JP2019086250A - Ice removal control method of ice making machine - Google Patents

Ice removal control method of ice making machine Download PDF

Info

Publication number
JP2019086250A
JP2019086250A JP2017216274A JP2017216274A JP2019086250A JP 2019086250 A JP2019086250 A JP 2019086250A JP 2017216274 A JP2017216274 A JP 2017216274A JP 2017216274 A JP2017216274 A JP 2017216274A JP 2019086250 A JP2019086250 A JP 2019086250A
Authority
JP
Japan
Prior art keywords
ice making
ice
deicing
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017216274A
Other languages
Japanese (ja)
Other versions
JP6954808B2 (en
Inventor
清史 山岡
Seishi Yamaoka
清史 山岡
強飛 傅
Jianfei Fu
強飛 傅
太田 秀治
Hideji Ota
秀治 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Corp
Original Assignee
Hoshizaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Corp filed Critical Hoshizaki Corp
Priority to JP2017216274A priority Critical patent/JP6954808B2/en
Publication of JP2019086250A publication Critical patent/JP2019086250A/en
Application granted granted Critical
Publication of JP6954808B2 publication Critical patent/JP6954808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

To solve the inconvenience of an ice making machine for producing ice by repeating an ice making step and an ice removing step in which, even when after forming ice in an ice making part in the ice making step, the ice frozen in the ice making part is supposed to be dropped by shifting to the ice removing step, in the ice removing step, the ice does not become an intended size due to various causes such as the tilting of the ice making part, excessive humidity in a space and the like, and the ice does not completely drop from the ice making part but stays partially at the lower part and is clogged, so that, when shifting to the ice making step in this state, the ice dropped in the next ice removing step is overlapped with the previously accumulated ice and multiple ice making occurs.SOLUTION: In an ice removing step, based on the temperature of a refrigerant detected by a refrigerant temperature sensor Th1 provided at an outlet of an evaporator, the prospect determination is performed as to whether it is a case where the ice has completely dropped from an ice making part, a case where the ice has dropped but may be clogged or a case where the ice is completely clogged, and control is performed for shifting to the ice making step, for performing additional ice removal and for performing the ice removal step once again.SELECTED DRAWING: Figure 3

Description

この発明は、製氷機の除氷制御方法に関するものであって、除氷工程の終期に、何等かの原因で氷が製氷部から完全に脱落せず詰まった場合に、そのまま次の製氷工程に移行して多重製氷を生ずる弊害を未然に防止し得る除氷制御方法に関するものである。   The present invention relates to a deicing control method of an ice making machine, and in the final stage of the deicing process, when ice is not completely dropped out of the ice making section and clogged due to any cause, it is directly used in the next ice making process. The present invention relates to a deicing control method capable of preventing harmful effects that cause transition to multiple ice making.

大量の氷塊を自動的に製造する製氷機が、レストランや喫茶店等の各種施設で広く使用されている。この製氷機は、求められる氷塊を作る製氷構造の差に応じて、例えばクローズドセル式、オープンセル式、流下式等の機種が存在する。本発明は、製氷工程と除氷工程とを反復して製氷部に氷を成長させる所謂バッチ式製氷機の除氷制御方法に関するものであるので、先ずバッチ式の例として流下式製氷機を挙げて、その概略構成を説明する。   Ice making machines that automatically produce large amounts of ice are widely used in various facilities such as restaurants and coffee shops. As this ice making machine, there are models such as a closed cell type, an open cell type, and a down flow type, for example, according to the difference of the ice making structure which makes the required ice block. The present invention relates to a deicing control method of a so-called batch type ice making machine in which ice is grown on an ice making portion by repeating an ice making process and a deicing process. First, a flow down type ice making machine is mentioned as a batch type example. The outline configuration will be described.

図24に示す流下式製氷機10は、氷を製造する製氷ユニット14と、この製氷ユニット14を冷却する冷凍回路30とを備え、この製氷ユニット14から落下した氷塊17が貯氷庫12に貯留されるようになっている。製氷ユニット14は、垂直姿勢で対向配置した一対の製氷板(製氷部)16,16と、両製氷板16,16の下方に設けられて、両製氷板16,16から流下する製氷水(除氷水)を回収貯留する製氷水タンク18とを備えている。また、製氷ユニット14には、冷凍回路30の一部を構成する蒸発器EPが両製氷板16,16の間に配設されている。製氷ユニット14は、製氷水タンク18からの製氷水を各製氷板16の表面(製氷面)16aに供給する散水部(製氷水供給手段)20と、製氷板16における製氷面16aと反対側の面(裏面)に除氷水を供給する除氷水供給手段24とを備えている。   The downflow type ice making machine 10 shown in FIG. 24 includes an ice making unit 14 for producing ice and a freezing circuit 30 for cooling the ice making unit 14, and ice pieces 17 dropped from the ice making unit 14 are stored in the ice storage 12. It has become so. The ice making unit 14 is provided below the pair of ice making plates (ice making units) 16 and 16 and the ice making plates 16 and 16 arranged opposite to each other in a vertical posture, and the ice making water flowing downward from both ice making plates 16 And an ice making water tank 18 for collecting and storing ice water). Further, in the ice making unit 14, an evaporator EP which constitutes a part of the refrigeration circuit 30 is disposed between the ice making plates 16 and 16. The ice making unit 14 includes a water spray unit (ice making water supply means) 20 for supplying ice making water from the ice making water tank 18 to the surface (ice making surface) 16a of each ice making plate 16, and the ice making plate 16 on the opposite side to the ice making surface 16a. And a deicing water supply means 24 for supplying deicing water to the surface (rear surface).

前記製氷水タンク18は、図24に示すように、上部が開口した箱状に形成されている。製氷水タンク18の上部開口は、両製氷板16,16の直下に位置し、両製氷板16,16から流下する未氷結の製氷水および除氷水を回収して、製氷運転で使用する製氷水として貯留する。また、製氷水タンク18の上部には、除氷運転に際して両製氷板16,16から離脱した氷を受けて前記貯氷庫12に案内する氷案内部28が配置されている。氷案内部28の各傾斜面には、スリット(図示せず)が開設されており、未氷結の製氷水および除氷水と氷とが前記氷案内部28で分離され、前記スリットを通過して製氷水だけが製氷水タンク18に回収される。   As shown in FIG. 24, the ice making water tank 18 is formed in a box shape whose upper portion is open. The upper opening of the ice making water tank 18 is located directly below the ice making plates 16, 16, and the non-ice forming ice making water and deicing water flowing down from the ice making plates 16, 16 are recovered and used in the ice making operation. Retain as. Further, an ice guiding portion 28 is disposed above the ice making water tank 18 for guiding the ice removed from the ice making plates 16 and 16 during the deicing operation to the ice storage 12. A slit (not shown) is opened on each inclined surface of the ice guiding portion 28, and ice-free ice making water, deicing water and ice are separated by the ice guiding portion 28 and pass through the slits. Only the ice making water is collected in the ice making water tank 18.

前記散水部20は、一対の製氷板16,16の上方に設けられ、製氷面16aに製氷水を散水し得る製氷水散水器22と、供給管21を介して該製氷水散水器22に製氷水タンク18から製氷水を圧送する製氷水ポンプPMとから構成される。散水部20は、製氷運転において製氷水ポンプPMが駆動されると製氷水散水器22から製氷板16の製氷面16aに製氷水を供給する一方、除氷運転に際しては製氷水ポンプPMを停止して製氷板16への製氷水の供給を停止する。除氷水供給手段24は、製氷水散水器22の下方に位置して両製氷板16,16の間における上部に設置され、製氷板16の裏面に除氷水を散水し得る除氷水散水器26と、水道等の外部水源に接続する給水管25に介挿された給水弁WVとから構成される。除氷水供給手段24は、除氷運転において給水弁WVを開放することで、除氷水散水器26から除氷水を製氷板16の裏面に供給する一方、製氷運転時は給水弁WVが閉じられて製氷板16への除氷水の供給が停止される。   The water sprinkling unit 20 is provided above the pair of ice making plates 16 and 16 and is capable of sprinkling ice making water on the ice making surface 16 a; ice making water sprinkler 22 capable of sprinkling ice making water; It comprises an ice making water pump PM for pumping ice making water from the water tank 18. The water sprayer 20 supplies ice making water from the ice making water sprinkler 22 to the ice making surface 16a of the ice making plate 16 when the ice making water pump PM is driven in the ice making operation, while stopping the ice making water pump PM during deicing operation. The supply of ice making water to the ice making plate 16 is stopped. The deicing water supply means 24 is located below the ice making water sprinkler 22 and installed at an upper portion between the ice making plates 16 and 16 and is capable of sprinkling deicing water on the back surface of the ice making plate 16 , And a water supply valve WV interposed in a water supply pipe 25 connected to an external water source such as a water supply. The deicing water supply means 24 supplies deicing water from the deicing water sprinkler 26 to the back surface of the ice making plate 16 by opening the feeding valve WV in the deicing operation, while the feeding valve WV is closed during ice making operation. The supply of deicing water to the ice making plate 16 is stopped.

図24に示す前記冷凍回路30は、圧縮機CM、凝縮器CDおよび減圧手段としての膨張弁EVと、前記製氷板16に配設された蒸発器EPとからなる。この冷凍回路30の回路は、圧縮機CM、凝縮器CD、膨張弁EVおよび蒸発器EPの順番で冷媒が循環するよう冷媒配管31で連通接続されている。また、冷凍回路30は、圧縮機CMから蒸発器EPに冷媒を直接導くバイパス管32と、このバイパス管32に介挿されたホットガス弁HVとからなるバイパス回路を備えている。冷凍回路30は、製氷運転において、ホットガス弁HVを閉じると共にファンFMを駆動して凝縮器CDを冷却したもとで圧縮機CMを駆動することで、蒸発器EPにより製氷板16を冷却する。冷凍回路30は、除氷運転において、圧縮機CMを駆動したままファンFMを停止してホットガス弁HVを開放することで、蒸発器EPに供給されたホットガスにより製氷板16を加熱する。   The refrigeration circuit 30 shown in FIG. 24 comprises a compressor CM, a condenser CD, an expansion valve EV as pressure reducing means, and an evaporator EP disposed on the ice making plate 16. The circuit of the refrigeration circuit 30 is connected by a refrigerant pipe 31 so that the refrigerant circulates in the order of the compressor CM, the condenser CD, the expansion valve EV, and the evaporator EP. In addition, the refrigeration circuit 30 includes a bypass circuit including a bypass pipe 32 which directly leads the refrigerant from the compressor CM to the evaporator EP, and a hot gas valve HV inserted in the bypass pipe 32. In the ice making operation, the freezing circuit 30 cools the ice making plate 16 by the evaporator EP by closing the hot gas valve HV and driving the fan FM to cool the condenser CD and driving the compressor CM. . In the deicing operation, the freezing circuit 30 heats the ice making plate 16 by the hot gas supplied to the evaporator EP by stopping the fan FM and opening the hot gas valve HV while driving the compressor CM.

図24における製氷ユニット14に関して、前記製氷水タンク18には連通管原理を応用した水位検出装置38が併設されている。すなわち水位検出装置38は、製氷水タンク18の底部に連通管40を介して連通する水位検出箱42と、該水位検出箱42に収納したフロートスイッチFSとからなり、前記製氷水タンク18における製氷水の水位を該フロートスイッチFSにより検出して、制御回路(図示せず)へ水位情報を入力するようになっている。また、図24に示す前記蒸発器EPにおいて、該蒸発器EPの冷媒出口側には、冷媒の温度を検出するための温度センサTh1(例えばサーミスタ)が配設されて、該温度センサTh1が検出した温度情報を前記制御回路へ入力するようになっている。前記製氷水タンク18の内部には、ここに貯留される製氷水の温度を検知する温度センサTh2(例えばサーミスタの如き感温素子)が配置されて、該温度センサTh2が検出した温度情報を前記制御回路へ入力するようになっている。更に、前記製氷水タンク18の底部には排水管34が連結され、該排水管34には排水弁DVが連通接続されている。この排水弁DVは、前記制御回路からの指令により弁の開閉が行われ、該排水弁DVを開放することで製氷水タンク18の製氷水を排出し得るようになっている。   Regarding the ice making unit 14 in FIG. 24, a water level detection device 38 to which the communicating pipe principle is applied is juxtaposed to the ice making water tank 18. That is, the water level detection device 38 comprises a water level detection box 42 communicated with the bottom of the ice making water tank 18 via the communication pipe 40, and a float switch FS housed in the water level detection box 42. The water level of water is detected by the float switch FS, and water level information is input to a control circuit (not shown). In the evaporator EP shown in FIG. 24, a temperature sensor Th1 (eg, a thermistor) for detecting the temperature of the refrigerant is disposed on the refrigerant outlet side of the evaporator EP, and the temperature sensor Th1 detects the temperature. The temperature information is inputted to the control circuit. A temperature sensor Th2 (for example, a temperature sensing element such as a thermistor) for detecting the temperature of the ice making water stored therein is disposed in the ice making water tank 18, and the temperature information detected by the temperature sensor Th2 is It is designed to be input to the control circuit. Further, a drain pipe 34 is connected to the bottom of the ice making water tank 18, and a drain valve DV is connected to the drain pipe 34 in communication. The drain valve DV is opened and closed according to a command from the control circuit, and the ice making water of the ice making water tank 18 can be discharged by opening the drain valve DV.

図25は、図24に示した流下式製氷機10で実行される製氷工程および除氷工程を示すタイムチャートである。製氷工程に際しては、図24のポンプモータPMを駆動して製氷水タンク18の製氷水を製氷水散水器22へ圧送し、該製氷水散水器22から製氷水を製氷部16へ散布する。なお、前記圧縮機CMから膨張手段EVを介して冷媒が製氷部16へ供給され、該製氷部16は氷点下にまで冷却されている。このため、図25のタイムチャートにおける製氷工程で製氷部16の製氷面16aには、製氷水が凍結して次第に氷が成長する。また、蒸発器EPの冷媒出口側に設けた冷媒温度センサTh1の検出温度は徐々に低下する。   FIG. 25 is a time chart showing the ice making process and the deicing process performed by the flow down type ice making machine 10 shown in FIG. In the ice making process, the pump motor PM of FIG. 24 is driven to press-feed the ice making water of the ice making water tank 18 to the ice making water sprinkler 22, and the ice making water sprinkler 22 scatters the ice making water to the ice making unit 16. A refrigerant is supplied from the compressor CM to the ice making unit 16 via the expansion means EV, and the ice making unit 16 is cooled to below the freezing point. Therefore, the ice making water freezes on the ice making surface 16a of the ice making unit 16 in the ice making process in the time chart of FIG. 25, and ice gradually grows. Further, the detected temperature of the refrigerant temperature sensor Th1 provided on the refrigerant outlet side of the evaporator EP gradually decreases.

そして、前記製氷水タンク18の製氷水が製氷部16へ供給されて該製氷部16に氷結し始めると、該製氷水タンク18の製氷水の水位は徐々に低下する。この製氷水の低下は前記フロートスイッチFSが常時検知しているため、前記製氷水タンク18の水位が下限水位(予め設定されている)に低下したことを該フロートスイッチFSが検出すると、前記製氷部16に氷が所定の大きさに成長したものと判断して、図25に示すように製氷工程から除氷工程に切り換わる。すなわち、図24に示す前記ホットガス弁HVが開放して圧縮機CMからの熱冷媒を前記蒸発器EPに供給することで、前記製氷部16を加温し該製氷部16に氷結した氷の剥離を開始する。また、除氷工程への切り替えと同時に図24に示す前記給水弁WVを開放して、除氷水供給手段24からの除氷水(常温)を除氷水散水器26を介して前記製氷部16に散布する。   Then, when the ice making water in the ice making water tank 18 is supplied to the ice making unit 16 and starts to freeze in the ice making unit 16, the water level of the ice making water in the ice making water tank 18 gradually decreases. Since the float switch FS constantly detects a drop in the ice making water, when the float switch FS detects that the water level of the ice making water tank 18 has dropped to the lower limit water level (preset), the ice making It is determined that the ice has grown to a predetermined size in the portion 16, and the ice making process is switched to the deicing process as shown in FIG. That is, the hot gas valve HV shown in FIG. 24 is opened to supply the heat refrigerant from the compressor CM to the evaporator EP, thereby heating the ice making unit 16 and freezing the ice making unit 16. Start peeling. Further, the water supply valve WV shown in FIG. 24 is opened at the same time as switching to the deicing process, and the deicing water (normal temperature) from the deicing water supply means 24 is sprayed to the ice making section 16 via the deicing water sprinkler 26. Do.

前記ホットガス弁HVから供給された熱冷媒により前記蒸発器EPは温度上昇し前記冷媒温度センサTh1の検出温度は、図25に示すように次第に上昇する。そして冷媒温度センサTh1の検出温度が、例えば9℃に到達してから、例えば10秒後に給水弁WVを閉成して製氷部16への除氷水の供給を停止すると共に、図24に示すポンプモータPMを駆動して製氷水タンク18の製氷水を製氷水散水器22を介して該製氷部16に散水する。また、前記給水弁WVを閉成した時点から例えば50秒経過した時点で、製氷部16に氷結していた氷は全て剥離落下したものと判断して、ホットガス弁HVを閉成して熱冷媒の供給を停止して除氷工程を完了し、次の製氷工程へ移行する。このように、製氷工程と除氷工程とをバッチ式に反復することで一連の製氷サイクルが達成される。   The temperature of the evaporator EP is raised by the thermal refrigerant supplied from the hot gas valve HV, and the detected temperature of the refrigerant temperature sensor Th1 gradually rises as shown in FIG. Then, for example, after the detected temperature of the refrigerant temperature sensor Th1 reaches 9 ° C., for example, after 10 seconds, the feed water valve WV is closed to stop the supply of deicing water to the ice making unit 16 and the pump shown in FIG. The motor PM is driven to spray the ice making water of the ice making water tank 18 into the ice making unit 16 via the ice making water sprinkler 22. Further, when, for example, 50 seconds have elapsed from the time when the feed valve WV is closed, it is determined that all the ice frozen in the ice making unit 16 has peeled off and dropped, and the hot gas valve HV is closed to The supply of the refrigerant is stopped to complete the deicing process, and the process moves to the next ice making process. Thus, a series of ice making cycles are achieved by batchwise repeating the ice making process and the deicing process.

特開2011−158210号公報JP, 2011-158210, A

図25のタイムチャートで説明したように、前記流下式製氷機では、製氷工程と除氷工程とを反復することにより、製氷部に氷が生成され、また該製氷部から氷が剥離されて貯氷庫へ氷が回収される。しかし、製氷機における各部位のバラツキや、製氷部における想定外の傾き、その他湿気の過剰取り込みで水分過多になる等の諸原因によって、製氷部の氷が大きく成長し過ぎてしまう場合がある。このように氷が成長し過ぎると、図24において製氷部16で上下に隣接し合う氷が縦に連結してしまい、除氷工程で該製氷部16から離脱しても円滑に落下せず、製氷部16と氷案内部28との間に残留して氷落下口を塞いでしまうことがある。このような状態のままで製氷サイクルに移行すると、次の除氷工程で落下した氷が既に残留している氷に重なってしまう。従って、製氷サイクルが反復されるにつれて、貯氷庫12へ回収されなかった製氷部16の下方が氷で埋まってしまい、遂には該製氷部16を破損させる等の問題を生じてしまう。   As described in the time chart of FIG. 25, in the downflow type ice making machine, by repeating the ice making process and the deicing process, ice is generated in the ice making unit, and ice is peeled off from the ice making unit and stored. Ice is collected into the storage. However, the ice in the ice making unit may grow too much due to various causes such as unevenness of each part in the ice making machine, unexpected inclination in the ice making unit, and excessive moisture intake due to excessive uptake of moisture. When the ice grows in this manner, the vertically adjacent ices in the ice making unit 16 in FIG. 24 are vertically connected, and even if they are separated from the ice making unit 16 in the deicing process, they do not fall smoothly. It may remain between the ice making section 16 and the ice guiding section 28 and block the ice dropping port. If it transfers to an ice making cycle in such a state, the ice which fell by the next deicing process will overlap with the ice which has already remained. Therefore, as the ice making cycle is repeated, the lower part of the ice making unit 16 which has not been recovered to the ice storage 12 is filled with ice, and this causes problems such as breakage of the ice making unit 16 and the like.

前記課題を解決し、所期の目的を達成するため請求項1に記載の発明は、
冷凍回路からの冷媒を膨張手段を介して製氷部の蒸発器へ供給すると共に、製氷水タンクのポンプモータを駆動して製氷水を前記製氷部へ供給して製氷を行う製氷工程と、
前記製氷水タンクに併設したフロートスイッチが該製氷水タンクにおける製氷水の所定の水位低下を検知すると、前記冷凍回路のホットガス弁を開放して圧縮機からの熱冷媒を前記蒸発器に供給すると共に、外部水道系の給水弁を開放して前記製氷部に除氷水を供給して該製氷部から氷を除去する除氷工程とを反復する製氷機の除氷制御方法において、
前記除氷工程中に、前記蒸発器の出口側に設けた冷媒温度センサが所定の上昇温度を検出した時点から第1時間を経過した時点で前記冷媒温度センサの検出温度を確認し、
その検出温度が所定の第1温度よりも高ければ、当該除氷工程を終了して次の製氷工程に移行し、
前記冷媒温度センサが確認した検出温度が前記第1温度より低く且つ所定の第2温度よりも高ければ、当該除氷工程を第2時間だけ延長してから次の製氷工程に移行し、
前記冷媒温度センサが確認した検出温度が前記第2温度よりも低ければ、当該除氷工程を再度行ってから次の製氷工程に移行するようにしたことを要旨とする。
請求項1に係る発明によれば、正常に製氷工程を経て除氷工程に移行し、ホットガス弁を開放して熱冷媒を製氷部の蒸発器に供給すると共に、給水弁を開放して常温の除氷水を製氷部に供給することで、蒸発器の冷媒出口側に設けた冷媒の温度が上昇するので、この温度上昇を冷媒温度センサにより監視している。前記冷媒温度センサが所定の上昇温度を検知してから第1時間を経過した時点で、該冷媒温度センサにより確認した温度に依存して以下の状態を見込み判断する。
(1)製氷部から氷が完全に脱落して詰まっていない状態
(2)製氷部から氷が脱落しても一部が詰まっていると思われる状態
(3)製氷部から脱落した氷が詰まってしまっている状態
そして前記判断の結果に応じて、(1)除氷工程を終了して製氷工程へ移行する、(2)除氷工程を念の為に追加して製氷部に詰まっていると思われる氷を融解除去する、および(3)除氷工程を再度実施して、製氷部に詰まっている氷を融解除去する、の何れかを選択することで、二重製氷になる事態を未然に防止し得る。すなわち多重製氷を生ずることがなくなり、製氷部や周辺部品の故障・破損が有効に防止される。
In order to solve the above problems and achieve the intended purpose, the invention according to claim 1 is
An ice making step of supplying the refrigerant from the freezing circuit to the evaporator of the ice making unit through the expansion means and driving the pump motor of the ice making water tank to supply ice making water to the ice making unit to perform ice making;
When a float switch provided side by side with the ice making water tank detects a predetermined water level drop of the ice making water in the ice making water tank, the hot gas valve of the refrigeration circuit is opened to supply the heat refrigerant from the compressor to the evaporator. Further, in the ice making machine deicing control method, the water feeding valve of the external water system is opened to supply ice removing water to the ice making unit and ice is removed from the ice making unit.
During the deicing process, the temperature detected by the refrigerant temperature sensor is confirmed when a first time has elapsed from the time when the refrigerant temperature sensor provided on the outlet side of the evaporator detects a predetermined rising temperature,
If the detected temperature is higher than a predetermined first temperature, the deicing process is ended and the process goes to the next ice making process,
If the detected temperature confirmed by the refrigerant temperature sensor is lower than the first temperature and higher than a predetermined second temperature, the deicing process is extended for a second time, and then the process goes to the next ice making process;
If the detected temperature confirmed by the refrigerant temperature sensor is lower than the second temperature, the present invention is characterized in that the deicing process is performed again and then the process proceeds to the next ice making process.
According to the first aspect of the present invention, the process normally proceeds to the deicing process through the ice making process, and the hot gas valve is opened to supply the heat refrigerant to the evaporator of the ice making unit and the water supply valve is opened to normal temperature Since the temperature of the refrigerant provided on the refrigerant outlet side of the evaporator rises by supplying the deicing water of the above to the ice making unit, this temperature rise is monitored by the refrigerant temperature sensor. When the refrigerant temperature sensor detects a predetermined temperature rise and a first time has elapsed, the following state is estimated depending on the temperature confirmed by the refrigerant temperature sensor.
(1) A state in which the ice completely drops out of the ice making section and is not clogged
(2) A state in which a part of the ice is thought to be clogged even if the ice drops from the ice making section
(3) A state in which the ice dropped from the ice making section is clogged up. According to the result of the above judgment, (1) The deicing process is finished and the process goes to the ice making process. (2) The deicing process is justified In addition, choose either to thaw and remove the ice that seems to be clogged in the ice making section, and (3) to perform the deicing process again to thaw and remove the ice clogged in the ice making section. By doing this, it is possible to prevent double ice making. That is, multiple ice making is not generated, and failure or damage of the ice making unit and peripheral parts can be effectively prevented.

請求項2に記載の発明では、前記再度行われる除氷工程を複数回反復するようにしたことを要旨とする。   The subject matter of the present invention is that the deicing process performed again is repeated a plurality of times.

前記課題を解決し、所期の目的を達成するため請求項3に記載の発明は、
冷凍回路からの冷媒を膨張手段を介して製氷部の蒸発器へ供給すると共に、製氷水タンクのポンプモータを駆動して製氷水を前記製氷部へ供給して製氷を行う製氷工程と、
前記製氷水タンクに併設したフロートスイッチが該製氷水タンクにおける製氷水の所定の水位低下を検知すると、前記冷凍回路のホットガス弁を開放して圧縮機からの熱冷媒を前記蒸発器に供給すると共に、外部水道系の給水弁を開放して前記製氷部に除氷水を供給して該製氷部から氷を除去する除氷工程とを反復する製氷機の除氷制御方法において、
前記除氷工程中に、前記蒸発器の出口側に設けた冷媒温度センサが所定の上昇温度を検出した時点から所定時間を経過した時点からN秒毎に前記冷媒温度センサの検出温度を確認し、
前記冷媒温度センサが確認した検出温度が上昇を続けているか、または該検出温度が1℃以上で安定していれば、当該除氷工程を終了して次の製氷工程に移行し、
前記冷媒温度センサが確認した検出温度が下降し続けているか、または1℃未満で安定していれば、当該除氷工程を所定時間だけ延長してから次の製氷工程に移行し、
前記冷媒温度センサが確認した検出温度が予め設定した時間だけ下降し続けているか、または1℃未満で安定していれば、当該除氷工程を所定時間だけ延長してから、当該除氷工程を再度行うようにしたことを要旨とする。
請求項3に係る発明によれば、正常に製氷工程を経て除氷工程に移行し、ホットガス弁を開放して熱冷媒を製氷部の蒸発器に供給すると共に、給水弁を開放して常温の除氷水を製氷部に供給することで、蒸発器の冷媒出口側に設けた冷媒の温度が上昇するので、この温度上昇を冷媒温度センサにより監視している。前記冷媒温度センサが所定の上昇温度を検知してから所定時間を経過した時点からN秒毎に、該冷媒温度センサにより確認した冷媒の温度に依存して以下の状態を見込み判断する。
(1)製氷部から氷が完全に脱落して詰まっていない状態
(2)製氷部から氷が脱落しても一部が詰まっていると思われる状態
(3)製氷部から脱落した氷が詰まってしまっている状態
そして前記判断の結果に応じて、(1)除氷工程を終了して製氷工程へ移行する、(2)除氷工程を念の為に追加して製氷部に詰まっていると思われる氷を融解除去する、および(3)除氷工程を再度実施して、製氷部に詰まっている氷を融解除去する、の何れかを選択することで、二重製氷になる事態を未然に防止し得る。すなわち多重製氷を生ずることがなくなり、製氷部や周辺部品の故障・破損が有効に防止される。
In order to solve the above problems and achieve the intended purpose, the invention according to claim 3 is:
An ice making step of supplying the refrigerant from the freezing circuit to the evaporator of the ice making unit through the expansion means and driving the pump motor of the ice making water tank to supply ice making water to the ice making unit to perform ice making;
When a float switch provided side by side with the ice making water tank detects a predetermined water level drop of the ice making water in the ice making water tank, the hot gas valve of the refrigeration circuit is opened to supply the heat refrigerant from the compressor to the evaporator. Further, in the ice making machine deicing control method, the water feeding valve of the external water system is opened to supply ice removing water to the ice making unit and ice is removed from the ice making unit.
During the deicing step, the detected temperature of the refrigerant temperature sensor is checked every N seconds from the time when a predetermined time has elapsed since the time when the refrigerant temperature sensor provided on the outlet side of the evaporator detected a predetermined rising temperature. ,
If the detected temperature confirmed by the refrigerant temperature sensor continues to rise, or if the detected temperature is stable at 1 ° C. or higher, the deicing process is terminated and the process moves to the next ice making process,
If the detected temperature confirmed by the refrigerant temperature sensor continues to fall or is stable at less than 1 ° C., the deicing process is extended for a predetermined time, and then the process goes to the next ice making process,
If the detected temperature confirmed by the refrigerant temperature sensor continues to decrease for a preset time or is stable at less than 1 ° C., the deicing process is extended for a predetermined time, and then the deicing process is performed. The point is that we did it again.
According to the third aspect of the present invention, the process normally proceeds to the deicing process through the ice making process, and the hot gas valve is opened to supply the heat refrigerant to the evaporator of the ice making unit and the water supply valve is opened to normal temperature Since the temperature of the refrigerant provided on the refrigerant outlet side of the evaporator rises by supplying the deicing water of the above to the ice making unit, this temperature rise is monitored by the refrigerant temperature sensor. The following state is estimated depending on the temperature of the refrigerant confirmed by the refrigerant temperature sensor every N seconds from the time when a predetermined time has passed since the refrigerant temperature sensor detected a predetermined rising temperature.
(1) A state in which the ice completely drops out of the ice making section and is not clogged
(2) A state in which a part of the ice is thought to be clogged even if the ice drops from the ice making section
(3) A state in which the ice dropped from the ice making section is clogged up. According to the result of the above judgment, (1) The deicing process is finished and the process goes to the ice making process. (2) The deicing process is justified In addition, choose either to thaw and remove the ice that seems to be clogged in the ice making section, and (3) to perform the deicing process again to thaw and remove the ice clogged in the ice making section. By doing this, it is possible to prevent double ice making. That is, multiple ice making is not generated, and failure or damage of the ice making unit and peripheral parts can be effectively prevented.

前記課題を解決し、所期の目的を達成するため請求項4に記載の発明は、
冷凍回路からの冷媒を膨張手段を介して製氷部の蒸発器へ供給すると共に、製氷水タンクのポンプモータを駆動して製氷水を前記製氷部へ供給して製氷を行う製氷工程と、
前記製氷水タンクに併設したフロートスイッチが該製氷水タンクにおける製氷水の所定の水位低下を検知すると、前記冷凍回路のホットガス弁を開放して圧縮機からの熱冷媒を前記蒸発器に供給すると共に、外部水道系の給水弁を開放して前記製氷部に除氷水を供給して該製氷部から氷を除去する除氷工程とを反復する製氷機の除氷制御方法において、
前記除氷工程中に、前記蒸発器の出口側に設けた冷媒温度センサが所定の上昇温度を検出した時点から第1時間を経過した時点で前記冷媒温度センサの検出温度を確認し、
その検出温度が所定温度よりも高ければ、当該除氷工程を終了して次の製氷工程に移行し、
前記冷媒温度センサが確認した検出温度が前記所定の温度より低ければ、前記製氷水タンクに連通する排水弁を開放して製氷水を排出した後に、当該除氷工程を再度行うようにしたことを要旨とする。
請求項4に係る発明によれば、正常に製氷工程を経て除氷工程に移行し、ホットガス弁を開放して熱冷媒を製氷部の蒸発器に供給すると共に、給水弁を開放して常温の除氷水を製氷部に供給することで、蒸発器の冷媒出口側に設けた冷媒の温度が上昇するので、この温度上昇を冷媒温度センサにより監視している。前記冷媒温度センサが所定の上昇温度を検知してから第1時間を経過した時点で、該冷媒温度センサにより確認した温度が所定の温度よりも高くなっているか、低くなっているかに依存して以下の状態を見込み判断する。
(1)製氷部から氷が完全に脱落して詰まっていない状態
(2)製氷部から氷が脱落しても一部が詰まっていると思われる状態
(3)製氷部から脱落した氷が詰まってしまっている状態
そして前記判断の結果に応じて、(1)除氷工程を終了して製氷工程へ移行する、(2)除氷工程を念の為に追加して製氷部に詰まっていると思われる氷を融解除去する、および(3)除氷工程を再度実施して、製氷部に詰まっている氷を融解除去する、の何れかを選択することで、二重製氷になる事態を未然に防止し得る。すなわち多重製氷を生ずることがなくなり、製氷部や周辺部品の故障・破損が有効に防止される。
In order to solve the above problems and achieve the intended purpose, the invention according to claim 4 is:
An ice making step of supplying the refrigerant from the freezing circuit to the evaporator of the ice making unit through the expansion means and driving the pump motor of the ice making water tank to supply ice making water to the ice making unit to perform ice making;
When a float switch provided side by side with the ice making water tank detects a predetermined water level drop of the ice making water in the ice making water tank, the hot gas valve of the refrigeration circuit is opened to supply the heat refrigerant from the compressor to the evaporator. Further, in the ice making machine deicing control method, the water feeding valve of the external water system is opened to supply ice removing water to the ice making unit and ice is removed from the ice making unit.
During the deicing process, the temperature detected by the refrigerant temperature sensor is confirmed when a first time has elapsed from the time when the refrigerant temperature sensor provided on the outlet side of the evaporator detects a predetermined rising temperature,
If the detected temperature is higher than a predetermined temperature, the deicing process is ended and the process goes to the next ice making process,
If the detected temperature confirmed by the refrigerant temperature sensor is lower than the predetermined temperature, the dewatering step is performed again after the drainage valve connected to the ice making water tank is opened to discharge the ice making water. It is a summary.
According to the invention of claim 4, the process normally proceeds to the deicing process through the ice making process, and the hot gas valve is opened to supply the heat refrigerant to the evaporator of the ice making unit and the water supply valve is opened to normal temperature Since the temperature of the refrigerant provided on the refrigerant outlet side of the evaporator rises by supplying the deicing water of the above to the ice making unit, this temperature rise is monitored by the refrigerant temperature sensor. Depending on whether the temperature checked by the refrigerant temperature sensor is higher or lower than the predetermined temperature when the first time has elapsed since the refrigerant temperature sensor detected the predetermined rising temperature. Make the following judgments.
(1) A state in which the ice completely drops out of the ice making section and is not clogged
(2) A state in which a part of the ice is thought to be clogged even if the ice drops from the ice making section
(3) A state in which the ice dropped from the ice making section is clogged up. According to the result of the above judgment, (1) The deicing process is finished and the process goes to the ice making process. (2) The deicing process is justified In addition, choose either to thaw and remove the ice that seems to be clogged in the ice making section, and (3) to perform the deicing process again to thaw and remove the ice clogged in the ice making section. By doing this, it is possible to prevent double ice making. That is, multiple ice making is not generated, and failure or damage of the ice making unit and peripheral parts can be effectively prevented.

前記課題を解決し、所期の目的を達成するため請求項5に記載の発明は、
冷凍回路からの冷媒を膨張手段を介して製氷部の蒸発器へ供給すると共に、製氷水タンクのポンプモータを駆動して製氷水を前記製氷部へ供給して製氷を行う製氷工程と、
前記製氷水タンクに併設したフロートスイッチが該製氷水タンクにおける製氷水の所定の水位低下を検知すると、前記冷凍回路のホットガス弁を開放して圧縮機からの熱冷媒を前記蒸発器に供給すると共に、外部水道系の給水弁を開放して前記製氷部に除氷水を供給して該製氷部から氷を除去する除氷工程とを反復する製氷機の除氷制御方法において、
前記除氷工程中に、前記蒸発器の出口側に設けた冷媒温度センサが所定の上昇温度を検出した時点から第1時間を経過した時点で前記製氷水タンクに配置した製氷水温度センサの検出温度を確認し、
その検出温度が所定の第1温度よりも高ければ、当該除氷工程を終了して次の製氷工程に移行し、
前記製氷水温度センサが確認した検出温度が前記第1温度より低く且つ所定の第2温度よりも高ければ、当該除氷工程を第2時間だけ延長してから次の製氷工程に移行し、
前記製氷水温度センサが確認した検出温度が前記第2温度よりも低ければ、当該除氷工程を再度行ってから次の製氷工程に移行するようにしたことを要旨とする。
請求項5に係る発明によれば、正常に製氷工程を経て除氷工程に移行し、ホットガス弁を開放して熱冷媒を製氷部の蒸発器に供給すると共に、給水弁を開放して常温の除氷水を製氷部に供給することで、蒸発器の冷媒出口側に設けた冷媒の温度が上昇するので、この温度上昇を冷媒温度センサにより監視している。前記冷媒温度センサが所定の上昇温度を検知してから第1時間を経過した時点で、製氷水タンクに設けた製氷水温度センサにより確認した製氷水の温度に依存して以下の状態を見込み判断する。
(1)製氷部から氷が完全に脱落して詰まっていない状態
(2)製氷部から氷が脱落しても一部が詰まっていると思われる状態
(3)製氷部から脱落した氷が詰まってしまっている状態
そして前記判断の結果に応じて、(1)除氷工程を終了して製氷工程へ移行する、(2)除氷工程を念の為に追加して製氷部に詰まっていると思われる氷を融解除去する、および(3)除氷工程を再度実施して、製氷部に詰まっている氷を融解除去する、の何れかを選択することで、二重製氷になる事態を未然に防止し得る。すなわち多重製氷を生ずることがなくなり、製氷部や周辺部品の故障・破損が有効に防止される。
In order to solve the above problems and achieve the intended purpose, the invention according to claim 5 is:
An ice making step of supplying the refrigerant from the freezing circuit to the evaporator of the ice making unit through the expansion means and driving the pump motor of the ice making water tank to supply ice making water to the ice making unit to perform ice making;
When a float switch provided side by side with the ice making water tank detects a predetermined water level drop of the ice making water in the ice making water tank, the hot gas valve of the refrigeration circuit is opened to supply the heat refrigerant from the compressor to the evaporator. Further, in the ice making machine deicing control method, the water feeding valve of the external water system is opened to supply ice removing water to the ice making unit and ice is removed from the ice making unit.
Detection of ice water temperature sensor disposed in the ice making water tank when a first time has elapsed from the time when the refrigerant temperature sensor provided on the outlet side of the evaporator detects a predetermined rising temperature during the deicing step Check the temperature,
If the detected temperature is higher than a predetermined first temperature, the deicing process is ended and the process goes to the next ice making process,
If the detected temperature confirmed by the ice-making water temperature sensor is lower than the first temperature and higher than a predetermined second temperature, the deicing process is extended for a second time, and then the process goes to the next ice making process,
If the detected temperature confirmed by the ice-making water temperature sensor is lower than the second temperature, the present invention is characterized in that the deicing process is performed again and then the next ice-making process is started.
According to the fifth aspect of the present invention, the process normally proceeds to the deicing process through the ice making process, and the hot gas valve is opened to supply the thermal refrigerant to the evaporator of the ice making unit and the water supply valve is opened to normal temperature Since the temperature of the refrigerant provided on the refrigerant outlet side of the evaporator rises by supplying the deicing water of the above to the ice making unit, this temperature rise is monitored by the refrigerant temperature sensor. Depending on the temperature of ice making water confirmed by the ice making water temperature sensor provided in the ice making water tank when the first time has passed since the refrigerant temperature sensor detected a predetermined rising temperature, the following state is estimated Do.
(1) A state in which the ice completely drops out of the ice making section and is not clogged
(2) A state in which a part of the ice is thought to be clogged even if the ice drops from the ice making section
(3) A state in which the ice dropped from the ice making section is clogged up. According to the result of the above judgment, (1) The deicing process is finished and the process goes to the ice making process. (2) The deicing process is justified In addition, choose either to thaw and remove the ice that seems to be clogged in the ice making section, and (3) to perform the deicing process again to thaw and remove the ice clogged in the ice making section. By doing this, it is possible to prevent double ice making. That is, multiple ice making is not generated, and failure or damage of the ice making unit and peripheral parts can be effectively prevented.

請求項6に記載の発明では、前記再度行われる除氷工程を複数回反復するようにしたことを要旨とする。   The gist of the invention according to claim 6 is that the deicing process performed again is repeated a plurality of times.

前記課題を解決し、所期の目的を達成するため請求項7に記載の発明は、
冷凍回路からの冷媒を膨張手段を介して製氷部の蒸発器へ供給すると共に、製氷水タンクのポンプモータを駆動して製氷水を前記製氷部へ供給して製氷を行う製氷工程と、
前記製氷水タンクに併設したフロートスイッチが該製氷水タンクにおける製氷水の所定の水位低下を検知すると、前記冷凍回路のホットガス弁を開放して圧縮機からの熱冷媒を前記蒸発器に供給すると共に、外部水道系の給水弁を開放して前記製氷部に除氷水を供給して該製氷部から氷を除去する除氷工程とを反復する製氷機の除氷制御方法において、
前記除氷工程中に、前記蒸発器の出口側に設けた冷媒温度センサが所定の上昇温度を検出した時点から所定時間を経過した時点からN秒毎に前記製氷水タンクに配置した製氷水温度センサの検出温度を確認し、
前記製氷水温度センサが確認した検出温度が上昇を続けているか、または該検出温度が1℃以上で安定していれば、当該除氷工程を終了して次の製氷工程に移行し、
前記製氷水温度センサが確認した検出温度が下降し続けているか、または1℃未満で安定していれば、当該除氷工程を所定時間だけ延長してから次の製氷工程に移行し、
前記製氷水温度センサが確認した検出温度が予め設定した時間だけ下降し続けているか、または1℃未満で安定していれば、当該除氷工程を所定時間だけ延長してから、当該除氷工程を再度行うようにしたことを要旨とする。
請求項7に係る発明によれば、正常に製氷工程を経て除氷工程に移行し、ホットガス弁を開放して熱冷媒を製氷部の蒸発器に供給すると共に、給水弁を開放して常温の除氷水を製氷部に供給することで、蒸発器の冷媒出口側に設けた冷媒の温度が上昇するので、この温度上昇を冷媒温度センサにより監視している。前記冷媒温度センサが所定の上昇温度を検知してから所定時間を経過した時点からN秒毎に、製氷水タンクに設けた製氷水温度センサにより確認した製氷水の温度に依存して以下の状態を見込み判断する。
(1)製氷部から氷が完全に脱落して詰まっていない状態
(2)製氷部から氷が脱落しても一部が詰まっていると思われる状態
(3)製氷部から脱落した氷が詰まってしまっている状態
そして前記判断の結果に応じて、(1)除氷工程を終了して製氷工程へ移行する、(2)除氷工程を念の為に追加して製氷部に詰まっていると思われる氷を融解除去する、および(3)除氷工程を再度実施して、製氷部に詰まっている氷を融解除去する、の何れかを選択することで、二重製氷になる事態を未然に防止し得る。すなわち多重製氷を生ずることがなくなり、製氷部や周辺部品の故障・破損が有効に防止される。
In order to solve the above problems and achieve the intended purpose, the invention according to claim 7 is
An ice making step of supplying the refrigerant from the freezing circuit to the evaporator of the ice making unit through the expansion means and driving the pump motor of the ice making water tank to supply ice making water to the ice making unit to perform ice making;
When a float switch provided side by side with the ice making water tank detects a predetermined water level drop of the ice making water in the ice making water tank, the hot gas valve of the refrigeration circuit is opened to supply the heat refrigerant from the compressor to the evaporator. Further, in the ice making machine deicing control method, the water feeding valve of the external water system is opened to supply ice removing water to the ice making unit and ice is removed from the ice making unit.
During the deicing process, the temperature of the ice making water placed in the ice making water tank every N seconds from the time when the refrigerant temperature sensor provided on the outlet side of the evaporator detects a predetermined rising temperature and a predetermined time has elapsed. Check the detected temperature of the sensor,
If the detected temperature confirmed by the ice making water temperature sensor continues to rise, or if the detected temperature is stable at 1 ° C. or higher, the deicing step is ended and the process moves to the next ice making step,
If the detected temperature confirmed by the ice making water temperature sensor continues to fall or is stable at less than 1 ° C., the deicing process is extended for a predetermined time, and then the next ice making process is performed,
If the detected temperature confirmed by the ice making water temperature sensor continues to decrease for a preset time or is stable at less than 1 ° C., the deicing process is extended for a predetermined time, and then the deicing process is performed. The point is that you have to do it again.
According to the invention of claim 7, the process normally proceeds to the deicing process through the ice making process, and the hot gas valve is opened to supply the heat refrigerant to the evaporator of the ice making unit, and the water supply valve is opened to normal temperature Since the temperature of the refrigerant provided on the refrigerant outlet side of the evaporator rises by supplying the deicing water of the above to the ice making unit, this temperature rise is monitored by the refrigerant temperature sensor. The following state depending on the temperature of ice making water confirmed by the ice making water temperature sensor provided in the ice making water tank every N seconds from the time when a predetermined time has passed since the refrigerant temperature sensor detected a predetermined rising temperature Make a prospective decision.
(1) A state in which the ice completely drops out of the ice making section and is not clogged
(2) A state in which a part of the ice is thought to be clogged even if the ice drops from the ice making section
(3) A state in which the ice dropped from the ice making section is clogged up. According to the result of the above judgment, (1) The deicing process is finished and the process goes to the ice making process. (2) The deicing process is justified In addition, choose either to thaw and remove the ice that seems to be clogged in the ice making section, and (3) to perform the deicing process again to thaw and remove the ice clogged in the ice making section. By doing this, it is possible to prevent double ice making. That is, multiple ice making is not generated, and failure or damage of the ice making unit and peripheral parts can be effectively prevented.

前記課題を解決し、所期の目的を達成するため請求項8に記載の発明は、
冷凍回路からの冷媒を膨張手段を介して製氷部の蒸発器へ供給すると共に、製氷水タンクのポンプモータを駆動して製氷水を前記製氷部へ供給して製氷を行う製氷工程と、
前記製氷水タンクに併設したフロートスイッチが該製氷水タンクにおける製氷水の所定の水位低下を検知すると、前記冷凍回路のホットガス弁を開放して圧縮機からの熱冷媒を前記蒸発器に供給すると共に、外部水道系の給水弁を開放して前記製氷部に除氷水を供給して該製氷部から氷を除去する除氷工程とを反復する製氷機の除氷制御方法において、
前記除氷工程中に、前記蒸発器の出口側に設けた冷媒温度センサが所定の上昇温度を検出した時点から第1時間を経過した時点で前記製氷水タンクに配置した製氷水温度センサの検出温度を確認し、
その検出温度が所定温度よりも高ければ、当該除氷工程を終了して次の製氷工程に移行し、
前記製氷水温度センサが確認した検出温度が前記所定の温度より低ければ、前記製氷水タンクに連通する排水弁を開放して製氷水を排出した後に、当該除氷工程を再度行うようにしたことを要旨とする。
請求項8に係る発明によれば、正常に製氷工程を経て除氷工程に移行し、ホットガス弁を開放して熱冷媒を製氷部の蒸発器に供給すると共に、給水弁を開放して常温の除氷水を製氷部に供給することで、蒸発器の冷媒出口側に設けた冷媒の温度が上昇するので、この温度上昇を冷媒温度センサにより監視している。前記冷媒温度センサが所定の上昇温度を検知してから第1時間を経過した時点で、製氷水タンクに設けた製氷水温度センサにより確認した製氷水の温度が所定の温度よりも高くなっているか、低くなっているかに依存して以下の状態を見込み判断する。
(1)製氷部から氷が完全に脱落して詰まっていない状態
(2)製氷部から氷が脱落しても一部が詰まっていると思われる状態
(3)製氷部から脱落した氷が詰まってしまっている状態
そして前記判断の結果に応じて、(1)除氷工程を終了して製氷工程へ移行する、(2)除氷工程を念の為に追加して製氷部に詰まっていると思われる氷を融解除去する、および(3)除氷工程を再度実施して、製氷部に詰まっている氷を融解除去する、の何れかを選択することで、二重製氷になる事態を未然に防止し得る。すなわち多重製氷を生ずることがなくなり、製氷部や周辺部品の故障・破損が有効に防止される。
In order to solve the above problems and achieve the intended purpose, the invention according to claim 8 is:
An ice making step of supplying the refrigerant from the freezing circuit to the evaporator of the ice making unit through the expansion means and driving the pump motor of the ice making water tank to supply ice making water to the ice making unit to perform ice making;
When a float switch provided side by side with the ice making water tank detects a predetermined water level drop of the ice making water in the ice making water tank, the hot gas valve of the refrigeration circuit is opened to supply the heat refrigerant from the compressor to the evaporator. Further, in the ice making machine deicing control method, the water feeding valve of the external water system is opened to supply ice removing water to the ice making unit and ice is removed from the ice making unit.
Detection of ice water temperature sensor disposed in the ice making water tank when a first time has elapsed from the time when the refrigerant temperature sensor provided on the outlet side of the evaporator detects a predetermined rising temperature during the deicing step Check the temperature,
If the detected temperature is higher than a predetermined temperature, the deicing process is ended and the process goes to the next ice making process,
If the detected temperature confirmed by the ice making water temperature sensor is lower than the predetermined temperature, the dewatering step is performed again after the drainage valve connected to the ice making water tank is opened to discharge the ice making water. As the abstract.
According to the invention of claim 8, the process normally proceeds to the deicing process through the ice making process, and the hot gas valve is opened to supply the heat refrigerant to the evaporator of the ice making unit and the water supply valve is opened to normal temperature Since the temperature of the refrigerant provided on the refrigerant outlet side of the evaporator rises by supplying the deicing water of the above to the ice making unit, this temperature rise is monitored by the refrigerant temperature sensor. Whether the temperature of ice making water checked by the ice making water temperature sensor provided in the ice making water tank is higher than the predetermined temperature when the first time passes after the refrigerant temperature sensor detects the predetermined rising temperature Depending on whether it is low, make the following judgments.
(1) A state in which the ice completely drops out of the ice making section and is not clogged
(2) A state in which a part of the ice is thought to be clogged even if the ice drops from the ice making section
(3) A state in which the ice dropped from the ice making section is clogged up. According to the result of the above judgment, (1) The deicing process is finished and the process goes to the ice making process. (2) The deicing process is justified In addition, choose either to thaw and remove the ice that seems to be clogged in the ice making section, and (3) to perform the deicing process again to thaw and remove the ice clogged in the ice making section. By doing this, it is possible to prevent double ice making. That is, multiple ice making is not generated, and failure or damage of the ice making unit and peripheral parts can be effectively prevented.

本発明によれば、製氷工程から移行した除氷工程の終期に、何等かの原因で氷が製氷部から完全に脱落せず、該製氷部の下方に残留して詰まった場合に、そのまま次の製氷工程更には除氷工程へ移行することで生ずる多重製氷の弊害を未然に防止することができる。   According to the present invention, at the end of the deicing process transferred from the ice making process, if the ice does not completely fall off the ice making section for some reason and remains behind the ice making section and clogged, The adverse effects of multiple ice making caused by shifting to the ice making process and further to the deicing process can be prevented in advance.

本発明の実施例1に係る除氷制御方法における前半の工程を示すタイムチャートである。It is a time chart which shows the process of the first half in the deicing control method concerning Example 1 of the present invention. 実施例1の除氷制御方法において、冷媒温度センサの検出温度が第1温度より高い場合の挙動を示すタイムチャートである。In the deicing control method of Example 1, it is a time chart which shows the behavior when the detection temperature of a refrigerant temperature sensor is higher than the 1st temperature. 実施例1の除氷制御方法において、冷媒温度センサの検出温度が第2温度より高く、且つ第1温度より低い場合の挙動を示すタイムチャートである。In the deicing control method of Example 1, it is a time chart which shows the behavior when the detection temperature of a refrigerant temperature sensor is higher than the 2nd temperature, and lower than the 1st temperature. 実施例1の除氷制御方法において、冷媒温度センサの検出温度が第2温度より低い場合の挙動を示すタイムチャートである。In the deicing control method of Example 1, it is a time chart which shows the behavior when the detection temperature of a refrigerant temperature sensor is lower than the 2nd temperature. 図4に示す除氷工程を連続して3回まで反復することを示すタイムチャートである。FIG. 5 is a time chart showing that the deicing process shown in FIG. 4 is repeated up to three times in succession. 実施例2の除氷制御方法において、冷媒温度センサの検出温度が上昇し続けている場合の挙動を示すタイムチャートである。In the deicing control method of Example 2, it is a time chart which shows the behavior in case the detection temperature of a refrigerant temperature sensor is continuing rising. 実施例2の除氷制御方法において、冷媒温度センサの検出温度が1℃以上で安定する場合の挙動を示すタイムチャートである。In the deicing control method of Example 2, it is a time chart which shows the behavior in case the detection temperature of a refrigerant temperature sensor is stabilized at 1 ° C or more. 実施例2の除氷制御方法において、冷媒温度センサの検出温度が下降を続けているか、または1℃未満で安定している場合の挙動を示すタイムチャートである。In the deicing control method of Example 2, it is a time chart which shows the behavior in the case where the detection temperature of a refrigerant temperature sensor continues falling or is stable below 1 ° C. 実施例2の除氷制御方法において、冷媒温度センサの検出温度が予め設定した時間だけ下降を続けているか、または1℃未満で安定している場合の挙動を示すタイムチャートである。In the deicing control method of Example 2, it is a time chart which shows the behavior in the case where the detection temperature of a refrigerant temperature sensor continues falling only for the time set up beforehand, or is stable below 1 ° C. 実施例3の除氷制御方法において、冷媒温度センサの検出温度が所定温度より高い場合の挙動を示すタイムチャートである。In the deicing control method of Example 3, it is a time chart which shows the behavior when the detection temperature of a refrigerant temperature sensor is higher than predetermined temperature. 実施例3の除氷制御方法において、冷媒温度センサの検出温度が所定温度より低い場合の挙動を示すタイムチャートである。In the deicing control method of Example 3, it is a time chart which shows the behavior when the detection temperature of a refrigerant temperature sensor is lower than predetermined temperature. 本発明の実施例4に係る除氷制御方法において、製氷工程および除氷工程が反復されている製氷サイクルのタイムチャートである。In the deicing control method which concerns on Example 4 of this invention, it is a time chart of the ice making cycle in which the ice making process and the deicing process are repeated. 実施例4に係る除氷制御方法における前半の工程を示すタイムチャートである。FIG. 18 is a time chart illustrating the first half of the process of the deicing control method according to the fourth embodiment. 実施例4の除氷制御方法において、製氷水温度センサの検出温度が第1温度より高い場合の挙動を示すタイムチャートである。In the deicing control method of Example 4, it is a time chart which shows the behavior in case the detection temperature of an ice-making water temperature sensor is higher than 1st temperature. 実施例4の除氷制御方法において、製氷水温度センサの検出温度が第2温度より高く、且つ第1温度より低い場合の挙動を示すタイムチャートである。In the deicing control method of Example 4, it is a time chart which shows the behavior when the detection temperature of an ice-making water temperature sensor is higher than 2nd temperature and lower than 1st temperature. 実施例4の除氷制御方法において、製氷水温度センサの検出温度が第2温度より低い場合の挙動を示すタイムチャートである。In the deicing control method of Example 4, it is a time chart which shows a behavior when the detection temperature of an ice-making water temperature sensor is lower than 2nd temperature. 図16に示す除氷工程を連続して3回まで反復することを示すタイムチャートである。FIG. 17 is a time chart showing that the deicing process shown in FIG. 16 is repeated up to three times in succession. 実施例5の除氷制御方法において、製氷水温度センサの検出温度が上昇し続けている場合の挙動を示すタイムチャートである。In the deicing control method of Example 5, it is a time chart which shows the behavior in case the detection temperature of the ice-making water temperature sensor is continuing rising. 実施例5の除氷制御方法において、製氷水温度センサの検出温度が1℃以上で安定する場合の挙動を示すタイムチャートである。In the deicing control method of Example 5, it is a time chart which shows a behavior in case detection temperature of an ice-making water temperature sensor is stabilized at 1 ° C or more. 実施例5の除氷制御方法において、製氷水温度センサの検出温度が下降を続けているか、または1℃未満で安定している場合の挙動を示すタイムチャートである。In the deicing control method of Example 5, it is a time chart which shows the behavior in the case where the detection temperature of the ice-making water temperature sensor continues falling or is stable below 1 ° C. 実施例5の除氷制御方法において、製氷水温度センサの検出温度が予め設定した時間だけ下降を続けているか、または1℃未満で安定している場合の挙動を示すタイムチャートである。In the deicing control method of Example 5, it is a time chart which shows the behavior in the case where the detection temperature of an ice-making water temperature sensor continues falling only for the time set beforehand, or it is stable below 1 ° C. 実施例6の除氷制御方法において、製氷水温度センサの検出温度が所定温度より高い場合の挙動を示すタイムチャートである。In the deicing control method of Example 6, it is a time chart which shows a behavior when the detection temperature of an ice-making water temperature sensor is higher than predetermined temperature. 実施例6の除氷制御方法において、製氷水温度センサの検出温度が所定温度より低い場合の挙動を示すタイムチャートである。In the deicing control method of Example 6, it is a time chart which shows the behavior when the detection temperature of an ice-making water temperature sensor is lower than predetermined temperature. 製氷工程と除氷工程とを反復して製氷を行う流下式製氷機の概略構造を示す説明図である。It is explanatory drawing which shows the schematic structure of the down-flow type | formula ice making machine which performs an ice making by repeating an ice making process and a deicing process. 図24に示す流下式製氷機における製氷工程および除氷工程が反復される製氷サイクルのタイムチャートである。FIG. 25 is a time chart of an ice making cycle in which the ice making process and the deicing process in the flow down type ice making machine shown in FIG. 24 are repeated.

次に、本発明に係る製氷機の除氷制御方法について、流下式製氷機の製氷サイクルを例に挙げて、添付図面を参照しながら説明する。ここで例示する流下式製氷機は、図24に関して説明した機構のものであり、該製氷機の基本的な製氷サイクルは、図25のタイムチャートに示した通りである。   Next, a deicing control method of an ice making machine according to the present invention will be described by taking an ice making cycle of a flow-down type ice making machine as an example and referring to the attached drawings. The downflow type ice making machine exemplified here is of the mechanism described with reference to FIG. 24, and the basic ice making cycle of the ice making machine is as shown in the time chart of FIG.

また、本発明の実施例は実施例1〜実施例6に分かたれ、前半の実施例1〜実施例3は蒸発器の冷媒出口側に設けた冷媒温度センサの検出温度を主たる指標とし、後半の実施例4〜実施例6は製氷水タンクにおける製氷水温度センサの検出温度を主たる指標としている。そして、実施例4は実施例1に、実施例5は実施例2に、更に実施例6は実施例3に対応していて、検出指標は異なるが基本的な挙動を同一にしている。   Further, the embodiments of the present invention are divided into the first to sixth embodiments, and the first to third embodiments use the detected temperature of the refrigerant temperature sensor provided on the refrigerant outlet side of the evaporator as a main index, and the second half In Examples 4 to 6, the detection temperature of the ice making water temperature sensor in the ice making water tank is used as a main index. The fourth embodiment corresponds to the first embodiment, the fifth embodiment corresponds to the second embodiment, and the sixth embodiment corresponds to the third embodiment. The detection index is different but the basic behavior is the same.

実施例1に係る除氷制御方法によれば、図1〜図5に示す制御を実行することで多重製氷を未然に防止することができる。すなわち図1において、製氷工程が終了に近づくにつれて、前記蒸発器EPの冷媒出口付近に設けた冷媒温度センサTh1の検出温度は低下し続けるが、前記フロートスイッチFSが製氷水タンク18の製氷水における所定の水位低下を検出すると、除氷工程に移行して前記ホットガス弁HVが開放し熱冷媒が該蒸発器EPに供給される。このため前記冷媒温度センサTh1の検出温度は、除氷が進むにつれて上昇し始め、図1において例えば9℃を検出した時点からタイマ(図示せず)が計時を開始し、例えば10秒経過した時点で前記供給弁WVを閉成する。また、前記ポンプモータPMの駆動を開始して、製氷水タンク18の製氷水を前記製氷部16へ散布供給する。   According to the deicing control method according to the first embodiment, it is possible to prevent multiple ice making in advance by executing the control shown in FIGS. That is, in FIG. 1, as the ice making process approaches the end, the detected temperature of the refrigerant temperature sensor Th1 provided near the refrigerant outlet of the evaporator EP continues to decrease, but the float switch FS is in the ice making water of the ice making water tank 18 When a predetermined water level drop is detected, the process proceeds to the deicing step, the hot gas valve HV is opened, and the heat refrigerant is supplied to the evaporator EP. For this reason, the detected temperature of the refrigerant temperature sensor Th1 starts to rise as deicing progresses, and a timer (not shown) starts timing from, for example, the time when 9 ° C. is detected in FIG. To close the supply valve WV. In addition, driving of the pump motor PM is started, and the ice making water of the ice making water tank 18 is dispersedly supplied to the ice making unit 16.

そして、冷媒温度センサTh1が前記所定の上昇温度(9℃)を検出した時点から第1時間T1(例えば60秒)を経過した時点で、該冷媒温度センサTh1による冷媒の検出温度を制御部(図示せず)で確認する。そして、このときの冷媒温度センサTh1の検出温度に対応して、以下の何れかの除氷制御を行う。   Then, when the first time T1 (for example, 60 seconds) elapses from the time when the refrigerant temperature sensor Th1 detects the predetermined rising temperature (9 ° C.), the control temperature of the refrigerant detected by the refrigerant temperature sensor Th1 is Confirm with (not shown). Then, in response to the temperature detected by the refrigerant temperature sensor Th1 at this time, any one of the following deicing control is performed.

(1)すなわち、冷媒温度センサTh1の検出温度が、予め定めておいた第1温度TM1(例えば5℃)よりも高ければ、前記製氷部16から氷が離脱し、かつ氷詰まりも生じていないと判断して、図2に示すように当該除氷工程を終了して次の製氷工程へ移行する。これは、仮に製氷部16から氷が離脱しても、該製氷部16に氷が部分的に残留している場合は、冷媒温度センサTh1の検出温度は下降し続けるからである。 (1) That is, if the detected temperature of the refrigerant temperature sensor Th1 is higher than a predetermined first temperature TM1 (for example, 5 ° C.), ice is detached from the ice making unit 16 and no ice jam occurs. Then, as shown in FIG. 2, the deicing process is finished and the process goes to the next ice making process. This is because even if ice is detached from the ice making unit 16, if the ice partially remains in the ice making unit 16, the detection temperature of the refrigerant temperature sensor Th1 continues to decrease.

(2)また、図3に示すように、冷媒温度センサTh1が検出した冷媒の温度が前記第1温度TM1(5℃)よりも低く、且つ予め設定した所定の第2温度TM2(例えば3.5℃)よりも高い場合は、前記製氷部16から離脱した氷の一部が該製氷部16の下方に残留して詰まっている畏れがあることになる。そこで、この場合は現在進行中の除氷工程を延長する。すなわち、前記蒸発器EPへの熱冷媒の供給を第2時間T2(例えば50秒)だけ延長して、製氷部16に残留している疑いのある氷を温度が上昇している該蒸発器EPからの伝熱で融解させて脱落させ、次の製氷工程へ移行する。 (2) Further, as shown in FIG. 3, the temperature of the refrigerant detected by the refrigerant temperature sensor Th1 is lower than the first temperature TM1 (5 ° C.), and a predetermined second temperature TM2 (eg 3.) If the temperature is higher than 5 ° C., part of the ice detached from the ice making unit 16 may remain clogged below the ice making unit 16. Therefore, in this case, the ongoing deicing process is extended. That is, the supply of the thermal refrigerant to the evaporator EP is extended by the second time T2 (for example, 50 seconds) to increase the temperature of the ice suspected of remaining in the ice making unit 16 up. Heat it from the heat source to melt it off and move on to the next ice making process.

(3)冷媒温度センサTh1により検出した冷媒の温度が、前記の所定温度TM2(3.5℃)よりも低くなっている場合は、前記製氷部16で離脱した氷の一部が該製氷部16の下方に詰まって残留していると判断される。従って、図4に示すように、現在進行中の除氷工程が終了しても、引き続き除氷工程を再度行うことにより、前記製氷部16に残留していた氷の離脱落下を促進させる。そして再度の除氷工程が終了したら、次の製氷工程に移行する。 (3) When the temperature of the refrigerant detected by the refrigerant temperature sensor Th1 is lower than the predetermined temperature TM2 (3.5 ° C.), a part of the ice separated by the ice making unit 16 is the ice making unit It is judged that it is clogged and remains below 16. Therefore, as shown in FIG. 4, even after the ongoing deicing process is completed, the detachment and falling of the ice remaining in the ice making section 16 is promoted by continuing the deicing process again. When the deicing process is completed again, the process moves to the next ice making process.

なお、図5に示すように、図4における除氷工程の再実行は、例えば連続して3回までとし、この回数を繰り返した後は、製氷部16から氷は完全に脱落したものと見込んで次の製氷工程に移行する。勿論、除氷工程の再実行を3回までとするのは例示であって、現場の具体的な状況に応じて再実行の回数は増減するのが適切である。   In addition, as shown in FIG. 5, re-execution of the deicing process in FIG. 4 is performed, for example, three times continuously, and after repeating this number of times, it is expected that ice is completely dropped from the ice making unit 16 Move to the next ice making process. Of course, re-execution of the deicing process up to three times is an example, and it is appropriate to increase or decrease the number of re-executions according to the specific situation of the site.

図6〜図9のタイムチャートは、本発明に係る除氷制御方法の実施例2を示すものである。すなわち図6において、通常のルーティンである製氷工程を実施した後に除氷工程に移行する。この除氷工程では、図1に関して先に説明したように、蒸発器EPの冷媒出口側の前記冷媒温度センサTh1が所定の上昇温度(9℃)を検出した時点から所定時間T(例えば10秒)を経過した時点から、N秒(例えば5秒)毎に該冷媒温度センサTh1により検出した冷媒の温度を制御部(図示せず)で確認する。そして、冷媒温度センサTh1により検出された冷媒温度に応じて、以下の何れかの除氷制御を行う。   The time charts of FIG. 6 to FIG. 9 show Example 2 of the deicing control method according to the present invention. That is, in FIG. 6, after the ice making process, which is a normal routine, is performed, the process moves to the deicing process. In this deicing step, as described above with reference to FIG. 1, a predetermined time T (for example, 10 seconds) from the time when the refrigerant temperature sensor Th1 on the refrigerant outlet side of the evaporator EP detects a predetermined rising temperature (9.degree. C.) The controller temperature (not shown) checks the temperature of the refrigerant detected by the refrigerant temperature sensor Th1 every N seconds (for example, 5 seconds) from the time when e. Then, in accordance with the refrigerant temperature detected by the refrigerant temperature sensor Th1, any of the following deicing control is performed.

(1)すなわち、冷媒温度センサTh1の検出温度をN秒(5秒)毎に確認した結果として、図6に示すように前記検出温度が上昇をし続けている場合は、製氷部16から氷が完全に脱落したものとの見込み判断し、当該除氷工程を終了して次の製氷工程に移行する。また、同じく冷媒温度センサTh1におけるN秒(5秒)毎の検出温度が、図7に示すように、1℃以上で安定していれば、この場合も製氷部16から氷が完全に脱落したものとして除氷工程を終了し、次の製氷工程に移行する。 (1) That is, as a result of confirming the detection temperature of the refrigerant temperature sensor Th1 every N seconds (5 seconds), as shown in FIG. 6, when the detection temperature continues to rise, the ice from the ice making unit 16 It is judged that C. has completely dropped out, and the deicing process is finished to shift to the next ice making process. Similarly, if the temperature detected every N seconds (5 seconds) in the refrigerant temperature sensor Th1 is stable at 1 ° C. or higher as shown in FIG. 7, ice is completely dropped from the ice making section 16 also in this case. The deicing process is finished, and the process goes to the next ice making process.

(2)また、冷媒温度センサTh1による検出温度をN秒(5秒)毎に確認した結果として、図8に示すように、当該検出温度が下降し続けているか、または1℃未満で安定している場合は、製氷部16から離脱した氷の一部が該製氷部16の下部に残留して詰まっている畏れがあることになる。このときは、当該の除氷工程を延長する。すなわち、前記蒸発器EPへホットガス弁HVからの熱冷媒の供給を第2時間T2(例えば50秒)だけ延長して、製氷部16を蒸発器EPにより更に加温をし続けて、製氷部16の下方に残留している氷を融解させ、第2時間T2がタイムアップすると延長した除氷工程を終了して、次の製氷工程へ移行する。 (2) Further, as a result of checking the temperature detected by the refrigerant temperature sensor Th1 every N seconds (5 seconds), as shown in FIG. 8, the detected temperature continues to decrease or stabilizes at less than 1 ° C. In this case, part of the ice removed from the ice making unit 16 may remain in the lower part of the ice making unit 16 and be clogged. At this time, the relevant deicing process is extended. That is, the supply of the thermal refrigerant from the hot gas valve HV to the evaporator EP is extended by the second time T2 (for example, 50 seconds), and the ice making unit 16 is further heated by the evaporator EP to continue the ice making unit The remaining ice below 16 is melted, and when the second time T2 is up, the extended de-icing process is finished, and the process goes to the next ice making process.

(3)冷媒温度センサTh1によりN秒(5秒)毎に確認した冷媒温度が予め設定した時間(例えば20分)だけ下降し続けているか、または1℃未満で安定していれば、製氷部16に氷が残留して詰まっているものと見込み判断される。このときは、図9に示すように、所定時間だけ当該除氷工程を延長した後、再度除氷工程を行う。 (3) If the refrigerant temperature checked every N seconds (5 seconds) by the refrigerant temperature sensor Th1 continues to decrease for a preset time (for example, 20 minutes) or is stable at less than 1 ° C., the ice making unit It is judged that ice remains in 16 and is clogged. At this time, as shown in FIG. 9, after the deicing process is extended for a predetermined time, the deicing process is performed again.

図10〜図11のタイムチャートは、本発明に係る除氷制御方法の実施例3を示すものである。すなわち図10において、通常の製氷工程を実施した後に除氷工程に移行する。この除氷工程では、図1に関して説明したように、前記冷媒温度センサTh1が所定の上昇温度(9℃)を検出した時点から第1時間T1(例えば60秒)を経過した時点で、該冷媒温度センサTh1の検出温度を確認する。そして、このときの冷媒温度センサTh1により確認された冷媒の検出温度に応じて、以下の何れかの除氷制御を行う。   The time charts of FIGS. 10 to 11 show Example 3 of the deicing control method according to the present invention. That is, in FIG. 10, after performing a normal ice making process, it transfers to a deicing process. In this deicing step, as described with reference to FIG. 1, the refrigerant is detected when a first time T1 (for example, 60 seconds) elapses from the time when the refrigerant temperature sensor Th1 detects a predetermined rising temperature (9 ° C.) The detected temperature of the temperature sensor Th1 is confirmed. Then, depending on the detected temperature of the refrigerant confirmed by the refrigerant temperature sensor Th1 at this time, any of the following deicing control is performed.

(1)冷媒温度センサTh1により確認した冷媒の検出温度が、所定温度TM(例えば3.5℃)より高くなっていれば、製氷部16から氷が完全に脱落したものと見込み判断して、図10に示すように、当該除氷工程を終了し、次の製氷工程に移行する。ちなみに前記の所定温度TMは、図2における制御で使用した第1温度TM1(5℃)よりも低い温度が選定され、例えば3.5℃とするのが好適である。 (1) If the detected temperature of the refrigerant confirmed by the refrigerant temperature sensor Th1 is higher than a predetermined temperature TM (for example, 3.5 ° C.), it is judged that the ice has completely dropped from the ice making unit 16, As shown in FIG. 10, the deicing process is completed, and the process proceeds to the next ice making process. Incidentally, as the predetermined temperature TM, a temperature lower than the first temperature TM1 (5.degree. C.) used in the control in FIG. 2 is selected, and for example, 3.5.degree. C. is preferable.

(2)また、冷媒温度センサTh1により確認した冷媒の検出温度が、前記所定の温度TM(例えば3.5℃)よりも低ければ、製氷部16に氷が残留して詰まっていると見込み判断し得る。そこでこのときは、図11に示すように、前記製氷水タンク18に連通している排水管34の前記排水弁DVを開放して、該製氷水タンク18の製氷水を排出する。この製氷水タンク18における製氷水を排出した後に、除氷工程を再度行うことにより、前記給水弁WVから常温の除氷水が製氷部16に散布供給されるので、前記蒸発器EPへ引き続き供給される熱冷媒と相俟って該製氷部16に残留していた氷の除去が促進される。 (2) Further, if the detected temperature of the refrigerant confirmed by the refrigerant temperature sensor Th1 is lower than the predetermined temperature TM (for example, 3.5 ° C.), it is estimated that ice remains in the ice making unit 16 and clogged It can. At this time, as shown in FIG. 11, the drainage valve DV of the drainage pipe 34 communicating with the ice making water tank 18 is opened to discharge the ice making water from the ice making water tank 18. After the ice making water in the ice making water tank 18 is discharged, the ice removing step is performed again, and the water removing valve of the normal temperature is dispersedly supplied to the ice making unit 16 from the water supply valve WV. The removal of the ice remaining in the ice making unit 16 is promoted in combination with the heat refrigerant.

以下の実施例4〜実施例6のグループは、先に述べたように、実施例1〜実施例3のグループとは、各グループにおける除氷制御の指標を製氷水温度センサTh2により検出される製氷水の温度(前者)とするか、冷媒温度センサTh1により検出される冷媒の温度(後者)とするか、が相違するだけで他の基本的な制御の挙動は同じである。   As described above, in the groups of Examples 4 to 6 below, the index of deicing control in each group is detected by ice water temperature sensor Th2 as the group of Examples 1 to 3. The behavior of the other basic control is the same except that the temperature of ice-making water (the former) or the temperature of the refrigerant detected by the refrigerant temperature sensor Th1 (the latter) is different.

実施例4に係る除氷制御方法によれば、図12〜図17に示す制御を実行することで多重製氷を未然に防止することができる。すなわち図12において、製氷工程が終了に近づくにつれて、前記蒸発器EPの冷媒温度センサTh1の検出温度は低下し続け、除氷工程に移行すると前記ホットガス弁HVが開放し熱冷媒が該蒸発器EPに供給される。このため前記冷媒温度センサTh1の検出温度は、除氷が進むにつれて上昇し始め、図12および図13において、例えば9℃を検出した時点からタイマが計時を開始し、例えば10秒経過した時点で前記供給弁WVを閉成する。また、前記ポンプモータPMの駆動を開始して、製氷水タンク18の製氷水を前記製氷部16へ散布供給する。   According to the deicing control method according to the fourth embodiment, multiple ice making can be prevented in advance by executing the control shown in FIGS. That is, in FIG. 12, as the ice making process approaches the end, the detected temperature of the refrigerant temperature sensor Th1 of the evaporator EP continues to decrease, and when the process goes to the deicing process, the hot gas valve HV is opened and the heat refrigerant is the evaporator. Supplied to the EP. For this reason, the detected temperature of the refrigerant temperature sensor Th1 starts to rise as deicing progresses, and in FIG. 12 and FIG. 13, for example, the timer starts counting from the time of detecting 9 ° C., for example, 10 seconds The supply valve WV is closed. In addition, driving of the pump motor PM is started, and the ice making water of the ice making water tank 18 is dispersedly supplied to the ice making unit 16.

また、図24に示すように、製氷水タンク18に設けた製氷水温度センサTh2による製氷水の検出温度は、製氷工程では製氷部16からの未氷結水(冷却されている)が該製氷水タンク18に帰還するため徐々に低下する。次いで除氷工程に移行すると、図13に示すように、前記給水弁WVから製氷部16へ供給される常温の除氷水が製氷水タンク18へ回収されるので、該製氷水タンク18における製氷水の温度は徐々に上昇する。しかし、前記の如くタイマの計時が10秒を経過した時点で給水弁WVは閉成し、ポンプモータPMが駆動して製氷水タンク18の製氷水を循環させるため、製氷水温度センサTh2による製氷水の検出温度は下降に転じた後、安定してフラットになる。   In addition, as shown in FIG. 24, the detection temperature of ice making water by the ice making water temperature sensor Th2 provided in the ice making water tank 18 is that the non-ice water (cooled) from the ice making unit 16 is ice making in the ice making process. In order to return to tank 18, it falls gradually. Next, in the deicing step, as shown in FIG. 13, since deicing water at normal temperature supplied from the water supply valve WV to the ice making unit 16 is recovered to the ice making water tank 18, ice making water in the ice making water tank 18 is produced. Temperature gradually rises. However, as described above, when the timer counts 10 seconds, the feed water valve WV is closed and the pump motor PM is driven to circulate the ice making water of the ice making water tank 18. After the detected temperature of water turns to fall, it becomes stable and flat.

そして、前記冷媒温度センサTh1が前記所定の上昇温度(9℃)を検出した時点から第1時間T1(例えば60秒)を経過した時点で、前記製氷水温度センサTh2による製氷水の検出温度を制御部(図示せず)で確認する。そして、このときの製氷水温度センサTh2の検出温度に対応して、以下の何れかの除氷制御を行う。   Then, when the first time T1 (for example, 60 seconds) elapses from the time when the refrigerant temperature sensor Th1 detects the predetermined rising temperature (9 ° C.), the detection temperature of ice water by the ice water temperature sensor Th2 is Check with the control unit (not shown). Then, in response to the detection temperature of the ice-making water temperature sensor Th2 at this time, any of the following deicing control is performed.

(1)すなわち、製氷水温度センサTh2の検出温度が、予め定めておいた第1温度TM1(例えば5℃)よりも高くなっていれば、前記製氷部16から氷が離脱し、かつ氷詰まりも生じていないと判断して、図14に示すように当該除氷工程を終了して次の製氷工程へ移行する。これは、仮に製氷部16から氷が離脱しても、該製氷部16に氷が部分的に残留している場合は、前記冷媒温度センサTh1の検出温度は下降し続けるからである。 (1) That is, if the detection temperature of the ice-making water temperature sensor Th2 is higher than a predetermined first temperature TM1 (for example, 5 ° C.), the ice is detached from the ice making unit 16 and the ice is clogged Also, as shown in FIG. 14, the deicing process is finished and the process goes to the next ice making process. This is because, even if ice is detached from the ice making unit 16, if the ice partially remains in the ice making unit 16, the detection temperature of the refrigerant temperature sensor Th1 continues to decrease.

(2)また、図15に示すように、製氷水温度センサTh2が検出した製氷水の温度が前記第1温度TM1(5℃)よりも低く、且つ予め設定した所定の第2温度TM2(例えば3.5℃)よりも高い場合は、前記製氷部16から離脱した氷の一部が該製氷部16の下方に残留して詰まっている畏れがあることになる。そこで、この場合は現在進行中の除氷工程を延長する(除氷工程の部分追加)。すなわち、前記蒸発器EPへの熱冷媒の供給を第2時間T2(例えば50秒)だけ延長して、製氷部16に残留している疑いのある氷を、温度上昇している該蒸発器EPからの伝熱により融解して脱落させ、次の製氷工程へ移行する。 (2) Also, as shown in FIG. 15, the temperature of the ice making water detected by the ice making water temperature sensor Th2 is lower than the first temperature TM1 (5 ° C.), and a predetermined second temperature TM2 (for example, preset) If the temperature is higher than 3.5 ° C., a part of the ice detached from the ice making unit 16 may remain clogged below the ice making unit 16. Therefore, in this case, the ongoing deicing process is extended (partial addition of the deicing process). That is, the supply of the thermal refrigerant to the evaporator EP is extended by the second time T2 (for example, 50 seconds) to increase the temperature of the ice suspected of remaining in the ice making unit 16 It melts and falls off by heat transfer from and moves to the next ice making process.

(3)製氷水温度センサTh2により検出した製氷水の温度が、前記の所定温度TM2(3.5℃)よりも低くなっている場合は、前記製氷部16で離脱した氷の一部が該製氷部16の下方に詰まって残留していると判断される。従って、図16に示すように、現在進行中の除氷工程に引き続いて再度除氷工程を行うことにより、前記製氷部16に残留していた氷の離脱落下を促進させる。そして再度の除氷工程が終了したら、次の製氷工程に移行する。 (3) When the temperature of ice making water detected by the ice making water temperature sensor Th2 is lower than the predetermined temperature TM2 (3.5 ° C.), a part of the ice detached by the ice making unit 16 is It is determined that the lower part of the ice making unit 16 is clogged and remains. Therefore, as shown in FIG. 16, by performing the deicing process again following the ongoing deicing process, the detachment and falling of the ice remaining in the ice making unit 16 is promoted. When the deicing process is completed again, the process moves to the next ice making process.

なお、図17に示すように、図16における除氷工程の再実行は、例えば連続して3回までとし、この回数を繰り返した後は、製氷部16から氷は完全に脱落したものと見込んで次の製氷工程に移行する。   Note that, as shown in FIG. 17, re-execution of the deicing process in FIG. 16 is performed up to three times consecutively, for example, and after repeating this number of times, it is expected that ice is completely dropped from the ice making unit 16 Move to the next ice making process.

図18〜図21のタイムチャートは、本発明に係る除氷制御方法の実施例5を示すものである。すなわち図18において、通常のルーティンである製氷工程を実施した後に除氷工程に移行する。この除氷工程では、図12に関して先に説明したように、蒸発器EPの冷媒出口側の前記冷媒温度センサTh1が所定の上昇温度(9℃)を検出した時点から所定時間T(例えば10秒)を経過した時点から、N秒(例えば5秒)毎に製氷水温度センサTh2により検出した製氷水の温度を制御部(図示せず)で確認する。そして、製氷水温度センサTh2により検出された製氷水温度に応じて、以下の何れかの除氷制御を行う。   The time charts of FIG. 18 to FIG. 21 show Example 5 of the deicing control method according to the present invention. That is, in FIG. 18, after the ice making process which is a normal routine is performed, the process moves to the deicing process. In this deicing step, as described above with reference to FIG. 12, a predetermined time T (e.g., 10 seconds) from the time when the refrigerant temperature sensor Th1 on the refrigerant outlet side of the evaporator EP detects a predetermined rising temperature (9.degree. C.) After the elapse of, the temperature of the ice making water detected by the ice making water temperature sensor Th2 is confirmed by a control unit (not shown) every N seconds (for example, 5 seconds). Then, in accordance with the ice making water temperature detected by the ice making water temperature sensor Th2, one of the following deicing control is performed.

(1)すなわち、製氷水温度センサTh2の検出温度をN秒(5秒)毎に確認した結果として、図18に示すように前記検出温度が上昇をし続けている場合は、製氷部16から氷が完全に脱落したものとの見込み判断し、当該除氷工程を終了して次の製氷工程に移行する。また、同じく製氷水温度センサTh2におけるN秒(5秒)毎の検出温度が、図19に示すように、1℃以上で安定していれば、この場合も製氷部16から氷が完全に脱落したものとして除氷工程を終了し、次の製氷工程に移行する。 (1) That is, as a result of confirming the detection temperature of the ice-making water temperature sensor Th2 every N seconds (5 seconds), as shown in FIG. 18, when the detection temperature continues to rise, from the ice making unit 16 It is judged that the ice has completely dropped, and the deicing process is finished to shift to the next ice making process. Also, if the detection temperature every N seconds (5 seconds) in the ice-water making temperature sensor Th2 is also stable at 1 ° C. or higher, as shown in FIG. Then, the deicing process is finished, and the process goes to the next ice making process.

(2)また、製氷水温度センサTh2による検出温度をN秒(5秒)毎に確認した結果として、図20に示すように、当該検出温度が下降し続けているか、または1℃未満で安定している場合は、製氷部16から離脱した氷の一部が該製氷部16の下部に残留して詰まっている畏れがあることになる。このときは、当該の除氷工程を延長する。すなわち、前記蒸発器EPへホットガス弁HVからの熱冷媒の供給を第2時間T2(例えば50秒)だけ延長して、製氷部16を蒸発器EPにより更に加温をし続けて、製氷部16の下方に残留している氷を融解させ、第2時間T2がタイムアップすると延長した除氷工程を終了して、次の製氷工程へ移行する。 (2) Moreover, as a result of confirming the detection temperature by the ice making water temperature sensor Th2 every N seconds (5 seconds), as shown in FIG. 20, the detection temperature continues to decrease or is stable at less than 1 ° C. In this case, part of the ice removed from the ice making unit 16 may remain in the lower part of the ice making unit 16 and be clogged. At this time, the relevant deicing process is extended. That is, the supply of the thermal refrigerant from the hot gas valve HV to the evaporator EP is extended by the second time T2 (for example, 50 seconds), and the ice making unit 16 is further heated by the evaporator EP to continue the ice making unit The remaining ice below 16 is melted, and when the second time T2 is up, the extended de-icing process is finished, and the process goes to the next ice making process.

(3)製氷水温度センサTh2によりN秒(5秒)毎に確認した冷媒温度が予め設定した時間(例えば20分)だけ下降し続けているか、または1℃未満で安定していれば、製氷部16に氷が残留して詰まっているものと見込み判断される。このときは、図21に示すように、所定時間だけ当該除氷工程を延長した後、再度除氷工程を行う。 (3) If the refrigerant temperature confirmed every N seconds (5 seconds) by the ice-making water temperature sensor Th2 continues to decrease for a preset time (for example, 20 minutes) or is stable at less than 1 ° C. It is estimated that ice remains in section 16 and is clogged. At this time, as shown in FIG. 21, after the deicing process is extended for a predetermined time, the deicing process is performed again.

図22〜図23のタイムチャートは、本発明に係る除氷制御方法の実施例6を示すものである。すなわち図22において、通常の製氷工程を実施した後に除氷工程に移行する。この除氷工程では、図12に関して説明したように、製氷水温度センサTh2が所定の上昇温度(9℃)を検出した時点から第1時間T1(例えば60秒)を経過した時点で、当該製氷水温度センサTh2の検出温度を確認する。そして、このときの製氷水温度センサTh2により確認された製氷水の検出温度に応じて、以下の何れかの除氷制御を行う。   The time charts of FIG. 22 to FIG. 23 show Example 6 of the deicing control method according to the present invention. That is, in FIG. 22, after performing a normal ice making process, it transfers to a deicing process. In this deicing step, as described with reference to FIG. 12, when the ice making water temperature sensor Th2 detects a predetermined rising temperature (9 ° C.), when the first time T1 (for example, 60 seconds) elapses, the ice making The detected temperature of the water temperature sensor Th2 is confirmed. Then, one of the following deicing control is performed according to the detection temperature of the ice making water confirmed by the ice making water temperature sensor Th2 at this time.

(1)製氷水温度センサTh2により確認した製氷水の検出温度が、所定温度TM(例えば3.5℃)より高くなっていれば、製氷部16から氷が完全に脱落したものと見込み判断して、図22に示すように、当該除氷工程を終了し、次の製氷工程に移行する。ちなみに前記の所定温度TMは、図2における制御で使用した第1温度TM1(5℃)よりも低い温度が選定され、例えば3.5℃とするのが好適である。 (1) If the detection temperature of ice making water confirmed by the ice making water temperature sensor Th2 is higher than a predetermined temperature TM (for example, 3.5 ° C.), it is predicted that ice has completely dropped from the ice making unit 16 Then, as shown in FIG. 22, the deicing process is completed, and the process proceeds to the next ice making process. Incidentally, as the predetermined temperature TM, a temperature lower than the first temperature TM1 (5.degree. C.) used in the control in FIG. 2 is selected, and for example, 3.5.degree. C. is preferable.

(2)また、製氷水温度センサTh2により確認した製氷水の検出温度が、前記所定の温度TM(例えば3.5℃)よりも低ければ、製氷部16に氷が残留して詰まっていると見込み判断し得る。そこでこのときは、図23に示すように、前記製氷水タンク18に連通している排水管34の前記排水弁DVを開放して、該製氷水タンク18の製氷水を排出する。この製氷水タンク18における製氷水を排出した後に、除氷工程を再度行うことにより、前記給水弁WVから常温の除氷水が製氷部16に散布供給されるので、前記蒸発器EPへ引き続き供給される熱冷媒と相俟って該製氷部16に残留していた氷の除去が促進される。 (2) In addition, if the detection temperature of the ice making water confirmed by the ice making water temperature sensor Th2 is lower than the predetermined temperature TM (for example, 3.5 ° C.), it means that ice remains in the ice making unit 16 and is clogged It can be judged prospectively. At this time, as shown in FIG. 23, the drainage valve DV of the drainage pipe 34 communicating with the ice making water tank 18 is opened to discharge the ice making water from the ice making water tank 18. After the ice making water in the ice making water tank 18 is discharged, the ice removing step is performed again, and the water removing valve of the normal temperature is dispersedly supplied to the ice making unit 16 from the water supply valve WV. The removal of the ice remaining in the ice making unit 16 is promoted in combination with the heat refrigerant.

16 製氷部,18 製氷水タンク,30 冷凍回路,CM 圧縮機,
DV 排水弁,EP 蒸発器,EV 膨張手段,FS フロートスイッチ,
HV ホットガス弁,PM ポンプモータ,T 所定時間,
T1 第1時間,T2 第2時間,Th1 冷媒温度センサ,
Th2 製氷水温度センサ,TM 所定温度,TM1 第1温度,
TM2 第2温度,WV 給水弁
16 ice making unit, 18 ice making water tank, 30 refrigeration circuit, CM compressor,
DV drain valve, EP evaporator, EV expansion means, FS float switch,
HV hot gas valve, PM pump motor, T predetermined time,
T1 first time, T2 second time, Th1 refrigerant temperature sensor,
Th2 ice water temperature sensor, TM predetermined temperature, TM1 first temperature,
TM2 2nd temperature, WV water supply valve

Claims (8)

冷凍回路(30)からの冷媒を膨張手段(EV)を介して製氷部(16)の蒸発器(EP)へ供給すると共に、製氷水タンク(18)のポンプモータ(PM)を駆動して製氷水を前記製氷部(16)へ供給して製氷を行う製氷工程と、
前記製氷水タンク(18)に併設したフロートスイッチ(FS)が該製氷水タンク(18)における製氷水の所定の水位低下を検知すると、前記冷凍回路(30)のホットガス弁(HV)を開放して圧縮機(CM)からの熱冷媒を前記蒸発器(EP)に供給すると共に、外部水道系の給水弁(WV)を開放して前記製氷部(16)に除氷水を供給して該製氷部(16)から氷を除去する除氷工程とを反復する製氷機の除氷制御方法において、
前記除氷工程中に、前記蒸発器(EP)の出口側に設けた冷媒温度センサ(Th1)が所定の上昇温度を検出した時点から第1時間(T1)を経過した時点で前記冷媒温度センサ(Th1)の検出温度を確認し、
その検出温度が所定の第1温度(TM1)よりも高ければ、当該除氷工程を終了して次の製氷工程に移行し、
前記冷媒温度センサ(Th1)が確認した検出温度が前記第1温度(TM1)より低く且つ所定の第2温度(TM2)よりも高ければ、当該除氷工程を第2時間(T2)だけ延長してから次の製氷工程に移行し、
前記冷媒温度センサ(Th1)が確認した検出温度が前記第2温度(TM2)よりも低ければ、当該除氷工程を再度行ってから次の製氷工程に移行するようにした
ことを特徴とする製氷機の除氷制御方法。
The refrigerant from the freezing circuit (30) is supplied to the evaporator (EP) of the ice making unit (16) through the expansion means (EV), and the pump motor (PM) of the ice making water tank (18) is driven to make ice An ice making process in which water is supplied to the ice making unit (16) to perform ice making;
When the float switch (FS) provided adjacent to the ice making water tank (18) detects a drop in the water level of the ice making water in the ice making water tank (18), the hot gas valve (HV) of the refrigeration circuit (30) is opened. Then, the heat refrigerant from the compressor (CM) is supplied to the evaporator (EP), and the water supply valve (WV) of the external water system is opened to supply deicing water to the ice making section (16). In an ice making machine deicing control method which repeats the deicing process of removing ice from the ice making unit (16),
The refrigerant temperature sensor at the time when a first time (T1) has elapsed from the time when a refrigerant temperature sensor (Th1) provided on the outlet side of the evaporator (EP) detects a predetermined rising temperature during the deicing process Check the detected temperature of (Th1),
If the detected temperature is higher than a predetermined first temperature (TM1), the deicing process is finished and the process goes to the next ice making process,
If the detected temperature confirmed by the refrigerant temperature sensor (Th1) is lower than the first temperature (TM1) and higher than a predetermined second temperature (TM2), the deicing process is extended by a second time (T2). Then move on to the next ice making process,
If the detected temperature confirmed by the refrigerant temperature sensor (Th1) is lower than the second temperature (TM2), the ice removing process is performed again, and then the process proceeds to the next ice making process. Deicing control method of aircraft.
前記再度行われる除氷工程を複数回反復するようにした請求項1記載の製氷機の除氷制御方法。   The deicing control method of the ice making machine according to claim 1, wherein the deicing process performed again is repeated a plurality of times. 冷凍回路(30)からの冷媒を膨張手段(EV)を介して製氷部(16)の蒸発器(EP)へ供給すると共に、製氷水タンク(18)のポンプモータ(PM)を駆動して製氷水を前記製氷部(16)へ供給して製氷を行う製氷工程と、
前記製氷水タンク(18)に併設したフロートスイッチ(FS)が該製氷水タンク(18)における製氷水の所定の水位低下を検知すると、前記冷凍回路(30)のホットガス弁(HV)を開放して圧縮機(CM)からの熱冷媒を前記蒸発器(EP)に供給すると共に、外部水道系の給水弁(WV)を開放して前記製氷部(16)に除氷水を供給して該製氷部(16)から氷を除去する除氷工程とを反復する製氷機の除氷制御方法において、
前記除氷工程中に、前記蒸発器(EP)の出口側に設けた冷媒温度センサ(Th1)が所定の上昇温度を検出した時点から所定時間(T)を経過した時点からN秒毎に前記冷媒温度センサ(Th1)の検出温度を確認し、
前記冷媒温度センサ(Th1)が確認した検出温度が上昇を続けているか、または該検出温度が1℃以上で安定していれば、当該除氷工程を終了して次の製氷工程に移行し、
前記冷媒温度センサ(Th1)が確認した検出温度が下降し続けているか、または1℃未満で安定していれば、当該除氷工程を所定時間だけ延長してから次の製氷工程に移行し、
前記冷媒温度センサ(Th1)が確認した検出温度が予め設定した時間だけ下降し続けているか、または1℃未満で安定していれば、当該除氷工程を所定時間だけ延長してから、当該除氷工程を再度行うようにした
ことを特徴とする製氷機の除氷制御方法。
The refrigerant from the freezing circuit (30) is supplied to the evaporator (EP) of the ice making unit (16) through the expansion means (EV), and the pump motor (PM) of the ice making water tank (18) is driven to make ice An ice making process in which water is supplied to the ice making unit (16) to perform ice making;
When the float switch (FS) provided adjacent to the ice making water tank (18) detects a drop in the water level of the ice making water in the ice making water tank (18), the hot gas valve (HV) of the refrigeration circuit (30) is opened. Then, the heat refrigerant from the compressor (CM) is supplied to the evaporator (EP), and the water supply valve (WV) of the external water system is opened to supply deicing water to the ice making section (16). In an ice making machine deicing control method which repeats the deicing process of removing ice from the ice making unit (16),
During the deicing step, the refrigerant temperature sensor (Th1) provided on the outlet side of the evaporator (EP) detects a predetermined rising temperature, and every N seconds after a predetermined time (T) has elapsed Check the detected temperature of the refrigerant temperature sensor (Th1),
If the detected temperature confirmed by the refrigerant temperature sensor (Th1) continues to rise, or if the detected temperature is stable at 1 ° C. or higher, the deicing step is ended and the process moves to the next ice making step,
If the detected temperature confirmed by the refrigerant temperature sensor (Th1) continues to decrease or is stable at less than 1 ° C., the deicing process is extended for a predetermined time, and then the process goes to the next ice making process,
If the detected temperature confirmed by the refrigerant temperature sensor (Th1) continues to decrease for a preset time or is stable at less than 1 ° C., the deicing process is extended for a predetermined time, and then the removal is performed. A deicing control method of an ice making machine characterized in that the ice process is performed again.
冷凍回路(30)からの冷媒を膨張手段(EV)を介して製氷部(16)の蒸発器(EP)へ供給すると共に、製氷水タンク(18)のポンプモータ(PM)を駆動して製氷水を前記製氷部(16)へ供給して製氷を行う製氷工程と、
前記製氷水タンク(18)に併設したフロートスイッチ(FS)が該製氷水タンク(18)における製氷水の所定の水位低下を検知すると、前記冷凍回路(30)のホットガス弁(HV)を開放して圧縮機(CM)からの熱冷媒を前記蒸発器(EP)に供給すると共に、外部水道系の給水弁(WV)を開放して前記製氷部(16)に除氷水を供給して該製氷部(16)から氷を除去する除氷工程とを反復する製氷機の除氷制御方法において、
前記除氷工程中に、前記蒸発器(EP)の出口側に設けた冷媒温度センサ(Th1)が所定の上昇温度を検出した時点から第1時間(T1)を経過した時点で前記冷媒温度センサ(Th1)の検出温度を確認し、
その検出温度が所定温度(TM)よりも高ければ、当該除氷工程を終了して次の製氷工程に移行し、
前記冷媒温度センサ(Th1)が確認した検出温度が前記所定の温度(TM)より低ければ、前記製氷水タンク(18)に連通する排水弁(DV)を開放して製氷水を排出した後に、当該除氷工程を再度行うようにした
ことを特徴とする製氷機の除氷制御方法。
The refrigerant from the freezing circuit (30) is supplied to the evaporator (EP) of the ice making unit (16) through the expansion means (EV), and the pump motor (PM) of the ice making water tank (18) is driven to make ice An ice making process in which water is supplied to the ice making unit (16) to perform ice making;
When the float switch (FS) provided adjacent to the ice making water tank (18) detects a drop in the water level of the ice making water in the ice making water tank (18), the hot gas valve (HV) of the refrigeration circuit (30) is opened. Then, the heat refrigerant from the compressor (CM) is supplied to the evaporator (EP), and the water supply valve (WV) of the external water system is opened to supply deicing water to the ice making section (16). In an ice making machine deicing control method which repeats the deicing process of removing ice from the ice making unit (16),
The refrigerant temperature sensor at the time when a first time (T1) has elapsed from the time when a refrigerant temperature sensor (Th1) provided on the outlet side of the evaporator (EP) detects a predetermined rising temperature during the deicing process Check the detected temperature of (Th1),
If the detected temperature is higher than a predetermined temperature (TM), the deicing process is ended and the process goes to the next ice making process,
If the detected temperature confirmed by the refrigerant temperature sensor (Th1) is lower than the predetermined temperature (TM), the drainage valve (DV) connected to the ice making water tank (18) is opened to discharge the ice making water, A deicing control method of an ice making machine characterized in that the deicing process is performed again.
冷凍回路(30)からの冷媒を膨張手段(EV)を介して製氷部(16)の蒸発器(EP)へ供給すると共に、製氷水タンク(18)のポンプモータ(PM)を駆動して製氷水を前記製氷部(16)へ供給して製氷を行う製氷工程と、
前記製氷水タンク(18)に併設したフロートスイッチ(FS)が該製氷水タンク(18)における製氷水の所定の水位低下を検知すると、前記冷凍回路(30)のホットガス弁(HV)を開放して圧縮機(CM)からの熱冷媒を前記蒸発器(EP)に供給すると共に、外部水道系の給水弁(WV)を開放して前記製氷部(16)に除氷水を供給して該製氷部(16)から氷を除去する除氷工程とを反復する製氷機の除氷制御方法において、
前記除氷工程中に、前記蒸発器(EP)の出口側に設けた冷媒温度センサ(Th1)が所定の上昇温度を検出した時点から第1時間(T1)を経過した時点で前記製氷水タンク(18)に配置した製氷水温度センサ(Th2)の検出温度を確認し、
その検出温度が所定の第1温度(TM1)よりも高ければ、当該除氷工程を終了して次の製氷工程に移行し、
前記製氷水温度センサ(Th2)が確認した検出温度が前記第1温度(TM1)より低く且つ所定の第2温度(TM2)よりも高ければ、当該除氷工程を第2時間(T2)だけ延長してから次の製氷工程に移行し、
前記製氷水温度センサ(Th2)が確認した検出温度が前記第2温度(TM2)よりも低ければ、当該除氷工程を再度行ってから次の製氷工程に移行するようにした
ことを特徴とする製氷機の除氷制御方法。
The refrigerant from the freezing circuit (30) is supplied to the evaporator (EP) of the ice making unit (16) through the expansion means (EV), and the pump motor (PM) of the ice making water tank (18) is driven to make ice An ice making process in which water is supplied to the ice making unit (16) to perform ice making;
When the float switch (FS) provided adjacent to the ice making water tank (18) detects a drop in the water level of the ice making water in the ice making water tank (18), the hot gas valve (HV) of the refrigeration circuit (30) is opened. Then, the heat refrigerant from the compressor (CM) is supplied to the evaporator (EP), and the water supply valve (WV) of the external water system is opened to supply deicing water to the ice making section (16). In an ice making machine deicing control method which repeats the deicing process of removing ice from the ice making unit (16),
The ice making water tank when a first time (T1) has elapsed from the time when a refrigerant temperature sensor (Th1) provided on the outlet side of the evaporator (EP) detects a predetermined rising temperature during the deicing step Check the detection temperature of the ice making water temperature sensor (Th2) placed in (18),
If the detected temperature is higher than a predetermined first temperature (TM1), the deicing process is finished and the process goes to the next ice making process,
If the detected temperature confirmed by the ice making water temperature sensor (Th2) is lower than the first temperature (TM1) and higher than a predetermined second temperature (TM2), the deicing process is extended by a second time (T2) Then move on to the next ice making process,
If the detection temperature confirmed by the ice-making water temperature sensor (Th2) is lower than the second temperature (TM2), the deicing step is performed again and then the next ice making step is performed. Deicing control method of ice making machine.
前記再度行われる除氷工程を複数回反復するようにした請求項5記載の製氷機の除氷制御方法。   The deicing control method of an ice making machine according to claim 5, wherein the second deicing step is repeated a plurality of times. 冷凍回路(30)からの冷媒を膨張手段(EV)を介して製氷部(16)の蒸発器(EP)へ供給すると共に、製氷水タンク(18)のポンプモータ(PM)を駆動して製氷水を前記製氷部(16)へ供給して製氷を行う製氷工程と、
前記製氷水タンク(18)に併設したフロートスイッチ(FS)が該製氷水タンク(18)における製氷水の所定の水位低下を検知すると、前記冷凍回路(30)のホットガス弁(HV)を開放して圧縮機(CM)からの熱冷媒を前記蒸発器(EP)に供給すると共に、外部水道系の給水弁(WV)を開放して前記製氷部(16)に除氷水を供給して該製氷部(16)から氷を除去する除氷工程とを反復する製氷機の除氷制御方法において、
前記除氷工程中に、前記蒸発器(EP)の出口側に設けた冷媒温度センサ(Th1)が所定の上昇温度を検出した時点から所定時間(T)を経過した時点からN秒毎に前記製氷水タンク(18)に配置した製氷水温度センサ(Th2)の検出温度を確認し、
前記製氷水温度センサ(Th2)が確認した検出温度が上昇を続けているか、または該検出温度が1℃以上で安定していれば、当該除氷工程を終了して次の製氷工程に移行し、
前記製氷水温度センサ(Th2)が確認した検出温度が下降し続けているか、または1℃未満で安定していれば、当該除氷工程を所定時間だけ延長してから次の製氷工程に移行し、
前記製氷水温度センサ(Th2)が確認した検出温度が予め設定した時間だけ下降し続けているか、または1℃未満で安定していれば、当該除氷工程を所定時間だけ延長してから、当該除氷工程を再度行うようにした
ことを特徴とする製氷機の除氷制御方法。
The refrigerant from the freezing circuit (30) is supplied to the evaporator (EP) of the ice making unit (16) through the expansion means (EV), and the pump motor (PM) of the ice making water tank (18) is driven to make ice An ice making process in which water is supplied to the ice making unit (16) to perform ice making;
When the float switch (FS) provided adjacent to the ice making water tank (18) detects a drop in the water level of the ice making water in the ice making water tank (18), the hot gas valve (HV) of the refrigeration circuit (30) is opened. Then, the heat refrigerant from the compressor (CM) is supplied to the evaporator (EP), and the water supply valve (WV) of the external water system is opened to supply deicing water to the ice making section (16). In an ice making machine deicing control method which repeats the deicing process of removing ice from the ice making unit (16),
During the deicing step, the refrigerant temperature sensor (Th1) provided on the outlet side of the evaporator (EP) detects a predetermined rising temperature, and every N seconds after a predetermined time (T) has elapsed Check the detection temperature of the ice making water temperature sensor (Th2) placed in the ice making water tank (18),
If the detected temperature confirmed by the ice-making water temperature sensor (Th2) continues to rise, or if the detected temperature is stable at 1 ° C. or higher, the deicing step is ended and the process moves to the next ice making step ,
If the detected temperature confirmed by the ice making water temperature sensor (Th2) continues to fall or is stable at less than 1 ° C., the deicing process is extended for a predetermined time, and then the next ice making process is started. ,
If the detected temperature confirmed by the ice making water temperature sensor (Th2) continues to decrease for a preset time or is stable at less than 1 ° C., the deicing process is extended for a predetermined time, A deicing control method of an ice making machine characterized in that the deicing step is performed again.
冷凍回路(30)からの冷媒を膨張手段(EV)を介して製氷部(16)の蒸発器(EP)へ供給すると共に、製氷水タンク(18)のポンプモータ(PM)を駆動して製氷水を前記製氷部(16)へ供給して製氷を行う製氷工程と、
前記製氷水タンク(18)に併設したフロートスイッチ(FS)が該製氷水タンク(18)における製氷水の所定の水位低下を検知すると、前記冷凍回路(30)のホットガス弁(HV)を開放して圧縮機(CM)からの熱冷媒を前記蒸発器(EP)に供給すると共に、外部水道系の給水弁(WV)を開放して前記製氷部(16)に除氷水を供給して該製氷部(16)から氷を除去する除氷工程とを反復する製氷機の除氷制御方法において、
前記除氷工程中に、前記蒸発器(EP)の出口側に設けた冷媒温度センサ(Th1)が所定の上昇温度を検出した時点から第1時間(T1)を経過した時点で前記製氷水タンク(18)に配置した製氷水温度センサ(Th2)の検出温度を確認し、
その検出温度が所定温度(TM)よりも高ければ、当該除氷工程を終了して次の製氷工程に移行し、
前記製氷水温度センサ(Th2)が確認した検出温度が前記所定の温度(TM)より低ければ、前記製氷水タンク(18)に連通する排水弁(DV)を開放して製氷水を排出した後に、当該除氷工程を再度行うようにした
ことを特徴とする製氷機の除氷制御方法。
The refrigerant from the freezing circuit (30) is supplied to the evaporator (EP) of the ice making unit (16) through the expansion means (EV), and the pump motor (PM) of the ice making water tank (18) is driven to make ice An ice making process in which water is supplied to the ice making unit (16) to perform ice making;
When the float switch (FS) provided adjacent to the ice making water tank (18) detects a drop in the water level of the ice making water in the ice making water tank (18), the hot gas valve (HV) of the refrigeration circuit (30) is opened. Then, the heat refrigerant from the compressor (CM) is supplied to the evaporator (EP), and the water supply valve (WV) of the external water system is opened to supply deicing water to the ice making section (16). In an ice making machine deicing control method which repeats the deicing process of removing ice from the ice making unit (16),
The ice making water tank when a first time (T1) has elapsed from the time when a refrigerant temperature sensor (Th1) provided on the outlet side of the evaporator (EP) detects a predetermined rising temperature during the deicing step Check the detection temperature of the ice making water temperature sensor (Th2) placed in (18),
If the detected temperature is higher than a predetermined temperature (TM), the deicing process is ended and the process goes to the next ice making process,
If the detected temperature confirmed by the ice making water temperature sensor (Th2) is lower than the predetermined temperature (TM), the drainage valve (DV) connected to the ice making water tank (18) is opened to discharge the ice making water The deicing control method for an ice making machine, wherein the deicing step is performed again.
JP2017216274A 2017-11-09 2017-11-09 De-icing control method for ice makers Active JP6954808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017216274A JP6954808B2 (en) 2017-11-09 2017-11-09 De-icing control method for ice makers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017216274A JP6954808B2 (en) 2017-11-09 2017-11-09 De-icing control method for ice makers

Publications (2)

Publication Number Publication Date
JP2019086250A true JP2019086250A (en) 2019-06-06
JP6954808B2 JP6954808B2 (en) 2021-10-27

Family

ID=66762690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017216274A Active JP6954808B2 (en) 2017-11-09 2017-11-09 De-icing control method for ice makers

Country Status (1)

Country Link
JP (1) JP6954808B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170112A (en) * 1996-12-04 1998-06-26 Hoshizaki Electric Co Ltd Ice making device
JP2011038706A (en) * 2009-08-11 2011-02-24 Hoshizaki Electric Co Ltd Ice-making unit for flow-down type ice making machine
JP2011158210A (en) * 2010-02-02 2011-08-18 Hoshizaki Electric Co Ltd Ice-making machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170112A (en) * 1996-12-04 1998-06-26 Hoshizaki Electric Co Ltd Ice making device
JP2011038706A (en) * 2009-08-11 2011-02-24 Hoshizaki Electric Co Ltd Ice-making unit for flow-down type ice making machine
JP2011158210A (en) * 2010-02-02 2011-08-18 Hoshizaki Electric Co Ltd Ice-making machine

Also Published As

Publication number Publication date
JP6954808B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
US7194868B2 (en) Multiple ice making decision method and operation method for automatic ice making machine
JP5097459B2 (en) How to operate an ice machine
JP5008675B2 (en) Automatic ice maker and its operating method
JP5198337B2 (en) Automatic ice machine
WO2008026292A1 (en) Flow-down-type ice making machine
US20080216490A1 (en) Operation method for automatic ice maker
JP2009121768A (en) Automatic ice making machine and control method for it
JP5052240B2 (en) How to operate an ice machine
JP2008064322A (en) Automatic ice making machine
JP4532201B2 (en) How to operate an automatic ice machine
US6988373B2 (en) Method for operating automatic ice-making machine
JP6954808B2 (en) De-icing control method for ice makers
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
JP2007032941A (en) Operation method of refrigeration unit
JP7161946B2 (en) automatic ice machine
JP2011179790A (en) Automatic ice making machine
JP2018204845A (en) Deicing operation method of ice maker
JP4518875B2 (en) Deicing operation method of automatic ice maker
JP2011158210A (en) Ice-making machine
JP6397767B2 (en) How to operate an automatic ice machine
JP3412677B2 (en) How to operate an automatic ice maker
JP2020133908A (en) Automatic ice making machine
JP2020118322A (en) Deicing completion detection method of ice making machine
JP2004077027A (en) Automatic ice-making machine and its control method
JP5552390B2 (en) Ice machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210930

R150 Certificate of patent or registration of utility model

Ref document number: 6954808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150