includes curved portions 2A, 3A, and 17A that are bent with a required curvature centered on P, and the rear surfaces 4a, 5a, and 18a of the vehicle width direction skeleton members 4, 5, and 18, and A wedge-shaped open space S is formed between the opposing curved portions 2A, 3A, and 17A.
[0024]
In the present embodiment, the bent portions 2A and 3A are both bent from the curvature change point K inward in the vehicle width direction, while the bent portion 17A is bent upward from the curvature change point K. Is formed.
[0025]
The side frames 17 and 17 are formed with a required opening angle on the vehicle width direction outer side on the front side of the vehicle in a plan view, so that the curved portion 17A is directed from the curvature change point K toward the vehicle width direction outer side. The bent portions 2A and 17A are formed so as to be bent at a required curvature, and the bent portions 2A and 17A intersect inward and outward in the vehicle width direction in plan view.
[0026]
FIGS. 3 to 10 show the structures of the front side member 2 and the center cross member 4 as the front-rear direction frame member and the vehicle width direction frame member, but the hood ridge member 3 and the upper cross member 5 are representative. The side frame 17 and the lower cross member 18 have the same structure.
[0027]
5 and 6, a T-shaped bracket 21 is fixed to the back surface 4a of the center cross member 4 with bolts 22, and a bent portion 2A is attached to a plug portion 21B projecting from a side surface of a protruding piece 21A of the bracket 21. The center opening member 12 and the front side member 2 are coupled to each other by welding the peripheral edge thereof to the receiving piece 21A.
[0028]
Further, in the example shown in FIG. 7, a plurality of stud bolts 23 are disposed on the back surface 4a of the center cross member 4, and a bolt insertion hole 24 provided on the opposing surface of the bent portion 2A is inserted into the stud bolt 23 to form a nut. By fastening at 25, the center cross member 4 and the front side member 2 are coupled.
[0029]
The bent portion 2A of the front side member 2 may be integrally formed with the general portion 2B. However, in the example of FIGS. 8 to 10, the bent portion 2A is formed separately from the general portion 2B, for example, at the curvature change point K. And it is made to couple | bond with the front-end part of this general part 2B.
[0030]
In the example shown in FIGS. 8 and 9, a small diameter portion 2B ′ is formed at the front end portion of the general portion 2B with a step corresponding to the plate thickness, and the small diameter portion 2B ′ is fitted to the rear end opening of the bent portion 2A. The bent peripheral portion is welded to join the bent portion 2A and the general portion 2B.
[0031]
In the example shown in FIG. 10, an end cover 26 in which a plurality of stud bolts 27 project from the rear end of the bent portion 2A is fixed, while a plurality of bolt insertion holes 28a are provided in the front end of the general portion 2B. 28 are fixed, these bolt insertion holes 28a are inserted into the stud bolts 27, the end covers 26 and 28 are brought into contact with each other, and fastened with a nut 29 to connect the bent portion 2A and the general portion 2B. Yes.
[0032]
On the other hand, the center cross member 4, the upper cross member 5, and the lower cross member 18 that are vehicle width direction skeleton members are coupled to at least the front side members 2, hood ridge members 3, and side frames 17 that are front and rear direction skeleton members. Both side end portions are bent toward the rear of the vehicle body in plan view.
[0033]
According to the structure of the above embodiment, the front side members 2, the hood ridge members 3, and the front end portions of the side frames 17 that are a pair of front and rear direction skeleton members arranged in the vertical direction are all curved. Since the bent portions 2A, 3A, and 17A are provided and bent, the front end portions of these front and rear direction skeleton members are gradually bent and deformed in the opposite direction to the center of curvature P at the time of frontal collision of the vehicle. The collision load is distributed in the bending deformation direction.
[0034]
For example, in the case of the front side member 2 that is a longitudinal skeleton member that functions as a main energy absorbing member during a frontal collision of a vehicle, the front end of the front side member 2 is the rear surface 4a of the center cross member 4 that is a vehicle width direction skeleton member. 11A and 11B, a wedge-shaped open space S exists between the back surface 4a and the opposing wall surface of the curved portion 2A facing the back surface 4a. As shown in (B), as the center cross member 4 is retracted, bending deformation proceeds gradually while the opposite wall surface of the bent portion 2A is in contact with the back surface 4a with respect to the back surface 4a. Then, the collision contact area SA is surely expanded from La to Lb in FIG. 11 at the portion opposite to the center of curvature P of the bent portion 2A, and the load is dispersed in the increasing direction of the contact area SA. Load in the axial direction of the side member 2 can be prevented from concentrating.
[0035]
FIG. 12 shows the comparative operation of the present invention. In this comparative example, the front side member 2 'is formed in a straight shape up to its tip, and this tip is placed on the back surface 4a' of the center cross member 4 '. In this comparative structure, when the center cross member 4 ′ moves backward during a frontal collision of the vehicle, the front side member 2 ′ is changed from the state shown in FIG. Further, the front end portion of the front side member 2 'is buckled and deformed in a bellows shape in the axial direction, and the collision contact area SA' at the front end of the front side member 2 'is almost the same as that before the deformation as shown in FIG. Therefore, the load tends to concentrate in the axial direction of the front side member 2.
[0036]
In the present embodiment, the hood ridge member 3 and the side frame 17 are also connected to the back surfaces of the upper cross member 5 and the lower cross member 18 by connecting the front ends thereof to the front side member 2 and the center cross member 4. Since the structure is the same as that of the relationship, the action of expanding the collision contact area is reliably performed in the hood ridge member 3 and the side frame 17 in exactly the same manner.
[0037]
As a result, the bent portions 2A, 3A, and 17A are bent and deformed at the initial stage of the collision of the collision object M, and when the bent portions 2A, 3A, and 17A are bent and deformed to the curvature change point K, the general portions 2B and 3B are subsequently generated. , 17B starts buckling deformation in an accordion shape in the axial direction, and efficiently absorbs collision energy by these bending deformation and axial crushing deformation.
[0038]
In addition, as described above, in order to avoid load concentration in the axial direction on the longitudinal skeleton members 2, 3, and 17, the degree of damage at the front of the vehicle body can be suppressed to a small level, and the collision object M is a vehicle. Therefore, the degree of damage of the opponent vehicle can be relatively suppressed.
[0039]
In particular, the curved portions 2A, 3A, and 17A have different curvature applying directions, so that the strength portions of the curved portions 2A, 3A, and 17A can be compensated for. That is, the degree of breakage of the front end portion of the vehicle body can be further suppressed by canceling out the bending deformation action of the curved portions 2A and 3A in the curvature applying direction and the bending deformation action of the curved portion 17A in the curvature applying direction.
[0040]
Further, as described above, the bent portions 2A, 3A, and 17A are bent and deformed in the wedge-shaped open space S, so that the collision contact area can be increased on the open space S side. Even in the case of a collision with a small lap ratio between the directional skeleton members, the expansion of the collision contact area ensures that the axial load is transmitted to the front and rear skeleton members 2, 3, and 17, thereby providing an efficient collision energy absorption function. It can be demonstrated.
[0041]
Specifically, in the present embodiment, the bent portions 2A and 3A are formed by bending from the curvature change point K inward in the vehicle width direction. Even if the front-rear direction skeleton member of the counterpart vehicle is displaced outward in the vehicle width direction, the collision contact area expands toward the outer side in the vehicle width direction over time due to the bending deformation of the bent portions 2A, 3A, so An axial load can be made to act stably between members.
[0042]
On the other hand, the bent portion 17A is formed by bending upward from the curvature change point K, so that the front-rear direction skeleton member of the counterpart vehicle is shifted downward with respect to the front-rear direction skeleton member 17 of the own vehicle. Even so, the axial contact load can be stably applied to the front-rear skeleton members by expanding the collision contact area downward with time due to the bending deformation of the bent portion 17A.
[0043]
In the present embodiment, the curved portion 17A is curved even toward the outside in the vehicle width direction. Therefore, when the opponent vehicle is displaced outward in the vehicle width direction as described above, the same as described above. For this reason, the center of the collision can be captured by the bent portion 17A, and an efficient energy absorbing action can be performed.
[0044]
In particular, in the present embodiment, both side ends of the vehicle width direction skeleton members 4, 5, and 18 are formed by bending toward the rear of the vehicle body in plan view, so that the collision contact toward the outside in the vehicle width direction is performed. The area can be enlarged more favorably.
[0045]
In addition to the effects on the collision performance, the curved portions 2A, 3A, and 17A are formed separately from the general portions 2B, 3B, and 17B with the curvature change point K as a boundary. 2A, 3A, and 17A can be easily formed with a curvature according to required characteristics.
[0046]
FIG. 13 shows a second embodiment of the present invention. In this embodiment, the bent portion 2A of the front side member 2 which is the main energy absorbing skeleton member in the first embodiment is moved from the curvature change point K. It is formed by bending toward the outside in the vehicle width direction, and the other configurations are the same as those in the first embodiment.
[0047]
Therefore, according to the structure of the second embodiment, the same effect as that of the first embodiment can be obtained. However, in this embodiment, the wedge-shaped open space S is formed on the inner side in the vehicle width direction, and the curved portion is formed. Since the collision contact area is expanded toward the vehicle width center by bending deformation of 2A, the front side member of the opponent vehicle is shifted toward the vehicle width center side with respect to the front side member 2 of the own vehicle at the time of frontal collision. In addition, by increasing the collision contact area toward the vehicle width center side by bending deformation of the bent portion 2A, the axial load can be stably applied to the front side members.
[0048]
In the case of the second embodiment, the bent portion 17A of the side frame 17 is changed from that of the first embodiment to bend inward in the vehicle width direction in plan view, and the curvature applying direction is different from the bent portion 2A. It is desirable to
[0049]
FIG. 14 shows a third embodiment of the present invention. In this embodiment, the bent portion 2A of the front side member 2 in the first embodiment is formed by bending upward from the curvature change point K. FIG. The other configurations are the same as those in the first embodiment.
[0050]
Therefore, according to the third embodiment, the same effects as those of the first embodiment can be obtained. However, in this embodiment, the wedge-shaped open space S is formed on the lower side, and the bending portion 2A is bent and deformed. Since the collision contact area is expanded downward by the above-mentioned, even if the front side member of the opponent vehicle is shifted downward relative to the front side member 2 of the own vehicle at the time of a frontal collision, By expanding the collision contact area to the lower side by bending deformation, the axial load can be stably applied to the front side members.
[0051]
FIG. 15 shows a fourth embodiment of the present invention. In this embodiment, the bent portion 2A of the front side member 2 in the first embodiment is formed by bending downward from the curvature change point K. FIG. The other configurations are the same as those in the first embodiment.
[0052]
Therefore, according to the fourth embodiment, the same effects as those of the first embodiment can be obtained. However, in this embodiment, the wedge-shaped open space S is formed on the upper side, and the bending portion 2A is bent. Since the collision contact area is enlarged upward, even if the front side member of the opponent vehicle is displaced upward relative to the front side member 2 of the own vehicle at the time of a frontal collision, it is caused by bending deformation of the bent portion 2A. By expanding the collision contact area to the lower side, the axial load can be stably applied to the front side members.
[0053]
The same applies to the hood ridge member 3. For example, in the fifth embodiment shown in FIG. 16, the bent portion 2A of the hood ridge member 3 in the first embodiment is bent downward from the curvature change point K. Is formed.
[0054]
Therefore, in the fifth embodiment, even if the hood ridge member of the opponent vehicle is displaced upward with respect to the hood ridge member 3 of the own vehicle at the time of a frontal collision, the collision contact area on the upper side is increased by bending deformation of the curved portion 3A. Accordingly, the axial load can be stably applied to the hood ridge members.
[0055]
In this embodiment, the front end of the bent portion 3A of the hood ridge member 3 is coupled to the back surface 5a of the upper cross member 5. However, the front end of the hood ridge member 3 is coupled to the upper surface of the upper cross member 5 so as to meet the modeling requirements. May be.
[0056]
By the way, although the vehicle body front part structure of the present invention has been described by taking the above embodiment as an example, the present invention is not limited to this embodiment, and various other embodiments can be adopted without departing from the gist of the present invention.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a vehicle body frame structure of an automobile adopting a first embodiment of the present invention.
FIG. 2 is a perspective view showing a first embodiment of the present invention.
3 is a perspective view showing a front side member and a center cross member in FIG. 2. FIG.
4 is a plan view showing the main part of FIG. 3;
FIG. 5 is an exploded perspective view showing a connecting portion between a front side member and a center cross member.
6 is a cross-sectional view taken along line AA in FIG.
FIG. 7 is an exploded perspective view showing a different example of the coupling portion between the front side member and the center cross member.
FIG. 8 is an exploded perspective view showing a joint portion between a general portion and a bent portion of the front side member.
9 is a sectional view taken along line BB in FIG.
FIG. 10 is an exploded perspective view showing a different example of the connecting portion between the general portion and the bent portion of the front side member.
FIG. 11 is an explanatory view showing the operation of the first embodiment of the present invention.
FIG. 12 is an explanatory diagram showing the operation of a comparative example with respect to the present invention.
FIG. 13 is a perspective view showing a front side member and a center cross member in a second embodiment of the present invention.
FIG. 14 is a perspective view showing a front side member and a center cross member according to a third embodiment of the present invention.
FIG. 15 is a perspective view showing a front side member and a center cross member according to a fourth embodiment of the present invention.
FIG. 16 is a perspective view showing a fifth embodiment of the present invention.
[Explanation of symbols]
1 Hood Ridge Panel 2 Front Side Member (back and forth frame member)
2A Curved part 2B General part 3 Hood ridge member (back and forth frame member)
3A Curved part 3B General part 4 Center cross member (vehicle width direction skeleton member)
4a Back 5 Upper cross member (back and forth frame member)
5a Rear side 16 Sub frame 17 Side frame (back and forth direction skeleton member)
17A Curved portion 17B General portion 18 Lower cross member (vehicle width direction skeleton member)
18a Rear F / C Front compartment K Curvature change point S Wedge-shaped open space P Center of curvature

Claims (5)

フロントコンパートメントの車幅方向両側部で車体前後方向に延在する一対の前後方向骨格部材を上下方向に複数組設け、
少なくとも一組の一対の前後方向骨格部材の前端を、車幅方向に延在する車幅方向骨格部材の背面に結合して前端間を連結し、
各前後方向骨格部材の前端部に弯曲部を設けると共に、少なくとも一組の前後方向骨格部材の前端部の弯曲部の曲がり方向を他組のものと異ならせたことを特徴とする車体前部構造。
A plurality of pairs of longitudinal skeleton members extending in the longitudinal direction of the vehicle body on both sides in the vehicle width direction of the front compartment are provided in the vertical direction,
The front ends of at least one pair of front and rear direction skeleton members are coupled to the back surface of the vehicle width direction skeleton members extending in the vehicle width direction, and the front ends are connected.
A vehicle body front structure characterized in that a bent portion is provided at a front end portion of each front-rear skeleton member, and a bending direction of at least one set of front-end skeleton members is different from that of the other set. .
一組の前後方向骨格部材の前端部の弯曲部の曲がり方向を車幅方向内側に向け、他組の前後方向骨格部材の前端部の弯曲部の曲がり方向を車幅方向外側、上方向、下方向の何れかの方向に向けたことを特徴とする請求項1に記載の車体前部構造。A pair of front and rear facing the bending direction of the curved portion of the front end portion of the direction frame member in the vehicle width direction inside, the other set of bending direction in the vehicle width direction outer side of the curved portion of the front end of the longitudinal frame member, upward, down The vehicle body front part structure according to claim 1, wherein the vehicle body front part structure is directed in any direction. 一組の前後方向骨格部材の前端部の弯曲部の曲がり方向を車幅方向外側に向け、他組の前後方向骨格部材の前端部の弯曲部の曲がり方向を車幅方向内側、上方向、下方向の何れかの方向に向けたことを特徴とする請求項1に記載の車体前部構造。A pair of towards the outside in the vehicle width direction of the bending direction of the curved portion of the front end of the longitudinal frame members, the other set of curved portions of the bending direction in the vehicle width direction inner side of the front end portion of the longitudinal frame member, upward, down The vehicle body front part structure according to claim 1, wherein the vehicle body front part structure is directed in any direction. 一組の前後方向骨格部材の前端部の弯曲部の曲がり方向を上方向に向け、他組の前後方向骨格部材の前端部の弯曲部の曲がり方向を車幅方向内側、車幅方向外側、下方向の何れかの方向に向けたことを特徴とする請求項1に記載の車体前部構造。A pair of upward direction bending direction of the curved portion of the front end of the longitudinal frame members, the other set of curved portions of the bending direction in the vehicle width direction inner side of the front end portion of the longitudinal frame members, the vehicle width direction outer side, below The vehicle body front part structure according to claim 1, wherein the vehicle body front part structure is directed in any direction. 一組の前後方向骨格部材の前端部の弯曲部の曲がり方向を下方向に向け、他組の前後方向骨格部材の前端部の弯曲部の曲がり方向を車幅方向内側、車幅方向外側、上方向の何れかの方向に向けたことを特徴とする請求項1に記載の車体前部構造。Towards the bending direction of the curved portion of the front end portion of the pair of front-rear direction frame member in a downward direction, the other set of curved portions of the bending direction in the vehicle width direction inner side of the front end portion of the longitudinal frame members, the vehicle width direction outer side, upper The vehicle body front part structure according to claim 1, wherein the vehicle body front part structure is directed in any direction.
JP2003059016A 2003-03-05 2003-03-05 Body front structure Expired - Fee Related JP4123013B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003059016A JP4123013B2 (en) 2003-03-05 2003-03-05 Body front structure
US10/766,025 US6948767B2 (en) 2003-03-05 2004-01-29 Vehicle body front section structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059016A JP4123013B2 (en) 2003-03-05 2003-03-05 Body front structure

Publications (2)

Publication Number Publication Date
JP2004268636A JP2004268636A (en) 2004-09-30
JP4123013B2 true JP4123013B2 (en) 2008-07-23

Family

ID=33121983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059016A Expired - Fee Related JP4123013B2 (en) 2003-03-05 2003-03-05 Body front structure

Country Status (1)

Country Link
JP (1) JP4123013B2 (en)

Also Published As

Publication number Publication date
JP2004268636A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4424208B2 (en) Body front structure
JP3828329B2 (en) Auto body structure
JP5504820B2 (en) Front body structure of the vehicle
US7008007B2 (en) Vehicle body end structure
JP6511078B2 (en) Electric car floor structure
JP2002154458A (en) Car body front structure
JP2019051818A (en) Vehicle body structure
JP5942920B2 (en) Front body structure of the vehicle
US6948767B2 (en) Vehicle body front section structure
JP5934534B2 (en) Body structure
JP3311797B2 (en) Lower body structure of car
JP2009137523A (en) Front body structure of automobile
JP2009184403A (en) Vehicle front body structure
JP4462630B2 (en) Lower body structure
JP6052231B2 (en) Vehicle body structure
JP4123012B2 (en) Body front structure
JP7213224B2 (en) car body structure
JP4123014B2 (en) Body front structure
JP4123013B2 (en) Body front structure
JP2008068760A (en) Vehicle body front structure
JP6044795B2 (en) Front body structure of the vehicle
JP4103758B2 (en) Body front structure
JP2007191061A (en) Vehicle body front part structure
JP2020203570A (en) Vehicle body front part structure
US11505259B2 (en) Canopy windshield retention

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees