JP4909540B2 - Sludge treatment apparatus and sludge treatment method - Google Patents

Sludge treatment apparatus and sludge treatment method Download PDF

Info

Publication number
JP4909540B2
JP4909540B2 JP2005203975A JP2005203975A JP4909540B2 JP 4909540 B2 JP4909540 B2 JP 4909540B2 JP 2005203975 A JP2005203975 A JP 2005203975A JP 2005203975 A JP2005203975 A JP 2005203975A JP 4909540 B2 JP4909540 B2 JP 4909540B2
Authority
JP
Japan
Prior art keywords
sludge
freeze
fed
thawed
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005203975A
Other languages
Japanese (ja)
Other versions
JP2007021298A (en
Inventor
和則 荒川
浩 吉田
行宏 星野
秀彦 鈴木
隆裕 吉井
福里  豊
敦子 瀬尾
伸治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Tokyo Gas Co Ltd
Tokyo Metropolitan Government
Original Assignee
Takuma KK
Tokyo Gas Co Ltd
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK, Tokyo Gas Co Ltd, Tokyo Metropolitan Government filed Critical Takuma KK
Priority to JP2005203975A priority Critical patent/JP4909540B2/en
Publication of JP2007021298A publication Critical patent/JP2007021298A/en
Application granted granted Critical
Publication of JP4909540B2 publication Critical patent/JP4909540B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は汚泥処理装置と汚泥処理方法に関し、詳しくは、アンモニア吸収冷凍機から冷熱媒体が送給される凍結融解槽を有する汚泥処理装置と汚泥処理方法に関する。   The present invention relates to a sludge treatment apparatus and a sludge treatment method, and more particularly to a sludge treatment apparatus and a sludge treatment method having a freeze-thaw tank to which a cooling medium is fed from an ammonia absorption refrigerator.

汚泥処理をする場合、汚泥は大量の水分を含んでいるため、汚泥から固液分離して水分を除去する必要がある。しかし、汚泥の性状は種々の有機質、無機質を含んでいるため、その多くがゼラチン状をしており、ろ過性が悪い。特に、冬季はろ過性が悪くなって脱水処理効率が低下する。これを改善するため、一般には、汚泥中に蒸気を注入して加温して脱水効率を高くする方法が採用されている。   In the case of sludge treatment, since the sludge contains a large amount of moisture, it is necessary to remove the moisture by solid-liquid separation from the sludge. However, since the sludge contains various organic and inorganic substances, most of them are gelatinous and have poor filterability. In particular, in winter, filterability deteriorates and the efficiency of dehydration treatment decreases. In order to improve this, generally, a method is adopted in which steam is injected into sludge and heated to increase the dehydration efficiency.

これに対して、無機系凝集剤を加えてろ過性を高める方法もあるが、薬品注入により処分汚泥が増量するという問題があり、必ずしも好ましい方法ではない。   On the other hand, there is a method of increasing the filterability by adding an inorganic flocculant, but there is a problem that the amount of disposal sludge is increased by chemical injection, which is not necessarily a preferable method.

そこで、薬品注入を行う必要がなく、固液分離効率のよい凍結融解処理法の採用が考えられている(例えば、特許文献1)。この凍結融解処理法は、処理を行うに際して、かなりの量のエネルギーを消費するため、冷凍機としては、従来の冷凍機よりも低環境負荷のアンモニア吸収冷凍機を用いることが好ましいとされ、これにより、低環境負荷な排水処理を実施することが提案されている。   In view of this, it is considered that a freeze-thaw treatment method with high solid-liquid separation efficiency is not required (for example, Patent Document 1). This freezing and thawing process consumes a considerable amount of energy when processing, so it is preferable to use an ammonia absorption refrigerator that has a lower environmental load than conventional refrigerators. Therefore, it has been proposed to implement wastewater treatment with a low environmental load.

更に、凍結融解処理の回数を低減して省エネルギーを達成するため、プレコート脱水処理法を採用することが提案されている(例えば、特許文献2)。   Furthermore, in order to achieve energy saving by reducing the number of freeze-thaw treatments, it has been proposed to employ a precoat dehydration method (for example, Patent Document 2).

特開2001−252700号公報JP 2001-252700 A 特開2003−340217号公報JP 2003-340217 A

しかしながら、上記従来技術を用いた場合、特に冬季においては汚泥のろ過性の低下を改善すべく、汚泥を加温するため必要な蒸気を確保するのに、余分な燃料を必要とし、処理コストの上昇をもたらしていた。   However, in the case of using the above-described conventional technology, particularly in winter, in order to improve the sludge filterability, extra fuel is required to secure the steam necessary for heating the sludge, and the processing cost is reduced. Was causing a rise.

そこで、上記従来技術の有する問題点に鑑みて、本発明の目的は、冬季において汚泥のろ過性が悪くなった場合であっても、殊更余分な燃料を必要とせず、処理コストの上昇を防止可能な汚泥処理装置と汚泥処理方法を提供することにある。   Accordingly, in view of the above-mentioned problems of the prior art, the object of the present invention is to prevent an increase in processing costs without requiring extra fuel even if the sludge filterability deteriorates in winter. An object is to provide a possible sludge treatment apparatus and a sludge treatment method.

上記課題は、各請求項記載の発明により達成される。すなわち、本発明に係る汚泥処理装置の特徴構成は、アンモニア吸収冷凍機から冷熱媒体が送給される凍結融解槽と、前記アンモニア吸収冷凍機の排熱を利用可能かつ汚泥を供給可能な加温装置と、この加温装置にて加温された汚泥を脱水処理する脱水処理装置とを有することにある。   The above-mentioned subject is achieved by the invention described in each claim. That is, the sludge treatment apparatus according to the present invention has a characteristic configuration in which a freezing and thawing tank to which a cooling medium is fed from an ammonia absorption refrigerator, and heating that can use the waste heat of the ammonia absorption refrigerator and supply sludge. It is in having an apparatus and the dehydration processing apparatus which dehydrates the sludge heated by this heating apparatus.

この構成によれば、凍結融解槽に冷熱媒体を送給するアンモニア吸収冷凍機から発生する排熱を加温装置に送給された汚泥の加温に利用できるので、殊更余分な燃料を用いて汚泥を加温する必要がなく、従って、処理コストの上昇を抑えることができ、それでいて、冬季において汚泥のろ過性が悪くなった場合であっても効率よく脱水処理できる。   According to this configuration, the exhaust heat generated from the ammonia absorption refrigerator that feeds the cold medium to the freezing and thawing tank can be used for heating the sludge fed to the heating device. There is no need to heat the sludge, and therefore, the increase in treatment cost can be suppressed, and even if the sludge filterability deteriorates in winter, it can be efficiently dehydrated.

その結果、冬季において汚泥のろ過性が悪くなった場合であっても、殊更余分な燃料を必要とせず、処理コストの上昇を防止可能な汚泥処理装置を提供することができた。   As a result, it was possible to provide a sludge treatment apparatus capable of preventing an increase in treatment costs without requiring extra fuel even when the sludge filterability deteriorates in winter.

前記凍結融解槽にて凍結融解処理された汚泥と、前記加温装置にて加温された汚泥とが、混合されて脱水処理装置に送給されるようになっていることが好ましい。   It is preferable that the sludge that has been freeze-thawed in the freeze-thaw tank and the sludge that has been heated by the heating device are mixed and fed to the dehydration device.

この構成によれば、一層効率よく脱水処理ができ、処理コストの低減を図ることができる。   According to this configuration, the dehydration process can be performed more efficiently, and the processing cost can be reduced.

前記凍結融解槽にて凍結融解処理された汚泥と、凍結融解処理しない汚泥とが共に前記加温装置に送給されて混合され加温されるようになっていてもよい。   The sludge that has been freeze-thawed in the freeze-thaw tank and the sludge that has not been freeze-thawed are both fed to the heating device, mixed, and heated.

この構成によっても、一層効率よく脱水処理ができ、処理コストの低減を図ることができる。   Also with this configuration, the dehydration process can be performed more efficiently, and the processing cost can be reduced.

前記凍結融解槽にて凍結融解処理された汚泥と、前記加温装置にて加温された汚泥とが、混合後脱水処理装置に送給されると共に、前記凍結融解槽にて凍結融解処理しない汚泥が、前記加温装置にて加温され、脱水処理装置に送給されるようになっていてもよい。   The sludge that has been freeze-thawed in the freeze-thaw tank and the sludge that has been warmed in the warming device are fed to the dehydrator after mixing and are not freeze-thawed in the freeze-thaw tank. The sludge may be heated by the heating device and fed to the dehydration processing device.

この構成によっても、一層効率よく脱水処理ができて、処理コストの低減を図ることができる。   Also with this configuration, the dehydration process can be performed more efficiently, and the processing cost can be reduced.

前記加温装置が、前記アンモニア吸収冷凍機を構成する凝縮器から冷却塔へ送給される冷却水と、前記アンモニア吸収冷凍機から排出される蒸気ドレインとのいずれか一方または双方の送給を受けるようになっていることが好ましい。   The heating device feeds either or both of cooling water fed from a condenser constituting the ammonia absorption refrigerator to a cooling tower and a steam drain discharged from the ammonia absorption refrigerator. It is preferable to receive.

この構成によれば、アンモニア吸収冷凍機を構成する凝縮器から冷却塔へ送給される冷却水は量的に充分であるため、冬季におけるように汚泥の温度が5℃程度になっている場合でも確実に加温でき、例えば、凍結融解処理量の約5倍量程度の約5℃の汚泥を約28〜30℃程度に加温することができ、凍結融解処理した汚泥を脱水する場合には、速いろ過速度を確保することができる。更に、アンモニア吸収冷凍機から排出される蒸気ドレインを利用することにより、一層高い温度に加温することができ、より速いろ過速度を確保することができる。   According to this configuration, the amount of cooling water fed from the condenser constituting the ammonia absorption refrigerator to the cooling tower is sufficient, so that the sludge temperature is about 5 ° C. as in winter. However, it can be reliably heated, for example, when about 5 ° C sludge, which is about 5 times the amount of freezing and thawing, can be heated to about 28-30 ° C. Can ensure a fast filtration rate. Furthermore, by using the steam drain discharged from the ammonia absorption refrigerator, it is possible to warm to a higher temperature and to secure a faster filtration rate.

又、本発明に係る汚泥処理方法の特徴構成は、アンモニア吸収冷凍機から冷熱媒体を凍結融解槽に送給し、前記アンモニア吸収冷凍機の排熱を加温装置に送給して利用すると共に、この加温装置に汚泥を供給し、この加温装置にて加温された汚泥を脱水処理装置にて脱水処理することにある。   Further, the sludge treatment method according to the present invention is characterized in that the cooling medium is fed from the ammonia absorption refrigerator to the freeze-thaw tank, and the exhaust heat of the ammonia absorption refrigerator is fed to the heating device for use. The sludge is supplied to the heating device, and the sludge heated by the heating device is dehydrated by the dehydration processing device.

この構成によれば、冬季において汚泥のろ過性が悪くなった場合であっても、殊更余分な燃料を必要とせず、処理コストの上昇を防止可能な汚泥処理方法を提供することができる。   According to this configuration, it is possible to provide a sludge treatment method capable of preventing an increase in treatment costs without requiring extra fuel even when the sludge filterability is deteriorated in winter.

前記凍結融解槽にて凍結融解処理した汚泥と、前記加温装置にて加温した汚泥とを混合して脱水処理装置に送給することが好ましい。   It is preferable that the sludge frozen and thawed in the freeze-thaw tank and the sludge heated by the heating device are mixed and fed to the dehydration device.

この構成によれば、一層効率よく脱水処理ができ、処理コストの低減を図ることができる。   According to this configuration, the dehydration process can be performed more efficiently, and the processing cost can be reduced.

前記凍結融解槽にて凍結融解処理した汚泥を、凍結融解処理しない汚泥と共に前記加温装置に送給して混合し加温することであってもよい。   The sludge that has been freeze-thawed in the freeze-thaw tank may be fed to the heating device together with the sludge that has not been freeze-thawed, mixed, and heated.

この構成によっても、効率の高い脱水処理ができ、処理コストの低減を図ることができる。   Also with this configuration, highly efficient dehydration processing can be performed, and processing costs can be reduced.

前記凍結融解槽にて凍結融解処理した汚泥と、前記加温装置にて加温した汚泥とを混合して脱水処理装置に送給すると共に、前記凍結融解槽にて凍結融解処理しない汚泥を、前記加温装置にて加温して脱水処理装置に送給することであってもよい。   The sludge that has been freeze-thawed in the freeze-thaw tank and the sludge that has been heated in the heating device are mixed and fed to the dehydration apparatus, and sludge that is not freeze-thawed in the freeze-thaw tank, It may be heated by the heating device and fed to the dehydration processing device.

この構成によっても、効率の高い脱水処理ができ、処理コストの低減を図ることができる。   Also with this configuration, highly efficient dehydration processing can be performed, and processing costs can be reduced.

前記アンモニア吸収冷凍機を構成する凝縮器から冷却塔へ送給される冷却水と、前記アンモニア吸収冷凍機から排出される蒸気ドレインとのいずれか一方または両方を、前記加温装置に送給することが好ましい。   Either one or both of the cooling water supplied from the condenser constituting the ammonia absorption refrigerator to the cooling tower and the steam drain discharged from the ammonia absorption refrigerator are supplied to the heating device. It is preferable.

冬季におけるように汚泥の温度が5℃程度になっている場合でも、確実に加温できて脱水速度を早くすることができる。   Even when the temperature of the sludge is about 5 ° C. as in the winter, it can be surely heated and the dehydration rate can be increased.

本発明の実施形態を、図面を参照して詳細に説明する。   Embodiments of the present invention will be described in detail with reference to the drawings.

<第1実施形態>
図1は、第1実施形態に係る凍結融解処理方法に用いる装置の概略要部構成を示し、図2は凍結融解装置の概略全体構成を示す。まず、脱水処理の対象となる汚泥1は汚泥貯留槽2に一旦貯留・沈殿され、ここで重力沈殿させ、濃縮される。この沈殿汚泥を、更に濃縮槽(図示略)に送給して濃縮を促進させてもよい。濃縮された汚泥は、冷熱媒体の送給を受ける凍結融解槽3に送られ、凍結と融解が繰り返されて、固液分離され脱水されることになるが、その際、後述するように、三方弁4の切り替えにより、濃縮汚泥の一部を加温装置7に送給させることにより加温して、凍結融解処理した汚泥と混合するようになっている。もとより、汚泥の性状によっては、汚泥貯留槽2を経由することなく、凍結融解槽3あるいは加温装置7に直接送給してもよい。
<First Embodiment>
FIG. 1 shows a schematic main configuration of an apparatus used in the freeze-thaw processing method according to the first embodiment, and FIG. 2 shows a schematic overall configuration of the freeze-thaw apparatus. First, the sludge 1 to be dehydrated is once stored and settled in the sludge storage tank 2, where it is gravity precipitated and concentrated. This precipitated sludge may be further fed to a concentration tank (not shown) to promote concentration. The concentrated sludge is sent to the freezing and thawing tank 3 that receives the supply of the cooling medium, and the freezing and thawing are repeated to separate the solid and the liquid and dehydrate. However, as described later, By switching the valve 4, a part of the concentrated sludge is heated by being fed to the heating device 7 and mixed with the sludge that has been freeze-thawed. Of course, depending on the properties of the sludge, it may be fed directly to the freeze / thaw tank 3 or the heating device 7 without going through the sludge storage tank 2.

凍結融解槽3に送給された濃縮汚泥は効果的に固液分離されるが、その場合、上澄液を排出させることにより、後工程の脱水処理装置6による脱水処理効率を高めることができる。凍結融解槽3の内部では、図2に示すアンモニア吸収冷凍機16に接続され、冷媒(約−10〜−30℃程度に冷却されている不凍液)が通流される伝熱管3aが稠密に配置されており、この伝熱管3aを通して汚泥を凍結する。凍結終了後、加温された熱媒体を伝熱管3aに通流させて融解を行い、汚泥の固液分離を行う。これら凍結融解処理は、単一の凍結融解槽を用いて逐次処理してもよいし、一対の凍結融解槽を用いて、一方の凍結融解槽で汚泥の凍結処理を行いながら、他方の凍結融解槽で凍結された汚泥を融解処理するようにしてもよい。   The concentrated sludge fed to the freezing and thawing tank 3 is effectively solid-liquid separated. In that case, the dewatering efficiency of the dewatering device 6 in the subsequent process can be increased by discharging the supernatant. . Inside the freeze / thaw tank 3, heat transfer tubes 3a connected to the ammonia absorption refrigerator 16 shown in FIG. 2 and through which a refrigerant (an antifreeze liquid cooled to about −10 to −30 ° C.) flows are densely arranged. The sludge is frozen through the heat transfer tube 3a. After the freezing, the heated heat medium is passed through the heat transfer tube 3a for melting and sludge solid-liquid separation. These freezing and thawing processes may be performed sequentially using a single freezing and thawing tank, or a pair of freezing and thawing tanks and sludge freezing treatment in one freezing and thawing tank while the other freeze and thawed. You may make it melt | dissolve the sludge frozen in the tank.

アンモニア吸収冷凍機16は、近接するガスタービン・コージェネレーションシステム等からの排ガスから得られる蒸気を利用して駆動することができ、このようにすると、省エネルギーを向上できて好ましい。   The ammonia absorption refrigerator 16 can be driven by using steam obtained from the exhaust gas from the adjacent gas turbine cogeneration system or the like, and this is preferable because energy saving can be improved.

凍結融解槽3による処理では、汚泥の固液分離性が高く、短時間(例えば、30分程度)で界面が形成され、融解が進行すると同時に界面が形成され始める。そこで、融解処理後、上澄液5と濃縮された凍結融解汚泥とに容易に分離できる。上澄液5を分離・除去することによる濃縮は、凍結融解槽3にて行ってもよいし、凍結融解処理した汚泥を一旦貯留する凍結融解汚泥貯槽(図示略)を設けて、ここで分離・除去して行ってもよい。   In the treatment by the freeze-thaw tank 3, the sludge has a high solid-liquid separation property, and an interface is formed in a short time (for example, about 30 minutes). Therefore, after the thawing process, it can be easily separated into the supernatant 5 and the concentrated frozen thawed sludge. Concentration by separating and removing the supernatant 5 may be performed in the freeze / thaw tank 3, or a freeze-thaw sludge storage tank (not shown) for temporarily storing the freeze-thawed sludge is provided and separated here. -It may be removed.

凍結融解槽3にて処理された汚泥は、上記したように、汚泥の固液分離性が高いため、次工程における加圧ろ過式の脱水処理装置6での脱水処理時のろ過速度は速くなる。従って、従来の脱水処理装置に比べて、より小型の脱水処理装置で済み、脱水処理によるエネルギー負荷も少なくて済む。   As described above, the sludge treated in the freeze-thaw tank 3 has a high solid-liquid separation property, so that the filtration rate during the dehydration process in the pressure filtration type dehydration apparatus 6 in the next step is increased. . Therefore, as compared with the conventional dehydration apparatus, a smaller dehydration apparatus is sufficient, and the energy load due to the dehydration process can be reduced.

更に、凍結融解槽3にて処理された汚泥を、脱水処理装置6のろ布の表面に圧送しプレコートする。この場合、凍結融解槽3にて処理された汚泥は、互いに凝集して粗大な粒子状になっているため、ろ布表面が目詰まりすることがない。しかも、融解処理された汚泥は、ある程度加温されているので、冬季の汚泥であっても、その粘度はそれほど低いものではない。例えば、凍結融解処理した汚泥の1/2量である2m3 を予め脱水処理装置6に送給してプレコートし、次いで、残りの2m3 と加温装置7により加温した汚泥とを脱水処理装置6に送給することにより、速いろ過速度で脱水処理することができる。 Further, the sludge treated in the freeze / thaw tank 3 is pressure-fed to the surface of the filter cloth of the dehydration processing apparatus 6 and pre-coated. In this case, since the sludge processed in the freeze / thaw tank 3 is aggregated into coarse particles, the filter cloth surface is not clogged. Moreover, since the melted sludge has been heated to some extent, the viscosity is not so low even in winter sludge. For example, 2 m 3 , which is half the amount of sludge that has been frozen and thawed, is pre-coated by feeding it to the dewatering device 6, and then the remaining 2 m 3 and the sludge heated by the heating device 7 are dewatered. By feeding to the apparatus 6, dehydration can be performed at a high filtration rate.

次いで、三方弁4の切り替えにより、濃縮汚泥の一部を加温装置7に送給させることにより加温し、加温された汚泥を脱水処理装置6に送給する。これにより、粘度の高い冬季においても汚泥の粘度が低くなり、脱水処理装置6でのろ過速度が促進される。この加温装置7は、凍結融解槽3に冷媒あるいは熱媒体を送給するアンモニア吸収冷凍機からの冷却水中の排熱あるいは蒸気ドレインを用いて、汚泥を加熱する。従って、新たに熱源を必要としないので、処理コストの大幅な上昇が生じることがない。   Next, by switching the three-way valve 4, a part of the concentrated sludge is heated by feeding it to the heating device 7, and the heated sludge is fed to the dehydration processing device 6. Thereby, the viscosity of sludge becomes low also in winter with high viscosity, and the filtration rate in the dehydration processing apparatus 6 is promoted. The heating device 7 heats the sludge using exhaust heat or a steam drain in cooling water from an ammonia absorption refrigerator that supplies a refrigerant or a heat medium to the freeze / thaw tank 3. Therefore, since a new heat source is not required, the processing cost does not increase significantly.

アンモニア吸収冷凍機16の排熱の利用につき、図2を参照して詳細に説明する。アンモニア吸収冷凍機16は、冷媒となるアンモニアを放熱液化する凝縮器Cと、アンモニアを蒸発させる蒸発器Eと、この蒸発器Eで蒸発したアンモニア蒸気を吸収剤である水に吸収させる吸収器Aとを備えて構成されている。この吸収器Aにより冷媒を十分に含んだアンモニア水溶液を溶液ポンプ(図示略)で加圧して送給される発生器と、アンモニア濃度を高めてこれを凝縮器Cに送る精留器とを備えさせてもよい。   The use of the exhaust heat of the ammonia absorption refrigerator 16 will be described in detail with reference to FIG. The ammonia absorption refrigerator 16 includes a condenser C that liquefies ammonia serving as a refrigerant, an evaporator E that evaporates ammonia, and an absorber A that absorbs ammonia vapor evaporated in the evaporator E into water as an absorbent. And is configured. A generator for supplying an aqueous ammonia solution sufficiently containing a refrigerant by the absorber A with a solution pump (not shown) and a rectifier for increasing the ammonia concentration and sending it to the condenser C are provided. You may let them.

高圧、高濃度アンモニア蒸気は凝縮器Cに送られ、ここで冷却塔Tからの冷却水と熱交換されて凝縮液化される。凝縮器Cに、凝縮しないガス成分を除去する抽気装置を設けてもよい。不凝縮ガスは凝縮あるいは吸収など伝熱特性を低下させるので、これを除去すると、伝熱特性を良好に維持できて都合がよい。尚、図2で図番14は冷却水を送る冷却水ポンプである。   The high-pressure, high-concentration ammonia vapor is sent to the condenser C where it is heat-exchanged with the cooling water from the cooling tower T to be condensed and liquefied. The condenser C may be provided with an extraction device that removes a gas component that does not condense. Since non-condensable gas deteriorates heat transfer characteristics such as condensation or absorption, it is convenient to maintain the heat transfer characteristics well if it is removed. In FIG. 2, reference numeral 14 is a cooling water pump for sending cooling water.

更に、蒸発器Eと吸収器Aにはブライン回路が接続されている。このブライン回路は、低温の冷ブラインタンク11と冷ブラインを送給する冷ブラインポンプ12とからなる冷ブライン回路B1と、高温の温ブラインタンク9と温ブラインを送給する温ブラインポンプ10とからなる温ブライン回路B2とを備えていると共に、温ブライン回路B2と冷ブライン回路B1とを切り換える一対の冷温切換バルブ13,13’が設けられている。そして、蒸発器Eには冷ブライン回路B1が接続されていると共に、吸収器Aには温ブライン回路B2が接続されている。凍結融解槽2に送給された汚泥を凍結するときには、吸収冷凍機16の蒸発器Eで冷却された冷ブラインが直接凍結融解槽3に送り込まれて汚泥を凍結する。尚、図番17は蓄熱槽であり、例えば、夏期の夜間に冷熱をこの蓄熱槽に導いて氷蓄熱を行い、冬期の夜間に温熱を蓄熱槽に導き、温水として蓄熱するように利用する。もっとも、蓄熱槽17は本実施形態において必ずしも必要ではないが、これを設けておくと、熱の有効利用ができ消費電力の低減につながって都合がよい。図番8,8’は、蓄熱槽17を利用するための切り換えバルブであり、図番15はブライン熱交換機である。   Further, a brine circuit is connected to the evaporator E and the absorber A. This brine circuit is composed of a cold brine circuit B1 composed of a cold cold brine tank 11 and a cold brine pump 12 for feeding cold brine, and a hot brine tank 9 and a warm brine pump 10 for feeding warm brine. And a pair of cold / warm switching valves 13 and 13 ′ for switching between the warm brine circuit B2 and the cold brine circuit B1. A cold brine circuit B1 is connected to the evaporator E, and a warm brine circuit B2 is connected to the absorber A. When the sludge fed to the freeze / thaw tank 2 is frozen, the cold brine cooled by the evaporator E of the absorption refrigerator 16 is directly sent to the freeze / thaw tank 3 to freeze the sludge. In addition, the number 17 is a heat storage tank, for example, cool heat is led to this heat storage tank at the night of summer, and ice heat storage is carried out, and the heat is led to the heat storage tank at night in the winter and used as heat water. However, although the heat storage tank 17 is not necessarily required in the present embodiment, it is convenient to effectively use heat and reduce power consumption. Numbers 8 and 8 'are switching valves for using the heat storage tank 17, and number 15 is a brine heat exchanger.

そして、凝縮器Cから冷却塔Tへ送給される冷却水18とアンモニア吸収冷凍機16から排出される蒸気ドレイン19とが、汚泥貯留槽2で濃縮され凍結融解槽3に送られる汚泥の加温に、直接あるいは熱交換されて利用されるようになっている。   Then, the cooling water 18 fed from the condenser C to the cooling tower T and the steam drain 19 discharged from the ammonia absorption refrigerator 16 are concentrated in the sludge storage tank 2 and added to the sludge sent to the freezing and thawing tank 3. The heat is used directly or after heat exchange.

凝縮器Cから冷却塔Tへ送給される冷却水18は量的に充分であり、しかも装置配管上取り出し易くなっていて、通常、約35〜40℃程度であり、凍結融解処理量の約5倍量程度の汚泥(冬季で約5℃)を約28〜30℃程度に加温することができる。そして、凍結融解処理した汚泥を上記したように脱水処理装置6で脱水する場合に、速いろ過速度を確保することができる。   The amount of cooling water 18 fed from the condenser C to the cooling tower T is sufficient in quantity and easy to take out on the apparatus piping, and is usually about 35 to 40 ° C. About 5 times as much sludge (about 5 ° C in winter) can be heated to about 28-30 ° C. And when dewatering the sludge which carried out the freezing and thawing process with the dehydration processing apparatus 6 as mentioned above, a quick filtration rate is securable.

なお、凝縮器Cから冷却塔Tへ送給される冷却水18は、冷却塔Tで熱を放出し、ブラインヒーターで温ブラインの加温に利用されていたが、この冷却水は流量が多いものの、凝縮器Cの出口温度がやや低いため、低温で大量の汚泥の加温には充分でない場合がある。そこで、接続しているガスタービン・コージェネレーション(CGS)から得られる蒸気をアンモニア吸収冷凍機16に供給した後に得られる蒸気ドレインは、温度が高いため、これと上記した凝縮器Cから冷却塔Tへ送給される冷却水18との併用をすることが好ましい。もっとも、この蒸気ドレインは、一般にエコノマイザ(図示略)を経てボイラー(図示略)に給水されるので、多くの量を利用できないことがあるが、このように併用すれば、低温(約5℃程度)の冬季でも、汚泥を30〜40℃程度にまで確実に加温することができる。汚泥の40℃を越える加温は、脱水機ろ過板の耐熱性の問題から好ましくない。   The cooling water 18 fed from the condenser C to the cooling tower T releases heat in the cooling tower T and is used to warm the warm brine by the brine heater, but this cooling water has a large flow rate. However, since the outlet temperature of the condenser C is slightly low, it may not be sufficient for heating a large amount of sludge at a low temperature. Therefore, since the steam drain obtained after supplying the steam obtained from the connected gas turbine cogeneration (CGS) to the ammonia absorption refrigerator 16 has a high temperature, it is cooled from the condenser C and the cooling tower T described above. It is preferable to use together with the cooling water 18 fed to the water. However, since this steam drain is generally supplied to a boiler (not shown) via an economizer (not shown), a large amount of water may not be used. ) Even in the winter season, the sludge can be reliably heated to about 30 to 40 ° C. Heating of the sludge exceeding 40 ° C. is not preferable because of the heat resistance problem of the dehydrator filter plate.

脱水処理された脱水汚泥は、必要に応じて破砕機により所定以下の大きさに破砕され、建築資材などとして利用したり、廃棄物処理したりすることができる。   The dewatered sludge that has been dehydrated is crushed to a predetermined size or less by a crusher as necessary, and can be used as a building material or treated as a waste.

<第2実施形態>
図3は、第2実施形態に係る凍結融解処理方法に用いる装置の概略要部構成を示す。この実施形態では、凍結融解処理した汚泥と、汚泥貯留槽2にて濃縮された汚泥とを共に加温槽7にて加温し、加温され混合された汚泥を脱水処理装置6にて脱水するようにしている。その他の構成は、第1実施形態と同様である。このようにすることにより、脱水処理装置6において、一層ろ過速度の速い脱水処理を可能にできる。
Second Embodiment
FIG. 3 shows a schematic main configuration of an apparatus used for the freeze-thaw processing method according to the second embodiment. In this embodiment, both the freeze-thawed sludge and the sludge concentrated in the sludge storage tank 2 are heated in the heating tank 7, and the heated and mixed sludge is dehydrated in the dehydration processing device 6. Like to do. Other configurations are the same as those of the first embodiment. By doing in this way, in the dehydration processing apparatus 6, it is possible to perform dehydration processing with a higher filtration rate.

<第3実施形態>
図4は、第3実施形態に係る凍結融解処理方法に用いる装置の概略要部構成を示す。この実施形態は、第1実施形態に係る凍結融解処理方法に用いる装置に加えて、処理対象である濃縮汚泥の一部を、凍結融解槽3にて凍結融解処理することなく、加温装置7にて加温して、脱水処理装置6に送給する。このようにしても、一層効率よく脱水処理ができて、処理コストの低減を図ることができる。
<Third Embodiment>
FIG. 4 shows a schematic configuration of a main part of an apparatus used for the freeze-thaw processing method according to the third embodiment. In this embodiment, in addition to the apparatus used for the freeze-thaw treatment method according to the first embodiment, a part of the concentrated sludge to be treated is not freeze-thawed in the freeze-thaw tank 3, and the heating device 7 is used. Is heated and fed to the dehydration apparatus 6. Even if it does in this way, a dehydration process can be performed still more efficiently and reduction of processing cost can be aimed at.

<第4実施形態>
この実施形態では、図5に示すように、第2実施形態に係る凍結融解処理方法に用いる装置に加えて、処理対象である濃縮汚泥の一部を、凍結融解槽3にて凍結融解処理することなく、加温装置7にて加温して、脱水処理装置6に送給する。このようにしても、一層効率よく脱水処理ができて、処理コストの低減を図ることができる。
<Fourth embodiment>
In this embodiment, as shown in FIG. 5, in addition to the apparatus used for the freeze-thaw treatment method according to the second embodiment, a part of the concentrated sludge to be treated is freeze-thawed in the freeze-thaw tank 3. Instead, it is heated by the heating device 7 and fed to the dehydration processing device 6. Even if it does in this way, a dehydration process can be performed still more efficiently and reduction of processing cost can be aimed at.

〔別実施の形態〕
(1)上記実施形態において、脱水処理装置としては、ろ布上に汚泥を載置して加圧しながらろ過する加圧ろ過式の他、多数のロールに2枚のろ布を組み込み、ろ布を走行させて脱水するベルトプレス法式や遠心脱水方式、更には、スクリュープレス方式、多重円板形脱水機など各種方式の脱水処理装置を使用することができる。
(2)上記実施形態において、用いる冷凍機をアンモニア吸収冷凍機としているが、電動圧縮式冷凍機の排熱を用いて汚泥加温を行うこともできる。
[Another embodiment]
(1) In the above embodiment, as a dehydration processing apparatus, in addition to a pressure filtration type in which sludge is placed on a filter cloth and filtered while applying pressure, two filter cloths are incorporated into a number of rolls, and the filter cloth It is possible to use various types of dewatering apparatus such as a belt press method and a centrifugal dewatering method for running and dewatering, and a screw press method and a multi-disc dehydrator.
(2) In the said embodiment, although the refrigerator to be used is an ammonia absorption refrigerator, sludge heating can also be performed using the exhaust heat of an electric compression refrigerator.

本発明の第1実施形態に係る汚泥処理方法を説明する概略要部構成図FIG. 1 is a schematic configuration diagram illustrating a main part of a sludge treatment method according to a first embodiment of the present invention. アンモニア吸収冷凍機の排熱の利用を説明する凍結融解装置の概略全体構成図Schematic overall configuration diagram of a freeze-thaw device for explaining the use of exhaust heat of an ammonia absorption refrigerator 本発明の第2実施形態に係る汚泥処理方法を説明する概略要部構成図Schematic block diagram for explaining the sludge treatment method according to the second embodiment of the present invention 本発明の第3実施形態に係る汚泥処理方法を説明する概略要部構成図Schematic block diagram for explaining the sludge treatment method according to the third embodiment of the present invention 本発明の第4実施形態に係る汚泥処理方法を説明する概略要部構成図Schematic block diagram explaining the sludge treatment method according to the fourth embodiment of the present invention

符号の説明Explanation of symbols

3 凍結融解槽
6 脱水処理装置
7 加温装置
16 アンモニア吸収冷凍機
C 凝縮器
T 冷却塔
3 Freezing and thawing tank 6 Dehydration processing device 7 Heating device 16 Ammonia absorption refrigerator C Condenser T Cooling tower

Claims (8)

アンモニア吸収冷凍機から冷熱媒体が送給され、汚泥を凍結融解処理する凍結融解槽と、前記アンモニア吸収冷凍機の排熱を利用可能かつ汚泥を供給可能な加温装置と、この加温装置にて加温された汚泥を脱水処理する脱水処理装置とを有し
前記加温装置が、前記アンモニア吸収冷凍機を構成する凝縮器から冷却塔へ送給される冷却水と、前記アンモニア吸収冷凍機から排出される蒸気ドレインとのいずれか一方または双方の送給を受けるようになっている、汚泥処理装置。
A freezing and thawing tank in which a cooling medium is fed from an ammonia absorption refrigerator and freezes and thaws the sludge, a heating device that can use the waste heat of the ammonia absorption refrigerator and supply sludge, and a heating device And a dewatering device for dewatering the heated sludge ,
The heating device feeds either or both of cooling water fed from a condenser constituting the ammonia absorption refrigerator to a cooling tower and a steam drain discharged from the ammonia absorption refrigerator. The sludge treatment equipment that is supposed to receive .
前記凍結融解槽にて凍結融解処理された汚泥と、前記加温装置にて加温された汚泥とが、混合されて脱水処理装置に送給されるようになっている請求項1記載の汚泥処理装置。   The sludge according to claim 1, wherein the sludge that has been freeze-thawed in the freeze-thaw tank and the sludge that has been heated by the heating device are mixed and fed to the dehydration device. Processing equipment. 前記凍結融解槽にて凍結融解処理された汚泥と、凍結融解処理しない汚泥とが共に前記加温装置に送給されて混合され加温されるようになっている請求項1記載の汚泥処理装置。   The sludge treatment apparatus according to claim 1, wherein both the sludge that has been freeze-thawed in the freeze-thaw tank and the sludge that has not been freeze-thawed are fed to the heating apparatus, mixed, and heated. . 前記凍結融解槽にて凍結融解処理された汚泥と、前記加温装置にて加温された汚泥とが、混合後脱水処理装置に送給されると共に、前記凍結融解槽にて凍結融解処理しない汚泥が、前記加温装置にて加温され、脱水処理装置に送給されるようになっている請求項1記載の汚泥処理装置。   The sludge that has been freeze-thawed in the freeze-thaw tank and the sludge that has been warmed in the warming device are fed to the dehydrator after mixing and are not freeze-thawed in the freeze-thaw tank. The sludge treatment apparatus according to claim 1, wherein the sludge is heated by the heating apparatus and is fed to the dehydration treatment apparatus. アンモニア吸収冷凍機から冷熱媒体を、汚泥を凍結融解処理するための凍結融解槽に送給し、前記アンモニア吸収冷凍機の排熱を加温装置に送給して利用すると共に、この加温装置に汚泥を供給し、この加温装置にて加温された汚泥を脱水処理装置にて脱水処理する汚泥処理方法であって、
前記アンモニア吸収冷凍機を構成する凝縮器から冷却塔へ送給される冷却水と、前記アンモニア吸収冷凍機から排出される蒸気ドレインとのいずれか一方または両方を、前記加温装置に送給する汚泥処理方法。
The cooling medium from the ammonia absorption refrigerator is fed to a freeze-thaw tank for freezing and thawing sludge, and the waste heat of the ammonia absorption refrigerator is fed to a heating device for use. A sludge treatment method in which sludge is supplied to the sludge and the sludge heated by the heating device is dehydrated by the dehydration treatment device ,
Either one or both of the cooling water supplied from the condenser constituting the ammonia absorption refrigerator to the cooling tower and the steam drain discharged from the ammonia absorption refrigerator are supplied to the heating device. Sludge treatment method.
前記凍結融解槽にて凍結融解処理した汚泥と、前記加温装置にて加温した汚泥とを混合して脱水処理装置に送給する請求項記載の汚泥処理方法。 The sludge treatment method according to claim 5 , wherein the sludge frozen and thawed in the freeze thaw tank and the sludge heated by the heating device are mixed and fed to the dehydration device. 前記凍結融解槽にて凍結融解処理した汚泥を、凍結融解処理しない汚泥と共に前記加温装置に送給して混合し加温する請求項記載の汚泥処理方法。 The sludge treatment method according to claim 5, wherein the sludge that has been freeze-thawed in the freeze-thaw tank is fed to the heating device together with sludge that has not been freeze-thawed, mixed, and heated. 前記凍結融解槽にて凍結融解処理した汚泥と、前記加温装置にて加温した汚泥とを混合して脱水処理装置に送給すると共に、前記凍結融解槽にて凍結融解処理しない汚泥を、前記加温装置にて加温して脱水処理装置に送給する請求項記載の汚泥処理方法。 The sludge that has been freeze-thawed in the freeze-thaw tank and the sludge that has been heated in the heating device are mixed and fed to the dehydration apparatus, and sludge that is not freeze-thawed in the freeze-thaw tank, The sludge treatment method according to claim 5 , wherein the sludge is heated by the heating device and fed to the dehydration device.
JP2005203975A 2005-07-13 2005-07-13 Sludge treatment apparatus and sludge treatment method Expired - Fee Related JP4909540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005203975A JP4909540B2 (en) 2005-07-13 2005-07-13 Sludge treatment apparatus and sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005203975A JP4909540B2 (en) 2005-07-13 2005-07-13 Sludge treatment apparatus and sludge treatment method

Publications (2)

Publication Number Publication Date
JP2007021298A JP2007021298A (en) 2007-02-01
JP4909540B2 true JP4909540B2 (en) 2012-04-04

Family

ID=37782752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005203975A Expired - Fee Related JP4909540B2 (en) 2005-07-13 2005-07-13 Sludge treatment apparatus and sludge treatment method

Country Status (1)

Country Link
JP (1) JP4909540B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110255846B (en) * 2019-06-19 2022-03-22 杨红兵 Low-temperature drying method and device for residual activated sludge in sewage treatment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286257A (en) * 1976-01-12 1977-07-18 Mitsubishi Electric Corp Organic sludge treating method
JP4165996B2 (en) * 2001-01-10 2008-10-15 株式会社タクマ Sludge treatment equipment and sludge treatment method
JP3834623B2 (en) * 2002-05-15 2006-10-18 独立行政法人土木研究所 Method for dehydrating and drying slurry

Also Published As

Publication number Publication date
JP2007021298A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
WO2013121547A1 (en) Seawater desalination system
CN101204641A (en) Treating system for film evaporating concentrated liquid and method therefor
CN104118918B (en) Utilize waste water vaporization system of solar energy
KR101924533B1 (en) Power generating and desalination composite plant
CN103550941B (en) Low-temperature evaporation and concentration device and high-concentration waste water concentration method
KR20090105608A (en) The way recovery and use heat of waste water of sludge in fire-extinguishing tank of the sewage disposal plant and heat of squeezed water in sludge
CN104891593A (en) High-desalting-rate seawater desalination method and device based on liquefied natural gas cold energy
WO2019056183A1 (en) Regenerative sludge heat drying system
CN111646619A (en) High-efficiency energy-saving sewage freezing and concentrating device and treatment process thereof
JP4909540B2 (en) Sludge treatment apparatus and sludge treatment method
CN110697821B (en) Seawater source trans-critical carbon dioxide heat pump circulation multi-effect seawater desalination system
CN105439224A (en) Pressurized steam type capillary drive sea water desalination system
CN211733890U (en) Two-stage compression heat pump seawater desalination device with freezing and evaporating combined action
JP4518827B2 (en) Freeze-thaw system and freeze-thaw method
CN203754456U (en) Nitrogen circulation type low-temperature evaporation concentration device
KR20100104336A (en) Air water supply system
CN203525336U (en) Low-temperature evaporation and concentration device
CN116294425A (en) Blast furnace slag flushing water and exhaust steam waste heat recovery cold and hot combined supply system
JP4387185B2 (en) Freeze-thaw system and freeze-thaw method
CN113772766A (en) Tandem type electroplating wastewater heat pump membrane evaporation system and method
JP4121682B2 (en) Method and apparatus for solvent separation and concentration of solution
CN102705928A (en) Ice storage and heat storage air conditioner
KR100929891B1 (en) Apparatus for dehydration and refining of methane gas
CN105800868A (en) Efficient energy-saving sewage treatment device
TWI303995B (en) Absorption freezing method to separate pure water from sea water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4909540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees