JP7093443B1 - Freeze concentration method - Google Patents

Freeze concentration method Download PDF

Info

Publication number
JP7093443B1
JP7093443B1 JP2021069819A JP2021069819A JP7093443B1 JP 7093443 B1 JP7093443 B1 JP 7093443B1 JP 2021069819 A JP2021069819 A JP 2021069819A JP 2021069819 A JP2021069819 A JP 2021069819A JP 7093443 B1 JP7093443 B1 JP 7093443B1
Authority
JP
Japan
Prior art keywords
liquid
ice
treated
water
freeze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021069819A
Other languages
Japanese (ja)
Other versions
JP2022164375A (en
Inventor
尚紀 黒田
裕司 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2021069819A priority Critical patent/JP7093443B1/en
Application granted granted Critical
Publication of JP7093443B1 publication Critical patent/JP7093443B1/en
Publication of JP2022164375A publication Critical patent/JP2022164375A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Abstract

【課題】解氷工程の終了時に氷分が完全に溶けた状態となる凍結濃縮方法を提供する。【解決手段】課題は、被処理液を凍結濃縮処理により濃縮して氷分と処理済液とを得る凍結濃縮方法において、得られた氷分に、温水を掛けて溶かし解氷水を得て、当該解氷水を加温して再度氷分を溶かす温水として利用する工程を、繰り返し行う解氷工程を有し、前記解氷工程は、前記解氷水の温度(t3)が7℃以上になったときに終了するものであることを特徴とする凍結濃縮方法によって解決される。【選択図】図1PROBLEM TO BE SOLVED: To provide a freeze-concentration method in which ice is completely melted at the end of an ice-melting step. SOLUTION: In a freeze-concentration method in which a liquid to be treated is concentrated by a freeze-concentration treatment to obtain an ice content and a treated liquid, the obtained ice content is melted by sprinkling warm water to obtain thawed water. It has a deicing step in which the step of heating the defrosted water and using it as hot water for melting ice again is repeated, and in the deicing step, the temperature (t3) of the defrosted water becomes 7 ° C. or higher. It is solved by a freeze-concentration method, characterized in that it is sometimes terminated. [Selection diagram] Fig. 1

Description

本発明は、凍結濃縮方法に関するものである。 The present invention relates to a freeze-concentration method.

近時、凍結濃縮に関する技術は、福島第一原子力発電所のマスク洗浄排水に用いられる等、その重要性が増してきており、各種の提案がなされている。凍結濃縮とは、水溶液の水分のみを凍結させて、生成する氷結晶を未凍結の処理済液と分離することにより濃縮を達成する技術であり、基本的には所定量の被処理液を所定の濃縮限度まで凍結濃縮するとともに、濃縮限度まで濃縮された処理済液と氷分とを分離するものである。 Recently, the technology related to freeze concentration has become more important, such as being used for mask cleaning wastewater at the Fukushima Daiichi Nuclear Power Station, and various proposals have been made. Freezing concentration is a technique for achieving concentration by freezing only the water content of the aqueous solution and separating the generated ice crystals from the unfrozen treated liquid. Basically, a predetermined amount of the liquid to be treated is specified. In addition to freeze-concentrating to the concentration limit of, the treated liquid concentrated to the concentration limit and the ice content are separated.

凍結濃縮は、処理済液と氷分との分離の観点からは、濃縮限度までの一回の濃縮処理を終えた後に分離操作を行う回分型と、濃縮過程で連続的に分離する連続型とに大別される。また氷の生成・成長形態の観点からは、冷却伝熱面に氷を付着・成長させる前進凍結法と、溶液中に粒状の氷を生成・成長させる懸濁結晶法とに大別される。 From the viewpoint of separation of the treated liquid and ice, freeze concentration is a batch type in which the separation operation is performed after one concentration treatment up to the concentration limit, and a continuous type in which the ice is continuously separated in the concentration process. It is roughly divided into. From the viewpoint of ice formation / growth form, it is roughly classified into a forward freezing method in which ice is attached / grown on a cooling heat transfer surface and a suspended crystal method in which granular ice is formed / grown in a solution.

特に前進凍結法の例としては、特許文献1において提案している凍結濃縮(凍結分離)装置がある。この凍結濃縮装置は、凍結濃縮槽内に冷却コイルを設け、その上方に散布部を設け、冷却コイルの下方に貯水部を設け、被処理液を散布部から冷却コイルに対して散布し、この被処理液は各冷却コイルと接触しながら下段側へ順次落下し、冷却コイルと液膜状態で接触しながら流下する過程で被処理液が冷却凍結されるように構成されたものである。また、凍結せずに貯水部に至った被処理液は散布部に対して循環供給され、再度冷却される。この循環供給を継続して行うことで、所定量の被処理液を濃縮限度(約10倍)まで濃縮することができるというものである。濃縮限度に達した処理済液は系外に排出される。なお、以下ではこの技術を流下液膜式凍結濃縮という。 In particular, as an example of the forward freezing method, there is a freeze-concentration (freeze separation) apparatus proposed in Patent Document 1. In this freeze-concentrator, a cooling coil is provided in the freeze-concentration tank, a spraying section is provided above the cooling coil, a water storage section is provided below the cooling coil, and the liquid to be treated is sprayed from the spraying section to the cooling coil. The liquid to be treated is configured so that the liquid to be treated is sequentially dropped to the lower stage side while in contact with each cooling coil, and the liquid to be treated is cooled and frozen in the process of flowing down while being in contact with the cooling coil in a liquid film state. Further, the liquid to be treated that reaches the water storage portion without freezing is circulated and supplied to the spraying portion and cooled again. By continuing this circulation supply, a predetermined amount of the liquid to be treated can be concentrated to the concentration limit (about 10 times). The treated liquid that has reached the concentration limit is discharged to the outside of the system. In the following, this technique will be referred to as a flow-down liquid film type freeze concentration.

また、特許文献2記載のものも前進凍結法の範疇に入るものである。この先行技術は、冷却体表面における氷生成に際し、過冷却度が大きすぎることによる氷結晶中への溶質取込を解決しようとするものであり、このために蒸留水を用いて冷却体表面に純氷を予め生成させておくことで、冷却体近傍の処理液の過度な過冷却を抑制するものである。 Further, those described in Patent Document 2 also fall into the category of the forward freezing method. This prior art is to solve the uptake of solutes into ice crystals due to the excessive degree of supercooling when ice is formed on the surface of the cooling body, and for this purpose, distilled water is used on the surface of the cooling body. By generating pure ice in advance, excessive supercooling of the treatment liquid in the vicinity of the cooling body is suppressed.

特開2001-47034号公報Japanese Unexamined Patent Publication No. 2001-47034 特開平10-54629号公報Japanese Unexamined Patent Publication No. 10-54629

しかしながら、従来の凍結濃縮技術には下記のような問題点があった。通常の運転時においては、凍結濃縮装置は、製氷する工程と解氷する工程を繰り返すことによって被処理液が濃縮されるが、冷却コイルに形成される氷分の製氷量は、凍結濃縮槽に被処理液を供給する被処理液供給タンクの液位の変化によって計測され、解氷量は、解氷された水(以下、「解氷水」ともいう。)の容器である解氷水タンクの液位の変化によって計測される。しかしながら、停電等が発生すると、それまでの運転履歴が不明となってしまい、冷却コイルにどのくらいの氷分が形成された状態になっているかを把握することが困難になってしまう場合がある。冷却コイルに着氷のある状態で自動運転を再開すると、冷却コイルに形成されるべき氷分の最大量を超える量の被処理液が、被処理液タンクに供給されて製氷される結果、氷分が冷却コイルに過剰に形成されてしまう。これは、氷分のブリッジングや冷却コイルの破損をもたらす原因となりうる。 However, the conventional freeze-concentration technique has the following problems. During normal operation, the freeze-concentrator concentrates the liquid to be treated by repeating the process of making ice and the process of thawing, but the amount of ice formed in the cooling coil is transferred to the freeze-concentrating tank. The amount of deicing is measured by the change in the liquid level of the liquid to be treated tank that supplies the liquid to be treated, and the amount of deicing is the liquid in the deicing water tank, which is a container for deiced water (hereinafter, also referred to as "deicing water"). It is measured by the change of position. However, when a power outage or the like occurs, the operation history up to that point becomes unknown, and it may be difficult to grasp how much ice is formed in the cooling coil. When automatic operation is restarted with ice on the cooling coil, an amount of liquid to be treated that exceeds the maximum amount of ice that should be formed on the cooling coil is supplied to the liquid tank to be treated, resulting in ice making. Minutes are excessively formed in the cooling coil. This can cause ice bridging and damage to the cooling coil.

そこで、本発明の主たる課題は、解氷工程の終了時に氷分が完全に溶けた状態にすることにある。 Therefore, a main object of the present invention is to make the ice content completely melted at the end of the deicing process.

上記課題を解決するための発明の態様は次記のとおりである。
(第1の態様)
被処理液を凍結濃縮処理により濃縮して氷分と処理済液とを得る凍結濃縮方法において、
得られた氷分に、温水を掛けて溶かし解氷水を得て、当該解氷水を加温して再度氷分を溶かす温水として利用する工程を、繰り返し行う解氷工程を有し、
前記解氷工程は、前記解氷水の温度(t3)が7℃以上になったときに終了するものである、
ことを特徴とする凍結濃縮方法。
The aspects of the invention for solving the above problems are as follows.
(First aspect)
In the freeze-concentration method in which the liquid to be treated is concentrated by freeze-concentration treatment to obtain ice content and the treated liquid.
It has a deicing step of repeating the steps of sprinkling hot water on the obtained ice to melt it to obtain defrosted water, heating the defrosted water, and using it as hot water to melt the ice again.
The deicing step ends when the temperature (t3) of the deicing water reaches 7 ° C. or higher.
A freeze-concentration method characterized by this.

本発明者は、鋭意研究を重ね、解氷工程で温水により氷分を溶かす際、氷分が残っている間は解氷水が低い温度で推移するが、上記温度以上で、氷分が完全に溶けているを確認できた。氷分が完全に溶けていれば、製氷工程を行っても氷分を製造し過ぎることがなく、氷分のブリッジングや冷却コイルの破損をもたらすおそれがないので、凍結濃縮を安定して行うことができる。 The present inventor has repeated diligent research, and when melting ice with warm water in the deicing process, the deicing water stays at a low temperature while the ice remains, but above the above temperature, the ice is completely depleted. I was able to confirm that it was melted. If the ice is completely melted, the ice will not be overproduced even if the ice making process is performed, and there is no risk of bridging the ice or damaging the cooling coil. be able to.

(第2の態様)
被処理液を冷却処理して当該被処理液の一部が凍結されて生成した氷分を分離し、残りの被処理液を再度、冷却処理に利用する工程を繰り返して、所定レベルまで濃縮された処理済液を得る製氷工程を有し、
前記製氷工程と前記解氷工程が交互に繰り返し行われ、
前記被処理液の温度(t1)が前記残りの被処理液の温度(t4)より大であるときは、前記製氷工程を終了し、前記解氷工程を開始する、
ことを特徴とする請求項1記載の凍結濃縮方法。
(Second aspect)
The liquid to be treated is cooled, a part of the liquid to be treated is frozen to separate the ice content generated, and the remaining liquid to be treated is used again for the cooling treatment, and the process is repeated to concentrate the liquid to a predetermined level. It has an ice making process to obtain the processed liquid.
The ice making process and the ice defrosting process are alternately repeated,
When the temperature (t1) of the liquid to be treated is higher than the temperature (t4) of the remaining liquid to be treated, the ice making step is terminated and the ice defrosting step is started.
The freeze-concentration method according to claim 1, wherein the method is characterized by the above.

製氷工程を行っている最中に、例えば、停電が発生して復電した場合、凍結濃縮処理の制御プログラムによってはそれまでの運転履歴がリセットされ、補充工程から再開することになる。そうすると、供給タンクに被処理液が補充されて製氷工程に移行して製氷すると、製氷されるべき本来の氷分を超過して製氷されてしまい、このことは氷分のブリッジングや冷却コイルの破損をもたらす原因となり得る。本態様は、前記被処理液の温度(t1)が前記残りの被処理液の温度(t4)より大であるときは、前記製氷工程を終了し、前記解氷工程を開始するものであるので、氷分が残っている状態で製氷工程が開始されたとしても、t1>t4の判定によって製氷工程が終了する結果、氷分を超過して製氷されることがない。 If, for example, a power failure occurs and the power is restored during the ice making process, the operation history up to that point is reset depending on the control program of the freeze concentration process, and the replenishment process is restarted. Then, when the supply tank is replenished with the liquid to be treated and the process shifts to the ice making process to make ice, the ice is made in excess of the original ice that should be made, which is the bridging of the ice and the cooling coil. It can cause damage. In this embodiment, when the temperature (t1) of the liquid to be treated is higher than the temperature (t4) of the remaining liquid to be treated, the ice making step is terminated and the ice defrosting step is started. Even if the ice making process is started with the ice content remaining, the ice making process is completed by the determination of t1> t4, and as a result, the ice is not produced in excess of the ice content.

(第3の態様)
被処理液を冷却処理して当該被処理液の一部が凍結されて生成した氷分を分離し、残りの被処理液を再度、冷却処理に利用する工程を繰り返して、所定レベルまで濃縮された処理済液を得る製氷工程を有し、
前記製氷工程と前記解氷工程が交互に繰り返し行われ、
前記被処理液の温度(t1)と前記残りの被処理液の温度(t4)の差が1℃以上であるときは、前記製氷工程を終了し、前記解氷工程を開始する、
ことを特徴とする請求項1記載の凍結濃縮方法。
(Third aspect)
The liquid to be treated is cooled, a part of the liquid to be treated is frozen to separate the ice content generated, and the remaining liquid to be treated is used again for the cooling treatment, and the process is repeated to concentrate the liquid to a predetermined level. It has an ice making process to obtain the processed liquid.
The ice making process and the ice defrosting process are alternately repeated,
When the difference between the temperature of the liquid to be treated (t1) and the temperature of the remaining liquid to be treated (t4) is 1 ° C. or more, the ice making step is terminated and the ice defrosting step is started.
The freeze-concentration method according to claim 1, wherein the method is characterized by the above.

第2の態様と同様に、|t1-t4|≧1℃の判定によって製氷工程が終了する結果、氷分を超過して製氷されることがない。 Similar to the second aspect, as a result of the ice making process being completed by the determination of | t1-t4 | ≧ 1 ° C., the ice content is not exceeded and the ice is not made.

(第4の態様)
被処理液を冷却処理して当該被処理液の一部が凍結されて生成した氷分を分離し、残りの被処理液を再度、冷却処理に利用する工程を繰り返して、所定レベルまで濃縮された処理済液を得る製氷工程を有し、
前記製氷工程と前記解氷工程が交互に繰り返し行われ、
前記残りの被処理液の温度(t4)が7℃以下であるときは、前記製氷工程を終了し、前記解氷工程を開始する、
ことを特徴とする請求項1記載の凍結濃縮方法。
(Fourth aspect)
The liquid to be treated is cooled, a part of the liquid to be treated is frozen to separate the ice content generated, and the remaining liquid to be treated is used again for the cooling treatment, and the process is repeated to concentrate the liquid to a predetermined level. It has an ice making process to obtain the processed liquid.
The ice making process and the ice defrosting process are alternately repeated,
When the temperature (t4) of the remaining liquid to be treated is 7 ° C. or lower, the ice making step is terminated and the ice defrosting step is started.
The freeze-concentration method according to claim 1, wherein the method is characterized by the above.

第2の態様と同様に、t4≦7℃の判定によって製氷工程が終了する結果、氷分を超過して製氷されることがない。 Similar to the second aspect, as a result of the ice making step being completed by the determination of t4 ≦ 7 ° C., the ice content is not exceeded and the ice is not made.

(第5の態様)
前記温水の温度(t2)と前記解氷水の温度(t3)の差が0.5℃以下になったときに前記解氷工程を終了する、
ことを特徴とする請求項1記載の凍結濃縮方法。
(Fifth aspect)
The deicing step is terminated when the difference between the temperature of the hot water (t2) and the temperature of the deicing water (t3) becomes 0.5 ° C. or less.
The freeze-concentration method according to claim 1, wherein the method is characterized by the above.

解氷水の温度(t3)が温水の温度(t2)に近づくということは、解氷水が温まることを意味し、|t2-t3|≦0.5℃の判定によって氷分が完全に溶けた状態と判断でき、製氷工程に移行する準備が整ったといえる。 The fact that the temperature of the deicing water (t3) approaches the temperature of the hot water (t2) means that the deicing water warms up, and the ice content is completely melted by the judgment of | t2-t3 | ≤0.5 ° C. It can be said that we are ready to move to the ice making process.

(第6の態様)
前記製氷工程で用いられる被処理液を系外から補充する補充工程を有し、
前記補充工程は、前記製氷工程が終了した後に行うものである、
請求項2記載の凍結濃縮方法。
(Sixth aspect)
It has a replenishment step of replenishing the liquid to be treated used in the ice making step from outside the system.
The replenishment step is performed after the ice making step is completed.
The freeze-concentration method according to claim 2.

製氷工程の最中に補充工程が行われると、氷分の過剰な製造の原因となるので、補充工程を製氷工程が終了した後に行うことで、氷分の過剰な製造を回避することができる。 If the replenishment process is performed during the ice making process, it causes excessive production of ice content. Therefore, by performing the replenishment process after the ice making process is completed, it is possible to avoid excessive production of ice content. ..

本発明によると、解氷工程の終了時に氷分が完全に溶けた状態となる凍結濃縮方法となる。 According to the present invention, it is a freeze-concentration method in which the ice content is completely melted at the end of the deicing step.

本発明の一実施形態を表す図である。It is a figure which shows one Embodiment of this invention. 実施形態を用いた運転例を示す概要図である。It is a schematic diagram which shows the operation example using an embodiment. 実施形態を用いた運転例を示す概要図である。It is a schematic diagram which shows the operation example using an embodiment. 実施形態を用いた運転例を示す概要図である。It is a schematic diagram which shows the operation example using an embodiment. 実施形態を用いた運転例を示す概要図である。It is a schematic diagram which shows the operation example using an embodiment. 実施形態を用いた運転例を示す概要図である。It is a schematic diagram which shows the operation example using an embodiment. 実施形態を用いた運転例を示す概要図である。It is a schematic diagram which shows the operation example using an embodiment. 実施形態を用いた運転例を示す概要図である。It is a schematic diagram which shows the operation example using an embodiment. 各工程における温度と液量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the temperature and the liquid amount in each process. 温度と液量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of temperature and liquid volume. 温度と液量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of temperature and liquid volume. 温度と液量の経時変化を示すグラフである。It is a graph which shows the time-dependent change of temperature and liquid volume. 凍結濃縮処理のフロー図である。It is a flow chart of a freeze-concentration process.

次に、発明を実施するための形態を説明する。なお、本実施の形態は、本発明の一例である。本発明の範囲は、本実施の形態の範囲に限定されない。 Next, a mode for carrying out the invention will be described. The embodiment of the present invention is an example of the present invention. The scope of the present invention is not limited to the scope of the present embodiment.

図1に示す本発明に係る凍結濃縮装置1は、被処理液を凍結して氷分と処理済液に分離する凍結濃縮槽4と、被処理液を凍結濃縮槽4に供給する供給タンク2と、系外から補充された被処理液J1を一時的に貯留するとともに、供給タンク2に供給する被処理液貯留タンク6と、氷分が解氷されて得られた解氷水を受ける解氷水タンク3と、解氷水タンク3から供給される解氷水を一時的に貯留し、系外に流出する解氷水貯留タンク7とで主に構成される。 The freeze-concentrator 1 according to the present invention shown in FIG. 1 has a freeze-concentration tank 4 that freezes a liquid to be treated and separates it into ice and a treated liquid, and a supply tank 2 that supplies the liquid to be treated to the freeze-concentrate tank 4. The liquid to be treated J1 replenished from outside the system is temporarily stored, and the liquid to be treated storage tank 6 to be supplied to the supply tank 2 and the defrosted water obtained by deicing the ice content are received. It is mainly composed of a tank 3 and a deicing water storage tank 7 that temporarily stores the deicing water supplied from the deicing water tank 3 and flows out of the system.

本発明で行う凍結濃縮処理とは、不純物が混じる被処理液を冷却し、当該被処理液の一部を氷分として凍結させて分離し、残分、すなわち処理済液を得る処理をいい、得られる処理済液は当初被処理液よりも不純物の濃度が高まったものとなる。ここで、被処理液を冷却する手法としては、例えば、被処理液よりも低温の物体に被処理液を通す等の手法を挙げることができる。以下、凍結濃縮処理の一連の工程について詳述する。 The freeze-concentration treatment performed in the present invention refers to a treatment in which a liquid to be treated containing impurities is cooled, a part of the liquid to be treated is frozen as ice and separated to obtain a residue, that is, a treated liquid. The obtained treated liquid has a higher concentration of impurities than the initially treated liquid. Here, as a method for cooling the liquid to be treated, for example, a method such as passing the liquid to be treated through an object having a temperature lower than that of the liquid to be treated can be mentioned. Hereinafter, a series of steps of the freeze concentration treatment will be described in detail.

(被処理液貯留タンク)
被処理液J1は、系外から供給され、系外から被処理液貯留タンク6に接続された流路6Bを流れて、被処理液貯留タンク6に導かれ一時的に貯留される。被処理液貯留タンク6とその下流に設けられた供給タンク2とは流路6Aで接続され、被処理液貯留タンク6に設けられたポンプP5によって、被処理液J1が流路6Aを流れ供給タンク2に供給される。
(Liquid storage tank to be treated)
The liquid J1 to be treated is supplied from outside the system, flows from the outside of the system through the flow path 6B connected to the liquid storage tank 6, is guided to the liquid storage tank 6 to be treated, and is temporarily stored. The liquid to be treated storage tank 6 and the supply tank 2 provided downstream thereof are connected by a flow path 6A, and the liquid to be treated J1 flows and is supplied through the flow path 6A by a pump P5 provided in the liquid to be treated storage tank 6. It is supplied to the tank 2.

(供給タンク)
供給タンク2には、凍結濃縮処理によって所定レベルまで濃縮された処理済液J2を系外に排出するための、ポンプP3と流路2Bが設けられている。また、供給タンク2には、ポンプP1と供給タンク2と凍結濃縮槽4を接続する流路2Aが設けられ、ポンプP1の圧力により供給タンク2内の被処理液が、流路2Aを流れて凍結濃縮槽4に供給される。流路2Aには、流路2Aを流れる被処理液の温度(t1)を計測する温度センサーT1が備わる。
(Supply tank)
The supply tank 2 is provided with a pump P3 and a flow path 2B for discharging the treated liquid J2 concentrated to a predetermined level by the freeze-concentration treatment to the outside of the system. Further, the supply tank 2 is provided with a flow path 2A connecting the pump P1, the supply tank 2 and the freeze-concentration tank 4, and the liquid to be treated in the supply tank 2 flows through the flow path 2A due to the pressure of the pump P1. It is supplied to the freeze concentration tank 4. The flow path 2A is provided with a temperature sensor T1 that measures the temperature (t1) of the liquid to be treated flowing through the flow path 2A.

(凍結濃縮槽)
凍結濃縮槽4は、冷却コイル4Cと、当該冷却コイル4Cの上方に離間して備わる散布部4Gと、当該冷却コイル4Cの下方に備わる貯液部4Wと、貯液部4Wに溜まった液体が凍結濃縮槽4から流出される流出部を主に有する。貯液部4Wは、溜まった液体の液面が冷却コイル4Cの下方に離間するように維持される構成となっていると好ましい。当該流出部には当該液体が流出する流路4Aが備わり、当該流路4Aの下流端が2つに分岐されて、一方が供給タンク2に接続される流路4B、他方が解氷水タンク3に接続される流路4Dに接続されている。流路4Aには流路4Aを流れる液体の温度を計測する温度センサーT3が設けられ、流路4BにはバルブV1、流路4DにはバルブV2が設けられている。冷却コイル4Cは、冷却管からなり、冷却管内を流れる冷媒が当該冷却コイル4Cに備わるポンプP7による圧力によって循環し、冷凍機4Fによって冷却される、ものとなっている。散布部4Gは、液体を冷却コイル4Cに散布するものであり、散布部4Gから散布される液体としては、被処理液、解氷水、温水、浄水G2を例示できる。なお、浄水G2は、散布部4Gに接続されている流路4Eを流れて散布部4Gから散布される。流路4EにはバルブV3を設けることができる。この凍結濃縮槽4自体は、特開2001-47034号公報に記載のものと基本的に同じであり、流下液膜式のものである。冷凍機4Fは、特に限定されず一般的なものを用いることができ、蒸発温度が-5~-10℃であるとよい。
(Freezing concentration tank)
In the freeze-concentration tank 4, the cooling coil 4C, the spraying section 4G provided above the cooling coil 4C, the liquid storage section 4W provided below the cooling coil 4C, and the liquid collected in the liquid storage section 4W are contained. It mainly has an outflow portion that flows out from the freeze concentration tank 4. The liquid storage unit 4W is preferably configured so that the liquid level of the accumulated liquid is maintained below the cooling coil 4C. The outflow portion is provided with a flow path 4A through which the liquid flows out, the downstream end of the flow path 4A is branched into two, one is connected to the supply tank 2 and the other is the deicing water tank 3. It is connected to the flow path 4D connected to. The flow path 4A is provided with a temperature sensor T3 for measuring the temperature of the liquid flowing through the flow path 4A, the flow path 4B is provided with a valve V1, and the flow path 4D is provided with a valve V2. The cooling coil 4C is composed of a cooling pipe, and the refrigerant flowing in the cooling pipe is circulated by the pressure of the pump P7 provided in the cooling coil 4C and cooled by the refrigerator 4F. The spraying unit 4G sprays the liquid on the cooling coil 4C, and examples of the liquid sprayed from the spraying unit 4G include a liquid to be treated, deicing water, hot water, and purified water G2. The purified water G2 flows through the flow path 4E connected to the spraying portion 4G and is sprayed from the spraying portion 4G. A valve V3 can be provided in the flow path 4E. The freeze-concentration tank 4 itself is basically the same as that described in Japanese Patent Application Laid-Open No. 2001-47034, and is a flow-down liquid film type. The refrigerator 4F is not particularly limited and a general one can be used, and the evaporation temperature is preferably −5 to −10 ° C.

(解氷水タンク)
流路4Dを流れる液体は、解氷水タンク3に流入する。解氷水タンク3には、ポンプP2と、解氷水タンク3と凍結濃縮槽4を接続する流路3Aが設けられ、ポンプP2の圧力により解氷水タンク3内の解氷水が、流路3Aを流れて凍結濃縮槽4に供給される。流路3Aには上流側から下流側に向かって、熱交換器5と、熱交換器5を通過し散布部4Gに供給される液体の温度を計測する温度センサーT2が設けられている。
(Thawed water tank)
The liquid flowing through the flow path 4D flows into the deicing water tank 3. The thawing water tank 3 is provided with a flow path 3A connecting the pump P2, the thawing water tank 3 and the freeze concentration tank 4, and the thawing water in the thawing water tank 3 flows through the flow path 3A due to the pressure of the pump P2. Is supplied to the freeze concentration tank 4. The flow path 3A is provided with a heat exchanger 5 and a temperature sensor T2 for measuring the temperature of the liquid that passes through the heat exchanger 5 and is supplied to the spraying portion 4G from the upstream side to the downstream side.

また、解氷水タンク3には、ポンプP4と、解氷水タンク3と解氷水貯留タンク7を接続する流路3Bが設けられ、ポンプP4の圧力により解氷水タンク3内の解氷水が、流路3Bを流れて解氷水貯留タンク7に供給される。 Further, the defrosting water tank 3 is provided with a pump P4 and a flow path 3B connecting the defrosting water tank 3 and the defrosting water storage tank 7, and the defrosting water in the defrosting water tank 3 flows by the pressure of the pump P4. It flows through 3B and is supplied to the defrosted water storage tank 7.

(解氷水貯留タンク)
解氷水貯留タンク7は、解氷水タンク3から供給される解氷水を一時的に貯留し、系外に流出させるものである。解氷水貯留タンク7は、解氷水が排出される排出部と、当該流出部から系外に解氷水が流れる流路7A、及び当該流路7Aに設けられたポンプP6、系外から供給される浄水G1が流入する流路7Bと流入部を有する。流路7BにはバルブV4を設けることができる。
(Thawed water storage tank)
The defrost water storage tank 7 temporarily stores the defrost water supplied from the defrost water tank 3 and causes it to flow out of the system. The defrosted water storage tank 7 is supplied from the discharge part where the defrosted water is discharged, the flow path 7A through which the defrosted water flows from the outflow part to the outside of the system, the pump P6 provided in the flow path 7A, and the outside of the system. It has a flow path 7B into which purified water G1 flows and an inflow portion. A valve V4 can be provided in the flow path 7B.

(運転例)
本実施形態は、被処理液を凍結濃縮処理により濃縮して氷分と処理済液とを得る凍結濃縮方法であり、得られた氷分に、温水を掛けて溶かし解氷水を得て、当該解氷水を加温して再度氷分を溶かす温水として利用する工程を、繰り返し行う解氷工程を有し、前記解氷工程は、前記解氷水の温度(t3)が7℃以上になったときに終了するものである、ことを特徴とする。本実施形態によれば、着氷がある状態では製氷を行なわず、過剰な製氷を防止することができる。また、被処理液を最終的に処理済液と解氷水に分離することができる。凍結濃縮装置1を用いて被処理液を解氷水と処理済液に分離する一連の工程を以下に説明する。
(Operation example)
The present embodiment is a freeze-concentration method in which a liquid to be treated is concentrated by a freeze-concentration treatment to obtain an ice content and a treated liquid, and the obtained ice content is melted by sprinkling warm water to obtain thawed water. It has a deicing step in which a step of heating the deicing water and using it as hot water for melting ice again is repeated, and the deicing step is when the temperature (t3) of the defrosting water becomes 7 ° C. or higher. It is characterized by the fact that it ends in. According to this embodiment, ice making is not performed in the presence of icing, and excessive ice making can be prevented. Further, the liquid to be treated can be finally separated into the treated liquid and the thawed water. A series of steps for separating the liquid to be treated into the thawed water and the treated liquid by using the freeze-concentrator 1 will be described below.

凍結濃縮処理により被処理液を解氷水と処理済液に分離する一連の工程は、製氷工程と解氷工程に大別され、製氷工程と解氷工程が交互に繰り返される。製氷工程は、さらに製氷濃縮工程、洗浄工程に区分される、解氷工程の後に、さらに解氷水移動工程を設けることができる。なお、製氷工程と解氷工程は同時に行わないものとすることができる。凍結濃縮処理のフローの一例を図13に示すが、この図に限定されるものではない。なお、ある工程の終了の判断及びその次の工程の開始の命令等は、図示しない中央演算処理装置で行うことができる。 The series of steps of separating the liquid to be treated into ice-melting water and the treated liquid by the freeze-concentration treatment is roughly divided into an ice-making step and an ice-melting step, and the ice-making step and the ice-melting step are alternately repeated. The ice making step is further divided into an ice making concentration step and a washing step, and a deicing water transfer step can be further provided after the deicing step. The ice making step and the ice defrosting step may not be performed at the same time. An example of the flow of the freeze-concentration treatment is shown in FIG. 13, but the flow is not limited to this figure. It should be noted that the determination of the end of a certain process and the instruction to start the next process can be performed by a central processing unit (not shown).

このほか、被処理液を系外から補充する補充工程を設けることができる。当該補充工程は製氷工程が終了した後に行うとよい。仮に製氷工程中に補充工程が行われるとすると、製氷工程中に停電その他の何らかの要因で凍結濃縮装置1が停止した場合に、再起動したときに、補充工程によって補充された被処理液を用いて製氷が再開されると、停止時において冷却コイル4Cに既に着氷された氷分の表層に、さらに氷分が形成されて過剰に成長し、冷却管間で氷分がブリッジングしたり、冷却コイル4Cの破損をもたらしたりするという不具合が発生する。また、再起動後に解氷工程を行うことによって、過剰に形成された氷分が溶けて解氷水となり、解氷水タンク3から溢れてしまうおそれもある。このようなことを発生させないように、補充工程を行うタイミングを製氷工程が終了した後とするとよい。製氷工程又は解氷工程において、解氷水貯留タンク7に溜まっている解氷水は、任意のタイミングで流路7AからポンプP6を起動させて系外に排出水として排出してもよい。 In addition, a replenishment step for replenishing the liquid to be treated from outside the system can be provided. The replenishment step may be performed after the ice making step is completed. Assuming that the replenishment process is performed during the ice making process, if the freeze-concentrator 1 is stopped due to a power failure or some other factor during the ice making process, the liquid to be replenished by the replenishment process is used when the freeze-concentrator 1 is restarted. When ice making is resumed, ice is further formed on the surface layer of ice that has already landed on the cooling coil 4C at the time of stop, and excessive growth occurs, and the ice bridges between the cooling pipes. There is a problem that the cooling coil 4C is damaged. Further, by performing the deicing step after restarting, the excessively formed ice may be melted to become deicing water and overflow from the deicing water tank 3. In order to prevent such a situation from occurring, the timing of performing the replenishment process may be after the ice making process is completed. In the ice making step or the deicing step, the defrosting water accumulated in the deicing water storage tank 7 may be discharged as discharged water to the outside of the system by starting the pump P6 from the flow path 7A at an arbitrary timing.

(待機時)
製氷工程を説明する前に待機時について説明する。図2は、待機時を示す概略図である。待機時では冷却コイル4Cに氷分が着氷されていない。待機時においては、被処理液J1が系外から流路6Bを流れて被処理液貯留タンク6に供給される。解氷水タンク3には、解氷工程を行う前までに、解氷水タンク3と凍結濃縮槽4を循環するのに必要な量の水を溜めておくとよい。なお、各工程で利用されている設備機器や流路等を図面において太く、又は黒く塗りつぶして示してあることに留意されたい。
(On standby)
Before explaining the ice making process, the standby time will be described. FIG. 2 is a schematic view showing standby time. During standby, no ice has landed on the cooling coil 4C. During standby, the liquid to be treated J1 flows from outside the system through the flow path 6B and is supplied to the liquid to be treated storage tank 6. Before performing the deicing step, the deicing water tank 3 may store an amount of water necessary for circulating the deicing water tank 3 and the freezing and concentrating tank 4. It should be noted that the equipment, flow paths, etc. used in each process are shown in thick or black in the drawings.

(補充工程)
図3に示す補充工程は、ポンプP5を起動させて、被処理液貯留タンク6から被処理液が流路6Aを流れ補充されて、冷却コイル4Cに着氷する液量を供給タンク2に用意する工程である。冷却コイル4Cに着氷させる液量は、供給タンク2の液位で管理することができ、例えば液位があらかじめ定めておいた液位であるHレベルのときに、冷却コイル4Cに着氷される液量が用意されたと判断することができる。このHレベルのときの供給タンク2の液量を特に初期液量という。供給タンク2に用意された被処理液の温度は、特に限定されず周囲の雰囲気に依存するが、例えば、10~30℃であると、その後の工程に支障がなく好ましい。
(Replenishment process)
In the replenishment step shown in FIG. 3, the pump P5 is started, the liquid to be treated flows from the liquid storage tank 6 to be replenished through the flow path 6A, and the amount of liquid to be iced on the cooling coil 4C is prepared in the supply tank 2. It is a process to do. The amount of liquid to be iced on the cooling coil 4C can be controlled by the liquid level of the supply tank 2, for example, when the liquid level is the H level which is a predetermined liquid level, the ice is landed on the cooling coil 4C. It can be determined that the amount of liquid has been prepared. The amount of liquid in the supply tank 2 at this H level is particularly called the initial amount of liquid. The temperature of the liquid to be treated prepared in the supply tank 2 is not particularly limited and depends on the surrounding atmosphere, but for example, 10 to 30 ° C. is preferable because it does not hinder the subsequent steps.

(製氷濃縮工程)
製氷工程は、被処理液を冷却処理して、当該被処理液の一部が凍結されて生成した氷分を分離し、残りの被処理液を再度、冷却処理に利用する工程を繰り返して、所定レベルまで濃縮された処理済液を得る工程である。製氷工程のうちの製氷濃縮工程は補充工程が終了した後に行うとよい。図4に示す製氷濃縮工程は、被処理液が、供給タンク2から始まり流路2Aを流れ、凍結濃縮槽4に至り、流路4A及び流路4Bを流れ、供給タンク2に戻る、という循環を行って、冷却コイル4Cに氷分を着氷させ成長させるという冷却処理を行う工程である。冷凍機4F及びポンプP7が起動され、冷却管を流れる冷媒の循環により冷却コイル4Cは、およそ-5~-10℃に冷却される。流路4Bに設けられたバルブV1は、製氷濃縮工程の間は開けておくとよい。
(Ice making concentration process)
In the ice making step, the process of cooling the liquid to be treated, separating the ice content generated by freezing a part of the liquid to be treated, and using the remaining liquid to be treated again for the cooling treatment is repeated. This is a step of obtaining a treated liquid concentrated to a predetermined level. The ice making concentration step in the ice making step should be performed after the replenishment step is completed. In the ice making concentration step shown in FIG. 4, the liquid to be treated starts from the supply tank 2, flows through the flow path 2A, reaches the freeze concentration tank 4, flows through the flow path 4A and the flow path 4B, and returns to the supply tank 2. This is a step of performing a cooling process in which ice is landed on the cooling coil 4C and grown. The refrigerator 4F and the pump P7 are started, and the cooling coil 4C is cooled to about −5 to −10 ° C. by the circulation of the refrigerant flowing through the cooling pipe. The valve V1 provided in the flow path 4B may be left open during the ice making concentration step.

ポンプP1を起動して流路2Aを流れ凍結濃縮槽4に至った被処理液は、凍結濃縮槽4に備わる散布部4Gから下方に離間して備わる冷却コイル4Cに散布される。散布された被処理液は、冷却コイル4Cの表面又は冷却コイル4Cに付着した氷分の表面を、液膜状をなして巡りながら流下し、その流下過程で被処理液(流下液)が冷却される。流下液の純水分の一部のみが冷却コイル4Cの表面又は冷却コイル付着氷分の表面に着氷し、残部は濃縮された被処理液(濃縮分)になる。これによって、凍結濃縮による氷分と濃縮分とへの分離がなされる。そしてこの残部濃縮分は、被処理液の連続循環によって順次当該着氷部位を通り流下する被処理液に順次取込まれ、洗い流される。かかる濃縮分を取り込みつつ流下し貯液部4Wに到達した被処理液は流路4A、4Bを介して供給タンク2に返送されて、タンク内の被処理液と混合された後、再度散布部4Gへと連続的に循環される。かかる供給タンク2と凍結濃縮槽4との間の被処理液の連続循環において、被処理液中の実質的に水のみが氷となり冷却コイル4Cに蓄えられ、不純物は蓄氷には取り込まれずに循環し続けるので、循環する被処理液の不純物濃度が経時的に高くなるとともに、被処理液から純粋な水が氷として分離されることになる。 The liquid to be treated, which has reached the freeze-concentration tank 4 by starting the pump P1 and flowing through the flow path 2A, is sprayed on the cooling coil 4C provided at a lower distance from the spraying portion 4G provided in the freeze-concentration tank 4. The sprayed liquid to be treated flows down on the surface of the cooling coil 4C or the surface of ice adhering to the cooling coil 4C in the form of a liquid film, and the liquid to be treated (flowing liquid) is cooled in the flow-down process. Will be done. Only a part of the pure water content of the flowing liquid lands on the surface of the cooling coil 4C or the surface of the ice content attached to the cooling coil, and the rest becomes the concentrated liquid to be treated (concentrated content). As a result, the ice and the concentrate are separated by freezing and concentration. Then, this residual concentrate is sequentially taken into the liquid to be treated flowing down through the icing site by continuous circulation of the liquid to be treated, and is washed away. The liquid to be treated, which flows down while taking in the concentrated portion and reaches the liquid storage unit 4W, is returned to the supply tank 2 via the flow paths 4A and 4B, mixed with the liquid to be treated in the tank, and then sprayed again. It is continuously circulated to 4G. In the continuous circulation of the liquid to be treated between the supply tank 2 and the freeze concentration tank 4, substantially only water in the liquid to be treated becomes ice and is stored in the cooling coil 4C, and impurities are not taken into the ice storage. Since the circulation continues, the impurity concentration of the circulating liquid to be treated increases with time, and pure water is separated from the liquid to be treated as ice.

特徴的には、前述のとおり冷却コイル付着氷の表面を常に流下液が舐めるように流下し濃縮分を取り込み洗浄するので、濃縮分に含まれる不純物が一ヶ所に高濃度で留まりにくくなり、そのため製造した氷に不純物が取り込まれにくいとともに、製氷効率も高くなる。その結果、被処理液の90%以上を実質的に純水分のみからなる氷として蓄えることができる。製氷濃縮工程は、例えば、供給タンク2に用意した被処理液量(初期液量)の90%が氷分となったときの、供給タンク2の液位(Lレベル)をもって、終了と判断することができる。 Characteristically, as described above, the surface of the ice attached to the cooling coil is constantly flowed down so that the flowing liquid is licked, and the concentrated component is taken in and washed. Impurities are less likely to be incorporated into the produced ice, and ice production efficiency is also improved. As a result, 90% or more of the liquid to be treated can be stored as ice containing substantially only pure water. The ice making concentration step is determined to be completed based on, for example, the liquid level (L level) of the supply tank 2 when 90% of the liquid to be treated (initial liquid amount) prepared in the supply tank 2 becomes ice content. be able to.

製氷工程では、被処理液が凍結濃縮処理により濃縮されて氷分が分離され、残りの被処理液が再度、凍結濃縮処理に利用されるが、前記被処理液の温度(t1)が前記残りの被処理液の温度(t4)より大であるときは、製氷工程を終了し、解氷工程を開始するとよい。前記被処理液の温度(t1)が前記残りの被処理液の温度(t4)より大であると、冷却コイル4Cに氷分が残留している可能性があり、製氷工程を継続すると氷分が過剰に形成されてしまうおそれがある。 In the ice making step, the liquid to be treated is concentrated by the freeze concentration treatment to separate the ice content, and the remaining liquid to be treated is used again for the freeze concentration treatment, but the temperature (t1) of the liquid to be treated remains. When the temperature is higher than the temperature (t4) of the liquid to be treated, the ice making step may be terminated and the ice melting step may be started. If the temperature (t1) of the liquid to be treated is higher than the temperature (t4) of the remaining liquid to be treated, ice content may remain in the cooling coil 4C, and if the ice making process is continued, the ice content may remain. May be excessively formed.

また、製氷工程を開始して、被処理液の温度(t1)と残りの被処理液の温度(t4)の差が1℃以上であるとき、又は、残りの被処理液の温度(t4)が7℃以下であるときは、製氷工程を終了し、解氷工程を開始するものとしてもよい。 Further, when the ice making process is started and the difference between the temperature of the liquid to be treated (t1) and the temperature of the remaining liquid to be treated (t4) is 1 ° C. or more, or the temperature of the remaining liquid to be treated (t4). When the temperature is 7 ° C. or lower, the ice making step may be terminated and the ice melting step may be started.

処理済液は、特に限定されないが例えば、製氷濃縮工程前における被処理液に含まれる不純物濃度が10倍に高められた(濃縮された)液体ということができる。 The treated liquid is not particularly limited, but can be, for example, a liquid in which the concentration of impurities contained in the liquid to be treated before the ice making concentration step is increased 10 times (concentrated).

(洗浄工程)
図6に示す洗浄工程は、製氷濃縮工程の終了後に行うとよい。洗浄工程は、製氷濃縮工程で散布部4Gや冷却コイル付着氷分の表面に残留した被処理液を洗い落とす工程である。流路4Eに備わるバルブV3を開け、浄水G2を流路4Eを介して散布部4Gに供給して、当該散布部4Gから冷却コイル4Cに散布する。浄水は冷却コイル4Cに残留する被処理液と混ざりつつ滴り落ちて、貯液部4Wから流路4A、4Bを流れ、供給タンク2に流れ込み、供給タンク2に入っている混合液と混ざる。浄水は一回の洗浄工程当たり所定量、用いるとよい。ここで、浄水としては、例えば上水、蒸留水等を用いることができる。洗浄工程を終えたら、バルブV3、バルブV1を閉じる。洗浄工程は、凍結濃縮槽4に供給された浄水が供給タンク2に回収された段階で終了するとよい。
(Washing process)
The washing step shown in FIG. 6 may be performed after the completion of the ice making and concentration step. The washing step is a step of washing off the liquid to be treated remaining on the surface of the spraying portion 4G and the ice component adhering to the cooling coil in the ice making concentration step. The valve V3 provided in the flow path 4E is opened, the purified water G2 is supplied to the spraying portion 4G via the flow path 4E, and the purified water G2 is sprayed from the spraying portion 4G to the cooling coil 4C. The purified water drips while mixing with the liquid to be treated remaining in the cooling coil 4C, flows from the liquid storage unit 4W through the flow paths 4A and 4B, flows into the supply tank 2, and mixes with the mixed liquid contained in the supply tank 2. It is advisable to use purified water in a predetermined amount per cleaning process. Here, as the purified water, for example, clean water, distilled water, or the like can be used. After finishing the cleaning process, the valve V3 and the valve V1 are closed. The cleaning step may be completed when the purified water supplied to the freeze-concentration tank 4 is collected in the supply tank 2.

図5に示すように供給タンク2に溜まった濃縮された処理済液は、洗浄工程が終了した後にポンプP3を起動させて、流路2Bから系外に排出することができる。しかしながら、洗浄工程を終えた後に、処理済液J2として排出すると、処理済液に浄水が混じり、処理済液に含まれる不純物の濃度が薄まってしまう。そのため、処理済液J2として排出するタイミングを、製氷濃縮工程と洗浄工程の間とする方が、処理済液を濃いまま排出できるので好ましい。処理済液J2の排出量は、例えば、液量の収支バランスを考慮して、補充工程で被処理液貯留タンク6から供給タンク2に補充された被処理液の液量(補充量)の10%とするとよい。なお、処理済液J2が排出された後の供給タンク2の液位を特にLLレベルという。 As shown in FIG. 5, the concentrated treated liquid accumulated in the supply tank 2 can be discharged from the flow path 2B to the outside of the system by starting the pump P3 after the cleaning step is completed. However, if the treated liquid J2 is discharged after the cleaning step is completed, the treated liquid is mixed with purified water, and the concentration of impurities contained in the treated liquid is reduced. Therefore, it is preferable to set the timing of discharging the treated liquid J2 between the ice making concentration step and the washing step because the treated liquid can be discharged while being concentrated. The discharge amount of the treated liquid J2 is, for example, 10 of the liquid amount (replenishment amount) of the liquid to be treated that has been replenished from the liquid storage tank 6 to the supply tank 2 in the replenishment step in consideration of the balance of the liquid amount. %. The liquid level of the supply tank 2 after the treated liquid J2 is discharged is particularly called the LL level.

(解氷工程)
解氷工程は、製氷工程で得られた氷分に、温水を掛けて溶かし解氷水を得て、当該解氷水を加温して再度氷分を溶かす温水として利用する工程を、繰り返し行う工程である。図7に示す解氷工程では、解氷水タンク3に溜まる解氷水が、解氷水タンク3から始まり流路3Aを流れながら熱交換器5により温められ、凍結濃縮槽4に至り、流路4A及び流路4Dを流れ、解氷水タンク3に戻る、という循環を連続して行って、冷却コイル4Cに着氷した氷分を溶かすものとなっている。解氷工程の間は、熱交換器5を起動し、流路4Dに設けられるバルブV2を開けておく。
(Ice defrosting process)
The deicing process is a process of repeating the process of sprinkling hot water on the ice obtained in the ice making process to melt it to obtain defrosted water, heating the defrosted water, and using it as hot water to melt the ice again. be. In the deicing step shown in FIG. 7, the deicing water collected in the deicing water tank 3 starts from the deicing water tank 3 and is heated by the heat exchanger 5 while flowing through the flow path 3A to reach the freeze concentration tank 4, the flow path 4A and the flow path 4A. The ice that has landed on the cooling coil 4C is melted by continuously performing a circulation of flowing through the flow path 4D and returning to the deicing water tank 3. During the ice-melting process, the heat exchanger 5 is started and the valve V2 provided in the flow path 4D is opened.

製氷工程で冷却コイル4Cに着氷した氷分は、散布部4Gから供給される温水の散布を受けて溶け出して解氷水となり、貯液部4Wに落ち、流路4A、4Dを介して解氷水タンク3に回収される。冷却コイル4Cに氷分が多く残っているうちは、温水が当該氷分によって冷やされ、流路4Aを流れる解氷水の温度(t3)が散布される温水の温度(t2)よりも低くなるが、冷却コイル4Cの氷分が少なくなるにつれて、同解氷水の温度(t3)が散布される温水の温度(t2)に近づく。解氷工程を開始する前までに解氷水タンク3にあらかじめ入っている解氷水の温度を60℃程度に加温しておけば、多くの時間を費やすことなく解氷工程を終えることができ好ましい。解氷水の温度を加温するものとしては、例えば冷房や排熱から排出される熱量や電気ヒーター等を利用することができる。 The ice that has landed on the cooling coil 4C in the ice making process is sprayed with hot water supplied from the spraying section 4G and melts to become deicing water, which falls into the liquid storage section 4W and is thawed via the flow paths 4A and 4D. It is collected in the ice water tank 3. While a large amount of ice remains in the cooling coil 4C, the hot water is cooled by the ice, and the temperature (t3) of the defrosted water flowing through the flow path 4A becomes lower than the temperature (t2) of the hot water to be sprayed. As the ice content of the cooling coil 4C decreases, the temperature of the thawed water (t3) approaches the temperature of the hot water to which it is sprayed (t2). If the temperature of the deicing water contained in the deicing water tank 3 is heated to about 60 ° C. before the deicing process is started, the deicing process can be completed without spending a lot of time, which is preferable. .. As a device for heating the temperature of the defrosted water, for example, the amount of heat discharged from cooling or waste heat, an electric heater, or the like can be used.

解氷工程は、解氷水の温度(t3)が7℃以上になったときに終了するとよい。当該温度であれば、冷却コイル4Cに着氷した氷分が全て溶けた状態となる。ここで、冷却コイル4Cに着氷した氷分が全て溶けた時点は、次のように判断することができる。例えば、解氷水の温度(t3)が7℃以上、より好ましくは10℃以上になったときに、冷却コイル4Cに着氷した氷分が全て溶けたと判断することができる。解氷水の温度(t3)は流路4Aに設けられた温度センサーT3で計測することができる。また、次のように判断することもできる。例えば、温水の温度(t2)と解氷水の温度(t3)の差が0.5℃以下、より好ましくは0.2℃以下になったときに、冷却コイル4Cに着氷した氷分が全て溶けたと判断することができる。従来は、冷却コイル4Cに着氷された氷分が完全に溶ける十分な時間、解氷工程を継続していたが、上記のように温度を基準にして解氷工程の終了の判断を行うことで、解氷工程にかかる時間を管理でき、処理時間の短縮化を図ることができる。 The deicing step may be completed when the temperature (t3) of the deicing water reaches 7 ° C. or higher. At that temperature, all the ice that has landed on the cooling coil 4C is in a melted state. Here, when all the ice content that has landed on the cooling coil 4C has melted, it can be determined as follows. For example, when the temperature (t3) of the deicing water reaches 7 ° C. or higher, more preferably 10 ° C. or higher, it can be determined that all the ice content that has landed on the cooling coil 4C has melted. The temperature (t3) of the thawed water can be measured by the temperature sensor T3 provided in the flow path 4A. It can also be determined as follows. For example, when the difference between the temperature of hot water (t2) and the temperature of deicing water (t3) is 0.5 ° C or less, more preferably 0.2 ° C or less, all the ice content that has landed on the cooling coil 4C is all. It can be judged that it has melted. In the past, the deicing process was continued for a sufficient time for the ice landed on the cooling coil 4C to completely melt, but as described above, the end of the deicing process should be determined based on the temperature. Therefore, the time required for the deicing process can be managed, and the processing time can be shortened.

解氷工程は、冷却コイル4Cに着氷した氷分が、全て溶けていなくてもある程度溶けた段階で適宜終了してよいようにも思える。しかしながら、当該氷分が残っていると、製氷工程を開始した場合に、その残っている氷分の表面に新たな氷分が付着して成長する結果、予期された氷分以上の氷分が、冷却コイル4Cに着氷され、冷却コイル4Cの冷却管間においてブリッジングを形成したり、冷却コイル4Cを破損したりするおそれがある。また、過剰に氷分が冷却コイル4Cに着氷されていると、その後の解氷工程を行ったときに、解氷水が解氷水タンク3から溢れ出るおそれもある。これらの点を踏まえると、解氷工程は、冷却コイル4Cに着氷した氷分が全て溶けた時点で終了するとした方が望ましい。 It seems that the deicing process may be appropriately terminated when the ice content on the cooling coil 4C is not completely melted but is melted to some extent. However, if the ice content remains, when the ice making process is started, new ice content adheres to the surface of the remaining ice content and grows, resulting in more ice content than expected. There is a risk that ice will land on the cooling coil 4C, forming bridging between the cooling pipes of the cooling coil 4C, or damaging the cooling coil 4C. Further, if an excessive amount of ice is landed on the cooling coil 4C, the deicing water may overflow from the deicing water tank 3 when the subsequent deicing step is performed. Considering these points, it is desirable that the deicing process is completed when all the ice that has landed on the cooling coil 4C has melted.

解氷工程を終了した後は、熱交換器5を停止し、バルブV2を閉じておくとよい。 After the deicing step is completed, the heat exchanger 5 may be stopped and the valve V2 may be closed.

(解氷水移動工程)
解氷工程を終了した後は、解氷水タンク3の解氷水を系外に直接放出してもよいが、解氷水移動工程を設けてもよい。図8に示すように解氷水移動工程は、解氷水貯留タンク7を設けて、これに解氷水タンク3の解氷水を一時的に貯留して系外に放出する工程である。解氷水移動工程では、解氷水タンク3に備わるポンプP4を起動させて、解氷水を流路3Bを介して解氷水タンク3から解氷水貯留タンク7に移動させて貯留する。解氷水貯留タンク7に貯留された解氷水は、系外での排出水の需要に応じてポンプP6を起動させて流路7Aから排出水K1として排出される。また、系外での水の需要に応じて浄水G1を解氷水に混ぜてもよい。浄水G1はバルブV4を開き、流路7Bを介して解氷水貯留タンク7に流入させることができる。
(Movement process of thawed water)
After the deicing step is completed, the deicing water of the deicing water tank 3 may be directly discharged to the outside of the system, but a deicing water moving step may be provided. As shown in FIG. 8, the thawing water moving step is a step of providing a thawing water storage tank 7 and temporarily storing the thawing water of the thawing water tank 3 in the thawing water storage tank 7 and discharging the thawing water to the outside of the system. In the thawing water moving step, the pump P4 provided in the thawing water tank 3 is started to move the thawing water from the thawing water tank 3 to the thawing water storage tank 7 via the flow path 3B and store the thawing water. The defrosted water stored in the defrosted water storage tank 7 is discharged as discharged water K1 from the flow path 7A by starting the pump P6 in response to the demand for the discharged water outside the system. Further, purified water G1 may be mixed with defrosted water according to the demand for water outside the system. The purified water G1 can open the valve V4 and flow into the deicing water storage tank 7 via the flow path 7B.

解氷水移動工程は、例えば、冷却コイル4Cに着氷された氷分と等量の解氷水が、解氷水タンク3から解氷水貯留タンク7へ移動した時点で終了とすることができる。この終了時の解氷水タンク3の液位を特にLレベルという。 The defrosting water transfer step can be terminated, for example, when the amount of defrosting water equal to the amount of ice landed on the cooling coil 4C is transferred from the defrosting water tank 3 to the defrosting water storage tank 7. The liquid level of the deicing water tank 3 at the end of this is particularly called the L level.

解氷工程又は解氷水移動工程が終了した後は、待機時又は製氷工程に移行するとよい。 After the deicing step or the deicing water transfer step is completed, it is advisable to shift to the standby time or the ice making step.

製氷工程、解氷工程(解氷水移動工程を含めてもよい)における、各タンクの温度、液量等の時系列変化を図9を参照しつつ説明する。図9は一実施例である。横軸は時間経過(単位:時間)、縦軸左目盛りは温度(単位:℃)、縦軸右目盛りは液量(単位:m3)である。供給タンク2の液量L2は、製氷濃縮工程の開始時にHレベルになっており、被処理液の循環を行うにつれ、減少してLレベルになったときに終了する。供給タンク2の液量は、その後の洗浄工程で増加し、処理済液として排出されてLLレベルにまで減少した後、補充工程でHレベルまで増加する。なお、洗浄工程は、例えば、浄水を50L程度、散布部4Gから散布するとよく、洗浄工程の所要時間はおよそ1分程度とするとよい。図9において、符号F1が補充工程、符号F2が製氷濃縮工程、符号F3が洗浄工程、符号F4が解氷工程、符号F5が解氷水移動工程、符号J2が系外に排出される処理済液をそれぞれ示す。各温度センサーT1,T2,T3は上記の各行程F1~F5中、当該センサーを流れる液体の温度を計測するものとすることができる。また、計測された温度の演算、例えばt1とt4の差分の算出や、t2とt3の差差分の算出等は、図示しない中央演算処理装置で行うことができる。この他、中央演算処理装置は、各温度センサーT1,T2,T3で計測された経時的な温度の計測情報の入力を受け、当該計測情報を記憶し、保存することができる。 Time-series changes in the temperature, liquid volume, etc. of each tank in the ice making process and the ice defrosting process (may include the deicing water transfer step) will be described with reference to FIG. FIG. 9 is an example. The horizontal axis is the passage of time (unit: time), the vertical axis on the left scale is the temperature (unit: ° C.), and the vertical axis on the right scale is the liquid volume (unit: m 3 ). The liquid amount L2 of the supply tank 2 is at the H level at the start of the ice making concentration step, and ends when it decreases to the L level as the liquid to be treated is circulated. The amount of liquid in the supply tank 2 increases in the subsequent cleaning step, is discharged as a treated liquid, decreases to the LL level, and then increases to the H level in the replenishment step. In the cleaning step, for example, about 50 L of purified water may be sprayed from the spraying portion 4G, and the time required for the cleaning step may be about 1 minute. In FIG. 9, reference numeral F1 is a replenishment step, reference numeral F2 is an ice making concentration step, reference numeral F3 is a washing step, reference numeral F4 is a deicing step, reference numeral F5 is a deicing water moving step, and reference numeral J2 is a treated liquid discharged to the outside of the system. Are shown respectively. Each temperature sensor T1, T2, T3 can measure the temperature of the liquid flowing through the sensor during each of the above steps F1 to F5. Further, the calculation of the measured temperature, for example, the calculation of the difference between t1 and t4, the calculation of the difference difference between t2 and t3, and the like can be performed by a central processing unit (not shown). In addition, the central processing unit can receive input of temperature measurement information over time measured by each temperature sensor T1, T2, T3, and can store and store the measurement information.

供給タンク2内の被処理液の温度(t1)は、製氷濃縮工程を開始すると降下し、製氷濃縮工程中、約0℃に維持される。被処理液の温度(t1)は、その後の工程では、冷却される要因がないので、雰囲気の温度に向かって徐々に上昇する。 The temperature (t1) of the liquid to be treated in the supply tank 2 drops when the ice making concentration step is started, and is maintained at about 0 ° C. during the ice making concentration step. The temperature (t1) of the liquid to be treated gradually rises toward the temperature of the atmosphere because there is no factor for cooling in the subsequent steps.

冷凍機4Fの蒸発温度Vは、製氷濃縮工程が開始される-10℃に向かって降下し、製氷濃縮工程が終了した後は上昇する。 The evaporation temperature V of the refrigerator 4F decreases toward −10 ° C. at which the ice making concentration step is started, and rises after the ice making concentration step is completed.

解氷水タンク3の液量L3は、製氷濃縮工程及び洗浄工程の間は一定であり、解氷工程が開始されると、冷却コイル4Cに着氷された氷分が解氷されて、当該解氷分が増加する。 The liquid amount L3 of the deicing water tank 3 is constant during the ice making concentration step and the washing step, and when the deicing step is started, the ice content landed on the cooling coil 4C is thawed and the solution is taken. Ice content increases.

解氷水タンク3の温度(t6)は、解氷工程が開始される前までに所望の温度(図9では60℃)になるようにするとよい。解氷水タンク3の温度は、解氷工程が開始されると0℃に向かって降下した後、解氷工程が終了されるまで徐々に上昇し、解氷工程終了後は一定になる。 The temperature (t6) of the deicing water tank 3 may be set to a desired temperature (60 ° C. in FIG. 9) before the deicing step is started. The temperature of the deicing water tank 3 drops toward 0 ° C. when the deicing process is started, then gradually rises until the deicing process is completed, and becomes constant after the deicing process is completed.

凍結濃縮装置1を用いて、凍結濃縮処理を行った。補充工程を行い、冷却コイル4Cに氷分が着氷されていないのを確認した後、製氷濃縮工程を始めた。製氷濃縮工程における被処理液の流量は30m3/hとした。散布部4Gに供給される被処理液の温度(t1)を温度センサーT1で、貯液部4Wから排出される濃縮された被処理液の温度(t4)を温度センサーT3でそれぞれ計測した。また、供給タンク2内の被処理液の液量L2を計測した。これらの計測結果を時系列に示したのが図10である。 The freeze-concentration treatment was performed using the freeze-concentrator 1. After performing the replenishment step and confirming that no ice had landed on the cooling coil 4C, the ice making concentration step was started. The flow rate of the liquid to be treated in the ice making concentration step was 30 m 3 / h. The temperature (t1) of the liquid to be treated supplied to the spraying unit 4G was measured by the temperature sensor T1, and the temperature (t4) of the concentrated liquid to be treated discharged from the liquid storage unit 4W was measured by the temperature sensor T3. Further, the liquid amount L2 of the liquid to be treated in the supply tank 2 was measured. FIG. 10 shows these measurement results in chronological order.

製氷濃縮工程及び洗浄工程を終了した後、解氷工程を始めた。解氷工程における解氷水の流量は30m3/hとした。散布部4Gに供給される温水の温度(t2)を温度センサーT2で、貯液部4Wから排出される解氷水の温度(t3)を温度センサーT3でそれぞれ計測した。また、解氷水タンク3内の解氷水の液量L3を計測した。これらの計測結果を時系列に示したのが図12である。 After completing the ice making concentration step and the washing step, the ice defrosting step was started. The flow rate of the deicing water in the deicing step was set to 30 m 3 / h. The temperature (t2) of the hot water supplied to the spraying unit 4G was measured by the temperature sensor T2, and the temperature (t3) of the defrosted water discharged from the liquid storage unit 4W was measured by the temperature sensor T3. Moreover, the liquid amount L3 of the deicing water in the deicing water tank 3 was measured. FIG. 12 shows these measurement results in chronological order.

解氷工程を始めると、解氷水の温度(t3)が徐々に上昇するとともに、温水の温度(t2)が徐々に降下した。解氷水タンク3の液量L3は、解氷工程が開始されると増加し、1時間経過後には、横ばいになった。また、解氷工程の開始1時間経過後には、温水の温度(t2)と解氷水の温度(t3)の差が0.2℃になり、冷却コイル4Cに氷分が着氷されていないことが確認された。 When the deicing process was started, the temperature of the deicing water (t3) gradually increased and the temperature of the hot water (t2) gradually decreased. The liquid volume L3 of the deicing water tank 3 increased when the deicing process was started, and leveled off after 1 hour. Further, one hour after the start of the deicing process, the difference between the temperature of the hot water (t2) and the temperature of the deicing water (t3) becomes 0.2 ° C., and the ice content is not icing on the cooling coil 4C. Was confirmed.

なお、実施例では、解氷工程が、解氷水の温度(t3)が15℃以上になったときに終了するように設定されている。図12の右端部からは解氷水タンク3の液位L3が増加していることが読み取れるが、これは、解氷水の温度(t3)が15℃に達して解氷工程の終了が判断され、ポンプP2の運転が停止したことで、循環路(具体的には流路3A、凍結濃縮槽4、流路4A,4D)を流れる液体が解氷水タンク3に流れ落ちたことによるものである。 In the embodiment, the deicing step is set to end when the temperature (t3) of the deicing water reaches 15 ° C. or higher. From the right end of FIG. 12, it can be read that the liquid level L3 of the deicing water tank 3 is increasing, but this is because the temperature (t3) of the deicing water reaches 15 ° C. and it is judged that the deicing process is completed. This is because the operation of the pump P2 was stopped, and the liquid flowing through the circulation path (specifically, the flow path 3A, the freeze concentration tank 4, the flow path 4A, 4D) flowed down to the deicing water tank 3.

比較例として、冷却コイル4Cに氷分が着氷されている状態で製氷濃縮工程を始めたのが図11である。製氷濃縮工程における被処理液の流量は30m3/hとした。散布部4Gに供給される被処理液の温度(t1)を温度センサーT1で、貯液部4Wから排出される濃縮された被処理液の温度(t4)を温度センサーT3でそれぞれ計測した。また、供給タンク2内の被処理液の液量L2を計測した。図10~図12において、横軸は時間経過(単位:時間)、縦軸左目盛りは温度(単位:℃)、縦軸右目盛りは液量(単位:m3)である。 As a comparative example, FIG. 11 shows that the ice making concentration step was started in a state where ice was landed on the cooling coil 4C. The flow rate of the liquid to be treated in the ice making concentration step was 30 m 3 / h. The temperature (t1) of the liquid to be treated supplied to the spraying unit 4G was measured by the temperature sensor T1, and the temperature (t4) of the concentrated liquid to be treated discharged from the liquid storage unit 4W was measured by the temperature sensor T3. Further, the liquid amount L2 of the liquid to be treated in the supply tank 2 was measured. In FIGS. 10 to 12, the horizontal axis is the passage of time (unit: time), the vertical axis left scale is the temperature (unit: ° C.), and the vertical axis right scale is the liquid volume (unit: m 3 ).

本発明は、流下液膜式の凍結濃縮処理に利用でき、廃水の減容化、海水の淡水化のほか、食品、発酵、化学工業、製薬における濃縮処理、排水・汚水の処理等の産業分野に利用可能である。 The present invention can be used for a flow-down liquid film type freeze concentration treatment, and in addition to reducing the volume of wastewater and desalinating seawater, industrial fields such as food, fermentation, chemical industry, concentration treatment in pharmaceuticals, wastewater / sewage treatment, etc. It is available for.

1 凍結濃縮装置
2 供給タンク
3 解氷水タンク
4 冷凍機
4C 冷却コイル
4G 散布部
4W 貯液部
5 熱交換器
6 被処理液貯留タンク
7 解氷水貯留タンク
1 Freezing and concentrating device 2 Supply tank 3 Freezing water tank 4 Refrigerator 4C Cooling coil 4G Spraying part 4W Liquid storage part 5 Heat exchanger 6 Processed liquid storage tank 7 Freezing water storage tank

Claims (6)

被処理液を凍結濃縮処理により濃縮して氷分と処理済液とを得る凍結濃縮方法において、
得られた氷分に、温水を掛けて溶かし解氷水を得て、当該解氷水を加温して再度氷分を溶かす温水として利用する工程を、繰り返し行う解氷工程を有し、
前記解氷工程は、前記解氷水の温度(t3)が7℃以上になったときに終了するものである、
ことを特徴とする凍結濃縮方法。
In the freeze-concentration method in which the liquid to be treated is concentrated by freeze-concentration treatment to obtain ice content and the treated liquid.
It has a deicing step of repeating the steps of sprinkling hot water on the obtained ice to melt it to obtain defrosted water, heating the defrosted water, and using it as hot water to melt the ice again.
The deicing step ends when the temperature (t3) of the deicing water reaches 7 ° C. or higher.
A freeze-concentration method characterized by this.
被処理液を冷却処理して当該被処理液の一部が凍結されて生成した氷分を分離し、残りの被処理液を再度、冷却処理に利用する工程を繰り返して、所定レベルまで濃縮された処理済液を得る製氷工程を有し、
前記製氷工程と前記解氷工程が交互に繰り返し行われ、
前記被処理液の温度(t1)が前記残りの被処理液の温度(t4)より大であるときは、前記製氷工程を終了し、前記解氷工程を開始する、
ことを特徴とする請求項1記載の凍結濃縮方法。
The liquid to be treated is cooled, a part of the liquid to be treated is frozen to separate the ice content generated, and the remaining liquid to be treated is used again for the cooling treatment, and the process is repeated to concentrate the liquid to a predetermined level. It has an ice making process to obtain the processed liquid.
The ice making process and the ice defrosting process are alternately repeated,
When the temperature (t1) of the liquid to be treated is higher than the temperature (t4) of the remaining liquid to be treated, the ice making step is terminated and the ice defrosting step is started.
The freeze-concentration method according to claim 1, wherein the method is characterized by the above.
被処理液を冷却処理して当該被処理液の一部が凍結されて生成した氷分を分離し、残りの被処理液を再度、冷却処理に利用する工程を繰り返して、所定レベルまで濃縮された処理済液を得る製氷工程を有し、
前記製氷工程と前記解氷工程が交互に繰り返し行われ、
前記被処理液の温度(t1)と前記残りの被処理液の温度(t4)の差が1℃以上であるときは、前記製氷工程を終了し、前記解氷工程を開始する、
ことを特徴とする請求項1記載の凍結濃縮方法。
The liquid to be treated is cooled, a part of the liquid to be treated is frozen to separate the ice content generated, and the remaining liquid to be treated is used again for the cooling treatment, and the process is repeated to concentrate the liquid to a predetermined level. It has an ice making process to obtain the processed liquid.
The ice making process and the ice defrosting process are alternately repeated,
When the difference between the temperature of the liquid to be treated (t1) and the temperature of the remaining liquid to be treated (t4) is 1 ° C. or more, the ice making step is terminated and the ice defrosting step is started.
The freeze-concentration method according to claim 1, wherein the method is characterized by the above.
被処理液を冷却処理して当該被処理液の一部が凍結されて生成した氷分を分離し、残りの被処理液を再度、冷却処理に利用する工程を繰り返して、所定レベルまで濃縮された処理済液を得る製氷工程を有し、
前記製氷工程と前記解氷工程が交互に繰り返し行われ、
前記残りの被処理液の温度(t4)が7℃以下であるときは、前記製氷工程を終了し、前記解氷工程を開始する、
ことを特徴とする請求項1記載の凍結濃縮方法。
The liquid to be treated is cooled, a part of the liquid to be treated is frozen to separate the ice content generated, and the remaining liquid to be treated is used again for the cooling treatment, and the process is repeated to concentrate the liquid to a predetermined level. It has an ice making process to obtain the processed liquid.
The ice making process and the ice defrosting process are alternately repeated,
When the temperature (t4) of the remaining liquid to be treated is 7 ° C. or lower, the ice making step is terminated and the ice defrosting step is started.
The freeze-concentration method according to claim 1, wherein the method is characterized by the above.
前記温水の温度(t2)と前記解氷水の温度(t3)の差が0.5℃以下になったときに前記解氷工程を終了する、
ことを特徴とする請求項1記載の凍結濃縮方法。
The deicing step is terminated when the difference between the temperature of the hot water (t2) and the temperature of the deicing water (t3) becomes 0.5 ° C. or less.
The freeze-concentration method according to claim 1, wherein the method is characterized by the above.
前記製氷工程で用いられる被処理液を系外から補充する補充工程を有し、
前記補充工程は、前記製氷工程が終了した後に行うものである、
請求項2記載の凍結濃縮方法。
It has a replenishment step of replenishing the liquid to be treated used in the ice making step from outside the system.
The replenishment step is performed after the ice making step is completed.
The freeze-concentration method according to claim 2.
JP2021069819A 2021-04-16 2021-04-16 Freeze concentration method Active JP7093443B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021069819A JP7093443B1 (en) 2021-04-16 2021-04-16 Freeze concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021069819A JP7093443B1 (en) 2021-04-16 2021-04-16 Freeze concentration method

Publications (2)

Publication Number Publication Date
JP7093443B1 true JP7093443B1 (en) 2022-06-29
JP2022164375A JP2022164375A (en) 2022-10-27

Family

ID=82214039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021069819A Active JP7093443B1 (en) 2021-04-16 2021-04-16 Freeze concentration method

Country Status (1)

Country Link
JP (1) JP7093443B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162267A (en) * 1999-12-08 2001-06-19 Mayekawa Mfg Co Ltd Separation and concentration method of solvent in solution and its device
JP2003001253A (en) * 2001-06-19 2003-01-07 Toray Ind Inc Apparatus for producing water and method therefor
JP2003287325A (en) * 2002-03-28 2003-10-10 Shin Nippon Air Technol Co Ltd Freeze-concentration method, and device for the same
JP2017074558A (en) * 2015-10-15 2017-04-20 新日本空調株式会社 Removing device and removing method of tritium
CN111646619A (en) * 2020-07-22 2020-09-11 深圳市鼎深科技有限公司 High-efficiency energy-saving sewage freezing and concentrating device and treatment process thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162267A (en) * 1999-12-08 2001-06-19 Mayekawa Mfg Co Ltd Separation and concentration method of solvent in solution and its device
JP2003001253A (en) * 2001-06-19 2003-01-07 Toray Ind Inc Apparatus for producing water and method therefor
JP2003287325A (en) * 2002-03-28 2003-10-10 Shin Nippon Air Technol Co Ltd Freeze-concentration method, and device for the same
JP2017074558A (en) * 2015-10-15 2017-04-20 新日本空調株式会社 Removing device and removing method of tritium
CN111646619A (en) * 2020-07-22 2020-09-11 深圳市鼎深科技有限公司 High-efficiency energy-saving sewage freezing and concentrating device and treatment process thereof

Also Published As

Publication number Publication date
JP2022164375A (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP5097459B2 (en) How to operate an ice machine
JP6128452B1 (en) Quick freezing method and quick freezing apparatus
JP2005201545A (en) Multiple ice-making determining method of automatic ice maker, and operation method
JP7093443B1 (en) Freeze concentration method
JP2016142436A (en) Water sprinkling system and water sprinkling method for air-cooled heat source machine
JP4972507B2 (en) Automatic ice machine
JP3690797B2 (en) Freeze concentration method and apparatus thereof
KR101281586B1 (en) Ice making method and ice making water purifier and ice making hot and cold water dispenser using thereof
JP2007165929A (en) Treatment device and method for manufacturing semiconductor device
EP1500886A1 (en) Method for operating an automatic ice-making machine
JP2003056951A (en) Ice slurry continuous making method and continuous ice making heat storage system therefor
JP2001303527A (en) Snow melting method and its device
JP2001317883A (en) Method for treating open circulating cooling water system
US11851349B2 (en) Controlled-type, non-decomposable, high-concentration process water freeze-separation apparatus
JP4062418B2 (en) Processing apparatus and method for manufacturing semiconductor device
JPH11248321A (en) Operation control method for automatic ice maker
JP3623131B2 (en) Power generation system
JPH0416146Y2 (en)
JP2895458B2 (en) Circulating flow ice machine
JPH10238828A (en) Ice heat reserve system and ice heat reserve cooling method using the system
JP3681153B2 (en) Freeze separator
JP5511150B2 (en) Ice machine
JP3000907B2 (en) Operation control method of ice storage type chiller
JP2004060936A (en) Ice thickness controlling method of drink cooling apparatus
JP2019086250A (en) Ice removal control method of ice making machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220617

R150 Certificate of patent or registration of utility model

Ref document number: 7093443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150