JP4118096B2 - Laminated plate for electric vehicle, electric motor or generator, and electric motor or generator - Google Patents

Laminated plate for electric vehicle, electric motor or generator, and electric motor or generator Download PDF

Info

Publication number
JP4118096B2
JP4118096B2 JP2002201000A JP2002201000A JP4118096B2 JP 4118096 B2 JP4118096 B2 JP 4118096B2 JP 2002201000 A JP2002201000 A JP 2002201000A JP 2002201000 A JP2002201000 A JP 2002201000A JP 4118096 B2 JP4118096 B2 JP 4118096B2
Authority
JP
Japan
Prior art keywords
amorphous metal
magnetic
heat
resin
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002201000A
Other languages
Japanese (ja)
Other versions
JP2004042345A (en
Inventor
光伸 吉田
展弘 丸子
洋 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2002201000A priority Critical patent/JP4118096B2/en
Publication of JP2004042345A publication Critical patent/JP2004042345A/en
Application granted granted Critical
Publication of JP4118096B2 publication Critical patent/JP4118096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Laminated Bodies (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は産業機械分野に用いられる電動機、例えば、DCブラシ付きモータ、ブラシレスモータ、ステッピングモータ、ACインダクションモータ、ACシンクロナスモータ、シンクロナスリラクタンスモータ、IPMモータ、SPMモータに用いられる磁性積層板および、それを用いた電動機及び発電機に関する。
【0002】
【従来の技術】
近年、環境問題から地球温暖化の原因物質の一つである二酸化炭素の排出量を減らすため、ガソリン自動車から、格段に二酸化炭素の排出量の低い燃料電池車やハイブリッド型電気自動車へと転換しようという社会的要請がある。そこで電気自動車においては、電動機のさらなる高効率化が求められている。また電気自動車の出力をガソリン車並にするため、モータのさらなる高出力化も併せて求められている。電動機の高出力化を図るには、電動機の回転数を上げる必要がある。回転数を上げると電動機の回転子にかかる応力は増大し、電動機の回転子に要求される機械的強度の要求はより一層高くなる。また電動機のロータ及びステータに印加される交番磁界の周波数は増大し、より高周波数域での損失の少ない材料が求められてくる。また自動車に用いられる電動機には、過酷な環境(高温)に耐えられる高い信頼性も要求される。
【0003】
以上より電気自動車用電動機に要求されるモータ用軟磁性材料の特性として、高周波域での低損失材料、高強度材料、高温度安定性の3点を挙げることができる。
【0004】
現状ではモータ用軟磁性材料として珪素鋼板、電磁軟鉄、パーマロイなどが主に使用されており、これらの多結晶金属系の材料は鋳造法によってインゴットが作製され、その後熱間加工、冷間加工を経て必要な厚さの板材に加工されるが、材料の脆性等から、最薄のものでも0.1mm程度と厚さに限界があった。
【0005】
一方、磁性コアの材料として、Fe系非晶質金属薄帯、Co系非晶質金属薄帯等の磁性材料は、磁気的特性(鉄損、最大磁束密度、透磁率)は電磁鋼板と同等かそれを上回る特性をもち、厚さは10μm〜30μmの薄帯が製品として入手可能となっている。そのため、モータの高効率化の鍵となる材料として期待されている。しかしながら、Fe系非晶質金属薄帯、Co系非晶質金属薄帯等の磁性材料は、磁気特性を発現させるためには200℃〜500℃の高温の熱処理が必要であり、熱処理後の薄帯は脆く、形状加工や一体積層時に大きな応力が材料に加わると、欠け、割れ、等が発生し、電動機コア形状の積層体の実現は困難であった。
【0006】
このような非晶質金属薄帯を積層化し、電動機または発電機に適用しようとする試みは、例えば、特開昭60‐43036号公報には、非晶質金属を電動機に適用することで、高強度と、低損失を実現することが可能となると記述されている。また特開平11−312604号公報には、積層化の樹脂として、エポキシ樹脂、ビスフェノールA型エポキシ樹脂、部分鹸化モンタン酸エステルワックス、変性ポリエステル樹脂、フェノールブチラール樹脂等を用いて積層体を実現する方法が提案されている。しかしながら、いずれの提案の樹脂も、磁性コアの熱処理温度(200℃〜500℃)さらに好ましくは300℃〜500℃に対しては十分な耐熱性を有しておらず、積層一体化後に熱処理(300℃〜500℃)を行うと、熱処理時に樹脂が熱分解し、積層体の接着層間に気泡、剥離等が生じるため、電動機または発電機に使用する上で、充分な機械的強度の維持が困難であった。また、熱処理後、積層一体化するプロセスをとると、熱処理後、非晶質金属薄帯が脆くなり、積層一体化時の加重による応力により、非晶質金属薄帯に割れやかけが生じ電気自動車用途では実用上問題であった。
【0007】
【発明が解決しようとする課題】
本発明の目的は、Fe系非晶質金属薄帯、Co系非晶質金属薄帯等の磁性積層板の上記問題を解決することである。すなわち磁気特性発現のための熱処理を実現し、高磁気特性を発現させた非晶質金属薄帯の優れた磁気特性をモータにおいて発現すると同時に、高機械的強度を有する電動機または発電機用磁性積層体を提供することである。
【0008】
【課題を解決するための手段】
このような課題を解決するために、本発明の電動機または発電機用磁性コアは、従来からの耐熱性樹脂の物性を見直し、さらに積層接着、熱処理のプロセスを見なおし、そして、鋭意研究の結果、用いる耐熱性樹脂の物性値およびその値が本発明の範囲の樹脂と、熱処理を施し、磁気特性の向上した非晶質金属薄帯と、熱処理を施していない高強度の非晶質金属薄帯を用いて、積層接着することで、磁気特性を著しく向上し、かつ高強度の電動機または発電機用の積層磁性コアを提供できることが明らかとなった。
【0009】
具体的には、磁性材料からなるロータと、ステータを備えた電動機または発電機において、ロータまたはステータの少なくとも1部の磁性材料が、非晶質金属磁性薄帯からなる積層体より構成され、前記非晶質金属磁性薄帯からなる積層体が、窒素雰囲気気流下300℃、1時間の熱履歴を経た際の熱分解による樹脂の重量減少率が1重量%以下であることを特長とする耐熱性接着樹脂層と非晶質金属磁性薄帯層が交互に積層されており、さらに前記非晶質金属磁性層を構成する層が引張強度が500MPa以下の非晶質金属層と、引張強度が500MPa以上の非晶質金属層とからなることを特徴とする電動機または発電機用磁性積層板とすることで、磁気特性に優れ、かつ自動車用モータとして要求される高強度の積層体が得られる。
【0010】
【発明の実施の形態】
以下、本発明について具体的に説明する。
本発明に係わる電動機または発電機用磁性積層板は非晶質金属薄帯の原反からロールコータなどのコーティング装置を用いて非晶質金属薄帯上に液状樹脂の塗膜を作り、これを乾燥させて非晶質金属薄帯に耐熱性樹脂を付与する方法で作製することができる。非晶質金属薄帯に耐熱性樹脂を付与した多層構造の磁性基材を作製する場合、多層コーティング方法や単一または多層コーティング基材を加圧、例えば熱プレスや熱ロールなどにより積層することができる。加圧時の温度は耐熱樹脂の種類により異なるが、概ね、硬化物のガラス転移温度以上で軟化もしくは溶融する温度近傍で積層接着することが好ましい。
【0011】
耐熱性樹脂を付与した非晶質金属薄帯は、目的とする電動機または発電機用磁性コアに使用されるように所望の形状、例えば、図2に示すようなステータコアの形状に加工される。形状加工方法としては、プレス打ち抜き加工、放電ワイヤーカット加工、レーザー切断加工、ウォータージェット加工方法等の精密切断加工の手法が適用できる。またこの加工は非晶質金属薄帯一枚のとき、または積層一体化した後でも可能である。
【0012】
さらに形状加工を施した磁性積層体もしくは一枚の磁性基材のうち、非晶質金属の磁気特性発現に必要な200℃から500℃の熱処理したものと、熱処理していないが、非晶質金属の強靭な機械強度を有するものの2種類作製する。この2種類を交互に重ねて、所望のモータ用磁性積層体の厚みとする。重ねる方法は複数枚ずつ交互に積層しても良いし、1枚毎に交互に重ねてもよい。
【0013】
重ねた磁性積層体もしくは磁性基材を積層一体化し、耐熱樹脂のガラス転移温度以上の温度で、非晶質金属の層間の樹脂を溶融させて、冷却することで、非晶質金属薄帯どうしを固着し一体化する。
このようにして作製されたモータコアは、熱処理した磁気特性の優れた部分と、熱処理をしていない非晶質金属の優れた機械的特性を併せ持つ磁性積層体とすることが可能となる。熱処理した磁気特性の優れた部分と、熱処理はしていないが、非晶質金属の優れた機械的特性を有する部分の枚数比を1:0〜0:1まで所望の比率にすることで、磁気的特性と機械的強度のバランスをとることが可能なり、使用するモータの使用条件にあわせた機械強度と磁気的な性質を設計できるようになる。このように磁気的性能と機械的強度を設計できることで、今まで1種類の非晶質金属薄帯と樹脂との積層体では達成し得なかった、磁気的性能と機械的強度を有する磁性積層体を実現することが可能となった。
【0014】
さらに本発明の詳しい説明を行う。
【0015】
(非晶質金属薄帯)
本発明の磁性基材に使用される非晶質金属薄帯に用いられる磁性材料としては、Fe系、Co系の非晶質金属薄帯が用いられる。これらの非晶質金属薄帯は、通常溶融金属を急冷ロールを用いて、急冷して得られる。通常は10〜50μmの厚さであり、好ましくは10〜30μmの厚さの薄帯が用いられる。Fe系非晶質金属材料としては、Fe−B―Si系、Fe−B系、Fe−P−C系などのFe−半金属系非晶質金属材料や、Fe−Zr系、Fe−Hf系、Fe−Ti系などのFe−遷移金属系非晶質金属材料を挙げることができる。Co系非晶質金属材料としてはCo−Si−B系、Co−B系などの非晶質金属材料が例示できる。好ましくはFe−Si−B系においては、Fe78Si913(at%)、Fe78Si1012(at%)などが挙げることができる。
【0016】
(耐熱性樹脂)
本発明に用いられる耐熱性樹脂は、非晶質金属薄帯の磁気特性を向上させる最適熱処理温度で熱処理される場合があるので、当該熱処理温度で熱分解の少ない材料を選定することが必要になる。非晶質金属薄帯の熱処理温度は、非晶質金属薄帯を構成する組成および目的とする磁気特性により異なるが、良好な磁気特性を向上させる温度は概ね200〜500℃の範囲にあり、さらに好ましくは300℃〜500℃の範囲である。
【0017】
本発明に用いられる耐熱性樹脂としては、熱可塑性、非熱可塑性、熱硬化性樹脂を挙げることができる。中でも熱可塑性樹脂を用いるのが好ましい。
【0018】
熱可塑性の耐熱性樹脂を用いることで、前記非晶質金属薄帯の少なくとも一部に耐熱性樹脂を付与した後、もしくは耐熱性樹脂の前駆体を付与し該耐熱性樹脂を形成した後、この磁性基材を積層し、磁性基材の積層体を得ることができる。この製造方法により、耐熱性樹脂を樹脂化しているため、室温でタック性がなく、また安定であるため、取り扱いが簡便であり、積層時の作業性がよく工程の歩留まりが向上できるメリットがある。
【0019】
本発明に用いられる耐熱性樹脂としては、前処理として120℃で4時間乾燥を施し、その後、窒素雰囲気下、300℃で2時間保持した際の重量減少量を、DTA−TGを用いて測定され、通常1%以下、好ましくは0.3%以下であるものが用いられる。具体的な樹脂としては、ポリイミド系樹脂、ケイ素含有樹脂、ケトン系樹脂、ポリアミド系樹脂、液晶ポリマー、ニトリル系樹脂、チオエ−テル系樹脂、ポリエステル系樹脂、アリレ−ト系樹脂、サルホン系樹脂、イミド系樹脂、アミドイミド系樹脂を挙げることができる。これらのうちポリイミド系樹脂、スルホン系樹脂、アミドイミド系樹脂を用いるのが好ましく。
本発明に用いられる樹脂は、上記の耐熱性に加えて下記の特性を兼ね備えている樹脂であることがさらに好ましい。
▲1▼窒素雰囲気下300℃、1時間の熱履歴を経た後の引っ張り強度が30MPa以上である。
▲2▼ガラス転移温度が120℃〜250℃である。
▲3▼溶融粘度が10万Pa・sである温度が、250℃以上400℃以下であり、さらに好ましくは300℃以下、さらに好ましくは250℃以下である。
▲4▼400℃から120℃まで0.5℃/分の一定速度で降温した後、樹脂中の結晶物による融解熱が10J/g以下である。
【0020】
(樹脂付与工程)
耐熱性樹脂は、非晶質金属薄帯の片面のみ、または、両面の少なくとも一部に付与する。この場合、付与する面において均一にむらなく塗膜されることが好ましいが、例えば、短冊状コアの場合、切断部分ではない部分等は加工時に接着強度が十分であればよく、非晶質金属薄帯間の接着が得られるように部分的に耐熱性樹脂が付与されていれば良い。また、積層体を形状加工する場合等で接着強度が必要となる場合には、薄帯の片面または両面に全面に塗布されていることが望ましい。
【0021】
本発明における非晶質金属薄帯の片面または両面の少なくとも一部に耐熱性樹脂を付着する場合、粉末状樹脂、もしくは溶媒に樹脂を溶解させた溶液または、ペースト状の形態がある。樹脂を溶解させた溶液を用いる場合は、ロ−ルコ−タなどを用いて非晶質金属薄帯に付与して行うことが代表的である。この場合、付与工程で用いる溶液の粘度は、0.005Pa・s以下の粘度では、粘性が低くなり過ぎるため非晶質金属薄帯上から流れてしまい磁性基材上に十分な塗膜量が得られず、極めて薄い塗膜になってしまう。また、この場合膜厚を厚くするために、付与速度を極めて遅くすると何度も重ね塗りが必要になるため、生産効率の低下が生じ実用的ではない。一方、粘度が、200Pa・s以上になると、高粘度のため、非晶質金属薄帯上に薄い塗膜を形成するための膜厚の制御が極めて難しくなる。したがって、樹脂を溶媒に溶解させた溶液による付与の場合、付与時の溶液粘度は0.005〜200Pa・sの濃度範囲が好ましい。さらには、0.01〜50Pa・sの濃度範囲が好ましく、より好ましくは、0.05〜5Pa・sの範囲にある方が良い。
【0022】
本発明における樹脂を溶媒に溶解させた溶液の付与方法としては、コ−タを用いた方法、例えば、ロ−ルコ−タ法、グラビアコ−タ法、エアドクタコ−タ法、ブレ−ドコ−タ法、ナイフコ−タ法、ロッドコ−タ法、キスコ−タ法、ビ−ドコ−タ法、キャストコ−タ法、ロ−タリ−スクリ−ン法や、液状樹脂中に非晶質金属薄帯を浸漬しながらコ−テイングする浸漬コ−テング方法、液状樹脂を非晶質金属薄帯にオリフィスから落下させコ−テイングするスロットオリフィスコ−タ法などで行うことができる。その他、バ−コ−ド方法や霧吹きの原理を用いて液状樹脂を霧上に非晶質金属薄帯に吹き付けるスプレ−コ−ティング法や、スピンコ−テング法、電着コ−テング法、あるいはスパッタ法のような物理的な蒸着法、CVD法のような気相法など非晶質金属薄帯上に耐熱性樹脂を付与できる方法なら如何なる方法を用いても良い。
【0023】
また、一部に耐熱性樹脂を付与するには、塗膜パターンの溝を加工したグラビアヘッドを用いて、グラビアコータ法で行うことができる。
【0024】
また、本発明における非晶質金属薄帯の片面または両面の少なくとも一部に付着させる樹脂として、ペ−スト状樹脂を使用する場合は、主として非晶質金属薄帯と非晶質金属薄帯など複数の非晶質金属薄帯を積層する場合に用いることが好ましい。そのため、樹脂は液状樹脂のような流動性よりは仮接着固定や仮止めができる粘度があれば良く、ポッティングや刷毛塗りなどの方法で付与することができる。したがって、樹脂の粘度としては、5Pa・s以上の粘度であることが好ましい。一方、粉末状の樹脂を用いる場合は、例えば、金型を用いて非晶質金属薄帯の積層体を作製する時に粉末状・ペレット状の樹脂を充填または散布して熱プレス成型などにより非晶質金属薄帯の積層体を作製する場合に用いることができる。
【0025】
さらに、本発明で使用するポリイミドを用いる方法として、溶媒可溶性のポリイミド若しくはその両末端に反応性の官能基(以下「付加反応基」)を導入したものを用いることもできる。すなわち、可溶性ポリイミドを溶剤に溶かして液状とし、適切な粘度に調整して、非晶質金属薄帯に付与し、加熱して溶剤を揮発して耐熱性樹脂を形成する方法が用いられる。
【0026】
本発明の構成材料は上記2種の材料を上記樹脂付与工程からなる。非晶質金属1枚に本発明の樹脂を両面、もしくは片面の全面もしくは一部に付与したものを磁性基材と呼ぶこととする。
【0027】
次に本発明の電動機用磁性積層板は、上記磁性基材を使用し、以下の複数の工程の組み合わせから作製することが可能である。各工程の詳細な説明を以下にする。
【0028】
(熱処理工程)
磁性向上のための熱処理であり、非晶質金属薄帯の磁気特性を向上させるために行われる熱処理である。非晶質金属薄帯の熱処理温度は、非晶質金属薄帯を構成する組成および目的とする磁気特性により異なるが、通常、不活性ガス雰囲気下もしくは真空中で行われ、良好な磁気特性を向上させる温度は概ね300〜500℃であり、好ましくは350℃から450℃で行わる。熱処理した非晶質金属薄帯は脆化し、機械的強度が著しく低下する。
【0029】
熱処理した非晶質金属薄帯は脆化し、機械的強度が著しく低下する。定量的な評価を行ったところ、300℃〜500℃の範囲で不活性ガス雰囲気下で1時間から2時間熱処理を施したものは引張強度が500MPa以下にまで低下することが明らかになった。また熱処理を施していない非晶質金属は引張強度が500MPa以上の高強度を維持していることが明らかになった。
【0030】
(積層一体化工程)
本発明の非晶質金属薄帯積層体は、300℃から500℃の熱処理を施した引張強度が500MPa以下の磁性基材と、単数もしくは複数の磁性基材と熱処理を施していない引張強度が500MPa以上の磁性基材を重ねあわせる。このような構成とすることで、熱処理した非晶質金属の優れた高透磁率、低損失な特性と、熱処理していない高強度の特性を併せ持つことが可能となることを見出した。しかも、重ねあわせる積層枚数の比率を変えることで、強度と磁気特性を変えることが可能となり、使用する用途に応じた積層体の磁気的性能及び機械強度の設計が可能となった。
【0031】
本発明の非晶質金属薄帯積層体は、300℃から500℃の熱処理を施した、単数もしくは複数の磁性基材と熱処理を施していない磁性基材を重ねあわせる。さらに非晶質金属に付与した耐熱樹脂が溶融する温度まで加熱した後、加圧熱処理することで、積層一体化する。
【0032】
好ましくは、非晶質金属薄帯に予め耐熱性樹脂または耐熱性樹脂の前駆体を付与した磁性基材を用い、この基材を積層接着して積層体を作製する方法が望ましい。
【0033】
本発明において、非晶質金属薄帯に予め耐熱性樹脂または耐熱性樹脂の前駆体を付与した磁性基材を用いて積層する製造方法について詳細に説明する。
【0034】
また前記非晶質金属薄帯の少なくとも一部に耐熱性樹脂の前駆体を付与した磁性基材を積層し、接着すると同時に該前駆体を耐熱樹脂とすることにより、積層された前記磁性基材の積層体を形成することができる。
【0035】
また、非晶質金属薄帯に耐熱性樹脂を付与した多層構造の磁性積層板を作製する場合、多層コ−ティング方法や単一または多層コ−ティング基材を加圧、例えば熱プレスや熱ロ−ルなどにより積層することができる。加圧時の温度は耐熱樹脂の種類により異なるが、概ね、樹脂が軟化もしくは溶融する温度近傍で積層することが好ましい。
【0036】
非晶質金属薄帯の積層体の作製は、多層コ−ティング方法あるいは熱プレス、または熱ロ−ル、高周波溶着などで積層接着することで積層構造を自由に設計することができる。
【0037】
(形状加工工程)
本発明の電動機用磁性コアに形状加工する場合は、プレス打抜き加工、放電ワイヤーカット加工、レーザー切断加工等の精密切断加工の方法が適用でき、これに限定されるものではない。これらの方法の中でも、好ましくはプレス打抜き加工が、量産時に加工単価が低い点で望ましい。形状加工は非晶質金属薄帯1枚のときでも可能であり、また積層一体化した後で、複数枚からなる積層体を同時に形状加工することも可能である。加工単価を低くする上では複数枚を同時に形状加工することが望ましい。
【0038】
その具体的な方法は、以下に代表される工程の組み合わせ(図1)からなる。
パターン1:
(樹脂付与工程)→(熱処理工程)→(積層一体化工程)→(形状加工工程)
パターン2:
(樹脂付与工程)→(形状加工工程)→(熱処理工程)→(積層一体化工程)
パターン3
(樹脂付与工程)→(形状加工工程)→(積層一体化工程)→(熱処理)→(積層一体化工程)
上記した、本発明の磁性積層体の作製パターンを説明する。
【0039】
まずパターン1では、非晶質金属薄帯に樹脂を付与した磁性基材のち、熱処理した磁性基材と、熱処理しない磁性基材の2種類用意し、この2種類の磁性基材を積層一体化工程で1枚の磁性積層板とする。このとき、表面に塗布した樹脂を加熱し溶融させて、一体化してもよいし、またエポキシ樹脂等の接着剤をつけて一体化しても良い。最後にプレス打抜き加工等のような形状加工によりモータ用磁性積層板とする。
【0040】
次にパターン2では非晶質金属薄帯に樹脂を付与し、次に磁性基材をまず、プレス打抜き加工などで、所望のモータコア形状に加工する。次に、加工した磁性基材を熱処理した磁性基材と、熱処理しない磁性基材の2種類用意し、積層一体化工程で1枚の磁性積層板とする。本パターンは積層数の多い、磁性コア厚が1mm以上の電動機もしくは発電機用磁性積層体の作製に好適である。
【0041】
パターン3では非晶質金属薄帯に樹脂を付与し、次にプレス打抜き加工などで、所望のモータコア形状に加工する。
次に複数枚を積層一体化工程で一体化し、磁性積層体群を作製し、この磁性積層体群を2群に分割し、1群のみを熱処理し、もう1群は熱処理せず、最後に、熱処理した磁性積層体と熱処理していない磁性積層体の2群を交互に積層し、樹脂のガラス転移温度以上で、加圧し、積層一体化する。
【0042】
【実施例】
以下、本発明の実施例について示す。
【0043】
[実施例1]
非晶質金属薄帯にハネウェル社製、Metglas:2605TCA(商品名)、幅約170mm、厚み約25μmのFe78Si913(at%)の組成を持つ非晶質金属薄帯(図3−1)を使用した。この薄帯の両面全面に約0.3Pa・sの粘度のポリアミド酸溶液を付与し、150℃で溶媒を揮発させた後、250℃でポリイミド樹脂とし、薄板の片面に厚さ約4ミクロンの耐熱性樹脂(ポリイミド樹脂)(図3−2)を付与した非晶質金属薄帯を作製した。ジアミンに3、3’−ジアミノジフェニルエーテル、テトラカルボン酸二無水物にビス(3、4−ジカルボキシフェニル)エーテルニ無水物により得られるポリイミドの前駆体であるポリアミド酸を用い、ジメチルアセトアミドの溶媒に溶解して非晶質金属薄帯上に塗布し、非晶質金属薄帯上で加熱することにより、ポリイミドを得た。この樹脂は本発明の請求項1記載の特性値をすべて満足していた。
【0044】
樹脂を付与した非晶質金属薄帯からなる磁性基材を20枚は磁気特性発現のため350℃2hr熱処理した。次に、熱処理した磁性基材20枚と、熱処理していない磁性基材20枚を交互に1枚ずつ重ねて、270℃で30分熱圧着し積層一体化した。厚さは1.1mmとなった。次に図2に示す形状のモータ用ステータを作製するため、外径50mm内径40mmの円環状に一回で打ち抜き、モータ用ステータ形状とした。従来のケイ素鋼鈑材料による積層体の占積率(95%)程度と同程度の非常に高い占積率(90%)を実現した。但し、ここでいう占積率とは次式で定義する式により計算した値を用いた。
【0045】
(占積率(%))=(((非晶質金属薄帯厚さ)×(積層枚数))/(積層後の積層体厚さ))*100
また、JIS H7153の「アモルファス金属磁心の高周波磁心損失試験方法」に準じた磁心寸法(外径50mm内径40mm)の円環をハサミで切り抜き、さきのモータ用ステータと同様のプロセスで、50枚積層したリングを作製し、1000Hzの交流磁場1[T]を印加したときのBHヒステリシスループから鉄損を測定した。その結果、鉄損は10.0[W/kg]であり、従来モータに用いられているケイ素鋼鈑と比較し、鉄損が2分の1から3分の1と低損失で良好な磁気特性を実現していることを確認した。さらにJIS Z2241に従い、本実施例と同様のプロセスで作製した磁性積層板の引張強度を測定したところ、500MPaとなり、自動車用電動機として充分な強度を有することが明らかとなった。
【0046】
[実施例2]
実施例1と同様の磁性基材を用いて、図2に示す形状のモータ用ステータを作製するため、外径50mm内径40mmの円環状に、磁性基材を一枚づつ打ち抜き、40枚打抜いた。次に打抜いた40枚のうち20枚は磁気特性発現のため350℃2hr熱処理した。次に、熱処理した磁性基材20枚と、熱処理していない磁性基材20枚を交互に1枚ずつ重ねて、270℃で30分熱圧着し積層一体化した。厚さは1.1mmとなった。
【0047】
従来のケイ素鋼鈑材料による積層体の占積率(95%)程度と同程度の非常に高い占積率(90%)を実現した。但し、ここでいう占積率とは次式で定義する式により計算した値を用いた。
【0048】
(占積率(%))=(((非晶質金属薄帯厚さ)×(積層枚数))/(積層後の積層体厚さ))*100
また、JIS H7153の「アモルファス金属磁心の高周波磁心損失試験方法」に準じた磁心寸法(外径50mm内径40mm)の円環をハサミで切り抜き、さきのモータ用ステータと同様のプロセスで、50枚積層したリングを作製し、1000Hzの交流磁場1[T]を印加したときのBHヒステリシスループから鉄損を測定した。その結果、鉄損は11.2[W/kg]であり、従来モータに用いられているケイ素鋼鈑と比較し、鉄損が2分の1から3分の1と低損失で良好な磁気特性を実現していることを確認した。さらにJIS Z2241に従い、本実施例と同様のプロセスで作製した磁性積層板の引張強度を測定したところ、680MPaとなり、自動車用電動機として充分な強度を有することが明らかとなった。
【0049】
[実施例3]
実施例1と同様の磁性基材を用いて、図2に示す形状のモータ用ステータを作製するため、外径50mm内径40mmの円環状に、磁性基材を一枚づつ打ち抜き、40枚打抜いた。次に5枚づつ重ねた8群の磁性積層板を270℃30分でそれぞれ別々に積層一体化し、8群のうち4群の積層板を磁気特性発現のため350℃2hr熱処理した。次に熱処理した4群の積層板と熱処理していない4群の積層板を1群づつ交互にならべ、270℃で30分熱圧着し積層一体化した。厚さは1.1mmとなった。
【0050】
従来のケイ素鋼鈑材料による積層体の占積率(95%)程度と同程度の非常に高い占積率(90%)を実現した。但し、ここでいう占積率とは次式で定義する式により計算した値を用いた。
【0051】
(占積率(%))=(((非晶質金属薄帯厚さ)×(積層枚数))/(積層後の積層体厚さ))*100
また、JIS H7153の「アモルファス金属磁心の高周波磁心損失試験方法」に準じた磁心寸法(外径50mm内径40mm)の円環をハサミで切り抜き、さきのモータ用ステータと同様のプロセスで、50枚積層したリングを作製し、1000Hzの交流磁場1[T]を印加したときのBHヒステリシスループから鉄損を測定した。その結果、鉄損は8.8[W/kg]であり、従来モータに用いられているケイ素鋼鈑と比較し、鉄損が2分の1から3分の1と低損失で良好な磁気特性を実現していることを確認した。さらにJIS Z2241に従い、本実施例と同様のプロセスで作製した磁性積層板の引張強度を測定したところ、320MPaとなり、自動車用電動機として充分な強度を有することが明らかとなった。
【0052】
[比較例1]
実施例1と同様の磁性基材を用いて、但し用いる樹脂をエポキシ樹脂とした。次に図2に示す形状のモータ用ステータを作製するため、外径50mm内径40mmの円環状に、磁性基材を一枚づつ打ち抜き、40枚打抜いた。次に5枚づつ重ねた8群の磁性積層板を150℃30分でそれぞれ別々に積層一体化し、8群のうち4群の積層板を磁気特性発現のため350℃2hr熱処理した。その結果、エポキシ樹脂が熱分解し、積層板に膨れが生じた。次に熱処理した4群の積層板と熱処理していない4群の積層板を1群づつ交互にならべ、270℃で30分熱圧着し積層一体化した。エポキシ樹脂の膨れのため、厚さは1.8mmとなった。
【0053】
従来のケイ素鋼鈑材料による積層体の占積率(95%)程度と同程度の非常に高い占積率(78%)を実現した。但し、ここでいう占積率とは次式で定義する式により計算した値を用いた。
【0054】
(占積率(%))=(((非晶質金属薄帯厚さ)×(積層枚数))/(積層後の積層体厚さ))*100
また、JIS H7153の「アモルファス金属磁心の高周波磁心損失試験方法」に準じた磁心寸法(外径50mm内径40mm)の円環をハサミで切り抜き、さきのモータ用ステータと同様のプロセスで、50枚積層したリングを作製し、1000Hzの交流磁場1[T]を印加したときのBHヒステリシスループから鉄損を測定した。その結果、鉄損は9.0[W/kg]であり、従来モータに用いられているケイ素鋼鈑と比較し、鉄損が2分の1から3分の1と低損失で良好な磁気特性を実現していることを確認した。さらにJIS Z2241に従い、本実施例と同様のプロセスで作製した磁性積層板の引張強度を測定したところ、150MPaとなり、自動車用電動機としては必要充分な強度を有していないことが明らかとなった。
【0055】
以上を下表にまとめる。
【0056】
【表1】

Figure 0004118096
【0057】
【発明の効果】
本発明は、磁性材料からなるロータと、ステータを備えた電動機または発電機において、ロータまたはステータの少なくとも1部の磁性材料が、非晶質金属磁性薄帯からなる積層体より構成され、前記非晶質金属磁性薄帯からなる積層体が、窒素雰囲気気流下300℃、1時間の熱履歴を経た際の熱分解による樹脂の重量減少率が1重量%以下であることを特長とする耐熱性樹脂層と非晶質金属磁性薄帯層が交互に積層されており、さらに引張強度が500MPa以下の非晶質金属層と、引張強度が500MPa以上の非晶質金属層とからなることを特徴とする電動機または発電機用磁性積層板とすることで、熱処理した非晶質金属の良好な磁気的特性と熱処理していない非晶質金属の強靭な機械強度を所望の比率で設計することが可能になり、電気自動車等で要求される強い機械強度を有し、かつ熱処理による優れた磁気特性を発現した磁性積層板を提供することが可能となった。また本発明に記載される耐熱性樹脂を用いることで、自動車内で想定される環境温度の120℃〜150℃の範囲で安定な機械的強度の確保が可能となった。従来の1種類の非晶質金属薄帯と樹脂との積層板では達成し得なかった、磁気的性能と機械的強度を有する磁性積層体を実現することが可能となった。また1種類の非晶質金属薄帯と樹脂との積層体では達成し得なかった、磁気的性能と機械的強度を有する磁性積層体を実現することが可能となった。
【図面の簡単な説明】
【図1】本発明の磁性積層板の作製工程のパターンを示す図
【図2】本発明の実施例1の電動機用磁性コアの形状を示す図。
【図3】本発明の実施例1の磁性基材の作製工程を示す図。
【符号の説明】
11非晶質金属薄帯
12耐熱性樹脂
21ステータコア
31非晶質金属薄帯
32耐熱性樹脂[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric motor used in the industrial machinery field, for example, a DC laminated motor, a brushless motor, a stepping motor, an AC induction motor, an AC synchronous motor, a synchronous reluctance motor, an IPM motor, a magnetic laminated plate used for an SPM motor, and The present invention relates to an electric motor and a generator using the same.
[0002]
[Prior art]
In recent years, in order to reduce the amount of carbon dioxide, which is one of the causative substances of global warming due to environmental problems, we will shift from gasoline vehicles to fuel cell vehicles and hybrid electric vehicles with significantly lower carbon dioxide emissions. There is a social request. Therefore, in electric vehicles, further improvement in the efficiency of electric motors is required. Moreover, in order to make the output of an electric vehicle the same as that of a gasoline vehicle, a further increase in the output of the motor is also required. In order to increase the output of the electric motor, it is necessary to increase the rotational speed of the electric motor. When the rotational speed is increased, the stress applied to the rotor of the electric motor increases, and the mechanical strength requirement required for the rotor of the electric motor becomes even higher. Further, the frequency of the alternating magnetic field applied to the rotor and stator of the electric motor increases, and a material with less loss in a higher frequency range is required. In addition, motors used in automobiles are also required to have high reliability that can withstand harsh environments (high temperatures).
[0003]
From the above, the characteristics of the soft magnetic material for motors required for electric motors for electric vehicles can include three points: a low loss material in a high frequency range, a high strength material, and a high temperature stability.
[0004]
At present, silicon steel, electromagnetic soft iron, permalloy, etc. are mainly used as soft magnetic materials for motors, and these polycrystalline metal materials are ingots made by casting, and then hot working and cold working are performed. After that, it is processed into a plate material having a necessary thickness. However, due to the brittleness of the material, the thinnest one has a thickness limit of about 0.1 mm.
[0005]
On the other hand, as magnetic core materials, magnetic materials such as Fe-based amorphous metal ribbon and Co-based amorphous metal ribbon have the same magnetic properties (iron loss, maximum magnetic flux density, magnetic permeability) as electromagnetic steel sheets. A ribbon having a characteristic exceeding that and a thickness of 10 μm to 30 μm is available as a product. Therefore, it is expected as a key material for improving motor efficiency. However, magnetic materials such as Fe-based amorphous metal ribbons and Co-based amorphous metal ribbons require high-temperature heat treatment at 200 ° C. to 500 ° C. in order to exhibit magnetic properties. The ribbon is fragile, and when a large stress is applied to the material during shape processing or integral lamination, chipping, cracking, etc. occur, making it difficult to realize a laminated body having an electric motor core shape.
[0006]
An attempt to stack such amorphous metal ribbons and apply it to a motor or a generator is, for example, in Japanese Patent Application Laid-Open No. 60-43036 by applying amorphous metal to a motor. It is described that high strength and low loss can be realized. Japanese Patent Application Laid-Open No. 11-31604 discloses a method for realizing a laminate using an epoxy resin, a bisphenol A type epoxy resin, a partially saponified montanic acid ester wax, a modified polyester resin, a phenol butyral resin, and the like as a lamination resin. Has been proposed. However, none of the proposed resins has sufficient heat resistance for the heat treatment temperature (200 ° C. to 500 ° C.) of the magnetic core (200 ° C. to 500 ° C.), more preferably 300 ° C. to 500 ° C. When the temperature is 300 ° C. to 500 ° C., the resin is thermally decomposed during heat treatment, and bubbles and peeling are generated between the adhesive layers of the laminate. Therefore, sufficient mechanical strength can be maintained for use in an electric motor or generator. It was difficult. In addition, if the process of stacking and integration is performed after heat treatment, the amorphous metal ribbon becomes brittle after heat treatment, and the amorphous metal ribbon is cracked and cracked due to the stress caused by the load at the time of stacking integration. It was a practical problem in automotive applications.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems of magnetic laminated plates such as Fe-based amorphous metal ribbons and Co-based amorphous metal ribbons. In other words, the magnetic layer for motors or generators with high mechanical strength is realized at the same time that the excellent magnetic properties of the amorphous metal ribbon that realizes the high magnetic properties are realized in the motor by realizing the heat treatment for expressing the magnetic properties. Is to provide a body.
[0008]
[Means for Solving the Problems]
In order to solve such problems, the magnetic core for electric motors or generators of the present invention has reviewed the physical properties of conventional heat-resistant resins, re-examined the process of lamination and heat treatment, and the results of earnest research The physical property value of the heat-resistant resin used and the resin whose value is within the range of the present invention, the amorphous metal ribbon that has been heat-treated to improve the magnetic properties, and the high-strength amorphous metal thin film that has not been heat-treated It has been clarified that by laminating and bonding using a belt, magnetic properties can be remarkably improved and a laminated magnetic core for a high-strength electric motor or generator can be provided.
[0009]
Specifically, in a motor or generator including a rotor made of a magnetic material and a stator, the magnetic material of at least one part of the rotor or the stator is composed of a laminate made of an amorphous metal magnetic ribbon, A laminate comprising an amorphous metal magnetic ribbon is characterized by having a resin weight reduction rate of 1% by weight or less due to thermal decomposition at 300 ° C. for 1 hour in a nitrogen atmosphere. The adhesive resin layer and the amorphous metal magnetic ribbon layer are alternately laminated, and the layer constituting the amorphous metal magnetic layer has an amorphous metal layer having a tensile strength of 500 MPa or less and a tensile strength of By using a magnetic laminated plate for an electric motor or a generator comprising an amorphous metal layer of 500 MPa or more, a high-strength laminated body excellent in magnetic properties and required as an automobile motor can be obtained. .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
The magnetic laminated sheet for an electric motor or generator according to the present invention forms a coating film of a liquid resin on an amorphous metal ribbon using a coating device such as a roll coater from an amorphous metal ribbon raw material. It can be produced by drying and applying a heat resistant resin to the amorphous metal ribbon. When producing a magnetic base material with a multilayer structure in which a heat-resistant resin is applied to an amorphous metal ribbon, the multi-layer coating method or a single or multi-layer coating base material is laminated by pressing, for example, hot pressing or hot roll. Can do. The temperature at the time of pressurization varies depending on the kind of the heat-resistant resin, but it is generally preferable to laminate and bond in the vicinity of a temperature at which the cured product is softened or melted at or above the glass transition temperature.
[0011]
The amorphous metal ribbon provided with the heat-resistant resin is processed into a desired shape, for example, the shape of a stator core as shown in FIG. 2 so as to be used for a target motor or generator magnetic core. As the shape processing method, precision cutting methods such as press punching, electric discharge wire cutting, laser cutting, and water jet processing can be applied. Further, this processing can be performed with a single amorphous metal ribbon or after lamination and integration.
[0012]
Furthermore, among the magnetic laminate or one magnetic base material subjected to shape processing, those heat-treated at 200 ° C. to 500 ° C. that are necessary for the expression of the magnetic properties of the amorphous metal, and those that were not heat-treated but amorphous Two types of metal having strong mechanical strength are produced. These two types are alternately stacked to obtain the desired thickness of the magnetic laminated body for a motor. As a method of overlapping, a plurality of sheets may be alternately stacked, or each sheet may be alternately stacked.
[0013]
By stacking and stacking laminated magnetic laminates or magnetic base materials, melting the resin between the layers of amorphous metal at a temperature above the glass transition temperature of the heat-resistant resin, and cooling, the amorphous metal ribbons Are fixed and integrated.
The motor core produced in this way can be a magnetic laminate having both the heat-treated portion with excellent magnetic properties and the mechanical properties of amorphous metal that has not been heat-treated. By adjusting the number ratio of the heat-treated portion having excellent magnetic properties and the portion having no mechanical heat treatment but having excellent mechanical properties of the amorphous metal from 1: 0 to 0: 1, It becomes possible to balance magnetic characteristics and mechanical strength, and it becomes possible to design mechanical strength and magnetic properties in accordance with the use conditions of the motor used. The ability to design magnetic performance and mechanical strength in this way enables magnetic lamination with magnetic performance and mechanical strength that could not be achieved with a single layer of amorphous metal ribbon and resin. It became possible to realize the body.
[0014]
Further, the present invention will be described in detail.
[0015]
(Amorphous metal ribbon)
As the magnetic material used for the amorphous metal ribbon used in the magnetic substrate of the present invention, Fe-based and Co-based amorphous metal ribbons are used. These amorphous metal ribbons are usually obtained by quenching molten metal using a quenching roll. Usually, a thickness of 10 to 50 μm is used, and a ribbon having a thickness of 10 to 30 μm is preferably used. Fe-based amorphous metal materials include Fe-B-Si-based, Fe-B-based, and Fe-PC-based Fe-semi-metallic amorphous metal materials, Fe-Zr-based, Fe-Hf, and the like. Fe-transition metal amorphous metal materials such as Fe-Ti and Fe-Ti. Examples of the Co-based amorphous metal material include Co-Si-B-based and Co-B-based amorphous metal materials. Preferably, in the Fe-Si-B system, Fe 78 Si 9 B 13 (At%), Fe 78 Si Ten B 12 (At%).
[0016]
(Heat resistant resin)
Since the heat-resistant resin used in the present invention may be heat-treated at an optimum heat treatment temperature that improves the magnetic properties of the amorphous metal ribbon, it is necessary to select a material with less thermal decomposition at the heat treatment temperature. Become. Although the heat treatment temperature of the amorphous metal ribbon varies depending on the composition constituting the amorphous metal ribbon and the intended magnetic properties, the temperature for improving the good magnetic properties is generally in the range of 200 to 500 ° C., More preferably, it is the range of 300 to 500 degreeC.
[0017]
Examples of the heat resistant resin used in the present invention include thermoplastic, non-thermoplastic, and thermosetting resins. Among these, it is preferable to use a thermoplastic resin.
[0018]
By using a thermoplastic heat-resistant resin, after giving a heat-resistant resin to at least a part of the amorphous metal ribbon, or after forming a heat-resistant resin precursor and forming the heat-resistant resin, By laminating this magnetic substrate, a laminate of magnetic substrates can be obtained. Since this heat-resistant resin is made into a resin by this manufacturing method, it has no tackiness at room temperature and is stable, so that it is easy to handle, has good workability at the time of lamination, and has the merit of improving the process yield. .
[0019]
As the heat resistant resin used in the present invention, as a pretreatment, drying is performed at 120 ° C. for 4 hours, and then the weight loss when kept at 300 ° C. for 2 hours in a nitrogen atmosphere is measured using DTA-TG. Usually, 1% or less, preferably 0.3% or less is used. Specific resins include polyimide resins, silicon-containing resins, ketone resins, polyamide resins, liquid crystal polymers, nitrile resins, thioether resins, polyester resins, arylate resins, sulfone resins, Examples thereof include imide resins and amide imide resins. Among these, it is preferable to use a polyimide resin, a sulfone resin, or an amideimide resin.
The resin used in the present invention is more preferably a resin having the following characteristics in addition to the above heat resistance.
(1) Tensile strength after passing through a heat history of 300 ° C. for 1 hour in a nitrogen atmosphere is 30 MPa or more.
(2) The glass transition temperature is 120 ° C to 250 ° C.
(3) The temperature at which the melt viscosity is 100,000 Pa · s is 250 ° C. or higher and 400 ° C. or lower, more preferably 300 ° C. or lower, and further preferably 250 ° C. or lower.
(4) After the temperature is lowered from 400 ° C. to 120 ° C. at a constant rate of 0.5 ° C./min, the heat of fusion due to the crystalline material in the resin is 10 J / g or less.
[0020]
(Resin application process)
The heat resistant resin is applied to only one side of the amorphous metal ribbon or at least a part of both sides. In this case, it is preferable that the applied surface is uniformly and uniformly coated. However, for example, in the case of a strip-shaped core, the portion that is not a cut portion only needs to have sufficient adhesive strength at the time of processing. It is sufficient that the heat-resistant resin is partially applied so that adhesion between the ribbons can be obtained. In addition, when adhesive strength is required, for example, when the laminate is processed, it is desirable that the laminate is applied to the entire surface of one or both sides of the ribbon.
[0021]
When the heat-resistant resin is attached to at least a part of one side or both sides of the amorphous metal ribbon in the present invention, there is a powdery resin, a solution in which the resin is dissolved in a solvent, or a paste-like form. In the case of using a solution in which a resin is dissolved, it is typically performed by applying it to an amorphous metal ribbon using a roll coater or the like. In this case, the viscosity of the solution used in the application step is 0.005 Pa · s or less, and the viscosity is too low, so that it flows from the amorphous metal ribbon and has a sufficient coating amount on the magnetic substrate. It cannot be obtained, resulting in a very thin coating film. Further, in this case, in order to increase the film thickness, if the application rate is extremely slow, overcoating is required many times, resulting in a decrease in production efficiency, which is not practical. On the other hand, when the viscosity is 200 Pa · s or higher, it is extremely difficult to control the film thickness for forming a thin coating film on the amorphous metal ribbon due to the high viscosity. Accordingly, in the case of application using a solution obtained by dissolving a resin in a solvent, the solution viscosity at the time of application is preferably a concentration range of 0.005 to 200 Pa · s. Furthermore, a concentration range of 0.01 to 50 Pa · s is preferable, and a range of 0.05 to 5 Pa · s is more preferable.
[0022]
As a method for applying a solution obtained by dissolving a resin in a solvent in the present invention, a method using a coater, for example, a roll coater method, a gravure coater method, an air doctor coater method, a blade coater, etc. Method, knife coater method, rod coater method, kiss coater method, bead coater method, cast coater method, rotary screen method, and amorphous metal ribbon in liquid resin Can be performed by a dipping coating method in which coating is performed while dipping, or a slot orifice coating method in which a liquid resin is dropped from an orifice onto an amorphous metal ribbon and coated. In addition, spray coating, spray coating, electrodeposition coating, or spray coating method in which liquid resin is sprayed onto the amorphous metal ribbon on the mist using the bar code method or the principle of spraying, or Any method may be used as long as it can provide a heat-resistant resin on the amorphous metal ribbon, such as a physical vapor deposition method such as sputtering or a vapor phase method such as CVD.
[0023]
Moreover, in order to provide a heat resistant resin to a part, it can carry out by the gravure coater method using the gravure head which processed the groove | channel of the coating-film pattern.
[0024]
In the present invention, when a paste-like resin is used as the resin to be attached to at least a part of one surface or both surfaces of the amorphous metal ribbon, the amorphous metal ribbon and the amorphous metal ribbon are mainly used. It is preferable to use it when laminating a plurality of amorphous metal ribbons. Therefore, the resin only needs to have a viscosity that allows temporary adhesion fixation and temporary fixing rather than fluidity like a liquid resin, and can be applied by a method such as potting or brush coating. Therefore, the viscosity of the resin is preferably 5 Pa · s or higher. On the other hand, when a powdered resin is used, for example, when a laminated body of amorphous metal ribbons is produced using a mold, the powdered / pellet-shaped resin is filled or dispersed and non-heated by hot press molding or the like. It can be used when producing a laminate of crystalline metal ribbons.
[0025]
Furthermore, as a method using the polyimide used in the present invention, a solvent-soluble polyimide or one having reactive functional groups (hereinafter referred to as “addition reactive groups”) introduced at both ends thereof can also be used. That is, a method is used in which soluble polyimide is dissolved in a solvent to obtain a liquid, adjusted to an appropriate viscosity, applied to an amorphous metal ribbon, and heated to volatilize the solvent to form a heat resistant resin.
[0026]
The constituent material of the present invention consists of the above-mentioned two kinds of materials and the resin application step. A material in which the resin of the present invention is applied to one surface of an amorphous metal on both surfaces, or all or part of one surface is referred to as a magnetic substrate.
[0027]
Next, the magnetic laminated plate for an electric motor of the present invention can be produced from the combination of the following plural steps using the magnetic base material. The detailed description of each process is as follows.
[0028]
(Heat treatment process)
This is a heat treatment for improving magnetism, and is a heat treatment performed for improving the magnetic properties of the amorphous metal ribbon. The heat treatment temperature of the amorphous metal ribbon varies depending on the composition of the amorphous metal ribbon and the intended magnetic properties, but it is usually performed in an inert gas atmosphere or in a vacuum and exhibits good magnetic properties. The temperature to be improved is generally 300 to 500 ° C., preferably 350 to 450 ° C. The heat-treated amorphous metal ribbon becomes brittle and the mechanical strength is significantly reduced.
[0029]
The heat-treated amorphous metal ribbon becomes brittle and the mechanical strength is significantly reduced. As a result of quantitative evaluation, it was revealed that those subjected to heat treatment in an inert gas atmosphere in the range of 300 ° C. to 500 ° C. for 1 to 2 hours have a tensile strength reduced to 500 MPa or less. It was also revealed that the amorphous metal not subjected to heat treatment maintains a high strength of 500 MPa or more.
[0030]
(Lamination integration process)
The amorphous metal ribbon laminate of the present invention has a magnetic base material having a tensile strength of 500 MPa or less that has been heat-treated at 300 ° C. to 500 ° C., and a tensile strength that has not been heat-treated with one or more magnetic base materials. Laminate magnetic base materials of 500MPa or more. It has been found that by adopting such a configuration, it is possible to have both the excellent high magnetic permeability and low loss characteristics of the heat-treated amorphous metal and the high strength characteristics that are not heat-treated. In addition, the strength and magnetic properties can be changed by changing the ratio of the number of stacked layers, and the magnetic performance and mechanical strength of the stacked body can be designed according to the application to be used.
[0031]
In the amorphous metal ribbon laminate of the present invention, one or a plurality of magnetic base materials subjected to heat treatment at 300 ° C. to 500 ° C. and a magnetic base material not subjected to heat treatment are overlapped. Further, after heating to a temperature at which the heat-resistant resin applied to the amorphous metal melts, the layers are integrated by performing a pressure heat treatment.
[0032]
Preferably, a method of using a magnetic base material in which a heat resistant resin or a precursor of a heat resistant resin is previously applied to an amorphous metal ribbon and laminating and bonding the base material is desirable.
[0033]
In the present invention, a production method for laminating using a magnetic base material in which a heat resistant resin or a precursor of a heat resistant resin is previously applied to an amorphous metal ribbon will be described in detail.
[0034]
The laminated magnetic base material is formed by laminating and adhering a magnetic base material provided with a precursor of a heat resistant resin to at least a part of the amorphous metal ribbon, and simultaneously using the precursor as a heat resistant resin. The laminate can be formed.
[0035]
In the case of producing a magnetic laminated plate having a multilayer structure in which a heat resistant resin is applied to an amorphous metal ribbon, a multilayer coating method or a single or multilayer coating substrate is pressurized, for example, hot press or thermal It can be laminated by a roll or the like. Although the temperature at the time of pressurization changes with kinds of heat-resistant resin, it is preferable to laminate | stack in the vicinity of the temperature at which resin is softened or melted in general.
[0036]
For the production of a laminated body of amorphous metal ribbons, the laminated structure can be freely designed by laminating and bonding by a multilayer coating method or hot pressing, thermal roll, high frequency welding or the like.
[0037]
(Shaping process)
When shape processing is performed on the magnetic core for an electric motor of the present invention, a precision cutting method such as press punching, electric discharge wire cutting, or laser cutting can be applied, but the present invention is not limited thereto. Among these methods, press punching is preferable because it is low in unit cost during mass production. Shape processing is possible even with a single amorphous metal ribbon, and it is also possible to simultaneously shape a multi-layered laminate after being laminated and integrated. In order to reduce the processing unit price, it is desirable to process a plurality of sheets simultaneously.
[0038]
The specific method consists of a combination of steps represented below (FIG. 1).
Pattern 1:
(Resin application process) → (Heat treatment process) → (Lamination integration process) → (Shape processing process)
Pattern 2:
(Resin application process) → (shape processing process) → (heat treatment process) → (lamination integration process)
Pattern 3
(Resin application process) → (Shape processing process) → (Lamination integration process) → (Heat treatment) → (Lamination integration process)
The production pattern of the magnetic laminate of the present invention described above will be described.
[0039]
First, in pattern 1, two types of magnetic base materials, in which a resin is applied to an amorphous metal ribbon, are prepared: a heat-treated magnetic base material and a non-heat-treated magnetic base material, and these two types of magnetic base materials are laminated and integrated. One magnetic laminate is formed in the process. At this time, the resin applied to the surface may be heated and melted to be integrated, or may be integrated by attaching an adhesive such as an epoxy resin. Finally, a magnetic laminated board for a motor is formed by shape processing such as press punching.
[0040]
Next, in pattern 2, a resin is applied to the amorphous metal ribbon, and then the magnetic base material is first processed into a desired motor core shape by press punching or the like. Next, two types of a magnetic base material obtained by heat-treating the processed magnetic base material and a magnetic base material that is not heat-treated are prepared, and a single magnetic laminated board is obtained by a lamination integration process. This pattern is suitable for producing a magnetic laminate for a motor or a generator having a large number of laminations and a magnetic core thickness of 1 mm or more.
[0041]
In pattern 3, a resin is applied to the amorphous metal ribbon, and then processed into a desired motor core shape by press punching or the like.
Next, a plurality of sheets are integrated in a lamination integration step to produce a magnetic laminate group, this magnetic laminate group is divided into two groups, only one group is heat-treated, the other group is not heat-treated, and finally Then, two groups of a heat-treated magnetic laminate and a non-heat-treated magnetic laminate are alternately laminated, pressurized at a temperature equal to or higher than the glass transition temperature of the resin, and laminated and integrated.
[0042]
【Example】
Examples of the present invention will be described below.
[0043]
[Example 1]
Made of Honeywell, Metglas: 2605TCA (trade name), about 170 mm wide and about 25 μm thick Fe 78 Si 9 B 13 An amorphous metal ribbon (FIG. 3-1) having a composition of (at%) was used. A polyamic acid solution having a viscosity of about 0.3 Pa · s is applied to both surfaces of the ribbon, and the solvent is volatilized at 150 ° C., and then a polyimide resin is formed at 250 ° C. An amorphous metal ribbon provided with a heat-resistant resin (polyimide resin) (FIG. 3-2) was produced. Dissolve in dimethylacetamide solvent using polyamic acid, which is a polyimide precursor obtained from diamine with 3,3'-diaminodiphenyl ether and tetracarboxylic dianhydride with bis (3,4-dicarboxyphenyl) ether dianhydride And it apply | coated on the amorphous metal ribbon, and the polyimide was obtained by heating on an amorphous metal ribbon. This resin satisfied all the characteristic values described in claim 1 of the present invention.
[0044]
Twenty magnetic substrates made of an amorphous metal ribbon provided with a resin were heat-treated at 350 ° C. for 2 hours to develop magnetic properties. Next, 20 heat-treated magnetic base materials and 20 heat-treated magnetic base materials were alternately stacked one by one, and thermocompression bonded at 270 ° C. for 30 minutes to be laminated and integrated. The thickness was 1.1 mm. Next, in order to produce a motor stator having the shape shown in FIG. 2, it was punched out once into an annular shape having an outer diameter of 50 mm and an inner diameter of 40 mm to obtain a motor stator shape. A very high space factor (90%), which is about the same as the space factor (95%) of the conventional laminate made of silicon steel sheet material, was achieved. However, the space factor here used was a value calculated by the equation defined by the following equation.
[0045]
(Space factor (%)) = (((Amorphous metal ribbon thickness) × (Number of laminated layers)) / (Laminated body thickness after lamination)) * 100
In addition, a ring with a magnetic core size (outer diameter 50 mm, inner diameter 40 mm) according to JIS H7153 “high frequency core loss test method for amorphous metal core” is cut out with scissors, and 50 sheets are laminated in the same process as the previous motor stator. The iron loss was measured from the BH hysteresis loop when an alternating magnetic field of 1 [T] of 1000 Hz was applied. As a result, the iron loss is 10.0 [W / kg]. Compared with the silicon steel plate used in the conventional motor, the iron loss is one-half to one-third and the magnetic loss is good. It was confirmed that the characteristics were realized. Furthermore, according to JIS Z2241, when the tensile strength of the magnetic laminated board produced by the process similar to a present Example was measured, it became 500 Mpa, and it became clear that it has sufficient intensity | strength as a motor for motor vehicles.
[0046]
[Example 2]
In order to fabricate a motor stator having the shape shown in FIG. 2 using the same magnetic base material as in Example 1, the magnetic base material is punched out one by one into an annular shape with an outer diameter of 50 mm and an inner diameter of 40 mm, and 40 sheets are punched It was. Next, 20 of the 40 punched sheets were heat-treated at 350 ° C. for 2 hours to develop magnetic properties. Next, 20 heat-treated magnetic base materials and 20 heat-treated magnetic base materials were alternately stacked one by one, and thermocompression bonded at 270 ° C. for 30 minutes to be laminated and integrated. The thickness was 1.1 mm.
[0047]
A very high space factor (90%), which is about the same as the space factor (95%) of the conventional laminate made of silicon steel sheet material, was achieved. However, the space factor here used was a value calculated by the equation defined by the following equation.
[0048]
(Space factor (%)) = (((Amorphous metal ribbon thickness) × (Number of laminated layers)) / (Laminated body thickness after lamination)) * 100
In addition, a ring with a magnetic core size (outer diameter 50 mm, inner diameter 40 mm) according to JIS H7153 “high frequency core loss test method for amorphous metal core” is cut out with scissors, and 50 sheets are laminated in the same process as the previous motor stator. The iron loss was measured from the BH hysteresis loop when an alternating magnetic field of 1 [T] of 1000 Hz was applied. As a result, the iron loss is 11.2 [W / kg]. Compared with the silicon steel plate used in the conventional motor, the iron loss is one-half to one-third, and the magnetic loss is good. It was confirmed that the characteristics were realized. Furthermore, according to JIS Z2241, when the tensile strength of the magnetic laminated board produced by the process similar to a present Example was measured, it became 680 MPa, and it became clear that it has sufficient intensity | strength as a motor for motor vehicles.
[0049]
[Example 3]
In order to fabricate a motor stator having the shape shown in FIG. 2 using the same magnetic base material as in Example 1, the magnetic base material is punched out one by one into an annular shape with an outer diameter of 50 mm and an inner diameter of 40 mm, and 40 sheets are punched It was. Next, 8 groups of 5 laminated magnetic plates were laminated and integrated separately at 270 ° C. for 30 minutes, and 4 out of 8 groups were heat treated at 350 ° C. for 2 hours to develop magnetic properties. Next, the four heat-treated laminates and the four heat-treated laminates were alternately arranged one by one, and thermocompression bonded at 270 ° C. for 30 minutes to be laminated and integrated. The thickness was 1.1 mm.
[0050]
A very high space factor (90%), which is about the same as the space factor (95%) of the conventional laminate made of silicon steel sheet material, was achieved. However, the space factor here used was a value calculated by the equation defined by the following equation.
[0051]
(Space factor (%)) = (((Amorphous metal ribbon thickness) × (Number of laminated layers)) / (Laminated body thickness after lamination)) * 100
Also, a ring with a magnetic core size (outer diameter 50 mm, inner diameter 40 mm) according to JIS H7153 “high frequency magnetic core loss test method” was cut out with scissors, and 50 sheets were laminated in the same process as the previous motor stator. The iron loss was measured from the BH hysteresis loop when an alternating magnetic field of 1 [T] of 1000 Hz was applied. As a result, the iron loss is 8.8 [W / kg]. Compared with the silicon steel plate used in conventional motors, the iron loss is one-half to one-third, and the magnetic loss is good. It was confirmed that the characteristics were realized. Furthermore, according to JIS Z2241, when the tensile strength of the magnetic laminated board produced by the process similar to a present Example was measured, it became 320 Mpa, and it became clear that it has sufficient intensity | strength as a motor for motor vehicles.
[0052]
[Comparative Example 1]
The same magnetic base material as in Example 1 was used, except that the resin used was an epoxy resin. Next, in order to produce a motor stator having the shape shown in FIG. 2, magnetic substrates were punched one by one into an annular shape having an outer diameter of 50 mm and an inner diameter of 40 mm, and 40 sheets were punched. Next, 8 groups of 5 magnetic laminates stacked one by one were laminated and integrated separately at 150 ° C. for 30 minutes, and 4 groups of 8 groups were heat treated at 350 ° C. for 2 hours to develop magnetic properties. As a result, the epoxy resin was thermally decomposed and the laminate was swollen. Next, the four heat-treated laminates and the four heat-treated laminates were alternately arranged one by one, and thermocompression bonded at 270 ° C. for 30 minutes to be laminated and integrated. Due to the swelling of the epoxy resin, the thickness was 1.8 mm.
[0053]
A very high space factor (78%), which is about the same as the space factor (95%) of the laminated body with the conventional silicon steel sheet material, was realized. However, the space factor here used was a value calculated by the equation defined by the following equation.
[0054]
(Space factor (%)) = (((Amorphous metal ribbon thickness) × (Number of laminated layers)) / (Laminated body thickness after lamination)) * 100
In addition, a ring with a magnetic core size (outer diameter 50 mm, inner diameter 40 mm) according to JIS H7153 “high frequency core loss test method for amorphous metal core” is cut out with scissors, and 50 sheets are laminated in the same process as the previous motor stator. The iron loss was measured from the BH hysteresis loop when an alternating magnetic field of 1 [T] of 1000 Hz was applied. As a result, the iron loss is 9.0 [W / kg]. Compared with the silicon steel plate used in the conventional motor, the iron loss is one-half to one-third and the magnetic loss is good. It was confirmed that the characteristics were realized. Furthermore, according to JIS Z2241, when the tensile strength of the magnetic laminated board produced by the process similar to a present Example was measured, it became 150 Mpa, and it became clear that it did not have sufficient intensity as a motor for motor vehicles.
[0055]
The above is summarized in the table below.
[0056]
[Table 1]
Figure 0004118096
[0057]
【The invention's effect】
The present invention provides a motor or generator including a rotor made of a magnetic material and a stator, wherein at least a part of the magnetic material of the rotor or the stator is composed of a laminate made of an amorphous metal magnetic ribbon, Heat resistance, characterized in that the weight reduction rate of the resin due to thermal decomposition is less than 1% by weight when the laminated body composed of crystalline metallic magnetic ribbons undergoes a thermal history of 1 hour in a nitrogen atmosphere at 300 ° C Resin layers and amorphous metal magnetic ribbon layers are alternately laminated, and further comprises an amorphous metal layer having a tensile strength of 500 MPa or less and an amorphous metal layer having a tensile strength of 500 MPa or more. By designing a magnetic laminate for an electric motor or generator, it is possible to design the desired magnetic properties of heat-treated amorphous metal and the tough mechanical strength of non-heat-treated amorphous metal at a desired ratio. Made possible It has become possible to provide a magnetic laminate having strong mechanical strength required for electric vehicles and the like and exhibiting excellent magnetic properties by heat treatment. In addition, by using the heat resistant resin described in the present invention, it is possible to ensure a stable mechanical strength in a range of 120 ° C. to 150 ° C. of the environmental temperature assumed in the automobile. It has become possible to realize a magnetic laminate having magnetic performance and mechanical strength, which could not be achieved with a conventional laminate of a single amorphous metal ribbon and resin. In addition, it has become possible to realize a magnetic laminate having magnetic performance and mechanical strength, which could not be achieved by a laminate of one type of amorphous metal ribbon and resin.
[Brief description of the drawings]
FIG. 1 is a diagram showing a pattern of manufacturing steps of a magnetic laminated board according to the present invention.
FIG. 2 is a diagram showing the shape of a magnetic core for an electric motor according to Embodiment 1 of the present invention.
FIG. 3 is a view showing a production process of a magnetic substrate of Example 1 of the present invention.
[Explanation of symbols]
11 Amorphous metal ribbon
12 heat resistant resin
21 stator core
31 amorphous metal ribbon
32 heat resistant resin

Claims (3)

非晶質金属磁性薄帯からなる積層体より構成され、前記非晶質金属磁性薄帯からなる積層体が、窒素雰囲気気流下300℃、1時間の熱履歴を経た際の熱分解による樹脂の重量減少率が1重量%以下であることを特徴とする耐熱性樹脂層と非晶質金属磁性薄帯層が交互に積層されており、さらに前記非晶質金属磁性層を構成する層が引張強度が500MPa以下の非晶質金属層と、引張強度が500MPa以上の非晶質金属層とからなることを特徴とする非晶質金属磁性積層板。It is composed of a laminate made of amorphous metal magnetic ribbons, and the laminate made of amorphous metal magnetic ribbons is subjected to thermal decomposition at 300 ° C. for 1 hour in a nitrogen atmosphere airflow. A heat-resistant resin layer and an amorphous metal magnetic ribbon layer characterized by having a weight reduction rate of 1% by weight or less are alternately laminated, and the layers constituting the amorphous metal magnetic layer are tensile. An amorphous metal magnetic laminate comprising an amorphous metal layer having a strength of 500 MPa or less and an amorphous metal layer having a tensile strength of 500 MPa or more. 非晶質金属磁性薄帯材料がFe系非晶質金属薄帯、或いはCo系非晶質金属薄帯であることを特徴とする請求項1記載の電動機または非晶質金属磁性積層板。2. The electric motor or amorphous metal magnetic laminate according to claim 1, wherein the amorphous metal magnetic ribbon material is an Fe-based amorphous metal ribbon or a Co-based amorphous metal ribbon. 上記非晶質金属積層体を用いた磁性材料からなるロータと、ステータを備えた請求項1又は2に記載の電動機または発電機。The electric motor or generator according to claim 1 or 2, comprising a rotor made of a magnetic material using the amorphous metal laminate and a stator.
JP2002201000A 2002-07-10 2002-07-10 Laminated plate for electric vehicle, electric motor or generator, and electric motor or generator Expired - Fee Related JP4118096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201000A JP4118096B2 (en) 2002-07-10 2002-07-10 Laminated plate for electric vehicle, electric motor or generator, and electric motor or generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201000A JP4118096B2 (en) 2002-07-10 2002-07-10 Laminated plate for electric vehicle, electric motor or generator, and electric motor or generator

Publications (2)

Publication Number Publication Date
JP2004042345A JP2004042345A (en) 2004-02-12
JP4118096B2 true JP4118096B2 (en) 2008-07-16

Family

ID=31707657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201000A Expired - Fee Related JP4118096B2 (en) 2002-07-10 2002-07-10 Laminated plate for electric vehicle, electric motor or generator, and electric motor or generator

Country Status (1)

Country Link
JP (1) JP4118096B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333785A (en) * 2004-05-21 2005-12-02 Hitachi Metals Ltd Rotary machine
JP2019216149A (en) 2018-06-11 2019-12-19 トヨタ自動車株式会社 Lamination body used for core
JPWO2022270154A1 (en) 2021-06-21 2022-12-29

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450918A (en) * 1977-09-30 1979-04-21 Matsushita Electric Ind Co Ltd Iron core manufacture
JPS6161847A (en) * 1984-09-04 1986-03-29 新日本製鐵株式会社 Manufacture of laminated adhesive amorphous alloy thin-band
JP2001307936A (en) * 2000-04-24 2001-11-02 Mitsui Chemicals Inc Manufacturing method for magnetic core

Also Published As

Publication number Publication date
JP2004042345A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP4537712B2 (en) Magnetic substrate, laminate of magnetic substrate, and method for producing laminate
US7629870B2 (en) Process for the treatment of a thin brittle metal strip and magnetic components produced from a strip made of a nanocrystalline alloy
KR20120017015A (en) Laminated core having a soft magnetic material and method for joining core sheets in a bonded manner to form a soft-magnetic laminated core
TWI328235B (en) A heat resistant adhesive insulative coating, and an electrical steel sheet with such coating, a magnetic core using such electrical steel sheet, and a methd of production of the same
US20170346351A1 (en) Soft magnetic laminated core and method of producing a laminated core for a stator and/or rotor of an electric machine
JP2008213410A (en) Laminated sheet and manufacturing method of laminate
JP4118096B2 (en) Laminated plate for electric vehicle, electric motor or generator, and electric motor or generator
JP3938338B2 (en) Thin, high efficiency, motor or generator laminate and motor or generator
KR100756329B1 (en) Laminate of magnetic base material and method for production thereof
JP2005160231A (en) Magnetic member of reluctance rotating machine
EP3247027B1 (en) Method of manufacturing a lamination stack for use in an electrical machine
JP4313141B2 (en) Method for producing laminated body of magnetic substrate, and laminated body of magnetic substrate obtained thereby
JPS6345043A (en) Amorphous alloy thin-band laminated board and manufacture thereof
US5547484A (en) Methods of making metallic glass foil laminate composites
JP2004119403A (en) Magnetic laminate
CN113165328A (en) Electrical steel laminate
JP2584141B2 (en) Manufacturing method of wound iron core for transformer
JP4522688B2 (en) Magnetic substrate and laminate and method for producing the same
JP4416499B2 (en) Magnetic substrate and process for producing the same
JP4357822B2 (en) Method for producing amorphous metal ribbon laminate
JP2008098323A (en) Magnetic appliance
JP2019153716A (en) Amorphous metal magnetic substance, amorphous metal magnetic core, manufacturing method of amorphous metal magnetic core, electric motor
JP4183463B2 (en) Amorphous alloy ribbon laminate and method for producing the same
JP2005104008A (en) Magnetic base material, laminate thereof and use of them
CA1140036A (en) Bonded amorphous metal electromagnetic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees