JP4121673B2 - Permanent magnet synchronous motor - Google Patents

Permanent magnet synchronous motor Download PDF

Info

Publication number
JP4121673B2
JP4121673B2 JP20308199A JP20308199A JP4121673B2 JP 4121673 B2 JP4121673 B2 JP 4121673B2 JP 20308199 A JP20308199 A JP 20308199A JP 20308199 A JP20308199 A JP 20308199A JP 4121673 B2 JP4121673 B2 JP 4121673B2
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
iron plate
rotor iron
axial end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20308199A
Other languages
Japanese (ja)
Other versions
JP2001037119A (en
Inventor
健治 佐々木
輝雄 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP20308199A priority Critical patent/JP4121673B2/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to BR0012508-3A priority patent/BR0012508A/en
Priority to EP00946295A priority patent/EP1198875B1/en
Priority to AU60148/00A priority patent/AU6014800A/en
Priority to CN201010263976XA priority patent/CN101917106B/en
Priority to CN2009101645671A priority patent/CN101630887B/en
Priority to EP10179927A priority patent/EP2276154A1/en
Priority to EP10179950A priority patent/EP2276146A1/en
Priority to EP04030799A priority patent/EP1519471B1/en
Priority to US10/019,286 priority patent/US6727627B1/en
Priority to CNB008102236A priority patent/CN1210860C/en
Priority to CNB2004100818149A priority patent/CN100536288C/en
Priority to PCT/JP2000/004693 priority patent/WO2001006624A1/en
Priority to EP10179955A priority patent/EP2276147A1/en
Priority to DE60023704T priority patent/DE60023704T2/en
Priority to EP10179930A priority patent/EP2276155A1/en
Publication of JP2001037119A publication Critical patent/JP2001037119A/en
Priority to US10/792,726 priority patent/US6876119B2/en
Priority to US11/035,196 priority patent/US7019427B2/en
Priority to US11/288,089 priority patent/US7183686B2/en
Priority to US11/622,876 priority patent/US7372183B2/en
Publication of JP4121673B2 publication Critical patent/JP4121673B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は冷凍空調機器用電動圧縮機やその他の一般産業用に使用される永久磁石型同期電動機に関するものである。
【0002】
【従来の技術】
近年、冷凍空調機器用電動圧縮機やその他の一般産業用に使用される永久磁石型同期電動機は、回転子鉄心の外周部に永久磁石が配置されている表面配置型と回転子鉄心の内部に永久磁石が埋め込まれている埋め込み型に大別されるが、本発明は埋め込み型の永久磁石型同期電動機に関するものである。
【0003】
埋め込み型の永久磁石型同期電動機において、電動機特性その他の条件により、回転子鉄心の軸方向長さに対して、永久磁石の軸方向長さを短くする必要が生じることがある。その際に、一般的には回転子鉄心の軸方向長さの中心と永久磁石の軸方向長さの中心とを合致させて、固定子と回転子との磁気吸引による回転子の軸方向の振れを抑える必要がある。
【0004】
回転子鉄心の軸方向長さに対して、永久磁石の軸方向長さを短くする場合の永久磁石の保持方法として、特開平9−182332号公報に示されているものがある。
【0005】
以下、図面を参照しながら上記従来の永久磁石の保持方法を説明する。
【0006】
図10は従来の埋め込み型の回転子の軸方向断面図である。図10において、回転子1の回転子鉄心2に設けられた永久磁石埋め込み用穴3に永久磁石4が埋め込まれている。永久磁石4はホルダ5により保持され、永久磁石埋め込み用穴3を2枚の端板6で塞ぐことにより、回転子鉄心2の中で永久磁石4の位置決めがなされている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の構成は、永久磁石の位置決めをするためのホルダを必要とし、組立および部品のコストが高くなるという欠点があった。
【0008】
本発明は、従来の課題を解決するもので、ホルダを使用せずに回転子鉄心のみで永久磁石の位置決めを可能とする安価な永久磁石型同期電動機を提供することを目的とする。
【0009】
【課題を解決するための手段】
この目的を達成するために本発明は、複数個の永久磁石埋め込み用穴を有する回転子鉄板Aを前記永久磁石を埋め込むために前記永久磁石の軸方向の長さ以上に積層し、且つ前記永久磁石埋め込み用穴と連通するように配置した磁束短絡防止用穴を有する回転子鉄板Bを、積層された前記回転子鉄板Aの軸方向端面の一方に1枚または複数枚積層し、さらに前記回転子鉄板Bの軸方向端面に前記回転子鉄板Aを1枚または複数枚積層して回転子鉄心を形成し、前記永久磁石が埋め込まれている前記回転子鉄板Aと前記回転子鉄板Bとの当接面における磁束短絡防止用穴の外縁部が、前記永久磁石の軸方向端面に当接することにより、ホルダを使用せずに回転子鉄心のみで前記永久磁石の軸方向の位置決めをすることができるので、組立および部品のコストを低減することができる。
【0010】
また本発明は、複数個の永久磁石埋め込み用穴を有する回転子鉄板Aを積層し、且つ前記永久磁石埋め込み用穴を有せず前記永久磁石埋め込み用穴を塞ぐ形状をした回転子鉄板Cを、積層された前記回転子鉄板Aの軸方向端面の一方に1枚または複数枚積層し、前記回転子鉄板Cの前記回転子鉄板Aとの当接面が、前記永久磁石の軸方向端面に当接することにより、ホルダを使用せずに回転子鉄心のみで前記永久磁石の軸方向の位置決めをすることができるとともに、1枚の端板を磁石埋め込み用穴の他方の軸方向端面に配置するだけで、磁石埋め込み用穴の両端を塞ぐ構造とすることができるので、さらにコストを低減することができる。
【0011】
【発明の実施の形態】
本発明の請求項1に記載の発明は、固定子鉄心に巻線を巻装した固定子と、前記固定子鉄心の内径円筒面に対向して回転自在に回転し、複数個の永久磁石が埋め込まれている回転子を有する電動機であって、回転子鉄心が複数個の永久磁石埋め込み用穴を有する回転子鉄板Aを前記永久磁石を埋め込むために前記永久磁石の軸方向の長さ以上に積層し、且つ前記永久磁石埋め込み用穴と連通するように配置した磁束短絡防止用穴を有する回転子鉄板Bを、積層された前記回転子鉄板Aの軸方向端面の一方に1枚または複数枚積層し、さらに前記回転子鉄板Bの軸方向端面に前記回転子鉄板Aを1枚または複数枚積層して形成されるとともに、前記永久磁石が埋め込まれている前記回転子鉄板Aと前記回転子鉄板Bの当接面における前記磁束短絡防止用穴の外縁部が、前記永久磁石の軸方向端面に当接することにより、前記回転子鉄心のみで前記永久磁石の軸方向の位置決めをすることができ、組立および部品のコストを低減することができるという作用を有する。
【0012】
また請求項2に記載の発明によれば、固定子鉄心に巻線を巻装した固定子と、前記固定子鉄心の内径円筒面に対向して回転自在に回転し、複数個の永久磁石が埋め込まれている回転子を有する電動機であって、回転子鉄心が複数個の永久磁石埋め込み用穴を有する回転子鉄板Aを積層し、且つ前記永久磁石埋め込み用穴を有せず前記永久磁石埋め込み用穴を塞ぐ形状をした回転子鉄板Cを、積層された前記回転子鉄板Aの軸方向端面の一方に1枚または複数枚積層して形成されるとともに、前記回転子鉄板Cの前記回転子鉄板Aとの当接面が前記永久磁石の軸方向端面に当接することにより、前記回転子鉄心のみで前記永久磁石の軸方向の位置決めをすることができるという作用を有する。さらに、前記永久磁石埋め込み用穴の一方が回転子鉄板Cにより塞がれるため、前記永久磁石埋め込み用穴の他方の軸方向端面に端板を配設して永久磁石埋め込み用穴を塞ぐことにより、1枚の端板を使用するだけで前記永久磁石埋め込み用穴の両端を塞ぐことができるので、組立および部品のコストをさらに低減できるという作用を有する。
【0013】
また請求項に記載の発明によれば、永久磁石埋め込み用穴を有せず永久磁石埋め込み用穴を塞ぐ形状をした回転子鉄板Cの永久磁石が当接しない側の軸方向端面に、永久磁石埋め込み用穴を有する回転子鉄板Aを積層することにより、永久磁石の軸方向端部におけるNS両面の間の磁気回路の磁気抵抗が大きくなり、漏れ磁束が少なくなって電動機の特性を向上させることができるという作用を有する。
【0014】
また請求項に記載の発明によれば、請求項1または請求項2に記載の発明に、さらに、回転子鉄心に始動用かご形導体を配設することにより、自己始動形の永久磁石型同期電動機を構成するとともに、この場合でも前記回転子鉄心のみで前記永久磁石の軸方向の位置決めをすることができるので、組立および部品のコストを低減することができるという作用を有する。
【0015】
また請求項に記載の発明によれば、請求項1から請求項のいずれかに記載の発明に、さらに、永久磁石が希土類磁石で形成されていることにより、強い磁力を得ることができるため、回転子や電動機全体の体積を小さくすることができるという作用を有する。
【0016】
【実施例】
以下本発明による永久磁石型同期電動機の実施例について、図面を参照しながら説明する。なお従来と同一構成については、同一符号を付して詳細な説明を省略する。また固定子は一般的な永久磁石型同期電動機と同様の構成であるため、固定子についての説明も省略する。
【0017】
(実施例1)
図1から図3を用いて説明する。図1は本発明の実施例1による永久磁石型同期電動機の回転子の軸方向断面図である。図1において1は回転子、2は回転子鉄心である。2aは回転子鉄板Aを積層した回転子鉄心であり、図2に回転子鉄板Aの平面図を示す。図2において3は永久磁石埋め込み用穴であり、回転子鉄板Aを積層することにより、図1に示すように永久磁石埋め込み用穴3は軸方向に連なり、永久磁石4が埋め込まれる。また図1の2b1は回転子鉄心2aの軸方向端面に回転子鉄板Bを積層した回転子鉄心であり、図3に回転子鉄板Bの平面図を示す。図3において7は磁束短絡防止用穴であり、図2の回転子鉄板Aの永久磁石埋め込み用穴3と同じ位置に配置されており、且つ穴の幅Qは永久磁石埋め込み用穴3の幅Pよりも狭く設定されている。回転子鉄板Bを回転子鉄心2aの軸方向端面に積層することにより、図1に示すように磁束短絡防止用穴7は永久磁石埋め込み用穴3と連通した形で軸方向に連なる。図1において、2c1は回転子鉄心2b1の軸方向端面にさらに回転子鉄板Aを1枚または複数枚積層した回転子鉄心である。また図1において、6は非磁性体からなる端板であり、永久磁石4を永久磁石埋め込み用穴3に埋め込む際に発生する永久磁石4の破片が回転子1の外部へ流出したり、外部の異物が磁石埋め込み用穴3に侵入したりするのを防ぐために、永久磁石埋め込み用穴3や磁束短絡防止用穴7を塞ぐ形状に設定されている。
【0018】
また図1において、永久磁石4の軸方向端面9が回転子鉄心2b1の回転子鉄心2aとの当接面における磁束短絡防止用穴7の外縁部8に当接することにより、永久磁石4の軸方向端部のNS両面の間の漏れ磁束10a1は、回転子鉄心2aから回転子鉄心2b1を通り、さらに磁束短絡防止用穴7を横切って、再び回転子鉄心2b1と回転子鉄心2aを通って永久磁石4に戻る。漏れ磁束10b1は、回転子鉄心2aから回転子鉄心2b1を通りさらに回転子鉄心2c1を通り、永久磁石埋め込み用穴3を横切って、再び回転子鉄心2c1、回転子鉄心2b1、回転子鉄心2aを通り永久磁石4に戻る。ここで、回転子鉄心2b1を1枚または永久磁石の位置決めが可能な限り少ない枚数の回転子鉄板Bで構成することにより漏れ磁束10a1が通る磁気回路の磁気抵抗が大きくなり漏れ磁束10a1を少なくすることができ、また回転子鉄板Bの磁束短絡防止用穴7の幅Qより回転子鉄心2c1を構成している回転子鉄板Aの永久磁石埋め込み用穴3の幅Pの方が広いため、回転子鉄心2c1を回転子鉄板Bで構成した場合に比べて漏れ磁束10b1の磁気回路の磁気抵抗は大きくなり漏れ磁束10b1を少なくすることができるため、電動機の特性を向上させることができる。また、永久磁石4は回転子鉄心2b1の磁束短絡防止用穴7の外縁部8に吸着するので、ホルダを使用せずに回転子鉄心2のみで永久磁石4の軸方向の位置決めをすることができ、組立および部品のコストを低減することができる。
【0019】
なお、ここで回転子鉄板Bの積層枚数は回転子鉄心2の軸方向長さの中心と永久磁石4の軸方向長さの中心が合致するように設定されており、以下の各実施例についても同様に設定されている。
【0020】
(実施例2)
図4から図5を用いて説明する。図4は、本発明の実施例2による永久磁石型同期電動機の回転子の軸方向断面図である。図4において、2d1は回転子鉄心2aの軸方向端面に回転子鉄板Cを積層した回転子鉄心である。図5に回転子鉄板Cの平面図を示す。回転子鉄板Cは永久磁石埋め込み用穴を有していないので、回転子鉄心2aの軸方向端面に積層することにより永久磁石埋め込み用穴3の一方を塞ぐことになる。
【0021】
永久磁石4の軸方向端面11が回転子鉄心2d1の回転子鉄心2aとの当接面12に当接することにより、永久磁石4の軸方向端部の漏れ磁束10c1は、回転子鉄心2aから回転子鉄心2d1を通り、再び回転子鉄心2aを通り、永久磁石4に戻る。また、永久磁石4は回転子鉄心2d1の軸方向端面12に吸着するので、ホルダを使用せずに回転子鉄心2のみで永久磁石4の軸方向の位置決めをすることができ、組立および部品のコストを低減することができる。
【0022】
また回転子鉄心2aの永久磁石埋め込み用穴3は、一方を回転子鉄心2d1で塞がれているため、他方に1枚の端板6を配置するだけで永久磁石埋め込み用穴3の両端を塞ぐことができる。実施例1では端板6が2枚必要であるのに対し、実施例2では端板6が1枚だけでよいので、組立および部品のコストをさらに低減することができる。
【0023】
また、回転子鉄板Aと回転子鉄板Cは、打抜き工程において永久磁石埋め込み用穴3を打抜く歯金型を出し入れする制御を行うことにより容易に製造することが可能であり、実施例1のような回転子鉄板Bの磁束短絡防止用穴7を打抜くための歯金型が不要であるので金型全体の構成を簡略化することができる。
【0024】
(実施例3)
図6は、本発明の実施例3による永久磁石型同期電動機の回転子の軸方向断面図である。回転子鉄心2d2の永久磁石4の軸方向端面11が当接しない側の軸方向端面に、さらに回転子鉄板Aを積層した回転子鉄心2c2が配置されている。
【0025】
永久磁石4の軸方向端面11が回転子鉄心2d2の軸方向端面12に当接することにより、永久磁石4の軸方向端部の漏れ磁束10c2は、回転子鉄心2aから回転子鉄心2d2を通り、再び回転子鉄心2aを通り、永久磁石4に戻る。また、漏れ磁束10b2は、回転子鉄心2aから回転子鉄心2d2を通りさらに回転子鉄心2c2を通り永久磁石埋め込み用穴3を横切って、再び回転子鉄心2c2、回転子鉄心2d2、回転子鉄心2aを通って永久磁石4に戻る。漏れ磁束10b2は永久磁石埋め込み用穴3を横切るため、実施例2の漏れ磁束10c1が通る磁気回路の磁気抵抗に比べて、実施例3の漏れ磁束10b2が通る磁気回路の磁気抵抗の方が大きく、実施例2の漏れ磁束10c1に対して、実施例3の漏れ磁束10c2と漏れ磁束10b2との和の方が少なくなる。したがって、実施例2よりも漏れ磁束を少なくすることができるため、電動機の特性を向上させることができる。
【0026】
(実施例4)
図7から図9を用いて説明する。図7は、本発明の実施例4による自己始動形の永久磁石型同期電動機の回転子の軸方向断面図である。図7において、13は回転子、14は回転子鉄心である。14aは回転子鉄板Dを積層した回転子鉄心であり、図8に回転子鉄板Dの平面図を示す。図8において15は、図7の始動用かご形導体の導体バー16aを配設するためのスロットであり、3は永久磁石埋め込み用穴である。また図7において、14bは回転子鉄板Eを積層した回転子鉄心であり、図9に回転子鉄板Eの平面図を示す。図9において17は、図7の始動用かご形導体の導体バー16aを配設するためのスロットであり、図8の回転子鉄板Dのスロット15と同じ形状で且つ同じ位置にある。また7は磁束短絡防止用穴であり、図8の回転子鉄板Dの永久磁石埋め込み用穴3と同位置にあり、且つ磁束短絡防止用穴7の幅Qは永久磁石埋め込み用穴3の幅Pよりも狭く設定してある。図7において、14cは回転子鉄心14bの軸方向端面にさらに回転子鉄板Aを1枚または複数枚積層した回転子鉄心である。そして、アルミダイカストにより導体バー16aと短絡環16bとが一体成形されて始動用かご形導体を形成する。回転子13に始動用かご形導体を配設することにより、始動時には誘導電動機として作動し、同期速度付近に達すると同期速度に引き込まれて同期電動機として作動する自己始動形の永久磁石型同期電動機が構成されることとなる。この場合も実施例1と同様に磁束短絡防止用穴7を有する回転子鉄心14bを配設し、さらに回転子鉄板Aを積層しているので永久磁石4の軸方向端部のNS両面の間の漏れ磁束が少なくなり、電動機の特性を向上させることができる。
【0027】
本実施例のような始動用かご形導体を配設した自己始動形の永久磁石型同期電動機においても、前記した実施例1から実施例3のように、ホルダを使用せずに回転子鉄心14のみで永久磁石4の軸方向の位置決めをすることができるので、組立および部品のコストを低減することができる。
【0028】
(実施例5)
永久磁石がNd−Fe−B系の希土類磁石で形成されていることにより、Nd−Fe−B系の希土類磁石は残留磁束密度が高いので、回転子や電動機全体の体積を小さくすることができる。
【0029】
なお、上記の全ての実施例においては、4極の例を用いたが、これに限られるものではなく、例えば2極等の他の磁極数を形成するような回転子についても同様である。
【0030】
また、上記の全ての実施例において、永久磁石が平板状のものを用いたが、これに限られるものではなく、例えば円弧状等他の形状の永久磁石を用いた回転子についても同様である。
【0031】
【発明の効果】
以上のように請求項1に記載の発明によれば、回転子鉄心が複数個の永久磁石埋め込み用穴を有する回転子鉄板Aを積層し、且つ前記永久磁石埋め込み用穴と連通した磁束短絡防止用穴を有する回転子鉄板Bを、積層された前記回転子鉄板Aの軸方向端面の一方に1枚または複数枚積層し、さらに前記回転子鉄板Bの軸方向端面に前記回転子鉄板Aを1枚または複数枚積層して形成されるとともに、前記回転子鉄板Bの前記回転子鉄板Aとの当接面における永久磁石埋め込み用穴の外縁部が、前記永久磁石の軸方向端面に当接することにより、ホルダを使用せずに前記回転子鉄心のみで前記永久磁石の軸方向の位置決めをすることができるので、組立および部品のコストを低減することができる。
【0032】
また請求項2に記載の発明によれば、回転子鉄心が複数個の永久磁石埋め込み用穴を有する回転子鉄板Aを積層し、且つ前記永久磁石埋め込み用穴を有せず前記永久磁石埋め込み用穴を塞ぐ形状をした回転子鉄板Cを、積層された前記回転子鉄板Aの軸方向端面の一方に1枚または複数枚積層して形成されるとともに、前記回転子鉄板Cの前記回転子鉄板Aとの当接面が、前記永久磁石の軸方向端面に当接することにより、ホルダを使用せずに前記回転子鉄心のみで前記永久磁石の軸方向の位置決めをすることができるので、組立および部品のコストを低減することができる。
【0033】
さらに、前記永久磁石埋め込み用穴の一方が回転子鉄板Cにより塞がれるため、前記永久磁石埋め込み用穴の他方の軸方向端面に端板を配設して、永久磁石埋め込み用穴を塞ぐことにより、1枚の端板を使用するだけで前記永久磁石埋め込み用穴の両端を塞ぐことができるので、組立および部品のコストをさらに低減することができる。
【0034】
また永久磁石埋め込み用穴を有する回転子鉄板Aと永久磁石埋め込み用穴を塞ぐ回転子鉄板Cは、打抜き工程において永久磁石埋め込み用穴を打抜く歯金型を出し入れする制御をすることにより容易に製造することが可能であり、磁束短絡防止用穴を打抜くための歯金型が不要であるので金型全体の構成を簡略化することができる。
【0035】
また請求項に記載の発明によれば、永久磁石埋め込み用穴を有せず永久磁石埋め込み用穴を塞ぐ形状をした回転子鉄板Cの、永久磁石が当接しない側の軸方向端面に、永久磁石埋め込み用穴を有する回転子鉄板Aを積層することにより、永久磁石の軸方向端部におけるNS両面の間の磁気回路の磁気抵抗が大きくなり、漏れ磁束を少なくすることができるため、電動機の特性を向上させることができる。
【0036】
また請求項に記載の発明によれば、請求項1または請求項2に記載の発明に、さらに、回転子鉄心に始動用かご形導体を配設することにより、自己始動形の永久磁石型同期電動機を構成するとともに、この場合でもホルダを使用せずに回転子鉄心のみで前記永久磁石の軸方向の位置決めをすることができるので、組立および部品のコストを低減することができる。
【0037】
また請求項に記載の発明によれば、請求項1から請求項のいずれかに記載の発明に、さらに、永久磁石が希土類磁石で形成されていることにより、強い磁力を得ることができるため、回転子や電動機全体の体積を小さくすることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態による回転子の軸方向断面図
【図2】回転子鉄板Aの平面図
【図3】回転子鉄板Bの平面図
【図4】本発明の一実施の形態による回転子の軸方向断面図
【図5】回転子鉄板Cの平面図
【図6】本発明の一実施の形態による回転子の軸方向断面図
【図7】本発明の一実施の形態による回転子の軸方向断面図
【図8】回転子鉄板Dの平面図
【図9】回転子鉄板Eの平面図
【図10】従来の埋め込み型の回転子の軸方向断面図
【符号の説明】
1 回転子
2 回転子鉄心
3 永久磁石埋め込み用穴
4 永久磁石
7 磁束短絡防止用穴
8 磁束短絡防止用穴の外縁部
9 永久磁石の軸方向端面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permanent magnet type synchronous motor used for electric compressors for refrigeration and air conditioning equipment and other general industries.
[0002]
[Prior art]
In recent years, electric compressors for refrigeration and air-conditioning equipment and other permanent magnet synchronous motors used in general industries have a surface arrangement type in which permanent magnets are arranged on the outer periphery of the rotor core, and the interior of the rotor core. The invention is broadly classified into an embedded type in which a permanent magnet is embedded. The present invention relates to an embedded type permanent magnet type synchronous motor.
[0003]
In an embedded permanent magnet type synchronous motor, the axial length of the permanent magnet may need to be shortened relative to the axial length of the rotor core depending on the motor characteristics and other conditions. At that time, in general, the center of the axial length of the rotor core and the center of the axial length of the permanent magnet are matched, and the axial direction of the rotor due to magnetic attraction between the stator and the rotor. It is necessary to suppress runout.
[0004]
Japanese Patent Laid-Open No. 9-182332 discloses a method for holding a permanent magnet when the axial length of the permanent magnet is shortened relative to the axial length of the rotor core.
[0005]
Hereinafter, the conventional method for holding a permanent magnet will be described with reference to the drawings.
[0006]
FIG. 10 is an axial cross-sectional view of a conventional embedded rotor. In FIG. 10, a permanent magnet 4 is embedded in a permanent magnet embedding hole 3 provided in the rotor core 2 of the rotor 1. The permanent magnet 4 is held by a holder 5, and the permanent magnet 4 is positioned in the rotor core 2 by closing the permanent magnet embedding hole 3 with two end plates 6.
[0007]
[Problems to be solved by the invention]
However, the conventional configuration requires a holder for positioning the permanent magnet, and there is a drawback that the cost of assembly and parts increases.
[0008]
SUMMARY OF THE INVENTION An object of the present invention is to solve the conventional problems and to provide an inexpensive permanent magnet type synchronous motor capable of positioning a permanent magnet only with a rotor core without using a holder.
[0009]
[Means for Solving the Problems]
In order to achieve this object, the present invention provides a rotor iron plate A having a plurality of permanent magnet embedding holes, which is laminated more than the axial length of the permanent magnet in order to embed the permanent magnet, and the permanent magnet One or more rotor iron plates B having magnetic flux short-circuit prevention holes arranged so as to communicate with the magnet embedding holes are laminated on one of the end surfaces in the axial direction of the laminated rotor iron plates A, and the rotation is further performed. A rotor iron core is formed by laminating one or a plurality of the rotor iron plates A on the axial end surface of the child iron plate B, and the rotor iron plate A and the rotor iron plate B in which the permanent magnets are embedded. By positioning the outer edge of the magnetic flux short-circuit prevention hole on the contact surface in contact with the axial end surface of the permanent magnet, it is possible to position the permanent magnet in the axial direction using only the rotor core without using a holder. So you can assemble and It is possible to reduce the cost of goods.
[0010]
Further, the present invention provides a rotor iron plate C having a shape in which a rotor iron plate A having a plurality of permanent magnet embedding holes is laminated and the permanent magnet embedding holes are not formed. One or more of the laminated rotor iron plates A are laminated on one of the axial end surfaces, and the contact surface of the rotor iron plate C with the rotor iron plate A is the axial end surface of the permanent magnet. By abutting, the permanent magnet can be positioned in the axial direction only with the rotor core without using a holder, and one end plate is disposed on the other axial end face of the magnet embedding hole. Only the two ends of the magnet embedding hole can be closed, so that the cost can be further reduced.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
According to a first aspect of the present invention, there is provided a stator in which a winding is wound around a stator core, and a plurality of permanent magnets that are rotatably rotated facing an inner cylindrical surface of the stator core. An electric motor having an embedded rotor, wherein the rotor iron plate A having a plurality of permanent magnet embedding holes is larger than the axial length of the permanent magnet in order to embed the permanent magnet. One or a plurality of laminated rotor iron plates B having magnetic flux short-circuit prevention holes arranged so as to communicate with the permanent magnet embedding holes are disposed on one of the axial end surfaces of the laminated rotor iron plates A. The rotor iron plate A and the rotor, which are formed by laminating one or more of the rotor iron plates A on the axial end surface of the rotor iron plate B and in which the permanent magnets are embedded. The magnetic flux short on the contact surface of the iron plate B The outer edge portion of the prevention hole abuts against the axial end surface of the permanent magnet, whereby the permanent magnet can be positioned in the axial direction only by the rotor core, and the cost of assembly and parts can be reduced. Has the effect of being able to
[0012]
According to the second aspect of the present invention, a stator in which a winding is wound around a stator core, and a plurality of permanent magnets are rotatably rotated so as to face the inner cylindrical surface of the stator core. An electric motor having an embedded rotor, wherein the rotor iron core is formed by laminating a rotor iron plate A having a plurality of permanent magnet embedding holes, and the permanent magnet embedding without the permanent magnet embedding holes. The rotor iron plate C having a shape for closing the holes for use is formed by laminating one or more rotor iron plates C on one of the axial end surfaces of the laminated rotor iron plates A, and the rotor of the rotor iron plate C Since the contact surface with the iron plate A contacts the axial end surface of the permanent magnet, the permanent magnet can be positioned in the axial direction only by the rotor core. Further, since one of the permanent magnet embedding holes is closed by the rotor iron plate C, an end plate is disposed on the other axial end surface of the permanent magnet embedding hole to close the permanent magnet embedding hole. Since both ends of the permanent magnet embedding hole can be closed only by using one end plate, the cost of assembly and parts can be further reduced.
[0013]
According to the invention described in claim 2, the axial end faces of the side where the permanent permanent magnets of the rotor iron plate C in the form of closing a permanent magnet embedding hole without chromatic magnet embedding holes do not abut, By laminating the rotor iron plate A having permanent magnet embedding holes, the magnetic resistance of the magnetic circuit between the NS surfaces at the axial end of the permanent magnet is increased, the leakage flux is reduced, and the characteristics of the motor are improved. It has the effect that it can be made.
[0014]
According to a third aspect of the present invention, in addition to the first or second aspect of the present invention, a starting squirrel-cage conductor is disposed on the rotor core, whereby a self-starting permanent magnet type is provided. In addition to constituting the synchronous motor, the permanent magnet can be positioned in the axial direction only by the rotor core, and thus the cost of assembling and parts can be reduced.
[0015]
According to the invention described in claim 4 , in addition to the invention described in any one of claims 1 to 3 , a strong magnetic force can be obtained because the permanent magnet is formed of a rare earth magnet. For this reason, the volume of the rotor and the entire electric motor can be reduced.
[0016]
【Example】
Embodiments of a permanent magnet type synchronous motor according to the present invention will be described below with reference to the drawings. In addition, about the same structure as the past, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted. Since the stator has the same configuration as a general permanent magnet type synchronous motor, description of the stator is also omitted.
[0017]
(Example 1)
This will be described with reference to FIGS. FIG. 1 is an axial sectional view of a rotor of a permanent magnet type synchronous motor according to a first embodiment of the present invention. In FIG. 1, 1 is a rotor and 2 is a rotor core. 2a is the rotor core which laminated | stacked the rotor iron plate A, The top view of the rotor iron plate A is shown in FIG. In FIG. 2, 3 is a permanent magnet embedding hole. By laminating the rotor iron plate A, as shown in FIG. 1, the permanent magnet embedding hole 3 is continuous in the axial direction, and the permanent magnet 4 is embedded. Further, 2b1 in FIG. 1 is a rotor core in which a rotor iron plate B is laminated on the axial end surface of the rotor core 2a, and FIG. 3, reference numeral 7 denotes a magnetic flux short-circuit prevention hole, which is disposed at the same position as the permanent magnet embedding hole 3 of the rotor iron plate A of FIG. 2, and the hole width Q is the width of the permanent magnet embedding hole 3. It is set narrower than P. By laminating the rotor iron plate B on the end face in the axial direction of the rotor core 2a, the magnetic flux short-circuit prevention hole 7 is connected in the axial direction so as to communicate with the permanent magnet embedding hole 3 as shown in FIG. In FIG. 1, 2c1 is a rotor core in which one or more rotor iron plates A are further laminated on the axial end surface of the rotor core 2b1. In FIG. 1, reference numeral 6 denotes an end plate made of a non-magnetic material, and fragments of the permanent magnet 4 generated when the permanent magnet 4 is embedded in the permanent magnet embedding hole 3 flow out of the rotor 1 or externally. In order to prevent the foreign matter from entering the magnet embedding hole 3, the permanent magnet embedding hole 3 and the magnetic flux short-circuit preventing hole 7 are closed.
[0018]
In FIG. 1, the axial end surface 9 of the permanent magnet 4 abuts on the outer edge portion 8 of the magnetic flux short-circuit prevention hole 7 on the abutting surface of the rotor core 2b1 with the rotor core 2a. The leakage magnetic flux 10a1 between the NS surfaces at the end of the direction passes from the rotor core 2a through the rotor core 2b1, further across the magnetic flux short-circuit prevention hole 7, and again through the rotor core 2b1 and the rotor core 2a. Return to the permanent magnet 4. The leakage magnetic flux 10b1 passes from the rotor core 2a through the rotor core 2b1, further through the rotor core 2c1, across the permanent magnet embedding hole 3, and again through the rotor core 2c1, the rotor core 2b1, and the rotor core 2a. Return to the permanent magnet 4. Here, by configuring the rotor core 2b1 with one or as few rotor iron plates B as possible to position the permanent magnets, the magnetic resistance of the magnetic circuit through which the leakage flux 10a1 passes increases, and the leakage flux 10a1 decreases. In addition, the width P of the permanent magnet embedding hole 3 of the rotor iron plate A constituting the rotor core 2c1 is wider than the width Q of the magnetic flux short-circuit prevention hole 7 of the rotor iron plate B. Compared with the case where the core 2c1 is composed of the rotor iron plate B, the magnetic resistance of the magnetic circuit of the leakage magnetic flux 10b1 is increased, and the leakage magnetic flux 10b1 can be reduced. Therefore, the characteristics of the electric motor can be improved. Further, since the permanent magnet 4 is attracted to the outer edge portion 8 of the magnetic flux short-circuit prevention hole 7 of the rotor core 2b1, it is possible to position the permanent magnet 4 in the axial direction using only the rotor core 2 without using a holder. And the cost of assembly and parts can be reduced.
[0019]
Here, the number of laminated rotor iron plates B is set so that the center of the axial length of the rotor core 2 and the center of the axial length of the permanent magnet 4 coincide with each other. Is set in the same way.
[0020]
(Example 2)
This will be described with reference to FIGS. FIG. 4 is an axial sectional view of a rotor of a permanent magnet type synchronous motor according to a second embodiment of the present invention. In FIG. 4, 2d1 is the rotor core which laminated | stacked the rotor iron plate C on the axial direction end surface of the rotor core 2a. FIG. 5 shows a plan view of the rotor iron plate C. FIG. Since the rotor iron plate C does not have a hole for embedding permanent magnets, one of the holes 3 for embedding permanent magnets is blocked by being laminated on the end face in the axial direction of the rotor core 2a.
[0021]
The axial end surface 11 of the permanent magnet 4 contacts the contact surface 12 of the rotor core 2d1 with the rotor core 2a, so that the leakage magnetic flux 10c1 at the axial end of the permanent magnet 4 rotates from the rotor core 2a. It passes through the core 2d1, passes through the rotor core 2a again, and returns to the permanent magnet 4. Further, since the permanent magnet 4 is attracted to the axial end face 12 of the rotor core 2d1, the permanent magnet 4 can be positioned in the axial direction only by the rotor core 2 without using a holder. Cost can be reduced.
[0022]
Further, one of the permanent magnet embedding holes 3 of the rotor core 2a is closed by the rotor core 2d1, so that both ends of the permanent magnet embedding holes 3 can be formed only by arranging one end plate 6 on the other. Can be closed. In the first embodiment, two end plates 6 are required, whereas in the second embodiment, only one end plate 6 is required, so that assembly and component costs can be further reduced.
[0023]
Moreover, the rotor iron plate A and the rotor iron plate C can be easily manufactured by performing control of taking in and out the tooth mold for punching the permanent magnet embedding hole 3 in the punching process. Since the tooth mold for punching out the magnetic flux short-circuit prevention hole 7 of the rotor iron plate B is not necessary, the configuration of the entire mold can be simplified.
[0024]
(Example 3)
FIG. 6 is an axial sectional view of a rotor of a permanent magnet type synchronous motor according to a third embodiment of the present invention. A rotor core 2c2 in which a rotor iron plate A is further laminated is disposed on the axial end face of the rotor core 2d2 on the side where the axial end face 11 of the permanent magnet 4 does not contact.
[0025]
When the axial end surface 11 of the permanent magnet 4 abuts on the axial end surface 12 of the rotor core 2d2, the leakage magnetic flux 10c2 at the axial end of the permanent magnet 4 passes from the rotor core 2a to the rotor core 2d2. It passes through the rotor core 2a again and returns to the permanent magnet 4. The leakage magnetic flux 10b2 passes from the rotor core 2a through the rotor core 2d2, further through the rotor core 2c2, across the permanent magnet embedding hole 3, and again, the rotor core 2c2, the rotor core 2d2, and the rotor core 2a. Return to the permanent magnet 4 through. Since the leakage magnetic flux 10b2 crosses the permanent magnet embedding hole 3, the magnetic resistance of the magnetic circuit through which the leakage magnetic flux 10b2 of the third embodiment passes is larger than the magnetic resistance of the magnetic circuit through which the leakage magnetic flux 10c1 of the second embodiment passes. The sum of the leakage flux 10c2 and the leakage flux 10b2 of the third embodiment is smaller than the leakage flux 10c1 of the second embodiment. Therefore, since the leakage magnetic flux can be reduced as compared with the second embodiment, the characteristics of the electric motor can be improved.
[0026]
Example 4
This will be described with reference to FIGS. FIG. 7 is an axial sectional view of a rotor of a self-starting permanent magnet synchronous motor according to a fourth embodiment of the present invention. In FIG. 7, 13 is a rotor and 14 is a rotor core. Reference numeral 14a denotes a rotor core in which the rotor iron plates D are stacked. FIG. 8 shows a plan view of the rotor iron plate D. In FIG. 8, 15 is a slot for arranging the conductor bar 16a of the starting cage conductor of FIG. 7, and 3 is a hole for embedding a permanent magnet. In FIG. 7, reference numeral 14 b denotes a rotor core in which the rotor iron plates E are stacked. FIG. 9 shows a plan view of the rotor iron plate E. In FIG. 9, reference numeral 17 denotes a slot for arranging the conductor bar 16a of the starting squirrel-cage conductor of FIG. 7, which has the same shape and the same position as the slot 15 of the rotor iron plate D of FIG. Reference numeral 7 denotes a magnetic flux short-circuit prevention hole, which is located at the same position as the permanent magnet embedding hole 3 of the rotor iron plate D shown in FIG. It is set narrower than P. In FIG. 7, 14c is a rotor core in which one or more rotor iron plates A are further laminated on the axial end surface of the rotor core 14b. Then, the conductor bar 16a and the short-circuit ring 16b are integrally formed by aluminum die casting to form a starting cage conductor. A self-starting permanent magnet type synchronous motor which operates as an induction motor at the time of starting by being provided with a squirrel cage conductor on the rotor 13 and operates as a synchronous motor by being drawn into the synchronous speed when reaching the vicinity of the synchronous speed. Will be constructed. In this case as well, the rotor core 14b having the magnetic flux short-circuit prevention hole 7 is disposed as in the first embodiment, and the rotor iron plate A is laminated. The leakage magnetic flux of the motor is reduced, and the characteristics of the electric motor can be improved.
[0027]
Also in the self-starting permanent magnet type synchronous motor provided with the starting squirrel-shaped conductor as in this embodiment, the rotor core 14 can be used without using a holder as in Embodiments 1 to 3 described above. Since only the permanent magnet 4 can be positioned in the axial direction, the cost of assembly and parts can be reduced.
[0028]
(Example 5)
Since the permanent magnet is formed of an Nd-Fe-B rare earth magnet, the Nd-Fe-B rare earth magnet has a high residual magnetic flux density, so that the volume of the rotor and the entire motor can be reduced. .
[0029]
In all of the above-described embodiments, the example of four poles is used. However, the present invention is not limited to this example, and the same applies to a rotor that forms another number of magnetic poles such as two poles.
[0030]
Further, in all the embodiments described above, the permanent magnet used is a flat magnet, but the present invention is not limited to this, and the same applies to a rotor using a permanent magnet having another shape such as an arc. .
[0031]
【The invention's effect】
As described above, according to the first aspect of the present invention, the rotor iron core is formed by stacking the rotor iron plates A having a plurality of permanent magnet embedding holes, and communicated with the permanent magnet embedding holes. One or more rotor iron plates B having holes for use are laminated on one of the axial end surfaces of the laminated rotor iron plates A, and the rotor iron plate A is attached to the axial end surface of the rotor iron plate B. The outer peripheral portion of the hole for embedding the permanent magnet in the contact surface of the rotor iron plate B with the rotor iron plate A is in contact with the axial end surface of the permanent magnet. As a result, the permanent magnet can be positioned in the axial direction using only the rotor core without using a holder, so that the cost of assembly and parts can be reduced.
[0032]
According to a second aspect of the present invention, the rotor core is formed by laminating the rotor iron plate A having a plurality of permanent magnet embedding holes, and does not have the permanent magnet embedding holes. The rotor iron plate C of the rotor iron plate C is formed by laminating one or a plurality of rotor iron plates C shaped to close the holes on one of the axial end surfaces of the laminated rotor iron plates A. Since the contact surface with A contacts the axial end surface of the permanent magnet, the permanent magnet can be positioned in the axial direction only by the rotor core without using a holder. The cost of parts can be reduced.
[0033]
Further, since one of the permanent magnet embedding holes is blocked by the rotor iron plate C, an end plate is disposed on the other axial end surface of the permanent magnet embedding hole to block the permanent magnet embedding holes. Thus, both ends of the permanent magnet embedding hole can be closed only by using a single end plate, so that the cost of assembly and parts can be further reduced.
[0034]
Further, the rotor iron plate A having the permanent magnet embedding holes and the rotor iron plate C closing the permanent magnet embedding holes can be easily controlled by taking in and out the tooth mold for punching the permanent magnet embedding holes in the punching process. Since it can be manufactured and a tooth mold for punching out the magnetic flux short-circuit prevention hole is unnecessary, the configuration of the entire mold can be simplified.
[0035]
According to the invention described in claim 2, the rotor iron plate C in the form of closing a permanent magnet embedding hole without have a hole for embedding the permanent magnets, the axial end surface of the side where the permanent magnet does not contact By laminating the rotor iron plate A having permanent magnet embedding holes, the magnetic resistance of the magnetic circuit between the NS surfaces at the axial end of the permanent magnet is increased, and the leakage magnetic flux can be reduced. The characteristics of the electric motor can be improved.
[0036]
According to a third aspect of the present invention, in addition to the first or second aspect of the present invention, a starting squirrel-cage conductor is disposed on the rotor core, whereby a self-starting permanent magnet type is provided. In addition to constituting the synchronous motor, the permanent magnet can be positioned in the axial direction only with the rotor core without using a holder, so that the cost of assembly and parts can be reduced.
[0037]
According to the invention described in claim 4 , in addition to the invention described in any one of claims 1 to 3 , a strong magnetic force can be obtained because the permanent magnet is formed of a rare earth magnet. Therefore, the volume of the rotor and the entire electric motor can be reduced.
[Brief description of the drawings]
FIG. 1 is an axial sectional view of a rotor according to an embodiment of the present invention. FIG. 2 is a plan view of a rotor iron plate A. FIG. 3 is a plan view of a rotor iron plate B. FIG. FIG. 5 is a plan view of a rotor iron plate C. FIG. 6 is an axial sectional view of a rotor according to an embodiment of the present invention. FIG. 8 is a plan view of a rotor iron plate D. FIG. 9 is a plan view of a rotor iron plate E. FIG. 10 is an axial cross sectional view of a conventional embedded rotor. Explanation】
DESCRIPTION OF SYMBOLS 1 Rotor 2 Rotor core 3 Permanent magnet embedding hole 4 Permanent magnet 7 Magnetic flux short-circuit prevention hole 8 Outer edge part of magnetic flux short-circuit prevention hole 9 End surface of permanent magnet in the axial direction

Claims (4)

固定子鉄心に巻線を巻装した固定子と、前記固定子鉄心の内径円筒面に対向して回転自在に回転し、複数個の永久磁石が埋め込まれている回転子を有する電動機であって、
回転子鉄心が複数個の永久磁石埋め込み用穴を有する回転子鉄板Aを前記永久磁石を埋め込むために前記永久磁石の軸方向の長さ以上に積層し、
且つ前記永久磁石埋め込み用穴と連通するように配置した磁束短絡防止用穴を有する回転子鉄板Bを、積層された前記回転子鉄板Aの軸方向端面の一方に1枚または永久磁石の位置決めが可能な限り少ない枚数積層し、
さらに前記回転子鉄板Bの軸方向端面に前記回転子鉄板Aを1枚または複数枚積層して形成されるとともに、
前記永久磁石が埋め込まれている前記回転子鉄板Aと前記回転子鉄板Bの当接面における前記磁束短絡防止用穴の外縁部が、前記永久磁石の軸方向端面に当接することにより、前記永久磁石の軸方向の位置決めをすることを特徴とした永久磁石型同期電動機。
An electric motor having a stator in which a winding is wound around a stator core, and a rotor that rotates rotatably facing an inner cylindrical surface of the stator core and in which a plurality of permanent magnets are embedded. ,
A rotor iron plate A having a plurality of holes for embedding permanent magnets in the rotor core is laminated more than the axial length of the permanent magnets to embed the permanent magnets,
In addition, the rotor iron plate B having the magnetic flux short-circuit prevention hole arranged so as to communicate with the permanent magnet embedding hole is positioned on one of the axial end surfaces of the laminated rotor iron plate A or the permanent magnet is positioned. Laminate as few as possible ,
Further, the rotor iron plate B is formed by laminating one or more of the rotor iron plates A on the axial end surface of the rotor iron plate B,
The outer edge portion of the magnetic flux short-circuit prevention hole in the contact surface between the rotor iron plate A and the rotor iron plate B in which the permanent magnet is embedded comes into contact with the axial end surface of the permanent magnet, thereby A permanent magnet type synchronous motor characterized by positioning the magnet in the axial direction.
固定子鉄心に巻線を巻装した固定子と、前記固定子鉄心の内径円筒面に対して回転自在に回転し、複数個の永久磁石が埋め込まれている回転子を有する電動機であって、
回転子鉄心が複数個の永久磁石埋め込み用穴を有する回転子鉄板Aを積層し、
且つ前記永久磁石埋め込み用穴を有せず前記永久磁石埋め込み用穴を塞ぐ形状をした回転子鉄板Cを、積層された前記回転子鉄板Aの軸方向端面の一方に1枚または複数枚積層し
前記回転子鉄板Cの永久磁石が当接しない側の軸方向端面に、さらに永久磁石埋め込み用穴を有する回転子鉄板Aを積層して形成されるとともに、
前記回転子鉄板Cの前記回転子鉄板Aとの当接面が前記永久磁石の軸方向端面に当接することにより、前記永久磁石の軸方向の位置決めをすることを特徴とした永久磁石型同期電動機。
An electric motor having a stator in which a winding is wound around a stator core, and a rotor that rotates freely with respect to an inner diameter cylindrical surface of the stator core and in which a plurality of permanent magnets are embedded;
The rotor core is laminated with a rotor iron plate A having a plurality of permanent magnet embedding holes,
In addition, one or more rotor iron plates C that do not have the permanent magnet embedding holes and have a shape that closes the permanent magnet embedding holes are laminated on one of the axial end surfaces of the laminated rotor iron plates A. ,
The rotor iron plate C is formed by laminating the rotor iron plate A further having a permanent magnet embedding hole on the axial end surface on the side where the permanent magnet does not contact ,
A permanent magnet type synchronous motor characterized in that the permanent magnet is positioned in the axial direction by abutting a contact surface of the rotor iron plate C with the rotor iron plate A on an axial end surface of the permanent magnet. .
回転子鉄心に始動用かご形導体を配設することを特徴とした請求項1または請求項2に記載の永久磁石型同期電動機。 3. The permanent magnet type synchronous motor according to claim 1 , wherein a starting squirrel-cage conductor is disposed on the rotor core. 永久磁石が希土類磁石で形成されていることを特徴とした請求項1から請求項のいずれかに記載の永久磁石型同期電動機。The permanent magnet type synchronous motor according to any one of claims 1 to 3 , wherein the permanent magnet is formed of a rare earth magnet.
JP20308199A 1999-07-16 1999-07-16 Permanent magnet synchronous motor Expired - Fee Related JP4121673B2 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
JP20308199A JP4121673B2 (en) 1999-07-16 1999-07-16 Permanent magnet synchronous motor
EP04030799A EP1519471B1 (en) 1999-07-16 2000-07-13 Permanent magnet synchronous motor
AU60148/00A AU6014800A (en) 1999-07-16 2000-07-13 Permanent magnet synchronous motor
CN201010263976XA CN101917106B (en) 1999-07-16 2000-07-13 Permanent magnet synchronous motor
CN2009101645671A CN101630887B (en) 1999-07-16 2000-07-13 Permanent magnet synchronous motor
EP10179927A EP2276154A1 (en) 1999-07-16 2000-07-13 Permanent magnet synchronous motor
EP10179950A EP2276146A1 (en) 1999-07-16 2000-07-13 Permanent magnet synchronous motor
EP00946295A EP1198875B1 (en) 1999-07-16 2000-07-13 Permanent magnet synchronous motor
US10/019,286 US6727627B1 (en) 1999-07-16 2000-07-13 Permanent magnet synchronous motor
CNB008102236A CN1210860C (en) 1999-07-16 2000-07-13 Permanent magnet synchronous motor
BR0012508-3A BR0012508A (en) 1999-07-16 2000-07-13 Synchronous motor with permanent magnet
CNB2004100818149A CN100536288C (en) 1999-07-16 2000-07-13 Permanent magnet synchronous motor
EP10179930A EP2276155A1 (en) 1999-07-16 2000-07-13 Permanent magnet synchronous motor
DE60023704T DE60023704T2 (en) 1999-07-16 2000-07-13 SYNCHRONOUS MOTOR WITH PERMANENT MAGNETS
EP10179955A EP2276147A1 (en) 1999-07-16 2000-07-13 Permanent magnet synchronous motor
PCT/JP2000/004693 WO2001006624A1 (en) 1999-07-16 2000-07-13 Permanent magnet synchronous motor
US10/792,726 US6876119B2 (en) 1999-07-16 2004-03-05 Permanent magnet synchronous motor
US11/035,196 US7019427B2 (en) 1999-07-16 2005-01-14 Permanent magnet synchronous motor
US11/288,089 US7183686B2 (en) 1999-07-16 2005-11-29 Permanent magnet synchronous motor
US11/622,876 US7372183B2 (en) 1999-07-16 2007-01-12 Permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20308199A JP4121673B2 (en) 1999-07-16 1999-07-16 Permanent magnet synchronous motor

Publications (2)

Publication Number Publication Date
JP2001037119A JP2001037119A (en) 2001-02-09
JP4121673B2 true JP4121673B2 (en) 2008-07-23

Family

ID=16468056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20308199A Expired - Fee Related JP4121673B2 (en) 1999-07-16 1999-07-16 Permanent magnet synchronous motor

Country Status (1)

Country Link
JP (1) JP4121673B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020075993A (en) * 2001-03-27 2002-10-09 삼성광주전자 주식회사 Rotor of synchronous motor and method for manufacturing the same
KR20020075649A (en) * 2001-03-27 2002-10-05 삼성광주전자 주식회사 Rotor of synchronous motor
JP3877620B2 (en) 2002-03-18 2007-02-07 三洋電機株式会社 Concentrated winding DC motor and compressor equipped with the same
BRPI0402303A (en) * 2004-06-07 2006-01-17 Brasil Compressores Sa Process of mounting magnets on electric motor rotor and electric motor rotor
JP4010319B2 (en) 2005-02-09 2007-11-21 ダイキン工業株式会社 Core and rotor, motor and compressor
DE102008010909B4 (en) 2007-02-28 2015-08-27 Sew-Eurodrive Gmbh & Co Kg electric motor
JP5193548B2 (en) * 2007-10-02 2013-05-08 日立アプライアンス株式会社 Permanent magnet rotating electric machine for fan drive of washing and drying machine
JP2009131026A (en) * 2007-11-22 2009-06-11 Mitsubishi Electric Corp Electric motor and refrigerant compressor loading the same
DE102008032844A1 (en) 2008-07-14 2010-01-21 Hanning Elektro-Werke Gmbh & Co. Kg Permanent magnetic rotor
JP5278003B2 (en) * 2009-01-30 2013-09-04 トヨタ自動車株式会社 Electric motor
EP2249460B1 (en) * 2009-05-05 2012-03-07 Iro Ab Positioning substrate and permanent magnet rotor
JP6327907B2 (en) * 2014-03-28 2018-05-23 アイチエレック株式会社 Permanent magnet motor and compressor
JP6402685B2 (en) * 2015-06-16 2018-10-10 トヨタ自動車株式会社 Rotating electrical machine rotor
JP6572914B2 (en) * 2017-01-11 2019-09-11 トヨタ自動車株式会社 Rotating electrical machine rotor
CN114503397A (en) * 2019-10-11 2022-05-13 三菱电机株式会社 Rotor, motor, compressor, and air conditioner
JP2021175216A (en) * 2020-04-21 2021-11-01 三菱電機株式会社 Rotary electric machine
JPWO2023042324A1 (en) * 2021-09-16 2023-03-23

Also Published As

Publication number Publication date
JP2001037119A (en) 2001-02-09

Similar Documents

Publication Publication Date Title
JP4121673B2 (en) Permanent magnet synchronous motor
US5081388A (en) Magnetic induction motor
CA1294661C (en) Brushless dc motor
US6011337A (en) Double-sided, non-iron core, brushless, axial magnetic field permanent-magnet type DC motor
CA1135761A (en) Permanent magnet motor armature
US20190199149A1 (en) Consequent-pole-type rotor, electric motor, and air conditioner
JPS6028758A (en) Rotary electric machine with permanent magnet
US6563248B2 (en) Hybrid-magnet DC motor
EP1237262A8 (en) Permanent magnet type dynamo-electric machine
JP2007143335A (en) Field magneton and motor
JPH11146616A (en) Motor structure
JP2004304958A (en) Permanent-magnetic motor
JP2000050546A (en) Rotor of permanent magnet motor
WO2001097363A1 (en) Permanent magnet synchronous motor
JP2000102202A (en) Rotor for permanent-magnet type electric motor
JP4043659B2 (en) Method for manufacturing self-starting permanent magnet type synchronous motor
JP3607137B2 (en) Permanent magnet embedded rotor
JP4248778B2 (en) Permanent magnet motor rotor
JP4299391B2 (en) Permanent magnet rotor
JP3776171B2 (en) Magnet rotor
JP4496569B2 (en) Permanent magnet synchronous motor
JP2021087231A (en) Rotor of rotary electric machine
JP2002136009A (en) Permanent magnet rotor
JPS6149901B2 (en)
KR20200114258A (en) Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060821

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4121673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees