JP4121682B2 - Method and apparatus for solvent separation and concentration of solution - Google Patents

Method and apparatus for solvent separation and concentration of solution Download PDF

Info

Publication number
JP4121682B2
JP4121682B2 JP34938099A JP34938099A JP4121682B2 JP 4121682 B2 JP4121682 B2 JP 4121682B2 JP 34938099 A JP34938099 A JP 34938099A JP 34938099 A JP34938099 A JP 34938099A JP 4121682 B2 JP4121682 B2 JP 4121682B2
Authority
JP
Japan
Prior art keywords
concentration
ice
water
aqueous solution
freeze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34938099A
Other languages
Japanese (ja)
Other versions
JP2001162267A (en
Inventor
展海 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP34938099A priority Critical patent/JP4121682B2/en
Publication of JP2001162267A publication Critical patent/JP2001162267A/en
Application granted granted Critical
Publication of JP4121682B2 publication Critical patent/JP4121682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Water Treatment By Sorption (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水溶液の分離および濃縮に関するもので、特に産業廃液の排水処理工程における省水・省エネルギ改善を図るべく最終濃縮・減容を可能にした溶液の溶媒分離濃縮方法とその装置に関する。
【0002】
【従来の技術】
従来産業廃液の排水処理方法としては、有機物含有量の多い廃液に対して図2の微生物処理、無機物含有量の多い廃液には図3の焼却処理が主たる処理方法として使用されてきた。さらに廃液の濃縮、特に廃水の濃縮には、例えば図4の方法が使用されていた。
【0003】
図2は有機物廃液の微生物分解による排水処理法を示したものである。原液50を微生物分解槽51に貯留し、貯留した原液の上澄み液は許容値以下の成分濃度が確認されれば、外部に排出され外部排水53が行なわれる。残された汚泥沈殿物52は燃焼54の燃焼処理がされるか、または肥料や廃棄物固形燃料(RDF)等として有効利用55がされている。
【0004】
図3は原廃液56を直接燃焼炉57で燃焼させる廃液の直接燃焼処理方法を示したものである。当然のことながら多量の水分を含有するため、多量の燃料が必要となる。水分は水蒸気となり燃焼ガス58として大気中に放出され、残された固形物59は灰となり最終処分される。
【0005】
図4に示される方法は、直接燃焼処理法の燃料を減少させるために、原廃液を加熱しながら蒸発水分を真空ポンプ等で大気放出することにより廃液濃度をある程度上昇させ、その後に燃焼炉で燃焼させる真空濃縮燃焼処理方法である。
即ち、原廃液60は濃縮槽61で加熱により発生した蒸発水分を真空ポンプ62により吸引大気放出させ、高濃度の廃液を焼却炉63で焼却して、固形物(灰)64の排出と燃焼ガス65の大気放出を可能にしている。
上記の場合、濃縮処理場と燃焼処理場との距離が離れている場合は、特に濃縮・減容化により運搬費用がある程度低減されることになる。
【0006】
上記図3、図4に示された産業廃液の排水処理方法は、多量の燃料消費、排気ガスおよび炭酸ガスの発生、運搬費用(主に燃料費)の発生、処理排水の放出等省エネルギー、省水および環境保全の観点から好ましからざる結果を引き起こしている。
【0007】
ところで、上記図4に示す濃縮法以外に食品工業で使用されている凍結濃縮法と蒸気再圧縮濃縮法がある。
図5にはジュースの濃縮に従来から使用されてきている凍結濃縮法が示してある。原液ジュース66の中の水分を凍結濃縮装置67により凍結除去し、濃縮された残液が濃縮ジュース68として使用されるようにし、凍結除去した水分を排水69として処理するようにしている。
この場合は加熱蒸発による品質変化を避けることが出来るため、香気の逸散が少なく成分変化が殆ど無く加熱を伴わない濃縮法としてコーヒー、ビール等の分野で利用されてきている。
なお、凍結濃縮の場合、濃縮の進行に伴い氷結温度も低下し溶液粘度も増加し、濃縮液と氷晶の分離や氷晶に付着した濃縮液の回収が困難になる問題がある。
【0008】
図6には、ビールの麦汁煮沸釜による蒸気再圧縮濃縮法が示されている。これは従来の煮沸釜による直接加熱により麦汁より発生する臭気を含んだ水蒸気を大気中に放出する従来の麦汁の煮沸濃縮法を改善したもので、濃縮釜として機能する麦汁煮沸釜70より発生する蒸気を蒸気圧縮機71を介して圧縮昇温させ、昇温された高圧高温蒸気を前記麦汁煮沸釜70の加熱用蒸気として加熱器74を介して再利用するので、従来の煮沸釜に比較し投入エネルギ量は大幅に削減される。
加熱器74に供給された蒸気は内部で次第に凝縮され、供給蒸気の全量が凝縮され排水73として外部へ放出される。蒸気再圧縮濃縮法は従来法に比べて、加熱に要するエネルギーが1/4程度まで削減されるといわれ、さらに従来法の臭気による環境汚染の問題がなくなるなどの利点がある。
【0009】
上記図5、図6に示す濃縮法は、廃液の濃縮にも利用可能であることは周知の事実であったが、設備面、積設備コスト、操作性等から利用される状態に至っていない状況である。
しかし、一方、昨今の水不足や河川・湖沼・地下水の汚染は、淡水の保全対策が切迫した重大局面にあることを示している。一方、地球温暖化防止のための省エネルギー対策も待ったなしの状況にある。廃液の排水処理法についても従来の単純な燃焼処理ではエネルギーと水資源の浪費および大気汚染を引き起こすため、早急な対策が望まれている状況である。
【0010】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑みなされたもので、省水・省エネルギ改善を図るべく最終濃縮・減容を可能にした溶液の溶媒分離濃縮方法とその装置の提供を目的とするものである。
【0011】
【課題を解決するための手段】
課題を解決するための手段として考えられた本発明の特徴は、凍結濃縮装置の後に蒸気再圧縮濃縮装置を配設したところにある。重要なことはこの配設順序であり、蒸気再圧縮濃縮装置の後に凍結濃縮装置を配置した構成では期待される効果が得られない。即ち、廃液濃度のより低い低濃度水溶液で凍結濃縮を行い、凍結濃縮により高濃度となった濃縮水溶液に蒸気再圧縮濃縮を行うようにしたものである。
【0012】
そこで、本発明の溶液の溶媒分離濃縮方法は、
産業廃液等の溶液の溶媒分離濃縮方法において、
前記産業廃液等の低濃度水溶液より水分を凍結濃縮させる凍結濃縮による1段目の溶媒濃縮を行い、該凍結濃縮により得られた高濃度水溶液より水分を加熱により蒸気化して分離させる、蒸気再圧縮濃縮による2段目の濃縮を行い、最終濃縮・減容を行なうとともに、上記凍結濃縮により得られた凍結氷は蓄氷器を介して負荷との熱交換による冷熱利用を図り、前記蒸気再圧縮濃縮により得られた蒸気熱を高濃度水溶液の加熱源として利用したことを特徴とする。
【0013】
上記請求項1記載の発明は、産業廃液等の溶液の溶媒分離濃縮方法において、濃縮処理により出来るだけ排水等の溶液に含まれている水分を除去するため、水分を多量に含んだ低濃度水溶液を凍結濃縮により1段目の濃縮を行い、ついで前記濃縮により高濃度になった濃縮水溶液については蒸気再圧縮濃縮により2段目の濃縮を行い、最終濃縮液までの濃縮をして出来るだけの減容を図ったものである。
そして、凍結濃縮において、凍結分離により得られた凍結氷を貯留する氷蓄器を介しての凍結氷の潜熱や顕熱による冷熱利用と、後記するように凍結氷を凍結分離前にその表面を清浄水により洗浄した後解氷した解氷水は工業用水や中水として利用を可能とし、
また、蒸気再圧縮濃縮において得られた凝縮水は後記するように吸着により有害成分を除去し、工業用水や中水としての有効利用を可能にしている。
【0014】
また、請求項1記載の凍結濃縮において、凍結分離の直前の氷表面を解氷水で洗浄することにより解氷水純度の向上を可能としたことを特徴とする。
【0015】
上記請求項2記載の発明は、凍結濃縮の製氷室における製氷熱交換器の伝熱面表面への結氷後の脱氷において、その直前に氷結面を洗浄する洗浄工程を設けることにより、脱氷した氷面を洗浄して解氷水の清浄化を図るようにしたものである。
上記清浄化を図ることにより、凍結氷からはその表面から有害成分が除去され、除去され清浄化された凍結氷からは前記したように工業用水や中水としての有効利用を図ることができる。
【0016】
また、請求項1記載の蒸気再圧縮濃縮において、凝縮液は1段目の濃縮により得られた高濃度水溶液との間の熱交換により降温して、吸着剤を介して臭気及び特定成分の効率的除去を可能としたことを特徴とする。
【0017】
上記請求項3記載の発明は、蒸気再圧縮濃縮における凝縮液には有害な特定成分や臭気を含んでいるため、1段目濃縮が終了した低温の高濃度水溶液との間で熱交換により凝縮液の液温を低下させて吸着剤による吸着可能の状態にして、特定成分と臭気の除去を行なわせ、該除去により工業用水や中水としての利用を可能にしている。
【0018】
上記請求項1、請求項2、請求項3記載の発明を使用した溶液の溶媒分離濃縮装置は、
産業廃水の排水処理装置において、
低濃度水溶液を貯留し1段目濃縮により高濃度水溶液が得られるまで濃縮液を循環させる循環水槽と、該循環水槽より低濃度水溶液の供給を受け凍結濃縮する製氷室と、該製氷室に凍結用冷熱及び脱氷用温熱を供給する冷凍機と、凍結氷を分離した凍結氷を貯留して外部へ冷熱及び解氷水を供給する蓄氷器とを主構成要素とする凍結濃縮装置と、
前記循環水槽に貯留された1段目の濃縮済の高濃度水溶液を加熱して蒸発させる凝縮器と、該凝縮器より蒸発した蒸気を圧縮する蒸気圧縮機と、圧縮蒸気を凝縮するとともに凝縮器の加熱をする加熱器と、凝縮水より臭気や特定成分を吸着する吸着器と、を主構成要素とする蒸気再圧縮濃縮装置より構成したことを特徴とする。
【0019】
濃縮を進めて循環水槽内の水溶液濃度が所定濃度になったときは、水溶液の循環と冷熱の供給を停止させ凍結を終了させる。この場合、製氷中の氷表面は常時原廃液の散布水が触れているため相当汚れているが、氷内部の純度は相当高い。解氷水の純度を向上させるためには前記凍結終了時、脱氷直前の結氷面に清浄な解氷水を散布して、氷表面を洗浄し洗浄水は循環水槽に還流させる。しかる後に冷凍機の運転を脱氷運転に切り替えて凍結分離を行い蓄氷器への通路を開き、凍結分離した凍結氷は前記通路を介して蓄氷器へ流入するようにしてある。
斯くして、蓄氷槽における解氷水純度は向上し理想的な清浄氷が得られることになる。
【0020】
蒸気再圧縮濃縮装置で得られる凝縮液中には水に比べて、より沸点の低い有害な媒質が含有されている可能性があり、場合によっては臭気成分を含んでいることがある。このため、凝縮液より凝縮水を取り出す直前に吸着材中を通過させることにより、前記有害成分を除去するようにしてある。従来の方法では凝縮水はそのまま外部に放出されていた。一般に凝縮水の溶液温度の低いほど吸着材の吸着効果は大きくなるので、吸着効果と省エネルギーの観点から、熱交換器を介して蒸気再圧縮濃縮装置への凍結濃縮装置よりの高濃度水溶液を昇温させるとともに、取り出される吸着処理前の凝縮液の温度を低下させることが望ましい。
【0021】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、材質、形状、その相対位置などは特に特定的な記載が無い限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
図1は本発明の溶液の溶媒分離濃縮装置の概略の構成を示す図である。
【0022】
図1に見るように、本発明の溶液の溶媒分離濃縮装置は凍結濃縮装置10と蒸気再圧縮濃縮装置20とよりなり、凍結濃縮装置に原廃液10aを流入させ1段目の濃縮を行い、ついで蒸気再圧縮濃縮装置20で2段目の濃縮を行い凝縮水26を取り出すようにしたものである。
【0023】
上記凍結濃縮装置10は、循環水槽11と、製氷機12と、冷凍機13と、蓄氷器14とより構成する。
上記循環水槽11に貯留された原廃液10aを含む低濃度水溶液は、内蔵する散水ノズル12cを介して製氷機12を経由して循環させ、該製氷機12に内蔵する製氷熱交換器13aで冷凍機13より冷ブライン/温ブラインの供給を受けて凍結濃縮を行なわせ、凍結氷は蓄氷器14に貯留し、濃縮水は循環水槽11に還流する構成にしてある。
【0024】
上記製氷機12は、上底に散水ノズル12cを備えその下に平板状の製氷熱交換器13aを内蔵し、下底に傾斜状金網12dを設けた製氷室12aと、前記傾斜金網12dを上底に持つ一時貯留槽12fとより構成し、
前記製氷熱交換器13aには別途設けた冷凍機13より製氷時には冷ブラインを供給させ、解氷時には温ブラインを供給させるとともに蓄氷器14より解氷水を供給させる構成にしてある。
そして、製氷室12aの下部には氷取出し開閉扉12eを設け、結氷面の洗浄終了後の脱氷時には前記傾斜状金網12dに落下した凍結氷を前記開閉扉12eを介して蓄氷器14に流入蓄氷させるようにしてある。
なお、上記散水ノズル12cは、製氷時には前記循環水槽11より低濃度水溶液を前記製氷熱交換器13aの伝熱面に散布して薄板状の氷を形成させ、解氷時には蓄氷器14より解氷水を凍結面に散布して結氷面の洗浄と液脱を行なうようにしてある。なお、洗浄時は洗浄水が蓄氷器14に流入しないように前記氷取出し開閉扉12eは閉鎖状態に置く構成とする。
【0025】
上記構成により、原廃液10aは循環水槽11よりの低温の高濃度水溶液20aの冷熱の供給を受けた原水冷却器11aにより冷却され循環水槽11に流入貯留される。貯留された原廃液の低濃度水溶液はポンプP1、弁V3を経由後、製氷室12a内の散水ノズル12cを介して製氷熱交換器13aの平板状伝熱面に散布する。散布された原廃液は冷凍機13より供給された冷ブラインにより前記伝熱面上に薄板状凍結氷を作る。一定の氷厚になるまで散布を続け濃縮水は下部の傾斜状金網12dを経由一時貯留槽12fに貯留された後循環水槽11へ貫流する。
【0026】
上記薄板状凍結氷が一定厚さに到達すると、前記弁V3の閉鎖、ポンプP1の運転停止により原廃液の循環を停止させるとともに、冷凍機13の運転を脱氷運転に切り替え冷ブラインの供給を断ち凍結を終了させるとともに、弁V4を解放し蓄氷器14より解氷水を導入して前記散水ノズル12cより結氷面に散布して表面を洗浄して付着した汚泥を除去し、除去終了とともに温ブラインを供給させ製氷熱交換器13aの伝熱面より凍結氷の凍結分離を起こさせる。
凍結分離を起こした凍結氷は、前記伝熱面より落下し下部の傾斜状金網12dに補足される。補足された凍結氷が一定量に達すると開閉扉12eを開き該開閉扉を経由して蓄氷器14に流入蓄氷させる。
【0027】
上記凍結氷を蓄氷する蓄氷器14においては、凍結氷の潜熱を解氷熱交換器15を介して外部へ供給する冷却器15aが設けられている。また、前記蓄氷器14の顕熱は、冷却器15bを介して冷却器15a同様外部へ冷熱を供給する。
これによって冷却器15a、15bは空調用の他、一般のプロセス用としても利用可能である。なお、解氷水16は前記したように冷却器15bを経由して顕熱を外部供給したのち清浄液として排出され、工業用水や中水として利用可能にしてある。
【0028】
上記蒸気再圧縮濃縮装置20は、凝縮器21と蒸気圧縮機22と加熱器23と凝縮液24のタンクと吸着器25とを含む構成とする。
即ち、前記循環水槽11内でより高濃度となった低温の高濃度水溶液20aは原廃液10aを冷却する原水冷却器11aおよび凝縮液を冷却する凝縮水冷却器24aを通過後に蒸気再圧縮濃縮装置における凝縮器21に送られる。送り込まれた高濃度水溶液20aは凝縮器21内部の加熱器23により加熱され蒸発する。蒸発させられた蒸気は蒸気圧縮機22に送られる。蒸気圧縮機22で加圧昇温された蒸気は前記加熱器23内に送られる。加熱器23により高濃度水溶液20aは蒸発し、自身は内部で凝縮していく。凝縮液24のタンクに貯留された比較的高温の凝縮液はポンプP9により、凝縮水冷却器24aに送られ冷却された後、吸着器25を通過 中に臭気および有害成分を効率的に吸着除去された後、工業用 水や中水として有効利用されるようにしてある。
【0029】
本実施例は特許請求の範囲に示される構成と特徴を有するものであり、製氷機における製氷構造、凝縮器における濃縮構造等装置構造を規定するものではなく、例示に過ぎない。
また、本発明は産業廃液の廃水処理に限らず一般的の溶液の溶媒分離濃縮にも有効である。
【0030】
【発明の効果】
本発明の第一の効果は、凍結濃縮装置と蒸気再圧縮濃縮装置を直列に配置し、凍結濃縮された廃液をさらに蒸気再圧縮濃縮装置で濃縮することにより、従来方式より格段の濃度に濃縮された廃液を燃焼による最終処理に回すことができる。これにより、従来方式に比べて格段の省エネルギーが可能となる。単純加熱濃縮方式に比べて、凍結濃縮工程および蒸気再圧縮濃縮工程からなる本方式は同量の水分を除去するため必要なエネルギーを概略1/4程度に低減することができる。
【0031】
本発明の第二の効果は冷熱利用である。凍結濃縮装置で分離された凍結氷の潜熱及び顕熱を空調・冷却などの冷熱源として利用可能である。従来の単純燃焼方式では燃焼熱は全て無駄に大気中に放出されていたが、冷凍濃縮方式では冷凍工程への投入エネルギーの4倍(冷凍機の成績係数の値は4以上となる)以上の冷熱が得られることは非常に大きな特徴である。
【0032】
本発明の第三の効果は省水効果である。冷凍工程で得られた解氷水の純度は相当高いため、中水、洗浄水、工業用水として十分利用可能であり、上水使用量の減少が可能となり、これによる環境破壊の心配もない。さらに、蒸気再圧縮濃縮装置で得られる凝縮水も純度が高く、解氷水同様に再利用できる。排水から分離された水が全て利用できるという省水効果は従来方式に比べて大きな特徴である。4倍濃縮の場合、原廃液容積の75%相当の上水が利用可能となり、省水効果は抜群である。
【0033】
本発明の第四の効果は環境保全への寄与である。省エネルギーによる大気汚染および二酸化炭素の低減効果および分離水の利用による淡水保全効果は、今後の環境保全に重要な貢献が期待できる。
【0034】
本発明の第五の効果は原廃液発生事業所において顕著なものとなる。従来原廃液を発生する事業所では発生原液をそのまま中間処理業者の事業所に運び込んでいたが、本発明の装置を原廃液発生事業所内に設置することにより、事業所から排出される原液発生量および処理費用を激減させることが可能となり、省水・省エネルギー・環境保全の観点からも優れた企業活動が可能となる。
【図面の簡単な説明】
【図1】 本発明の溶液の溶媒分離濃縮装置一例を示す概略構成図である。
【図2】 微生物分解による排水処理方法を示す図である。
【図3】 廃液の直接燃焼処理方法を示す図である。
【図4】 廃液の真空濃縮燃焼処理方法を示す図である。
【図5】 凍結濃縮方法の一例を示すジュースの濃縮工程を示す図である。
【図6】 蒸気再圧縮濃縮方法の一例を示す麦汁煮沸釜における濃縮工程を示す図である。
【符号の説明】
10 凍結濃縮装置
11 循環水槽
12 製氷機
12a 製氷室
13 冷凍機
13a 製氷熱交換器
14 蓄氷器
15 解氷熱交換器
16 解氷水
20 蒸気再圧縮濃縮装置
21 凝縮器
22 蒸気圧縮機
23 加熱器
24 凝縮液
25 吸着器
26 凝縮水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to separation and concentration of an aqueous solution, and more particularly, to a solvent separation and concentration method and apparatus for a solution that enables final concentration and volume reduction in order to improve water and energy saving in a wastewater treatment process of industrial waste liquid.
[0002]
[Prior art]
Conventionally, as a wastewater treatment method for industrial waste liquid, the microbial treatment of FIG. 2 is used as a main treatment method for waste liquid with a high organic content, and the incineration treatment of FIG. 3 is used for waste liquid with a high inorganic content. Further, for example, the method shown in FIG. 4 has been used for the concentration of the waste liquid, particularly the concentration of the waste water.
[0003]
FIG. 2 shows a wastewater treatment method by microbial decomposition of organic waste liquid. The stock solution 50 is stored in the microbial decomposition tank 51, and if the stored supernatant solution is confirmed to have a component concentration equal to or lower than an allowable value, it is discharged to the outside and the external drainage 53 is performed. The remaining sludge deposit 52 is subjected to a combustion process of combustion 54 or is effectively used 55 as fertilizer, waste solid fuel (RDF) or the like.
[0004]
FIG. 3 shows a direct combustion treatment method of waste liquid in which the raw waste liquid 56 is combusted in the direct combustion furnace 57. As a matter of course, since it contains a large amount of water, a large amount of fuel is required. The water becomes water vapor and is released into the atmosphere as combustion gas 58, and the remaining solid material 59 becomes ash and is finally disposed of.
[0005]
In the method shown in FIG. 4, in order to reduce the fuel of the direct combustion treatment method, the waste liquid concentration is raised to some extent by heating the raw waste liquid to the atmosphere with a vacuum pump or the like while heating the raw waste liquid. This is a vacuum concentration combustion treatment method for burning.
That is, the raw waste liquid 60 is discharged into the atmosphere by evaporating moisture generated by heating in the concentration tank 61 by the vacuum pump 62, and the high-concentration waste liquid is incinerated in the incinerator 63 to discharge solid matter (ash) 64 and combustion gas. 65 atmospheric release is possible.
In the above case, when the concentration treatment plant and the combustion treatment plant are separated from each other, the transportation cost is reduced to some extent by the concentration and volume reduction.
[0006]
The wastewater treatment methods for industrial waste liquids shown in FIGS. 3 and 4 are energy savings such as a large amount of fuel consumption, generation of exhaust gas and carbon dioxide, generation of transportation costs (mainly fuel costs), and release of treated wastewater. It has caused undesirable results from a water and environmental perspective.
[0007]
Incidentally, in addition to the concentration method shown in FIG. 4, there are a freeze concentration method and a vapor recompression concentration method used in the food industry.
FIG. 5 shows a freeze-concentration method conventionally used for concentrating juice. The water in the stock solution 66 is freeze-removed by a freeze concentration device 67 so that the concentrated residual liquid is used as the concentrated juice 68, and the freeze-removed water is treated as the drainage 69.
In this case, since quality change due to evaporation by heating can be avoided, it has been used in the field of coffee, beer and the like as a concentration method with little fragrance dissipation and almost no component change and no heating.
In the case of freeze concentration, there is a problem that as the concentration progresses, the freezing temperature decreases and the solution viscosity also increases, making it difficult to separate the concentrate from the ice crystals and to recover the concentrate attached to the ice crystals.
[0008]
FIG. 6 shows a vapor recompression concentration method using a wort boiling pot of beer. This is an improvement of the conventional method of boiling and concentrating wort in which water vapor containing odors generated from wort by direct heating in a conventional boiling pot is released into the atmosphere. The wort boiling pot 70 functions as a concentrating kettle. The steam generated is compressed and heated through the steam compressor 71, and the heated high-pressure and high-temperature steam is reused as the heating steam for the wort boiling pot 70 through the heater 74. The amount of input energy is greatly reduced compared to the kettle.
The steam supplied to the heater 74 is gradually condensed inside, and the whole amount of the supplied steam is condensed and discharged to the outside as drainage 73. The vapor recompression concentration method is said to reduce the energy required for heating to about 1/4 compared with the conventional method, and further has the advantage that the problem of environmental pollution due to the odor of the conventional method is eliminated.
[0009]
The concentration methods shown in FIGS. 5 and 6 are well known to be applicable to the concentration of waste liquid, but have not yet been used due to facilities, equipment costs, operability, etc. It is.
However, recent water shortages and river, lake, and groundwater contamination indicate that freshwater conservation measures are in a critical phase. On the other hand, there is no waiting for energy-saving measures to prevent global warming. With regard to the wastewater drainage treatment method, the conventional simple combustion treatment causes waste of energy and water resources and air pollution, so that immediate measures are desired.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a solvent separation and concentration method for a solution and an apparatus thereof that enable final concentration and volume reduction in order to improve water and energy savings. .
[0011]
[Means for Solving the Problems]
The feature of the present invention considered as a means for solving the problem is that a vapor recompression concentrating device is disposed after the freeze concentrating device. What is important is this arrangement order, and the expected effect cannot be obtained in the configuration in which the freeze concentration apparatus is arranged after the vapor recompression concentration apparatus. That is, freeze concentration is performed with a low-concentration aqueous solution having a lower waste liquid concentration, and vapor recompression concentration is performed on the concentrated aqueous solution having a high concentration by freeze concentration.
[0012]
Therefore, the solvent separation and concentration method of the solution of the present invention includes:
In the solvent separation and concentration method for solutions such as industrial waste liquid,
Steam recompression, in which the first stage of solvent concentration is performed by freeze concentration in which water is freeze-concentrated from a low-concentration aqueous solution such as industrial waste liquid, and the water is vaporized and separated from the high-concentration aqueous solution obtained by the freeze-concentration by heating. Concentrate in the second stage by concentration, and perform final concentration and volume reduction. The frozen ice obtained by freeze-concentration is used for cold heat by heat exchange with a load via an ice accumulator, and the steam recompression The steam heat obtained by the concentration is used as a heating source for the high-concentration aqueous solution.
[0013]
The invention described in claim 1 is a low concentration aqueous solution containing a large amount of water in order to remove water contained in a solution such as wastewater as much as possible by concentration treatment in a solvent separation and concentration method for a solution such as industrial waste liquid. Concentrate the first stage by freeze concentration, and then concentrate the concentrated aqueous solution that has become high concentration by the above-mentioned concentration by vapor recompression and concentrate to the final concentrate. The volume was reduced.
In freezing and concentrating, the surface of frozen ice is frozen before freezing and separation, as described later, and the use of cold heat by the latent heat and sensible heat of frozen ice through an ice reservoir that stores frozen ice obtained by freezing separation. The de-iced water that has been thawed after washing with clean water can be used as industrial water or medium water,
Further, the condensed water obtained in the vapor recompression concentration removes harmful components by adsorption, as described later, and enables effective use as industrial water or intermediate water.
[0014]
The freeze concentration according to claim 1 is characterized in that the purity of the deicing water can be improved by washing the ice surface immediately before the freeze separation with the deicing water.
[0015]
According to the second aspect of the present invention, in the deicing after the icing to the heat transfer surface of the ice making heat exchanger in the freezing and concentrating ice making chamber, a deicing step is performed immediately before the deicing. The ice surface was washed to clean the deicing water.
By carrying out the above purification, harmful components are removed from the surface of the frozen ice, and the frozen ice that has been removed and cleaned can be effectively used as industrial water or medium water as described above.
[0016]
Further, in the vapor recompression concentration according to claim 1, the condensate is cooled by heat exchange with the high concentration aqueous solution obtained by the first stage concentration, and the efficiency of odor and specific components via the adsorbent. It is characterized in that it can be removed.
[0017]
In the third aspect of the invention, since the condensate in vapor recompression concentration contains harmful specific components and odors, it is condensed by heat exchange with a low-temperature high-concentration aqueous solution after completion of the first-stage concentration. The liquid temperature of the liquid is lowered so that it can be adsorbed by the adsorbent, and the specific components and odors are removed. By the removal, the water can be used as industrial water or middle water.
[0018]
An apparatus for separating and concentrating a solvent of a solution using the invention according to claim 1, claim 2, and claim 3,
In industrial wastewater wastewater treatment equipment,
A circulating water tank that stores a low-concentration aqueous solution and circulates the concentrated liquid until a high-concentration aqueous solution is obtained by concentration in the first stage, an ice-making chamber that receives and supplies the low-concentration aqueous solution from the circulating water tank, and freezes in the ice-making chamber A freezing and concentrating apparatus mainly comprising a refrigerator for supplying cold and deicing heat, and an ice accumulator for storing frozen ice separated from frozen ice and supplying cold and deicing water to the outside,
A condenser that heats and evaporates the first-stage concentrated high-concentration aqueous solution stored in the circulating water tank, a vapor compressor that compresses the vapor evaporated from the condenser, a condenser that condenses the compressed vapor and a condenser It is characterized by comprising a vapor recompressing and concentrating apparatus having as main components a heater that heats and an adsorber that adsorbs odors and specific components from condensed water.
[0019]
When the concentration proceeds and the concentration of the aqueous solution in the circulating water tank reaches a predetermined concentration, the circulation of the aqueous solution and the supply of cold heat are stopped and the freezing is terminated. In this case, the ice surface during ice making is considerably dirty because it is always in contact with the spray water of the raw waste liquid, but the purity inside the ice is quite high. In order to improve the purity of the deicing water, at the end of the freezing, clean deicing water is sprayed on the frozen surface immediately before deicing, the ice surface is washed, and the washing water is returned to the circulating water tank. After that, the operation of the refrigerator is switched to the deicing operation, freezing and separation are performed to open a passage to the ice accumulator, and the frozen ice separated by freezing flows into the ice accumulator through the passage.
Thus, the deicing water purity in the ice storage tank is improved and ideal clean ice can be obtained.
[0020]
The condensate obtained by the vapor recompressing and concentrating apparatus may contain a harmful medium having a lower boiling point than water, and may contain an odor component in some cases. For this reason, the harmful components are removed by passing through the adsorbent immediately before extracting condensed water from the condensate. In the conventional method, the condensed water is discharged to the outside as it is. In general, the lower the condensed water solution temperature, the greater the adsorption effect of the adsorbent. From the viewpoint of adsorption effect and energy saving, the high-concentration aqueous solution from the freeze concentrator to the vapor recompression concentrator is lifted through a heat exchanger. It is desirable to lower the temperature of the condensate before the adsorption treatment to be taken out while heating.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative positions, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention unless otherwise specified. Absent.
FIG. 1 is a diagram showing a schematic configuration of a solvent separation and concentration apparatus for a solution of the present invention.
[0022]
As shown in FIG. 1, the solvent separation and concentration apparatus for a solution of the present invention includes a freeze concentration apparatus 10 and a vapor recompression concentration apparatus 20. The raw waste liquid 10 a is allowed to flow into the freeze concentration apparatus to perform first-stage concentration, Subsequently, the condensed water 26 is taken out by concentrating the second stage with the vapor recompression concentrator 20.
[0023]
The freeze concentration apparatus 10 includes a circulating water tank 11, an ice making machine 12, a refrigerator 13, and an ice accumulator 14.
The low-concentration aqueous solution containing the raw waste liquid 10a stored in the circulating water tank 11 is circulated through the ice making machine 12 through the built-in watering nozzle 12c and is frozen in the ice making heat exchanger 13a built in the ice making machine 12. The apparatus is supplied with cold brine / warm brine from the machine 13 for freeze concentration, the frozen ice is stored in the ice accumulator 14, and the concentrated water is returned to the circulating water tank 11.
[0024]
The ice making machine 12 has a sprinkling nozzle 12c on the upper bottom, a flat ice making heat exchanger 13a in the bottom, and an ice making chamber 12a having an inclined wire mesh 12d on the lower bottom, and the inclined wire mesh 12d on the upper side. Consists of a temporary storage tank 12f at the bottom,
The ice making heat exchanger 13a is configured such that cold brine is supplied from a separately provided refrigerator 13 during ice making, warm brine is supplied during ice melting, and ice melting water is supplied from the ice accumulator 14.
An ice take-off opening / closing door 12e is provided at the lower part of the ice making chamber 12a, and frozen ice that has fallen on the inclined wire mesh 12d is transferred to the ice accumulator 14 through the opening / closing door 12e when the ice is removed after the icing surface is cleaned. Inflow ice is stored.
The water spray nozzle 12c sprays a low-concentration aqueous solution from the circulating water tank 11 on the heat transfer surface of the ice making heat exchanger 13a during ice making to form a thin plate-like ice. Ice water is sprayed on the freezing surface to clean and drain the frozen surface. The ice take-off door 12e is placed in a closed state so that the washing water does not flow into the ice accumulator 14 during washing.
[0025]
With the above configuration, the raw waste liquid 10 a is cooled by the raw water cooler 11 a that has received the cold supply of the low-temperature high-concentration aqueous solution 20 a from the circulating water tank 11, and is stored in the circulating water tank 11. The stored low-concentration aqueous solution of the raw waste liquid passes through the pump P1 and the valve V3, and is then spread on the flat heat transfer surface of the ice making heat exchanger 13a through the watering nozzle 12c in the ice making chamber 12a. The sprayed raw waste liquid is made into thin plate-like frozen ice on the heat transfer surface by cold brine supplied from the refrigerator 13. The concentrated water is continuously sprayed until a certain ice thickness is reached, and is stored in the temporary storage tank 12f via the lower inclined wire mesh 12d and then flows into the circulating water tank 11.
[0026]
When the thin plate-shaped frozen ice reaches a certain thickness, the circulation of the raw waste liquid is stopped by closing the valve V3 and stopping the operation of the pump P1, and the operation of the refrigerator 13 is switched to the deicing operation to supply cold brine. In addition to terminating the freezing, the valve V4 is opened, the deicing water is introduced from the ice accumulator 14, and sprayed on the icing surface from the watering nozzle 12c to remove the adhered sludge. Brine is supplied and the frozen ice is frozen and separated from the heat transfer surface of the ice making heat exchanger 13a.
The frozen ice that has undergone freeze separation falls from the heat transfer surface and is supplemented by the lower inclined wire mesh 12d. When the supplemented frozen ice reaches a certain amount, the opening / closing door 12e is opened and the ice storage unit 14 is made to flow in and store ice through the opening / closing door.
[0027]
In the ice accumulator 14 for accumulating the frozen ice, a cooler 15 a is provided for supplying the latent heat of the frozen ice to the outside via the de-icing heat exchanger 15. Further, the sensible heat of the ice accumulator 14 is supplied to the outside through the cooler 15b as in the cooler 15a.
Thus, the coolers 15a and 15b can be used not only for air conditioning but also for general processes. In addition, as described above, the deicing water 16 is discharged as a cleaning liquid after externally supplying sensible heat via the cooler 15b, and can be used as industrial water or middle water.
[0028]
The vapor recompressing and concentrating apparatus 20 includes a condenser 21, a vapor compressor 22, a heater 23, a tank for condensate 24, and an adsorber 25.
That is, the low-temperature high-concentration aqueous solution 20a having a higher concentration in the circulating water tank 11 passes through the raw water cooler 11a that cools the raw waste liquid 10a and the condensate cooler 24a that cools the condensate, and then the vapor recompression concentrator. Is sent to the condenser 21. The fed high concentration aqueous solution 20a is heated by the heater 23 inside the condenser 21 and evaporated. The evaporated steam is sent to the steam compressor 22. The steam whose temperature is increased by the steam compressor 22 is sent into the heater 23. The high-concentration aqueous solution 20a evaporates by the heater 23 and condenses inside itself. The relatively high-temperature condensate stored in the tank of the condensate 24 is sent to the condensate cooler 24a by the pump P9, cooled, and then efficiently adsorbs and removes odors and harmful components while passing through the adsorber 25. After that, it is effectively used as industrial water and medium water.
[0029]
This embodiment has the structure and features indicated in the claims, and does not define the device structure such as the ice making structure in the ice making machine and the concentrating structure in the condenser, but is merely an example.
Further, the present invention is effective not only for wastewater treatment of industrial waste liquid but also for solvent separation and concentration of general solutions.
[0030]
【The invention's effect】
The first effect of the present invention is that the freeze concentration device and the vapor recompression concentration device are arranged in series, and the freeze-concentrated waste liquid is further concentrated by the vapor recompression concentration device, thereby concentrating to a much higher concentration than the conventional method. The waste liquid can be sent to the final treatment by combustion. As a result, it is possible to save much energy compared to the conventional method. Compared with the simple heat concentration method, this method comprising the freeze concentration step and the vapor recompression concentration step can reduce the energy required for removing the same amount of water to about 1/4.
[0031]
The second effect of the present invention is the utilization of cold energy. The latent heat and sensible heat of the frozen ice separated by the freeze concentrator can be used as a cooling source for air conditioning and cooling. In the conventional simple combustion method, all of the heat of combustion was wasted into the atmosphere, but in the refrigeration concentration method, the energy input to the refrigeration process is four times the value (the performance coefficient value of the refrigerator is 4 or more). Obtaining cold heat is a very important feature.
[0032]
The third effect of the present invention is a water saving effect. Since the purity of the deicing water obtained in the freezing process is considerably high, it can be sufficiently used as middle water, washing water, and industrial water, and the amount of clean water used can be reduced. Furthermore, the condensed water obtained by the vapor recompression concentrator has high purity and can be reused like the deiced water. The water-saving effect that all the water separated from the wastewater can be used is a significant feature compared to the conventional method. In the case of 4-fold concentration, clean water equivalent to 75% of the volume of the raw waste liquid can be used, and the water saving effect is outstanding.
[0033]
The fourth effect of the present invention is contribution to environmental conservation. Air pollution and carbon dioxide reduction effects due to energy conservation and freshwater conservation effects due to the use of separated water can be expected to make an important contribution to future environmental conservation.
[0034]
The fifth effect of the present invention becomes remarkable in the raw waste liquid generating establishment. Conventionally, business sites that generate raw effluents have transported the raw material solution as it is to an intermediate processing company's business site. In addition, processing costs can be drastically reduced, and excellent corporate activities are possible from the viewpoints of water conservation, energy conservation, and environmental conservation.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a solvent separation and concentration apparatus for a solution of the present invention.
FIG. 2 is a diagram showing a wastewater treatment method by microbial decomposition.
FIG. 3 is a diagram showing a direct combustion treatment method for waste liquid.
FIG. 4 is a view showing a vacuum concentrated combustion treatment method for waste liquid.
FIG. 5 is a diagram showing a juice concentration step showing an example of a freeze concentration method.
FIG. 6 is a diagram showing a concentration step in a wort boiling pot showing an example of a vapor recompression concentration method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Freezing concentration apparatus 11 Circulating water tank 12 Ice making machine 12a Ice making room 13 Freezing machine 13a Ice making heat exchanger 14 Ice storage 15 Ice-free heat exchanger 16 Ice-free water 20 Steam recompression concentration apparatus 21 Condenser 22 Steam compressor 23 Heater 24 Condensate 25 Adsorber 26 Condensed water

Claims (4)

産業廃液等の溶液の溶媒分離濃縮方法において、
前記産業廃液等の低濃度水溶液より水分を凍結濃縮させる凍結濃縮による1段目の溶媒濃縮を行い、該凍結濃縮により得られた高濃度水溶液より水分を加熱により蒸気化して分離させる、蒸気再圧縮濃縮による2段目の濃縮を行い、最終濃縮・減容を行なうとともに、上記凍結濃縮により得られた凍結氷は蓄氷器を介して負荷との熱交換による冷熱利用を図り、前記蒸気再圧縮濃縮により得られた蒸気熱を高濃度水溶液の加熱源として利用したことを特徴とする溶液の溶媒分離濃縮方法。
In the solvent separation and concentration method for solutions such as industrial waste liquid,
Steam recompression, in which the first stage of solvent concentration is performed by freeze concentration in which water is frozen and concentrated from a low-concentration aqueous solution such as industrial waste liquid, and then the water is vaporized and separated from the high-concentration aqueous solution obtained by the freeze-concentration by heating. Concentrate the second stage by concentration, perform final concentration / volume reduction, and freeze ice obtained by freeze concentration is used for cold heat by heat exchange with a load via an ice accumulator. A solvent separation and concentration method for a solution, characterized in that steam heat obtained by concentration is used as a heating source for a high-concentration aqueous solution.
前記凍結濃縮において、凍結分離の直前の氷表面を解氷水で洗浄することにより解氷水純度の向上を可能としたことを特徴とする請求項1記載の溶液の溶媒分離濃縮方法。2. The solvent separation and concentration method for a solution according to claim 1, wherein in the freeze concentration, the purity of the deicing water can be improved by washing the ice surface immediately before the freeze separation with deicing water. 前記蒸気再圧縮濃縮において、凝縮液は1段目の濃縮により得られた高濃度水溶液との間の熱交換により降温した後、吸着剤を介して臭気及び特定成分の除去を可能としたことを特徴とする請求項1記載の溶液の溶媒分離濃縮方法。In the vapor recompression concentration, the condensate is allowed to remove odors and specific components through an adsorbent after the temperature is lowered by heat exchange with the high-concentration aqueous solution obtained by the first-stage concentration. The solvent separation and concentration method for a solution according to claim 1, wherein 低濃度水溶液を貯留し1段目濃縮により高濃度水溶液が得られるまで濃縮液を循環させる循環水槽と、該循環水槽より低濃度水溶液の供給を受け凍結濃縮する製氷室と、該製氷室に凍結用冷熱及び脱氷用温熱を供給する冷凍機と、凍結氷を分離した凍結氷の氷水を貯留して外部へ冷熱及び解氷水を供給する蓄氷器とを含む凍結濃縮装置と、
前記循環水槽に貯留された1段目の濃縮済の高濃度水溶液を加熱して蒸発させる凝縮器と、該凝縮器より蒸発した蒸気を圧縮する蒸気圧縮機と、圧縮蒸気を凝縮するとともに凝縮器の加熱をする加熱器と、凝縮液より臭気や特定成分を吸着する吸着器とを含む蒸気再圧縮濃縮装置より構成したことを特徴とする溶液の溶媒濃縮装置。
A circulating water tank that stores a low-concentration aqueous solution and circulates the concentrated liquid until a high-concentration aqueous solution is obtained by concentration in the first stage, an ice-making chamber that is supplied with the low-concentration aqueous solution from the circulating water tank and freeze-concentrate, and is frozen in the ice-making chamber A freezing and concentrating device including a freezer that supplies cold heat and deicing heat, and an ice accumulator that stores ice water of frozen ice separated from frozen ice and supplies cold heat and deicing water to the outside,
A condenser that heats and evaporates the first-stage concentrated high-concentration aqueous solution stored in the circulating water tank, a vapor compressor that compresses the vapor evaporated from the condenser, a condenser that condenses the compressed vapor and a condenser A solvent concentrating device for a solution, comprising: a vapor recompressing and concentrating device including a heater for heating the above and an adsorber for adsorbing an odor or a specific component from the condensate.
JP34938099A 1999-12-08 1999-12-08 Method and apparatus for solvent separation and concentration of solution Expired - Fee Related JP4121682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34938099A JP4121682B2 (en) 1999-12-08 1999-12-08 Method and apparatus for solvent separation and concentration of solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34938099A JP4121682B2 (en) 1999-12-08 1999-12-08 Method and apparatus for solvent separation and concentration of solution

Publications (2)

Publication Number Publication Date
JP2001162267A JP2001162267A (en) 2001-06-19
JP4121682B2 true JP4121682B2 (en) 2008-07-23

Family

ID=18403372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34938099A Expired - Fee Related JP4121682B2 (en) 1999-12-08 1999-12-08 Method and apparatus for solvent separation and concentration of solution

Country Status (1)

Country Link
JP (1) JP4121682B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110416A (en) * 2004-10-12 2006-04-27 Niigata Univ Multi-step freeze concentration system
CN105366866A (en) * 2015-12-11 2016-03-02 浙江华立涂装设备有限公司 Wastewater zero discharge system
JP6454660B2 (en) 2016-05-30 2019-01-16 パナソニック株式会社 Solvent separation method and solvent separation apparatus
JP7093443B1 (en) * 2021-04-16 2022-06-29 新日本空調株式会社 Freeze concentration method

Also Published As

Publication number Publication date
JP2001162267A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
AU759283B2 (en) Desalination method and desalination apparatus
CN100374377C (en) Sea water desalting method
CN104925883B (en) Concentrated salt waste water energy-saving treatment device
CN107098414B (en) Low-temperature evaporation device for treating desulfurization wastewater discharge of power plant and discharge process thereof
JP2004136273A (en) Method for solution separation by multiple heat exchange vacuum distillation, cooling and freezing, and method of desalting seawater
CN100450572C (en) Concentration method of graduate freezing interface
CN102636016B (en) System and method for recycling and using waste heat of freeze dryer
JPS58164974A (en) Heat pump
JP4121682B2 (en) Method and apparatus for solvent separation and concentration of solution
CN213012517U (en) Vacuum freezing sludge drying device
KR100942212B1 (en) Garbage treating system
KR100465885B1 (en) Graduation system for wastewater
JP4518827B2 (en) Freeze-thaw system and freeze-thaw method
JP2001104940A (en) Apparatus for concentrating wastewater
JPH07108101A (en) Liquid production and device therefor
JP2012000605A (en) Desalination apparatus
JP4909540B2 (en) Sludge treatment apparatus and sludge treatment method
KR100676910B1 (en) Foodwaste slurry dryer
JP2928835B2 (en) Open type heating tower circulating liquid concentration adjustment device
KR100841655B1 (en) Chiller heater with refining apparatus of absorption liquids
CN111747469B (en) Improved generation heat pump vacuum low temperature evaporation concentration system
KR102190333B1 (en) Non-maintenance absorption refrigerator
CN211545999U (en) Closed circulation evaporation and condensation system for treating high-salt and high-COD wastewater
JP5290605B2 (en) Water removal method
KR200401313Y1 (en) Foodwaste slurry dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees