JP4117839B2 - Evaporative gas purge system leak diagnosis device - Google Patents

Evaporative gas purge system leak diagnosis device Download PDF

Info

Publication number
JP4117839B2
JP4117839B2 JP2003117873A JP2003117873A JP4117839B2 JP 4117839 B2 JP4117839 B2 JP 4117839B2 JP 2003117873 A JP2003117873 A JP 2003117873A JP 2003117873 A JP2003117873 A JP 2003117873A JP 4117839 B2 JP4117839 B2 JP 4117839B2
Authority
JP
Japan
Prior art keywords
evaporation
gas
negative pressure
leak
leak diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003117873A
Other languages
Japanese (ja)
Other versions
JP2004324476A (en
Inventor
賢司 長崎
政雄 加納
登喜司 伊藤
秀樹 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2003117873A priority Critical patent/JP4117839B2/en
Publication of JP2004324476A publication Critical patent/JP2004324476A/en
Application granted granted Critical
Publication of JP4117839B2 publication Critical patent/JP4117839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料タンク内の燃料が蒸発して生じたエバポガス(燃料蒸発ガス)を内燃機関の吸気系にパージ(放出)するエバポガスパージシステムのリーク診断を行うエバポガスパージシステムのリーク診断装置に関するものである。
【0002】
【従来の技術】
従来より、エバポガスパージシステムにおいては、燃料タンク内から発生するエバポガスが大気中に漏れ出すことを防止するために、燃料タンク内から発生したエバポガスをキャニスタ内に吸着し、このキャニスタと内燃機関の吸気系とを連通するパージ通路に設けたパージ制御弁を開弁することで、吸気系の負圧を利用してキャニスタ内に吸着されているエバポガスを吸気系へパージするようにしている。このエバポガスパージシステムから大気中にエバポガスが漏れる状態が長時間放置されるのを防止するために、エバポガスのリークを早期に検出する必要がある。
【0003】
そこで、内燃機関の運転中にパージ制御弁を開弁して吸気系から燃料タンク内に負圧を導入した後、パージ制御弁を閉弁してパージ制御弁から燃料タンクまでのエバポ系を密閉した状態で、エバポ系内の圧力(例えば燃料タンク内の圧力)の変化量を測定し、その負圧導入時の圧力変化量をリーク判定値(例えば大気圧導入時の圧力変化量)と比較することで、エバポ系のリーク(漏れ)の有無を判定するようにしたものがある。
【0004】
しかし、上記従来のリーク診断では、微小リークやリーク度合(リーク孔の大きさ)を精度良く判定することができないという欠点があった。
【0005】
そこで、例えば、特許文献1(特開平10−90107号公報)に記載されているように、電動式の正圧ポンプで基準圧力検出部内に正圧を導入して該基準圧力検出部に形成した基準孔(微小リーク孔に相当する所定孔径の孔)で規制された圧力(基準圧力)を検出し、その後、通路切換弁で正圧ポンプの圧力導入経路を切り換えて、基準圧力検出時と同一の条件で正圧ポンプによりエバポ系内に正圧を導入してエバポ系内の圧力を検出し、基準圧力とエバポ系内の圧力とを比較することで、微小リークやリーク度合を判定できるようにしたものがある。
【0006】
しかし、エバポ系内に正圧を導入してリーク診断を行う場合、もし、エバポ系にリーク孔が開いていると、リーク診断中にエバポ系内のエバポガスがリーク孔から大気中に漏れ出してしまうという欠点がある。
【0007】
この対策として、例えば、特許文献2(特開2002−4959号公報)に記載されているように、負圧ポンプで基準圧力検出部内に負圧を導入して基準圧力を検出した後、負圧ポンプでエバポ系内に負圧を導入してエバポ系内の圧力を検出し、基準圧力とエバポ系内の圧力とを比較してリーク診断を行うようにしたものがある。この場合、もし、エバポ系にリーク孔が開いていたとしても、リーク診断中に、そのリーク孔からエバポ系内に大気が吸入されるだけであり、リーク診断中にエバポ系内のエバポガスがリーク孔から大気中に漏れ出すことを防止することができる。
【0008】
【特許文献1】
特開平10−90107号公報(第2頁等)
【特許文献2】
特開2002−4959号公報(第2頁等)
【0009】
【発明が解決しようとする課題】
ところで、上記特許文献2のように、負圧ポンプでエバポ系内に負圧を導入してリーク診断を行うシステムでは、負圧を導入するときにエバポ系内のガスをキャニスタを通して大気側に排出することになる。しかし、エバポ系内のエバポガス濃度が高かったり、キャニスタ内のエバポガス吸着量が飽和状態か又はそれに近い状態になっていると、エバポ系内のガスをキャニスタを通して排出しても、ガス中のエバポ成分がキャニスタで吸着しきれずに大気中に放出されてしまう可能性がある。
【0010】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、負圧ポンプ等の負圧導入手段でエバポ系内に負圧を導入するリーク診断によってエバポガスが大気中に放出される量を低減することができるエバポガスパージシステムのリーク診断装置を提供することにある。
【0011】
【課題を解決するための手段】
リーク診断中に負圧導入手段によってエバポ系内から排出されるエバポガスは、排出通路を経て大気中に放出されるため、リーク診断の終了直後又は中止直後には、排出通路内に多くのエバポガスが残っているものと思われる。この状態をそのまま放置すれば、時間の経過と共に排出通路内のエバポガスが自然対流によって徐々に大気中に流れ出ていってしまい、大気中へのエバポガスの放出量を増加させる原因となる。
【0012】
そこで、本発明の請求項1のエバポガスパージシステムのリーク診断装置は、負圧導入手段によりエバポ系内に負圧を導入してエバポ系内の圧力又はそれに相関する情報(以下「エバポ系内圧力情報」という)に基づいてエバポ系のリーク診断を行うものにおいて、リーク診断の終了直後又は中止直後に、前記キャニスタ内に吸着されているエバポガスを内燃機関の吸気系にパージするためのパージ制御弁を一時的に開弁して該パージ制御弁の異常診断を行い、該パージ制御弁の異常診断の終了直後に、該リーク診断中に負圧導入手段によってエバポ系内から排出通路内に排出されたエバポガスをエバポ系内に戻すためのエバポガス戻し処理を行うようにしたものである。
【0013】
このようにすれば、リーク診断中に負圧導入手段によってエバポ系内から排出通路内に排出されたエバポガスを、リーク診断の終了直後や中止直後にエバポガス戻し処理によってエバポ系内に戻すことができ、排出通路内のエバポガスが大気中に放出される量を低減することができる。
【0024】
更に、請求項1に係る発明では、リーク診断の終了直後又は中止直後に、キャニスタ内に吸着されているエバポガスを内燃機関の吸気系にパージするためのパージ制御弁を一時的に開弁して該パージ制御弁の異常診断を行い、このパージ制御弁の異常診断の終了直後にエバポガス戻し処理を実行するようにしているため、リーク診断の終了直後や中止直後に、パージ制御弁の異常診断とエバポガス戻し処理を実行することができる。
【0025】
ところで、リーク診断中に負圧導入手段よってエバポ系内から排出通路内に排出されるエバポガス量が多い場合は、排出通路の容積が小さいと、リーク診断中に排出通路内に排出されたエバポガスが排出通路の大気開放口から大気中に流れ出してしまう。
【0026】
この対策として、請求項のように、排出通路に、エバポガスを一時的に貯溜するエバポガス貯溜部を設けるようにしても良い。このようにすれば、エバポガス貯溜部を設けた分だけエバポガスを貯溜する容積を拡大することができるので、リーク診断中のエバポガス排出量が多い場合でも、エバポガスをエバポガス貯溜部及び排出通路内に貯溜することができ、その後、エバポガス戻し処理によりエバポガス貯溜部及び排出通路内のエバポガスをエバポ系内に戻すことができ、排出通路の大気開放口から大気中に流れ出るエバポガス量を効果的に少なくすることができる。
【0027】
この場合、請求項のように、エバポガス貯溜部を、排出通路の大気開放口よりも低い位置に配置して該排出通路との接続口が下向きになるように設けることが好ましい。エバポガスは空気よりも重いため、エバポガス貯溜部の位置が排出通路の大気開放口よりも高いと、排出通路内のエバポガスがエバポガス貯溜部よりも低い位置にある大気開放口の方へ流れる割合が増えて、排出通路からエバポガス貯溜部内へのエバポガスの流れが妨げられてしまい、エバポガス貯溜部としての本来の機能が低下してしまうが、エバポガス貯溜部の位置を排出通路の大気開放口よりも低くすれば、排出通路からエバポガス貯溜部内へエバポガスが流れやすくなり、エバポガス貯溜部としての本来の機能を有効に発揮させることができる。更に、エバポガス貯溜部を排出通路との接続口が下向きになるようにすれば、エバポガス戻し処理中にエバポガス貯溜部内のエバポガスを速やかに排出通路内に流下させてエバポ系内に戻すことができる。
【0028】
また、請求項のように、排出通路の大気開放口にフィルタを設け、このフィルタのうち負圧導入手段側にエバポガスを吸着する吸着体を設けるようにしても良い。このようにすれば、排出通路の大気開放口から大気中に流れ出ようとするエバポガスをフィルタの吸着体に吸着させることができ、エバポガスが大気中に放出される量を効果的に低減することができる。
【0029】
この場合、請求項のように、排出通路のフィルタに設けられた吸着体は、キャニスタに設けられた吸着体よりも細孔径が小さい活性炭で形成するようにすると良い。リーク診断中に負圧導入手段によってエバポ系内から排出通路内に排出されるエバポガス(つまりキャニスタをすり抜けてきたエバポガス)は、低沸点成分(例えばC4以下)の割合が高いため、排出通路のフィルタに設ける吸着体は、キャニスタの吸着体よりも細孔径が小さい活性炭で形成した方がエバポガスの吸着性能を向上させることができる。しかも、低沸点成分であれば、吸着体の細孔径を小さくしても脱離性能の低下が少なく、吸着体で吸着したエバポガスを容易にバックパージすることができる。
【0030】
【発明の実施の形態】
以下、本発明の実施形態(1)を図1乃至図10に基づいて説明する。まず、図1に基づいてエバポガスパージシステムの構成を説明する。燃料タンク11には、エバポ通路12を介してキャニスタ13が接続されている。このキャニスタ13内には、エバポガス(燃料蒸発ガス)を吸着する活性炭等の吸着体(図示せず)が収容されている。
【0031】
一方、キャニスタ13とエンジン吸気系との間には、キャニスタ13内の吸着体に吸着されているエバポガスをエンジン吸気系にパージ(放出)するためのパージ通路14が設けられ、このパージ通路14の途中に、パージ流量を制御するパージ制御弁15が設けられている。このパージ制御弁15は、常閉型の電磁弁により構成され、通電をデューティ制御することで、キャニスタ13からエンジン吸気系へのエバポガスのパージ流量を制御するようになっている。
【0032】
この燃料タンク11からパージ制御弁15までのエバポ系のリーク診断を行うために、キャニスタ13の大気連通路16には、リークチェックモジュール17が取り付けられている。
【0033】
図2乃至図4に示すように、リークチェックモジュール17は、キャニスタ13側に接続されるキャニスタ連通路18に、通路切換弁19を介して大気連通路20(排出通路)と負圧導入路21とが接続されている。大気連通路20は、大気側に直接連通するように設けられ、その先端付近にフィルタ22が設けられている。一方、負圧導入路21は、電動式の負圧ポンプ23(負圧導入手段)を介して大気連通路20の途中に接続されている。この負圧ポンプ23は、モータ37によって駆動され、負圧導入路21から大気連通路20の方向(大気側)へガスを排出するように配置されている。
【0034】
図5に示すように、負圧ポンプ23は効率の良いベーンポンプであり、ケーシング38内に偏心配置されたロータ39の外周側に、複数のベーン40が径方向にスライド可能に設けられ、ロータ39を回転駆動して各ベーン40間の空間容積を変化させることで、吸入口41からガスを吸い込んで吐出口42から吐出するように構成されている。このベーン式の負圧ポンプ23には、吸入口41から吐出口42まで連通する隙間が生じるため、後述するエバポガス戻し処理では、この負圧ポンプ23内の隙間を利用する。
【0035】
図2乃至図4に示すように、通路切換弁19は、キャニスタ連通路18と大気連通路20とを接続する大気開放位置(図2に示す位置)と、キャニスタ連通路18と負圧導入路21とを接続する負圧導入位置(図3に示す位置)との間を切換動作可能な電磁弁により構成されている。この通路切換弁19は、例えば、通電OFF時には、スプリング等の付勢手段19aにより大気開放位置に保持され、通電をONすると、ソレノイド19bの電磁駆動力により負圧導入位置に切り換えられるようになっている。
【0036】
また、キャニスタ連通路18と負圧導入路21との間には、通路切換弁19をバイパスするバイパス通路24が接続され、このバイパス通路24の途中に、基準オリフィス25(基準孔)が設けられている。この基準オリフィス25は、通路内径がバイパス通路24の他の部位の通路内径よりも大幅に絞られて基準リーク孔径(例えば直径0.5mm)になるように形成されている。この基準オリフィス25と、バイパス通路24のうち基準オリフィス25から負圧導入路21につながる通路24aとによって基準圧力検出部26が構成され、この基準圧力検出部26に、圧力センサ27が設けられている。
【0037】
図2に示すように、パージ制御弁15の閉弁時に通路切換弁19が大気開放位置に切り換えられているときには、バイパス通路24内(基準圧力検出部26内)がキャニスタ連通路18と大気連通路20を介して大気に開放されるため、圧力センサ27により基準圧力検出部26内の圧力を検出することで大気圧を検出することができる。
【0038】
そして、通路切換弁19が大気開放位置に切り換えられてエバポ系内がキャニスタ連通路18と大気連通路20を介して大気に開放された状態で、負圧ポンプ23が駆動されると、基準オリフィス25の存在により基準圧力検出部26内が負圧になる。このとき、圧力センサ27により基準圧力検出部26内の圧力を検出することで、基準オリフィス25の基準リーク孔径に対応した基準圧力を検出することができる。
【0039】
一方、図3に示すように、パージ制御弁15の閉弁時に通路切換弁19が負圧導入位置に切り換えられているときには、エバポ系が密閉されて、基準圧力検出部26の圧力センサ27の周辺部分が負圧導入路21とキャニスタ連通路18を介してエバポ系内に連通するため、圧力センサ27により基準圧力検出部26内の圧力を検出することでエバポ系内の圧力を検出することができる。
【0040】
そして、通路切換弁19が負圧導入位置に切り換えられてエバポ系が密閉された状態で、負圧ポンプ23が駆動されると、エバポ系内のガスがキャニスタ13通路16,18→負圧ポンプ23→大気連通路20の経路で大気側に排出されて、エバポ系内に負圧が導入される。
【0041】
尚、図1に示すように、燃料タンク11内には、燃料残量を検出する燃料レベルセンサ28が設けられている。その他、冷却水温を検出する水温センサ29、吸気温を検出する吸気温センサ30等の各種のセンサが設けられている。
【0042】
これらの各種センサの出力は、制御回路(以下「ECU」と表記する)31に入力される。このECU31の電源端子には、メインリレー32を介して車載バッテリ(図示せず)から電源電圧が供給される。この他、パージ制御弁15、通路切換弁19、負圧ポンプ23、圧力センサ27、燃料レベルセンサ28等に対しても、メインリレー32を介して電源電圧が供給される。メインリレー32のリレー接点32aを駆動するリレー駆動コイル32bは、ECU31のメインリレーコントロール端子に接続され、このリレー駆動コイル32bに通電することで、リレー接点32aがON(オン)して、ECU31等に電源電圧が供給される。そして、リレー駆動コイル32bへの通電をOFF(オフ)することで、リレー接点32aがOFFして、ECU31等への電源供給がOFFされる。
【0043】
ECU31のキーSW端子には、イグニッションスイッチ(以下「IGスイッチ」と表記する)33のON/OFF信号が入力される。IGスイッチ33をONすると、メインリレー32がONされて、ECU31等への電源供給が開始され、IGスイッチ33をOFFすると、メインリレー32がOFFされて、ECU31等への電源供給がOFFされる。
【0044】
また、ECU31には、バックアップ電源34と、このバックアップ電源34を電源として計時動作するソークタイマ35が内蔵されている。このソークタイマ35は、エンジン停止後(IGスイッチ33のOFF後)に計時動作を開始してエンジン停止後の経過時間を計測する。前述したように、IGスイッチ33をOFFすると、メインリレー32がOFFされて、ECU31等への電源供給がOFFされるが、エンジン停止中にリーク診断を行うために、ソークタイマ35の計測時間(エンジン停止後の経過時間)が所定時間(例えば3〜5時間)に到達すると、ECU31のバックアップ電源34を電源にしてECU31のメインリレーコントロール端子の駆動回路を作動させてメインリレー32をONさせ、ECU31、パージ制御弁15、通路切換弁19、負圧ポンプ23、圧力センサ27、燃料レベルセンサ28等に電源電圧を供給するようになっている。
【0045】
ECU31は、マイクロコンピュータを主体として構成され、そのROM(記憶媒体)に記憶された燃料噴射制御プログラム、点火制御プログラム及びパージ制御プログラムを実行することで、燃料噴射制御、点火制御及びパージ制御を行う。
【0046】
更に、ECU31は、後述する図7乃至図10に示すリーク診断用の各プログラムを実行することで、リークチェックモジュール17を制御して基準圧力とエバポ系内圧力を検出し、両者を比較してエバポ系のリークの有無を診断する。
【0047】
ここで、本実施形態(1)で実行するエバポ系のリーク診断について説明する。図6に示すように、エンジン運転停止(IGスイッチ33のOFF)から所定時間(例えば3〜6時間)が経過した時点t1 で、基準圧力検出処理を開始する。この基準圧力検出処理では、パージ制御弁15を閉弁(OFF)状態に維持すると共に通路切換弁19を大気開放位置(OFF)に維持したまま負圧ポンプ23をONして、基準圧力検出部26内に負圧を導入し(図2参照)、基準圧力検出部26内への負圧導入開始から所定時間T1 が経過した時点t2 (又は基準圧力検出部26内の圧力が安定した時点)で、基準圧力検出部26内の負圧が基準オリフィス25に対応した基準圧力付近で安定したと判断して、圧力センサ27により検出される基準圧力検出部26内の圧力を基準圧力Pr としてECU31のメモリに記憶する。
【0048】
基準圧力Pr の検出後、エバポ系内圧力検出及びリーク判定処理を開始する。このエバポ系内圧力検出及びリーク判定処理では、負圧ポンプ23をON状態に維持したまま通路切換弁19を負圧導入位置(ON)に切り換えて、負圧ポンプ23によりエバポ系内に負圧を導入する(図3参照)。このエバポ系内への負圧導入開始から所定時間T2 が経過する前に、圧力センサ27で検出したエバポ系内の圧力Pf がリーク判定値(例えば基準圧力Pr 又はそれよりも少し低い圧力に設定された値)よりも低くなれば、リーク無しと判定する。一方、エバポ系内への負圧導入開始から所定時間T2 が経過した時点t3 (又はエバポ系内の圧力が安定した時点)で、エバポ系内の圧力Pf がリーク判定値以上の場合には、リーク有りと判定する。その際、エバポ系内の圧力Pf が基準圧力Pr 付近に収束していれば、基準オリフィス25の基準リーク孔径(例えば直径0.5mm)相当のリーク孔と判定し、エバポ系内の圧力Pf が基準圧力Pr よりも高ければ、基準オリフィス25の基準リーク孔径よりも大きいリーク孔と判定する。
【0049】
上述したように、負圧ポンプ23でエバポ系内に負圧を導入してリーク診断を行うシステムでは、負圧を導入するときにエバポ系内のガスをキャニスタ13を通して大気側に排出するが、エバポ系内のエバポガス濃度が高かったり、キャニスタ13内のエバポガス吸着量が飽和状態か又はそれに近い状態になっていると、エバポ系内のガスをキャニスタ13を通して排出しても、ガス中のエバポ成分がキャニスタ13で吸着しきれずに大気連通路20側に排出されてしまう。
【0050】
そこで、ECU31は、図10に示すエバポガス戻し処理プログラムを実行することで、図6に示すように、リーク診断の終了直後(又は中止直後)でエバポ系内がまだ負圧状態のときに、通路切換弁19を負圧導入位置(ON)に維持したまま負圧ポンプ23をOFFするエバポガス戻し処理を行う。これにより、大気連通路20内のエバポガスが図4に矢印で示すように負圧ポンプ23内の隙間、負圧導入路21、キャニスタ連通路18を通ってエバポ系内に吸入される。
【0051】
以下、ECU31が実行する図7乃至図10に示すリーク診断用の各プログラムの処理内容を説明する。
【0052】
[リーク診断メイン制御]
図7のリーク診断メイン制御プログラムは、例えばIGスイッチ33のOFF後にソークタイマ35によってメインリレー32がONされた後に所定時間毎に実行され、特許請求の範囲でいうリーク診断手段としての役割を果たす。
【0053】
本プログラムが起動されると、まず、ステップ101で、リーク診断実行条件が成立しているか否かを判定する。ここで、リーク診断実行条件は、例えば、IGスイッチ33がOFFされていること(つまりエンジン停止中であること)、IGスイッチ33のOFFから所定時間(例えば3〜6時間)が経過していること等である。上記条件を全て満たせば、リーク診断実行条件が成立するが、上記条件のうちいずれか1つでも満たさない条件があれば、リーク診断実行条件が不成立となる。
【0054】
このステップ101で、リーク診断実行条件が成立していると判定された場合には、ステップ102以降のリーク診断に関する処理を次のようにして実行する。まず、ステップ102で、基準圧力検出期間中であるか否かを判定し、基準圧力検出期間中であれば、ステップ103に進み、後述する図8の基準圧力検出処理プログラムを実行した後、ステップ106に進み、後述する図10のエバポガス戻し処理プログラムを実行して、本プログラムを終了する。
【0055】
その後、基準圧力検出処理が終了して、ステップ102で、基準圧力検出期間中でないと判定されたときに、ステップ104に進み、エバポ系内圧力検出期間中であるか否かを判定し、エバポ系内圧力検出期間中であれば、ステップ105に進み、後述する図9のエバポ系内圧力検出及びリーク判定処理プログラムを実行した後、ステップ106に進み、後述する図10のエバポガス戻し処理プログラムを実行して本プログラムを終了する。尚、図10のエバポガス戻し処理プログラムは、リーク診断が終了又は中止されるまで、エバポガス戻し処理を行わないようになっている(ステップ401)。
【0056】
その後、リーク診断が終了が終了した時点で、ステップ102とステップ104で共に「No」と判定されて、ステップ106に進み、後述する図10のエバポガス戻し処理プログラムを実行して本プログラムを終了する。
【0057】
尚、リーク診断の途中(基準圧力検出期間中又はエバポ系内圧力検出期間中)に、例えばIGスイッチのONによりリーク診断実行条件が不成立となってリーク診断が中止されたときには、その時点で、ステップ101からステップ106に進み、後述する図10のエバポガス戻し処理プログラムを実行して、本プログラムを終了する。
【0058】
[基準圧力検出処理]
図7のリーク診断メイン制御プログラムのステップ103で、図8の基準圧力検出処理プログラムが起動されると、まず、ステップ201で、パージ制御弁15を閉弁(OFF)状態に維持すると共に通路切換弁19を大気開放位置(OFF)に維持したまま負圧ポンプ23をONして、基準圧力検出部26内に負圧を導入する。この後、ステップ202に進み、圧力センサ27により基準圧力検出部26内の圧力を検出する。
【0059】
この後、ステップ203に進み、基準圧力検出部26内への負圧導入時間(負圧導入開始からの経過時間)が所定時間T1 未満であるか否かを判定する。その結果、基準圧力検出部26内への負圧導入時間が所定時間T1 未満であれば、ステップ204に進み、基準圧力検出部26内の圧力が安定状態であるか否かを、例えば基準圧力検出部26内の圧力変化速度が所定値よりも遅いか否かによって判定し、基準圧力検出部26内の圧力が安定していなければ、そのまま本プログラムを終了する。
【0060】
その後、ステップ203で基準圧力検出部26内への負圧導入時間が所定時間T1 に到達したと判定された時点、又は、ステップ204で基準圧力検出部26内の圧力が安定したと判定された時点で、基準圧力検出部26内の負圧が基準オリフィス25の基準リーク孔径に対応した基準圧力付近で安定したと判断して、ステップ205に進み、圧力センサ27により検出される基準圧力検出部26内の圧力を基準圧力Pr としてECU31のメモリに記憶する。
【0061】
[エバポ系内圧力検出及びリーク判定処理]
図7のリーク診断メイン制御プログラムのステップ105で、図9のエバポ系内圧力検出及びリーク判定処理プログラムが起動されると、まず、ステップ301で、パージ制御弁15を閉弁(OFF)状態に維持すると共に負圧ポンプ23をON状態に維持したまま通路切換弁19を負圧導入位置(ON)に切り換えて、負圧ポンプ23によりエバポ系内に負圧を導入する。この後、ステップ302に進み、圧力センサ27によりエバポ系内の圧力Pf を検出する。
【0062】
この後、ステップ303に進み、圧力センサ27で検出したエバポ系内の圧力Pf がリーク判定値(例えば基準圧力Pr 又はそれよりも少し低い圧力に設定された値)よりも低いか否かを判定する。その結果、エバポ系内の圧力Pf がリーク判定値よりも低いと判定された場合には、ステップ304に進み、正常(リーク無し)と判定する。
【0063】
これに対して、上記ステップ303で、エバポ系内の圧力Pf がリーク判定値以上であると判定された場合には、ステップ305進み、エバポ系内への負圧導入時間(負圧導入開始からの経過時間)が所定時間T2 未満であるか否かを判定する。その結果、エバポ系内への負圧導入時間が所定時間T2 未満であれば、ステップ306に進み、エバポ系内の圧力Pf が安定状態であるか否かを、例えばエバポ系内の圧力変化速度が所定値よりも遅いか否かによって判定し、エバポ系内の圧力Pf が安定していなければ、そのまま本プログラムを終了する。
【0064】
その後、ステップ303でエバポ系内の圧力Pf がリーク判定値以上であると判定されたまま、ステップ305でエバポ系内への負圧導入時間が所定時間T2 に到達したと判定された場合、又は、ステップ306でエバポ系内の圧力Pf が安定したと判定された場合には、ステップ307に進み、異常(リーク有り)と判定して、運転席のインストルメントパネルに設けられた警告ランプ36を点灯したり、或はインストルメントパネルの警告表示部(図示せず)に警告表示して運転者に警告すると共に、その異常情報(異常コード等)をECU31のバックアップRAM(図示せず)に記憶する。
【0065】
[エバポガス戻し処理]
図7のリーク診断メイン制御プログラムのステップ106で、図10のエバポガス戻し処理プログラムが起動されると、まず、401で、リーク診断が終了したか又はリーク診断を途中で中止したか否かを判定し、リーク診断中であれば、そのまま本プログラムを終了する。
【0066】
その後、ステップ401で、リーク診断が終了したか又はリーク診断を中止したと判定されたときに、ステップ402に進み、エバポ系内がまだ負圧状態のときに、パージ制御弁15を閉弁(OFF)状態に維持すると共に通路切換弁19を負圧導入位置(ON)に維持したまま負圧ポンプ23をOFFするエバポガス戻し処理を行う。これにより、大気連通路20内のエバポガスが負圧ポンプ23内の隙間、負圧導入路21、キャニスタ連通路18を通ってエバポ系内に吸入される。また、このエバポガス戻し処理によってガスがキャニスタ13内を通過してエバポ系内へ吸入されるときのガスの流れによってキャニスタ13内に吸着されているエバポガスを脱離させて燃料タンク11側に戻すバックパージを発生させることができる。
【0067】
以上説明した本実施形態(1)では、リーク診断の終了直後又は中断直後にエバポ系内がまだ負圧状態のときに負圧ポンプ23をOFFするエバポガス戻し処理を行うようにしたので、リーク診断中に負圧ポンプ23によってエバポ系内から大気連通路20に排出されたエバポガスを、リーク診断の終了直後又は中止直後に負圧ポンプ23内の隙間を通してエバポ系内に吸入させることができて、大気連通路20内のエバポガスが大気中に放出される量を低減することができ、エバポエミッションを向上させることができる。
【0068】
[実施形態(2)]
次に、図11乃至図16を用いて本発明の実施形態(2)を説明する。
前記実施形態(1)では、エバポガス戻し処理として、リーク診断の終了直後又は中止直後にエバポ系内が負圧の状態で負圧ポンプ23を停止するようにしたが、本実施形態(2)では、図12に示すように、エバポガス戻し処理として、リーク診断の終了直後又は中止直後にエバポ系内が負圧の状態で通路切換弁19を大気開放位置側に制御するようにしている。これにより、リーク診断の終了直後又は中止直後に、大気連通路20内のエバポガスが、図11に矢印で示すように、大気連通路20→通路切換弁19→キャニスタ連通路18の経路でエバポ系内に吸入される。
【0069】
更に、本実施形態(2)では、エバポガス戻し処理中に通路切換弁19の通電をデューティ制御して、エバポガス戻し処理により大気連通路20内のガスが通路切換弁19を通る経路でエバポ系内に吸入されるときのガス吸入流量を制御することで、キャニスタ13内に吸着されているエバポガスのバックパージ量や吸気音を調整する。
【0070】
ここで、通路切換弁19の通電をデューティ制御する際のデューティ比(ON/OFFの比)は、例えば、次のようにして設定する。一般に、図13に示すように、エバポガス戻し処理によりエバポ系内に吸入されるガス吸入流量が少ない領域では、ガス吸入流量(ガス吸入流速)の増加と共にキャニスタ13のエバポガス脱離特性が良くなるが、ガス吸入流量(ガス吸入流速)がある程度大きくなると、キャニスタ13のエバポガス脱離特性がほぼ一定となる。そこで、キャニスタ13のエバポガス脱離特性が所定以上となるガス吸入流量領域の下限値付近に目標ガス吸入流量を設定することで、キャニスタ13のエバポガス脱離特性を所定以上確保できる範囲で、実ガス吸入流量を少なくして吸気音を小さくできるようにする。この目標ガス吸入流量に対応した基本デューティ比(例えばエバポ系内の圧力と空間容積が所定の標準状態のときに実ガス吸入流量を目標ガス吸入流量に制御するデューティ比)が設定されている。
【0071】
また、大気連通路20内のガスがエバポ系内に吸入されるときのガス吸入流量は、エバポ系内の圧力やエバポ系内の空間容積によって変化するため、図14に示すマップを用いて圧力センサ27で検出したエバポ系内の圧力に応じた流量制御係数K1 を求めると共に、図15に示すマップを用いて燃料レベルセンサ28で検出した燃料残量から求まるエバポ系内の空間容積に応じた流量制御係数K2 を求め、基本デューティ比に流量制御係数K1 と流量制御係数K2 を乗算して最終的なデューティ比を求める。
【0072】
これにより、エバポ系内の圧力とエバポ系内の空間容積に応じてデューティ比を設定して、大気連通路20内のガスがエバポ系内に吸入されるときのガス吸入流量を目標ガス吸入流量に精度良く制御して、キャニスタ13内に吸着されているエバポガスのバックパージを促進しながら吸気音を小さくする。
【0073】
本実施形態(2)のエバポガス戻し処理は、図16に示すエバポガス戻し処理プログラムによって実行される。本プログラムが起動されると、まず、501で、リーク診断が終了したか又はリーク診断を途中で中止したか否かを判定し、リーク診断が終了したか又はリーク診断を中止したと判定されたときに、ステップ502に進み、エバポ系内がまだ負圧状態のときに、パージ制御弁15を閉弁(OFF)状態に維持すると共に負圧ポンプ23をONしたまま通路切換弁19を前述したようにして設定したデューティ比でデューティ制御するエバポガス戻し処理を行う。尚、このエバポガス戻し処理中に負圧ポンプ23をOFFするようにしても良い。
【0074】
このエバポガス戻し処理により、大気連通路20内のエバポガスが、図11に矢印で示すように、大気連通路20→通路切換弁19→キャニスタ連通路18の経路でエバポ系内に吸入される。
【0075】
以上説明した本実施形態(2)では、リーク診断の終了直後又は中止直後にエバポ系内が負圧の状態で通路切換弁19を大気開放位置側に制御するエバポガス戻し処理を行うようにしたので、リーク診断の終了直後又は中止直後に大気連通路20内のエバポガスを通路切換弁19を通る経路でエバポ系内に吸入することができ、大気連通路20内のエバポガスが大気中に放出される量を低減することができる。しかも、本実施形態(2)のように、大気連通路20内のエバポガスを通路切換弁19を通る経路でエバポ系内に吸入するようにすれば、エバポ系内に吸入するガス吸入流量を、負圧ポンプ23内の隙間を利用する前記実施形態(1)よりも多くすることができ、キャニスタ13内に吸着されているエバポガスのバックパージを促進することができる利点もある。
【0076】
また、本実施形態(2)では、エバポ系内に吸入されるガス吸入流量によってキャニスタ13のエバポガス脱離特性や吸気音が変化することを考慮して、エバポガス戻し処理中に通路切換弁19をデューティ制御して、大気連通路20側からエバポ系内に吸入されるガス吸入流量を制御するようにしたので、キャニスタ13内に吸着されているエバポガスのバックパージを促進しながら、このバックパージの性能を確保できる範囲で、実ガス吸入流量を少なくして吸気音を小さくすることができる。
【0077】
更に、本実施形態(2)では、大気連通路20側からエバポ系内に吸入されるガス吸入流量は、エバポ系内の圧力やエバポ系内の空間容積によって変化する点に着目して、エバポ系内の圧力とエバポ系内の空間容積に応じてガス吸入流量の制御値(デューティ比)を設定するようにしたので、大大気連通路20側からエバポ系内に吸入されるガス吸入流量を精度良く制御することができる。しかも、エバポ系内の圧力はリーク診断用の圧力センサ27で検出することができ、エバポ系内の空間容積は燃料レベルセンサ28で検出される燃料残量から求めることができるので、大気連通路20側からエバポ系内に吸入されるガス吸入流量を検出するセンサ類を新たに設ける必要がなく、低コスト化することができる。
【0078】
しかしながら、エバポ系内に吸入されるガス吸入流量を検出するセンサを設け、そのセンサで検出したガス吸入流量を目標ガス吸入流量に一致させるように通路切換弁19のデューティ比を設定するようにしても良い。
【0079】
また、エバポガス戻し処理中に通路切換弁19を必ずしもデューティ制御する必要はなく、エバポガス戻し処理中に通路切換弁19を大気開放位置(OFF)に切り換えるようにしても良い。
【0080】
[実施形態(3)]
エバポガス戻し処理として通路切換弁19をデューティ制御することで、大気連通路20内のエバポガスを通路切換弁19を通る経路でエバポ系内に吸入する場合に、負圧ポンプ23を停止すると、大気連通路20内のエバポガスが負圧ポンプ23内の隙間からもエバポ系内に吸入されてしまう。
【0081】
そこで、本発明の実施形態(3)では、図17に示すように、負圧ポンプ23の吸入口部分(負圧導入路21)に、大気連通路20内のガスが負圧ポンプ23内の隙間を通ってエバポ系の方向に逆流するのを阻止するチェック弁43を設ける構成としている。このようにすれば、エバポガス戻し処理時に負圧ポンプ23を停止しても、大気連通路20内のガスがエバポ系内に吸入される経路を大気連通路20から通路切換弁19を通る経路のみに限定することができるので、エバポ系内に吸入されるガス吸入流量を通路切換弁19のデューティ制御によって精度良く制御することができる。
【0082】
[実施形態(4)]
本発明の実施形態(4)では、図18に示すように、リーク診断の終了直後又は中止直後に、パージ制御弁15を一時的に開弁してエバポ系内の圧力が変化するか否かによってパージ制御弁15の異常の有無を診断し、このパージ制御弁15の異常診断の終了直後に、通路切換弁19をデューティ制御するエバポガス戻し処理を実行するようにしている。このようにすれば、リーク診断の終了直後や中止直後に、パージ制御弁15の異常診断とエバポガス戻し処理を実行することができる。
【0083】
尚、エバポガス戻し処理は、通路切換弁19をデューティ制御するエバポガス戻し処理に限定されず、通路切換弁19を大気開放位置に切り換えるエバポガス戻し処理や、通路切換弁19を負圧導入位置に維持したまま負圧ポンプ23をOFFするエバポガス戻し処理を行うようにしても良い。
【0084】
[実施形態(5)]
ところで、リーク診断中に負圧ポンプ23よってエバポ系内から大気連通路20内に排出されるエバポガス量が多いと、リーク診断中に大気連通路20の大気開放口からエバポガスが大気中に流れ出してしまう可能性がある。
【0085】
この対策として、本発明の実施形態(5)では、図19に示すように、大気連通路20に、エバポガスを貯溜するエバポガス貯溜部44を設けるようにしている。このようにすれば、エバポガス貯溜部44を設けた分だけエバポガスを貯溜する空間容積を拡大することができるので、リーク診断中のエバポガス排出量が多い場合でも、エバポガスをエバポガス貯溜部44及び大気連通路20内に貯溜することができ、その後、エバポガス戻し処理によりエバポガス貯溜部44及び大気連通路20内のエバポガスをエバポ系内に戻すことができる。これにより、リーク診断中の排出エバポガス量が多い場合でも、大気連通路20の大気開放口から大気中に流れ出るエバポガス量を効果的に少なくすることができる。
【0086】
尚、図20に示すように、エバポガス貯溜部44は、大気連通路20の大気開放口20aよりも低い位置に配置して該大気連通路20との接続口44aが下向きになるように設けるようにしても良い。エバポガスは空気よりも重いため、エバポガス貯溜部44の位置が大気連通路20の大気開放口20aよりも高いと、大気連通路20内のエバポガスがエバポガス貯溜部44よりも低い位置にある大気開放口20aの方へ流れる割合が増えて、大気連通路20からエバポガス貯溜部44内へのエバポガスの流れが妨げられてしまい、エバポガス貯溜部44としての本来の機能が低下してしまう。これに対し、エバポガス貯溜部44の位置を大気連通路20の大気開放口20aよりも低くすれば、大気連通路20からエバポガス貯溜部44内へエバポガスが流れやすくなり、エバポガス貯溜部44としての本来の機能を有効に発揮させることができる。
【0087】
更に、エバポガス貯溜部44を大気連通路20との接続口44aが下向きになるようにすれば、エバポガス戻し処理中にエバポガス貯溜部44内のエバポガスを速やかに大気連通路20に流下させてエバポ系内に戻すことができる。
【0088】
[実施形態(6)]
図21に示す本発明の実施形態(6)では、大気連通路20のフィルタ22のうち負圧ポンプ23側に、エバポガスを吸着する吸着体45を設けるようにしている。このフィルタ22に設けられた吸着体45は、キャニスタ13に設けられた吸着体よりも細孔径が小さい活性炭で形成されている。
【0089】
本実施形態(6)では、大気連通路20のフィルタ22に吸着体45を設けたので、大気連通路20の大気開放口から大気中に流れ出ようとするエバポガスをフィルタ22の吸着体45に吸着させることができ、エバポガスが大気中に放出される量を効果的に低減することができる。
【0090】
また、リーク診断中に負圧ポンプ23によってエバポ系内から大気連通路20内に排出されるたエバポガス(つまりキャニスタ13をすり抜けてきたエバポガス)は、低沸点成分(例えばC4以下)の割合が高いため、本実施形態(6)のように、大気連通路20のフィルタ22に設ける吸着体45は、キャニスタ13の吸着体よりも細孔径が小さい活性炭で形成することによって、大気連通路20内のエバポガスの吸着性能を向上させることができる。しかも、低沸点成分であれば、吸着体45の細孔を小さくしても脱離性能の低下が少なく、吸着体45で吸着したエバポガスを容易にバックパージすることができる。
【0091】
尚、上記各実施形態(1)〜(6)では、リーク診断を行う際に、圧力センサ27で基準圧力やエバポ系内の圧力を検出するようにしたが、基準圧力やエバポ系内の圧力の代用情報として負圧ポンプ23の電流、電圧、回転速度等の負圧ポンプの運動特性値を用いたり、負圧ポンプ23の吐出流量を用いるようにしても良い。
【0092】
また、上記各実施形態(1)〜(6)では、負圧ポンプ23としてベーン式ポンプを用いたが、これに限定されず、ウエスコ式ポンプ等の他の型式のポンプを用いるようにしても良い。
【0093】
また、上記各実施形態(1)〜(6)では、エンジン停止中にリーク診断を行うシステムに本発明を適用したが、エンジン運転中にリーク診断を行うシステムに本発明を適用しても良い。
【0094】
その他、本発明は、エバポガスパージシステムや、リークチェックモジュール17等のリーク診断システムの構成を適宜変更したり、リーク診断の具体的判定方法を適宜変更しても良く、要は、負圧ポンプ等の負圧導入手段でエバポ系内に負圧を導入してリーク診断を行うシステムであれば、本発明を適用して実施することができる。
【図面の簡単な説明】
【図1】本発明の実施形態(1)におけるエバポガスパージシステムの構成を示す図
【図2】基準圧力検出処理時の状態を示すリークチェックモジュール及びその周辺の構成図
【図3】エバポ系内圧力検出処理時の状態を示すリークチェックモジュール及びその周辺の構成図
【図4】実施形態(1)のエバポガス戻し処理時の状態を示すリークチェックモジュール及びその周辺の構成図
【図5】負圧ポンプの横断面図
【図6】実施形態(1)の実行例を示すタイムチャート
【図7】リーク診断メイン制御プログラムの処理の流れを示すフローチャート
【図8】基準圧力検出処理プログラムの処理の流れを示すフローチャート
【図9】エバポ系内圧力検出及びリーク判定処理プログラムの処理の流れを示すフローチャート
【図10】実施形態(1)のエバポガス戻し処理プログラムの処理の流れを示すフローチャート
【図11】実施形態(2)のエバポガス戻し処理時の状態を示すリークチェックモジュール及びその周辺の構成図
【図12】実施形態(2)の実行例を示すタイムチャート
【図13】キャニスタのエバポガス脱離特性とガス吸入流量との関係を示す図
【図14】流量制御係数K1 のマップを概念的に示す図
【図15】流量制御係数K2 のマップを概念的に示す図
【図16】実施形態(2)のエバポガス戻し処理プログラムの処理の流れを示すフローチャート
【図17】実施形態(3)のエバポガス戻し処理時の状態を示すリークチェックモジュール及びその周辺の構成図
【図18】実施形態(4)の実行例を示すタイムチャート
【図19】実施形態(5)のリークチェックモジュール及びその周辺の構成図
【図20】実施形態(5)の変形例を示すリークチェックモジュール及びその周辺の構成図
【図21】実施形態(6)のリークチェックモジュール及びその周辺の構成図
【符号の説明】
11…燃料タンク、12…エバポ通路、13…キャニスタ、14…パージ通路、15…パージ制御弁、17…リークチェックモジュール、18…キャニスタ連通路、19…通路切換弁、20…大気連通路(排出通路)、21…負圧導入路、22…フィルタ、23…負圧ポンプ(負圧導入手段)、24…バイパス通路、25…基準オリフィス(基準孔)、26…基準圧力検出部、27…圧力センサ、28…燃料レベルセンサ、31…ECU(リーク診断手段)、43…チェック弁、44…エバポガス貯溜部、45…吸着体。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a leak diagnosis apparatus for an evaporative gas purge system that performs a leak diagnosis of an evaporative gas purge system that purges (releases) evaporative gas (fuel evaporative gas) generated by evaporation of fuel in a fuel tank into an intake system of an internal combustion engine. It is.
[0002]
[Prior art]
Conventionally, in an evaporative gas purge system, in order to prevent the evaporative gas generated from the fuel tank from leaking into the atmosphere, the evaporative gas generated from the fuel tank is adsorbed in the canister, and the intake air of the canister and the internal combustion engine is absorbed. By opening a purge control valve provided in a purge passage communicating with the system, the exhaust gas adsorbed in the canister is purged to the intake system using the negative pressure of the intake system. In order to prevent the state where the evaporative gas leaks from the evaporative gas purge system into the atmosphere from being left for a long time, it is necessary to detect the evaporative gas leak at an early stage.
[0003]
Therefore, during operation of the internal combustion engine, the purge control valve is opened to introduce negative pressure into the fuel tank from the intake system, and then the purge control valve is closed to seal the evaporation system from the purge control valve to the fuel tank. Measure the amount of change in the pressure in the evaporation system (for example, the pressure in the fuel tank) and compare the amount of change in pressure when the negative pressure is introduced to the leak judgment value (for example, the amount of change in pressure when the atmospheric pressure is introduced). By doing so, there is one that determines whether or not there is an evaporative leak.
[0004]
However, the conventional leak diagnosis has a drawback in that it is impossible to accurately determine a minute leak or a leak degree (a size of a leak hole).
[0005]
Therefore, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 10-90107), a positive pressure is introduced into the reference pressure detection unit by an electric positive pressure pump, and the reference pressure detection unit is formed. The pressure (reference pressure) regulated by the reference hole (a hole with a predetermined hole diameter corresponding to a minute leak hole) is detected, and then the pressure introduction path of the positive pressure pump is switched by the passage switching valve. By detecting the pressure in the evaporation system by introducing a positive pressure into the evaporation system with a positive pressure pump under the conditions of the above, it is possible to judge minute leaks and the degree of leakage by comparing the reference pressure and the pressure in the evaporation system There is something that was made.
[0006]
However, when leak diagnosis is performed by introducing positive pressure into the evaporation system, if there is a leak hole in the evaporation system, the evaporation gas in the evaporation system leaks into the atmosphere from the leak hole during the leak diagnosis. There is a disadvantage that it ends up.
[0007]
As a countermeasure for this, for example, as described in Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-4959), a negative pressure is introduced into the reference pressure detection unit by a negative pressure pump, and then the negative pressure is detected. There is a type in which a negative pressure is introduced into the evaporation system by a pump to detect the pressure in the evaporation system, and a leak diagnosis is performed by comparing the reference pressure and the pressure in the evaporation system. In this case, even if a leak hole is opened in the evaporation system, the atmosphere is only sucked into the evaporation system from the leak hole during the leak diagnosis, and the evaporation gas in the evaporation system leaks during the leak diagnosis. Leakage from the hole into the atmosphere can be prevented.
[0008]
[Patent Document 1]
JP-A-10-90107 (second page, etc.)
[Patent Document 2]
JP 2002-4959 A (page 2 etc.)
[0009]
[Problems to be solved by the invention]
By the way, as in Patent Document 2 described above, in a system that performs a leak diagnosis by introducing a negative pressure into the evaporation system with a negative pressure pump, the gas in the evaporation system is discharged to the atmosphere side through the canister when the negative pressure is introduced. Will do. However, if the evaporation gas concentration in the evaporation system is high, or if the amount of adsorption of the evaporation gas in the canister is at or near the saturated state, the evaporation component in the gas can be discharged even if the evaporation system gas is exhausted through the canister. May not be absorbed by the canister and may be released into the atmosphere.
[0010]
The present invention has been made in consideration of such circumstances. Therefore, the object of the present invention is to release the evaporated gas into the atmosphere by leak diagnosis in which a negative pressure is introduced into the evaporation system by a negative pressure introducing means such as a negative pressure pump. It is an object of the present invention to provide a leak diagnosis apparatus for an evaporative gas purge system that can reduce the amount of generated gas.
[0011]
[Means for Solving the Problems]
Since the evaporative gas discharged from the evaporative system by the negative pressure introducing means during the leak diagnosis is released into the atmosphere through the discharge passage, a large amount of the vapor is present in the discharge passage immediately after the end of the leak diagnosis or immediately after cancellation. It seems that it remains. If this state is left as it is, the evaporative gas in the discharge passage gradually flows out into the atmosphere by natural convection as time elapses, causing an increase in the amount of evaporative gas released into the atmosphere.
[0012]
In view of this, the leak diagnosis apparatus for an evaporation gas purge system according to claim 1 of the present invention introduces a negative pressure into the evaporation system by the negative pressure introducing means, and the pressure in the evaporation system or information correlated therewith (hereinafter referred to as “evaporation system pressure”). Evapo system leak diagnosis based on "information") immediately after the end of the leak diagnosis or immediately after The purge control valve for purging the evaporation gas adsorbed in the canister to the intake system of the internal combustion engine is temporarily opened to perform abnormality diagnosis of the purge control valve, and completion of abnormality diagnosis of the purge control valve Immediately after, During the leak diagnosis, an evaporation gas returning process is performed for returning the evaporation gas discharged from the evaporation system into the discharge passage by the negative pressure introducing means into the evaporation system.
[0013]
In this way, the evaporative gas discharged from the evaporative system into the exhaust passage by the negative pressure introducing means during the leak diagnosis can be returned to the evaporative system by the evaporative gas return process immediately after the end of the leak diagnosis or immediately after it is stopped. Thus, the amount of evaporated vapor in the discharge passage can be reduced.
[0024]
Furthermore, in the invention according to claim 1, Immediately after the end of leak diagnosis or immediately after cancellation, the purge control valve for purging the evaporation gas adsorbed in the canister to the intake system of the internal combustion engine is temporarily opened to diagnose the abnormality of the purge control valve. The evaporative gas return process is executed immediately after the completion of the purge control valve abnormality diagnosis. Because Immediately after the end of the leak diagnosis or immediately after the leak diagnosis, the abnormality diagnosis of the purge control valve and the evaporation gas return process can be executed.
[0025]
By the way, when the amount of evaporation gas discharged from the evaporation system into the discharge passage by the negative pressure introducing means during the leak diagnosis is large, if the volume of the discharge passage is small, the evaporated gas discharged into the discharge passage during the leak diagnosis is reduced. It flows out into the atmosphere from the air opening of the discharge passage.
[0026]
As a countermeasure, the claims 2 As described above, an evaporative gas storage section for temporarily storing evaporative gas may be provided in the discharge passage. In this way, the volume of the evaporated gas can be increased by the amount of the evaporated gas storage section, so that the evaporated gas can be stored in the evaporated gas storage section and the discharge passage even when the amount of the evaporated exhaust gas during the leak diagnosis is large. After that, the evaporation gas can be returned to the evaporation system by the evaporation gas return process, and the amount of evaporation gas flowing out into the atmosphere from the atmosphere opening of the discharge path can be effectively reduced. Can do.
[0027]
In this case, the claim 3 As described above, it is preferable that the evaporation gas reservoir is disposed at a position lower than the atmosphere opening port of the discharge passage so that the connection port with the discharge passage faces downward. Since the evaporative gas is heavier than air, if the evaporative gas reservoir is located higher than the air outlet in the exhaust passage, the proportion of the evaporative gas in the exhaust passage flows toward the atmospheric open port located lower than the evaporative gas reservoir. As a result, the flow of the evaporative gas from the exhaust passage into the evaporative gas reservoir is obstructed and the original function of the evaporative gas reservoir is reduced, but the position of the evaporative gas reservoir is lower than the air opening of the exhaust passage. Thus, the evaporative gas easily flows from the discharge passage into the evaporative gas reservoir, and the original function as the evaporative gas reservoir can be effectively exhibited. Furthermore, if the connection port of the evaporation gas storage part is directed downward, the evaporation gas in the evaporation gas storage part can quickly flow down into the discharge path and return to the evaporation system during the evaporation gas returning process.
[0028]
Claims 4 As described above, a filter may be provided at the atmosphere opening of the discharge passage, and an adsorbent that adsorbs the evaporation gas may be provided on the negative pressure introducing means side of the filter. In this way, the evaporative gas that is about to flow out into the atmosphere from the atmosphere opening port of the discharge passage can be adsorbed by the adsorbent of the filter, and the amount of evaporative gas released into the atmosphere can be effectively reduced. it can.
[0029]
In this case, the claim 5 As described above, the adsorbent provided in the filter of the discharge passage may be formed of activated carbon having a pore diameter smaller than that of the adsorbent provided in the canister. The evaporation gas discharged from the evaporation system into the discharge passage by the negative pressure introduction means during the leak diagnosis (that is, the evaporation gas that has passed through the canister) has a high ratio of low boiling point components (for example, C4 or less). It is possible to improve the adsorption performance of the evaporative gas when the adsorbent provided in is formed of activated carbon having a pore size smaller than that of the canister. In addition, if the component has a low boiling point, even if the pore diameter of the adsorbent is reduced, the desorption performance is hardly lowered, and the evaporative gas adsorbed by the adsorbent can be easily back purged.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment (1) of the present invention will be described below with reference to FIGS. First, the configuration of the evaporation gas purge system will be described with reference to FIG. A canister 13 is connected to the fuel tank 11 via an evaporation passage 12. The canister 13 accommodates an adsorbent (not shown) such as activated carbon that adsorbs evaporation gas (evaporated fuel gas).
[0031]
On the other hand, a purge passage 14 is provided between the canister 13 and the engine intake system for purging (releasing) the evaporative gas adsorbed by the adsorbent in the canister 13 to the engine intake system. A purge control valve 15 for controlling the purge flow rate is provided on the way. The purge control valve 15 is constituted by a normally closed electromagnetic valve, and controls the purge flow rate of the evaporation gas from the canister 13 to the engine intake system by duty control of energization.
[0032]
In order to perform evaporative leak diagnosis from the fuel tank 11 to the purge control valve 15, a leak check module 17 is attached to the atmospheric communication path 16 of the canister 13.
[0033]
As shown in FIG. 2 to FIG. 4, the leak check module 17 is connected to the canister communication passage 18 connected to the canister 13 side via the passage switching valve 19 and the atmospheric communication passage 20 (discharge passage) and the negative pressure introduction passage 21. And are connected. The atmosphere communication path 20 is provided so as to directly communicate with the atmosphere side, and a filter 22 is provided in the vicinity of the tip thereof. On the other hand, the negative pressure introduction path 21 is connected in the middle of the atmospheric communication path 20 via an electric negative pressure pump 23 (negative pressure introduction means). The negative pressure pump 23 is driven by a motor 37 and is disposed so as to discharge gas from the negative pressure introduction path 21 toward the atmosphere communication path 20 (atmosphere side).
[0034]
As shown in FIG. 5, the negative pressure pump 23 is an efficient vane pump. A plurality of vanes 40 are provided on the outer peripheral side of the rotor 39 eccentrically disposed in the casing 38 so as to be slidable in the radial direction. Is rotated to change the space volume between the vanes 40, so that gas is sucked from the suction port 41 and discharged from the discharge port 42. Since this vane type negative pressure pump 23 has a gap communicating from the suction port 41 to the discharge port 42, the gap in the negative pressure pump 23 is used in the evaporation gas return process described later.
[0035]
As shown in FIGS. 2 to 4, the passage switching valve 19 includes an atmospheric release position (a position shown in FIG. 2) that connects the canister communication passage 18 and the atmospheric communication passage 20, a canister communication passage 18, and a negative pressure introduction passage. 21 is constituted by an electromagnetic valve capable of switching between a negative pressure introduction position (position shown in FIG. For example, when the energization is turned off, the passage switching valve 19 is held in the atmospheric release position by an urging means 19a such as a spring. When the energization is turned on, the passage switching valve 19 is switched to the negative pressure introduction position by the electromagnetic driving force of the solenoid 19b. ing.
[0036]
A bypass passage 24 that bypasses the passage switching valve 19 is connected between the canister communication passage 18 and the negative pressure introduction passage 21, and a reference orifice 25 (reference hole) is provided in the middle of the bypass passage 24. ing. The reference orifice 25 is formed such that the inner diameter of the passage is significantly narrower than the inner diameter of the other portion of the bypass passage 24 to a reference leak hole diameter (for example, a diameter of 0.5 mm). This reference orifice 25 and a passage 24 a connected from the reference orifice 25 to the negative pressure introduction passage 21 in the bypass passage 24 constitute a reference pressure detection unit 26, and a pressure sensor 27 is provided in the reference pressure detection unit 26. Yes.
[0037]
As shown in FIG. 2, when the passage switching valve 19 is switched to the atmospheric release position when the purge control valve 15 is closed, the inside of the bypass passage 24 (inside the reference pressure detection unit 26) is connected to the canister communication passage 18 and the atmosphere communication. Since it is opened to the atmosphere via the passage 20, the atmospheric pressure can be detected by detecting the pressure in the reference pressure detection unit 26 with the pressure sensor 27.
[0038]
When the negative pressure pump 23 is driven in a state where the passage switching valve 19 is switched to the atmospheric release position and the evaporation system is opened to the atmosphere via the canister communication passage 18 and the atmospheric communication passage 20, the reference orifice The presence of 25 causes the reference pressure detection unit 26 to have a negative pressure. At this time, the reference pressure corresponding to the reference leak hole diameter of the reference orifice 25 can be detected by detecting the pressure in the reference pressure detector 26 by the pressure sensor 27.
[0039]
On the other hand, as shown in FIG. 3, when the passage switching valve 19 is switched to the negative pressure introduction position when the purge control valve 15 is closed, the evaporation system is sealed and the pressure sensor 27 of the reference pressure detection unit 26 is closed. Since the peripheral portion communicates with the evaporation system via the negative pressure introduction path 21 and the canister communication path 18, the pressure in the reference pressure detection unit 26 is detected by the pressure sensor 27 to detect the pressure in the evaporation system. Can do.
[0040]
Then, when the negative pressure pump 23 is driven in a state where the passage switching valve 19 is switched to the negative pressure introduction position and the evaporation system is sealed, the gas in the evaporation system is changed to the canisters 13 passages 16, 18 → negative pressure pump. It is discharged to the atmosphere side through the route 23 → atmosphere communication passage 20, and negative pressure is introduced into the evaporation system.
[0041]
As shown in FIG. 1, a fuel level sensor 28 for detecting the remaining amount of fuel is provided in the fuel tank 11. In addition, various sensors such as a water temperature sensor 29 for detecting the cooling water temperature and an intake air temperature sensor 30 for detecting the intake air temperature are provided.
[0042]
Outputs of these various sensors are input to a control circuit (hereinafter referred to as “ECU”) 31. A power supply voltage is supplied to a power supply terminal of the ECU 31 from an in-vehicle battery (not shown) via the main relay 32. In addition, the power supply voltage is supplied to the purge control valve 15, the passage switching valve 19, the negative pressure pump 23, the pressure sensor 27, the fuel level sensor 28, and the like via the main relay 32. The relay drive coil 32b that drives the relay contact 32a of the main relay 32 is connected to the main relay control terminal of the ECU 31, and when the relay drive coil 32b is energized, the relay contact 32a is turned on, and the ECU 31 and the like. Is supplied with a power supply voltage. Then, by turning off the energization to the relay drive coil 32b, the relay contact 32a is turned off, and the power supply to the ECU 31 and the like is turned off.
[0043]
An ON / OFF signal of an ignition switch (hereinafter referred to as “IG switch”) 33 is input to a key SW terminal of the ECU 31. When the IG switch 33 is turned on, the main relay 32 is turned on and power supply to the ECU 31 and the like is started. When the IG switch 33 is turned off, the main relay 32 is turned off and power supply to the ECU 31 and the like is turned off. .
[0044]
Further, the ECU 31 includes a backup power source 34 and a soak timer 35 that operates with the backup power source 34 as a power source. The soak timer 35 starts a time measuring operation after the engine is stopped (after the IG switch 33 is turned off), and measures an elapsed time after the engine is stopped. As described above, when the IG switch 33 is turned off, the main relay 32 is turned off and the power supply to the ECU 31 and the like is turned off. However, in order to make a leak diagnosis while the engine is stopped, the measurement time of the soak timer 35 (engine When the elapsed time after the stop) reaches a predetermined time (for example, 3 to 5 hours), the backup power source 34 of the ECU 31 is used as a power source to operate the drive circuit of the main relay control terminal of the ECU 31 and the main relay 32 is turned on. The power supply voltage is supplied to the purge control valve 15, the passage switching valve 19, the negative pressure pump 23, the pressure sensor 27, the fuel level sensor 28, and the like.
[0045]
The ECU 31 is configured mainly by a microcomputer, and performs fuel injection control, ignition control, and purge control by executing a fuel injection control program, an ignition control program, and a purge control program stored in a ROM (storage medium). .
[0046]
Further, the ECU 31 executes the leak diagnosis programs shown in FIGS. 7 to 10 described later to control the leak check module 17 to detect the reference pressure and the evaporation system internal pressure, and compare both. Diagnose evaporative leaks.
[0047]
Here, the evaporative leak diagnosis executed in the present embodiment (1) will be described. As shown in FIG. 6, the reference pressure detection process is started at a time t1 when a predetermined time (for example, 3 to 6 hours) has elapsed since the engine operation was stopped (IG switch 33 was turned off). In this reference pressure detection process, the purge control valve 15 is maintained in the closed (OFF) state, and the negative pressure pump 23 is turned on while the passage switching valve 19 is maintained in the atmospheric release position (OFF). 26, when a negative pressure is introduced (see FIG. 2) and a predetermined time T1 has elapsed from the start of the introduction of the negative pressure into the reference pressure detector 26 (or when the pressure in the reference pressure detector 26 is stabilized). Thus, the ECU 31 determines that the negative pressure in the reference pressure detector 26 is stable near the reference pressure corresponding to the reference orifice 25, and uses the pressure in the reference pressure detector 26 detected by the pressure sensor 27 as the reference pressure Pr. Store in the memory.
[0048]
After the detection of the reference pressure Pr, the evaporation system internal pressure detection and leak determination processing are started. In this evaporation system internal pressure detection and leak determination processing, the passage switching valve 19 is switched to the negative pressure introduction position (ON) while maintaining the negative pressure pump 23 in the ON state, and the negative pressure pump 23 generates negative pressure in the evaporation system. Is introduced (see FIG. 3). The pressure Pf in the evaporation system detected by the pressure sensor 27 is set to a leak judgment value (for example, the reference pressure Pr or a pressure slightly lower than this) before the predetermined time T2 has elapsed from the start of the introduction of the negative pressure into the evaporation system. It is determined that there is no leak. On the other hand, when the pressure Pf in the evaporation system is greater than or equal to the leak judgment value at the time t3 (or when the pressure in the evaporation system is stabilized) after the predetermined time T2 has elapsed from the start of the introduction of the negative pressure into the evaporation system, It is determined that there is a leak. At this time, if the pressure Pf in the evaporation system converges in the vicinity of the reference pressure Pr, it is determined as a leak hole corresponding to the reference leak hole diameter (for example, 0.5 mm in diameter) of the reference orifice 25, and the pressure Pf in the evaporation system is If it is higher than the reference pressure Pr, it is determined that the leak hole is larger than the reference leak hole diameter of the reference orifice 25.
[0049]
As described above, in the system in which the negative pressure is introduced into the evaporation system by the negative pressure pump 23 and the leak diagnosis is performed, the gas in the evaporation system is discharged to the atmosphere through the canister 13 when the negative pressure is introduced. If the evaporation gas concentration in the evaporation system is high, or the amount of adsorption of the evaporation gas in the canister 13 is at or near the saturated state, even if the evaporation system gas is exhausted through the canister 13, the evaporation component in the gas Is not absorbed by the canister 13 and is discharged to the atmosphere communication path 20 side.
[0050]
Therefore, the ECU 31 executes the evaporation gas return processing program shown in FIG. 10, and as shown in FIG. 6, when the inside of the evaporation system is still in the negative pressure state immediately after the end of the leak diagnosis (or immediately after the cancellation), the ECU 31 An evaporative gas return process is performed to turn off the negative pressure pump 23 while maintaining the switching valve 19 at the negative pressure introduction position (ON). As a result, the evaporation gas in the atmosphere communication path 20 is sucked into the evaporation system through the gap in the negative pressure pump 23, the negative pressure introduction path 21, and the canister communication path 18 as indicated by arrows in FIG.
[0051]
Hereinafter, processing contents of each program for leak diagnosis shown in FIGS. 7 to 10 executed by the ECU 31 will be described.
[0052]
[Leak diagnosis main control]
The leak diagnosis main control program of FIG. 7 is executed every predetermined time after the main relay 32 is turned on by the soak timer 35 after the IG switch 33 is turned off, for example, and serves as a leak diagnosis means in the claims.
[0053]
When this program is started, first, in step 101, it is determined whether or not a leak diagnosis execution condition is satisfied. Here, the leakage diagnosis execution condition is, for example, that the IG switch 33 is turned off (that is, the engine is stopped), and a predetermined time (for example, 3 to 6 hours) has passed since the IG switch 33 is turned off. And so on. If all the above conditions are satisfied, the leak diagnosis execution condition is satisfied, but if any one of the above conditions is not satisfied, the leak diagnosis execution condition is not satisfied.
[0054]
If it is determined in step 101 that the leak diagnosis execution condition is satisfied, the process relating to the leak diagnosis after step 102 is executed as follows. First, at step 102, it is determined whether or not it is during the reference pressure detection period. If it is during the reference pressure detection period, the process proceeds to step 103, and after executing a reference pressure detection processing program of FIG. Proceeding to 106, an evaporation gas return processing program of FIG. 10 described later is executed, and this program is terminated.
[0055]
Thereafter, when the reference pressure detection process is completed and it is determined in step 102 that the reference pressure detection period is not in progress, the process proceeds to step 104, where it is determined whether or not the evaporation system pressure detection period is in effect. If it is during the system pressure detection period, the process proceeds to step 105, and after executing an evaporation system pressure detection and leak determination processing program of FIG. 9 described later, the process proceeds to step 106, and the evaporation gas return processing program of FIG. Run this program and exit. Note that the evaporative gas return processing program of FIG. 10 does not perform the evaporative gas return processing until the leak diagnosis is completed or stopped (step 401).
[0056]
Thereafter, when the end of the leak diagnosis is finished, it is determined as “No” in both step 102 and step 104, the process proceeds to step 106, and an evaporation gas return processing program of FIG. 10 described later is executed to finish this program. .
[0057]
In addition, during the leak diagnosis (during the reference pressure detection period or during the evaporative system pressure detection period), for example, when the leak diagnosis execution condition is not satisfied due to ON of the IG switch and the leak diagnosis is stopped, at that time, Proceeding from step 101 to step 106, an evaporation gas return processing program of FIG. 10 described later is executed, and this program is terminated.
[0058]
[Reference pressure detection processing]
When the reference pressure detection processing program in FIG. 8 is started in step 103 of the leak diagnosis main control program in FIG. 7, first, in step 201, the purge control valve 15 is maintained in the closed (OFF) state and the passage is switched. The negative pressure pump 23 is turned on while the valve 19 is maintained in the atmospheric release position (OFF), and negative pressure is introduced into the reference pressure detection unit 26. Thereafter, the process proceeds to step 202, where the pressure sensor 27 detects the pressure in the reference pressure detector 26.
[0059]
Thereafter, the process proceeds to step 203, where it is determined whether or not the negative pressure introduction time (elapsed time from the start of negative pressure introduction) into the reference pressure detection unit 26 is less than the predetermined time T1. As a result, if the negative pressure introduction time into the reference pressure detection unit 26 is less than the predetermined time T1, the process proceeds to step 204 to determine whether or not the pressure in the reference pressure detection unit 26 is in a stable state, for example, the reference pressure It is determined whether or not the pressure change rate in the detection unit 26 is slower than a predetermined value. If the pressure in the reference pressure detection unit 26 is not stable, the program is terminated as it is.
[0060]
Thereafter, when it is determined at step 203 that the negative pressure introduction time into the reference pressure detection unit 26 has reached the predetermined time T1, or at step 204, it is determined that the pressure within the reference pressure detection unit 26 has become stable. At this point, it is determined that the negative pressure in the reference pressure detection unit 26 has stabilized near the reference pressure corresponding to the reference leak hole diameter of the reference orifice 25, and the process proceeds to step 205 where the reference pressure detection unit detected by the pressure sensor 27 is detected. 26 is stored in the memory of the ECU 31 as the reference pressure Pr.
[0061]
[Evaporation system pressure detection and leak judgment processing]
When the evaporation system pressure detection and leak determination processing program of FIG. 9 is started in step 105 of the leak diagnosis main control program of FIG. 7, first, in step 301, the purge control valve 15 is closed (OFF). The passage switching valve 19 is switched to the negative pressure introduction position (ON) while maintaining the negative pressure pump 23 in the ON state, and the negative pressure is introduced into the evaporation system by the negative pressure pump 23. After this, the routine proceeds to step 302 where the pressure sensor 27 detects the pressure Pf in the evaporation system.
[0062]
Thereafter, the process proceeds to step 303, in which it is determined whether or not the pressure Pf in the evaporation system detected by the pressure sensor 27 is lower than a leak determination value (for example, the reference pressure Pr or a value set to a pressure slightly lower than that). To do. As a result, when it is determined that the pressure Pf in the evaporation system is lower than the leak determination value, the process proceeds to step 304 and is determined to be normal (no leak).
[0063]
On the other hand, if it is determined in step 303 that the pressure Pf in the evaporation system is greater than or equal to the leak determination value, the process proceeds to step 305 and the negative pressure introduction time into the evaporation system (from the start of negative pressure introduction). Is determined to be less than a predetermined time T2. As a result, if the negative pressure introduction time into the evaporation system is less than the predetermined time T2, the process proceeds to step 306 to determine whether or not the pressure Pf in the evaporation system is in a stable state, for example, the pressure change rate in the evaporation system. If the pressure Pf in the evaporation system is not stable, the program is terminated as it is.
[0064]
Thereafter, when it is determined in step 303 that the pressure Pf in the evaporation system is equal to or higher than the leak determination value, and in step 305, it is determined that the negative pressure introduction time in the evaporation system has reached the predetermined time T2, or If it is determined in step 306 that the pressure Pf in the evaporation system is stable, the process proceeds to step 307, where it is determined that there is an abnormality (leak is present) and the warning lamp 36 provided on the instrument panel of the driver's seat is turned on. Turns on or displays a warning on a warning display (not shown) on the instrument panel to warn the driver, and stores abnormal information (such as an abnormal code) in a backup RAM (not shown) of the ECU 31. To do.
[0065]
[Evaporation return processing]
When the evaporative gas return processing program of FIG. 10 is started in step 106 of the leak diagnosis main control program of FIG. 7, first, in 401, it is determined whether the leak diagnosis has been completed or whether the leak diagnosis has been stopped halfway. If the leak diagnosis is in progress, the program is terminated.
[0066]
Thereafter, when it is determined in step 401 that the leak diagnosis is completed or the leak diagnosis is stopped, the process proceeds to step 402, and when the inside of the evaporation system is still in the negative pressure state, the purge control valve 15 is closed ( The evaporative gas returning process is performed to turn off the negative pressure pump 23 while maintaining the passage switching valve 19 at the negative pressure introduction position (ON). Thus, the evaporation gas in the atmosphere communication path 20 is sucked into the evaporation system through the gap in the negative pressure pump 23, the negative pressure introduction path 21, and the canister communication path 18. Further, by this evaporation gas returning process, the evaporation gas adsorbed in the canister 13 is desorbed and returned to the fuel tank 11 side by the gas flow when the gas passes through the canister 13 and is sucked into the evaporation system. A purge can be generated.
[0067]
In the present embodiment (1) described above, since the evaporative gas returning process for turning off the negative pressure pump 23 is performed immediately after the end of the leak diagnosis or immediately after interruption, the negative pressure pump 23 is turned off. The evaporation gas discharged from the evaporation system 20 into the atmosphere communication path 20 by the negative pressure pump 23 can be sucked into the evaporation system through the gap in the negative pressure pump 23 immediately after the end of the leak diagnosis or immediately after the leakage diagnosis. The amount of evaporation gas in the atmosphere communication path 20 released into the atmosphere can be reduced, and evaporation emission can be improved.
[0068]
[Embodiment (2)]
Next, an embodiment (2) of the present invention will be described with reference to FIGS.
In the embodiment (1), as the evaporative gas return processing, the negative pressure pump 23 is stopped in a state of negative pressure in the evaporation system immediately after the end of the leak diagnosis or immediately after cancellation, but in the present embodiment (2), As shown in FIG. 12, as the evaporative gas return processing, the passage switching valve 19 is controlled to the atmospheric release position side with the negative pressure in the evaporative system immediately after the end of the leak diagnosis or immediately after the leak diagnosis. Thus, immediately after the end of the leak diagnosis or immediately after the cancellation, the evaporation gas in the atmosphere communication path 20 is evaporated in the path of the atmosphere communication path 20 → the passage switching valve 19 → canister communication path 18 as indicated by an arrow in FIG. Inhaled.
[0069]
Further, in the present embodiment (2), the energization of the passage switching valve 19 is duty-controlled during the evaporation gas returning process, and the gas in the atmosphere communication passage 20 passes through the passage switching valve 19 in the evaporation system by the evaporation gas returning process. By controlling the gas intake flow rate when the gas is drawn into the canister 13, the back purge amount and the intake noise of the evaporation gas adsorbed in the canister 13 are adjusted.
[0070]
Here, the duty ratio (ON / OFF ratio) when duty-controlling the energization of the passage switching valve 19 is set as follows, for example. In general, as shown in FIG. 13, in a region where the gas suction flow rate sucked into the evaporation system by the evaporation gas return process is small, the evaporation gas desorption characteristic of the canister 13 is improved as the gas suction flow rate (gas suction flow rate) increases. When the gas suction flow rate (gas suction flow rate) increases to some extent, the evaporation gas desorption characteristic of the canister 13 becomes substantially constant. Therefore, by setting the target gas suction flow rate in the vicinity of the lower limit value of the gas suction flow rate region where the evaporation gas desorption characteristic of the canister 13 is greater than or equal to a predetermined value, the actual gas is within a range where the evaporative gas desorption characteristic of the canister 13 can be ensured more than the predetermined value. The intake flow rate can be reduced to reduce the intake noise. A basic duty ratio (for example, a duty ratio for controlling the actual gas suction flow rate to the target gas suction flow rate when the pressure and the space volume in the evaporation system are in a predetermined standard state) corresponding to the target gas suction flow rate is set.
[0071]
Further, since the gas suction flow rate when the gas in the atmosphere communication path 20 is sucked into the evaporation system varies depending on the pressure in the evaporation system and the space volume in the evaporation system, the pressure shown in the map shown in FIG. 14 is used. A flow rate control coefficient K1 corresponding to the pressure in the evaporation system detected by the sensor 27 is obtained, and also according to the space volume in the evaporation system obtained from the remaining fuel amount detected by the fuel level sensor 28 using the map shown in FIG. The flow rate control coefficient K2 is obtained, and the final duty ratio is obtained by multiplying the basic duty ratio by the flow rate control coefficient K1 and the flow rate control coefficient K2.
[0072]
Thereby, the duty ratio is set according to the pressure in the evaporation system and the space volume in the evaporation system, and the gas suction flow rate when the gas in the atmosphere communication path 20 is sucked into the evaporation system is set as the target gas suction flow rate. The intake noise is reduced while the back purge of the evaporation gas adsorbed in the canister 13 is promoted with high accuracy.
[0073]
The evaporation gas returning process of the present embodiment (2) is executed by the evaporation gas returning process program shown in FIG. When this program is started, it is first determined in 501 whether the leak diagnosis has been completed or whether the leak diagnosis has been stopped halfway, and it has been determined that the leak diagnosis has been completed or has been stopped. In step 502, when the inside of the evaporation system is still in the negative pressure state, the purge control valve 15 is maintained in the closed (OFF) state, and the passage switching valve 19 is maintained with the negative pressure pump 23 turned on. In this way, the evaporation gas return process is performed in which the duty is controlled at the set duty ratio. It should be noted that the negative pressure pump 23 may be turned off during the evaporation gas returning process.
[0074]
By this evaporation gas return processing, the evaporation gas in the atmosphere communication passage 20 is sucked into the evaporation system through the route of the atmosphere communication passage 20 → the passage switching valve 19 → the canister communication passage 18 as indicated by an arrow in FIG.
[0075]
In the present embodiment (2) described above, immediately after the end of the leak diagnosis, or immediately after the cancellation, the evaporative gas return process is performed to control the passage switching valve 19 to the atmosphere open position side while the evaporative system is in a negative pressure state. The evaporative gas in the atmosphere communication passage 20 can be sucked into the evaporative system through the passage switching valve 19 immediately after the end of the leak diagnosis or immediately after the leakage diagnosis, and the evaporative gas in the atmospheric communication passage 20 is released into the atmosphere. The amount can be reduced. Moreover, if the evaporation gas in the atmosphere communication passage 20 is sucked into the evaporation system through the passage switching valve 19 as in the present embodiment (2), the gas suction flow rate sucked into the evaporation system is There is an advantage that the back purge of the evaporation gas adsorbed in the canister 13 can be promoted as compared with the embodiment (1) using the gap in the negative pressure pump 23.
[0076]
Further, in the present embodiment (2), the passage switching valve 19 is set during the evaporative gas return process in consideration of changes in the evaporative gas desorption characteristics and the intake noise of the canister 13 depending on the gas intake flow rate sucked into the evaporative system. Since the duty control is performed to control the flow rate of the gas sucked into the evaporation system from the atmosphere communication passage 20 side, the back purge of the back purge is promoted while promoting the back purge of the evaporation gas adsorbed in the canister 13. As long as the performance can be ensured, the intake gas noise can be reduced by reducing the actual gas intake flow rate.
[0077]
Furthermore, in the present embodiment (2), focusing on the fact that the gas suction flow rate sucked into the evaporation system from the atmosphere communication path 20 side varies depending on the pressure in the evaporation system and the space volume in the evaporation system. Since the control value (duty ratio) of the gas suction flow rate is set according to the pressure in the system and the space volume in the evaporation system, the gas suction flow rate sucked into the evaporation system from the atmospheric communication path 20 side is set. It can be controlled with high accuracy. In addition, the pressure in the evaporation system can be detected by the pressure sensor 27 for leak diagnosis, and the space volume in the evaporation system can be obtained from the remaining amount of fuel detected by the fuel level sensor 28. There is no need to newly provide sensors for detecting the flow rate of the gas sucked into the evaporation system from the 20 side, and the cost can be reduced.
[0078]
However, a sensor for detecting the gas suction flow rate sucked into the evaporation system is provided, and the duty ratio of the passage switching valve 19 is set so that the gas suction flow rate detected by the sensor matches the target gas suction flow rate. Also good.
[0079]
Further, it is not always necessary to duty-control the passage switching valve 19 during the evaporation gas returning process, and the passage switching valve 19 may be switched to the atmospheric release position (OFF) during the evaporation gas returning process.
[0080]
[Embodiment (3)]
By performing duty control of the passage switching valve 19 as an evaporation gas return process, when the evaporation gas in the atmosphere communication passage 20 is sucked into the evaporation system through the passage through the passage switching valve 19, if the negative pressure pump 23 is stopped, The evaporation gas in the passage 20 is also drawn into the evaporation system from the gap in the negative pressure pump 23.
[0081]
Therefore, in the embodiment (3) of the present invention, as shown in FIG. 17, the gas in the atmosphere communication path 20 is introduced into the suction port portion (negative pressure introduction path 21) of the negative pressure pump 23. A check valve 43 is provided to prevent backflow in the direction of the evaporation system through the gap. In this way, even if the negative pressure pump 23 is stopped during the evaporation gas returning process, only the route through which the gas in the atmosphere communication passage 20 is sucked into the evaporation system from the atmosphere communication passage 20 through the passage switching valve 19 is provided. Therefore, the gas suction flow rate sucked into the evaporation system can be accurately controlled by the duty control of the passage switching valve 19.
[0082]
[Embodiment (4)]
In the embodiment (4) of the present invention, as shown in FIG. 18, whether or not the pressure in the evaporation system changes by temporarily opening the purge control valve 15 immediately after the end of the leak diagnosis or immediately after it is stopped. Thus, the presence or absence of abnormality of the purge control valve 15 is diagnosed, and immediately after the abnormality diagnosis of the purge control valve 15 is completed, an evaporative gas return process for duty-controlling the passage switching valve 19 is executed. In this way, immediately after the end of the leak diagnosis or immediately after it is canceled, the abnormality diagnosis of the purge control valve 15 and the evaporation gas return process can be executed.
[0083]
The evaporative gas returning process is not limited to the evaporative gas returning process in which the passage switching valve 19 is duty-controlled, but the evaporative gas returning process for switching the passage switching valve 19 to the atmospheric release position or the passage switching valve 19 is maintained at the negative pressure introduction position. The evaporation gas returning process for turning off the negative pressure pump 23 may be performed.
[0084]
[Embodiment (5)]
By the way, if the amount of evaporation gas discharged from the evaporation system into the atmosphere communication path 20 by the negative pressure pump 23 during the leak diagnosis is large, the evaporation gas flows out from the atmosphere opening port of the atmosphere communication path 20 into the atmosphere during the leak diagnosis. There is a possibility.
[0085]
As a countermeasure against this, in the embodiment (5) of the present invention, as shown in FIG. 19, an evaporation gas storage section 44 for storing the evaporation gas is provided in the atmosphere communication passage 20. In this way, the space volume for storing the evaporation gas can be expanded by the amount provided by the evaporation gas storage section 44. Therefore, even when the amount of the evaporation gas during the leak diagnosis is large, the evaporation gas is stored in the evaporation gas storage section 44 and the atmospheric gas connection section. The vapor can be stored in the passage 20, and then the vapor in the vapor reservoir 44 and the atmosphere communication channel 20 can be returned to the vapor system by the vapor gas return process. As a result, even when the amount of exhaust gas exhausted during the leak diagnosis is large, the amount of evaporator gas flowing out into the atmosphere from the atmosphere opening port of the atmosphere communication passage 20 can be effectively reduced.
[0086]
As shown in FIG. 20, the evaporation gas reservoir 44 is arranged at a position lower than the atmosphere opening 20a of the atmosphere communication passage 20 so that the connection port 44a with the atmosphere communication passage 20 faces downward. Anyway. Since the evaporative gas is heavier than air, when the position of the evaporative gas reservoir 44 is higher than the atmospheric air outlet 20 a of the atmospheric air communication path 20, the evaporative gas in the atmospheric air communication path 20 is at a position lower than the evaporative gas reservoir 44. The rate of flow toward 20a increases, preventing the flow of the evaporation gas from the atmosphere communication path 20 into the evaporation gas storage section 44, and the original function as the evaporation gas storage section 44 is degraded. On the other hand, if the position of the evaporative gas reservoir 44 is made lower than the atmosphere opening 20a of the atmospheric communication passage 20, the evaporative gas can easily flow from the atmospheric communication passage 20 into the evaporative gas storage portion 44. The function of can be effectively exhibited.
[0087]
Furthermore, if the evaporative gas reservoir 44 is arranged so that the connection port 44a with the atmosphere communication passage 20 faces downward, the evaporative gas in the evaporative gas reservoir 44 is quickly caused to flow down to the atmospheric communication passage 20 during the evaporative gas return process. Can be brought back in.
[0088]
[Embodiment (6)]
In the embodiment (6) of the present invention shown in FIG. 21, an adsorbent 45 that adsorbs the evaporation gas is provided on the side of the negative pressure pump 23 in the filter 22 of the atmospheric communication passage 20. The adsorbent 45 provided in the filter 22 is formed of activated carbon having a pore diameter smaller than that of the adsorbent provided in the canister 13.
[0089]
In this embodiment (6), since the adsorbent 45 is provided in the filter 22 of the atmospheric communication passage 20, the evaporative gas that is about to flow into the atmosphere from the atmospheric opening of the atmospheric communication passage 20 is adsorbed to the adsorbent 45 of the filter 22. The amount of evaporative gas released into the atmosphere can be effectively reduced.
[0090]
In addition, the evaporation gas discharged from the evaporation system 20 into the atmosphere communication path 20 by the negative pressure pump 23 during the leak diagnosis (that is, the evaporation gas that has passed through the canister 13) has a high ratio of low boiling point components (for example, C4 or less). Therefore, as in the present embodiment (6), the adsorbent 45 provided in the filter 22 of the atmospheric communication passage 20 is formed of activated carbon having a pore diameter smaller than that of the adsorbent of the canister 13, thereby The adsorption performance of the evaporation gas can be improved. In addition, if the component has a low boiling point, even if the pores of the adsorbent body 45 are made smaller, the desorption performance is hardly lowered, and the evaporated gas adsorbed by the adsorbent body 45 can be easily back-purged.
[0091]
In each of the above embodiments (1) to (6), when the leak diagnosis is performed, the pressure sensor 27 detects the reference pressure and the pressure in the evaporation system. However, the reference pressure and the pressure in the evaporation system are detected. As the substitute information, the motion characteristic value of the negative pressure pump such as the current, voltage, and rotation speed of the negative pressure pump 23 or the discharge flow rate of the negative pressure pump 23 may be used.
[0092]
In each of the above embodiments (1) to (6), the vane pump is used as the negative pressure pump 23. However, the present invention is not limited to this, and another type of pump such as a Wesco pump may be used. good.
[0093]
In the above embodiments (1) to (6), the present invention is applied to a system that performs a leak diagnosis while the engine is stopped. However, the present invention may be applied to a system that performs a leak diagnosis while the engine is operating. .
[0094]
In addition, according to the present invention, the configuration of the leak diagnosis system such as the evaporation gas purge system and the leak check module 17 may be changed as appropriate, or the specific determination method of the leak diagnosis may be changed as appropriate. The present invention can be applied to any system that performs a leak diagnosis by introducing a negative pressure into the evaporation system with the negative pressure introducing means.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an evaporation gas purge system in an embodiment (1) of the present invention.
FIG. 2 is a configuration diagram of a leak check module and its surroundings showing a state during a reference pressure detection process
FIG. 3 is a configuration diagram of a leak check module and its surroundings showing a state at the time of evaporation system internal pressure detection processing;
FIG. 4 is a configuration diagram of a leak check module and its surroundings showing a state at the time of an evaporative gas returning process of the embodiment (1)
FIG. 5 is a cross-sectional view of a negative pressure pump
FIG. 6 is a time chart showing an execution example of the embodiment (1).
FIG. 7 is a flowchart showing a flow of processing of a leak diagnosis main control program;
FIG. 8 is a flowchart showing a processing flow of a reference pressure detection processing program.
FIG. 9 is a flowchart showing a processing flow of an evaporation system internal pressure detection and leak determination processing program;
FIG. 10 is a flowchart showing a processing flow of an evaporation gas return processing program according to the embodiment (1).
FIG. 11 is a configuration diagram of a leak check module and its surroundings showing a state at the time of evaporative gas return processing in the embodiment (2)
FIG. 12 is a time chart showing an execution example of the embodiment (2).
FIG. 13 is a graph showing the relationship between the evaporation gas desorption characteristics of a canister and the gas suction flow rate.
FIG. 14 is a diagram conceptually showing a map of a flow control coefficient K1.
FIG. 15 is a diagram conceptually showing a map of a flow rate control coefficient K2.
FIG. 16 is a flowchart showing a processing flow of an evaporation gas return processing program according to the embodiment (2).
FIG. 17 is a configuration diagram of a leak check module and its surroundings showing a state at the time of an evaporative gas returning process of the embodiment (3)
FIG. 18 is a time chart showing an execution example of the embodiment (4).
FIG. 19 is a configuration diagram of a leak check module and its surroundings according to the embodiment (5).
FIG. 20 is a configuration diagram of a leak check module and its periphery showing a modification of the embodiment (5)
FIG. 21 is a configuration diagram of a leak check module according to the embodiment (6) and its surroundings;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Fuel tank, 12 ... Evaporative passage, 13 ... Canister, 14 ... Purge passage, 15 ... Purge control valve, 17 ... Leak check module, 18 ... Canister communication passage, 19 ... Passage switching valve, 20 ... Atmospheric communication passage (discharge) Passage), 21 ... negative pressure introduction passage, 22 ... filter, 23 ... negative pressure pump (negative pressure introduction means), 24 ... bypass passage, 25 ... reference orifice (reference hole), 26 ... reference pressure detector, 27 ... pressure Sensor: 28 ... Fuel level sensor, 31 ... ECU (leak diagnostic means), 43 ... Check valve, 44 ... Evaporative gas reservoir, 45 ... Adsorbent.

Claims (5)

燃料タンク内の燃料が蒸発して生じたエバポガスをキャニスタ内に吸着し、該キャニスタ内に吸着されているエバポガスを内燃機関の吸気系にパージするエバポガスパージシステムに適用され、
前記燃料タンク及び前記キャニスタを含むエバポ系内に負圧を導入する負圧導入手段と、該負圧導入手段により前記エバポ系内に負圧を導入して前記エバポ系内の圧力又はそれに相関する情報(以下「エバポ系内圧力情報」という)に基づいて前記エバポ系のリーク診断を行うリーク診断手段とを備えたエバポガスパージシステムのリーク診断装置において、
前記リーク診断手段は、前記リーク診断の終了直後又は中止直後に、前記キャニスタ内に吸着されているエバポガスを内燃機関の吸気系にパージするためのパージ制御弁を一時的に開弁して該パージ制御弁の異常診断を行い、該パージ制御弁の異常診断の終了直後に、該リーク診断中に前記負圧導入手段によって前記エバポ系内から排出通路内に排出されたエバポガスを前記エバポ系内に戻すためのエバポガス戻し処理を行うことを特徴とするエバポガスパージシステムのリーク診断装置。
Applied to an evaporative gas purge system that adsorbs evaporative gas generated by evaporation of fuel in a fuel tank into a canister and purges the evaporative gas adsorbed in the canister into an intake system of an internal combustion engine,
A negative pressure introduction means for introducing a negative pressure into an evaporation system including the fuel tank and the canister, and a negative pressure is introduced into the evaporation system by the negative pressure introduction means to correlate with the pressure in the evaporation system. In a leak diagnosis apparatus for an evaporative gas purge system comprising leak diagnosis means for performing leak diagnosis of the evaporative system based on information (hereinafter referred to as “evaporative system pressure information”),
The leak diagnosis means temporarily opens a purge control valve for purging the evaporation gas adsorbed in the canister to the intake system of the internal combustion engine immediately after the end of the leak diagnosis or immediately after the leak diagnosis. An abnormality diagnosis of the control valve is performed, and immediately after completion of the abnormality diagnosis of the purge control valve, the evaporation gas discharged from the evaporation system into the discharge passage by the negative pressure introduction means during the leak diagnosis is entered into the evaporation system. An apparatus for diagnosing a leak in an evaporation gas purge system, which performs an evaporation gas returning process for returning.
前記排出通路に、エバポガスを一時的に貯溜するエバポガス貯溜部が設けられていることを特徴とする請求項1に記載のエバポガスパージシステムのリーク診断装置。The leak diagnosis apparatus for an evaporative gas purge system according to claim 1, wherein an evaporative gas storage unit for temporarily storing evaporative gas is provided in the exhaust passage. 前記エバポガス貯溜部は、前記排出通路の大気開放口よりも低い位置に配置されて該排出通路との接続口が下向きになるように設けられていることを特徴とする請求項に記載のエバポガスパージシステムのリーク診断装置。 3. The evaporation according to claim 2 , wherein the evaporation gas storage portion is disposed at a position lower than an air opening port of the discharge passage, and is provided so that a connection port with the discharge passage faces downward. Leak diagnostic device for gas purge system. 前記排出通路の大気開放口にフィルタが設けられ、該フィルタのうち前記負圧導入手段側にエバポガスを吸着する吸着体が設けられていることを特徴とする請求項1乃至のいずれかに記載のエバポガスパージシステムのリーク診断装置。Said filter is provided in the atmosphere opening port of the discharge passage, according to any one of claims 1 to 3, characterized in that the adsorbent for adsorbing fuel vapor in the negative pressure introducing means side of the filter is provided Leakage diagnostic device for evaporative gas purge system. 前記フィルタに設けられた吸着体は、前記キャニスタに設けられた吸着体よりも細孔径が小さい活性炭で形成されていることを特徴とする請求項に記載のエバポガスパージシステムのリーク診断装置。The leak diagnosis apparatus for an evaporative gas purge system according to claim 4 , wherein the adsorbent provided in the filter is formed of activated carbon having a pore diameter smaller than that of the adsorbent provided in the canister.
JP2003117873A 2003-04-23 2003-04-23 Evaporative gas purge system leak diagnosis device Expired - Fee Related JP4117839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117873A JP4117839B2 (en) 2003-04-23 2003-04-23 Evaporative gas purge system leak diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117873A JP4117839B2 (en) 2003-04-23 2003-04-23 Evaporative gas purge system leak diagnosis device

Publications (2)

Publication Number Publication Date
JP2004324476A JP2004324476A (en) 2004-11-18
JP4117839B2 true JP4117839B2 (en) 2008-07-16

Family

ID=33497592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117873A Expired - Fee Related JP4117839B2 (en) 2003-04-23 2003-04-23 Evaporative gas purge system leak diagnosis device

Country Status (1)

Country Link
JP (1) JP4117839B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282637A (en) * 2010-12-28 2013-09-04 罗伯特·博世有限公司 Device for selectively regenerating or performing tank leakage diagnosis of a tank ventilation system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562191B2 (en) * 2005-04-08 2010-10-13 株式会社デンソー Fuel vapor treatment equipment
JP2007218161A (en) * 2006-02-16 2007-08-30 Denso Corp Vane type pump device and leak check system using same
JP2008025469A (en) * 2006-07-21 2008-02-07 Suzuki Motor Corp Evaporated fuel control device for internal combustion engine
EP1895144B1 (en) * 2006-09-04 2010-04-14 Ford Global Technologies, LLC Diagnosis of gas leakage
JP2013245653A (en) * 2012-05-29 2013-12-09 Denso Corp Fuel vapor leakage detecting device
JP6040723B2 (en) * 2012-11-19 2016-12-07 株式会社デンソー Eva Pollyk Check System
CN113818974B (en) * 2021-10-13 2022-07-29 亚普汽车部件股份有限公司 Electric control component of fuel system and fuel system control method
CN114033583B (en) * 2021-10-28 2023-01-31 苏州恩都法汽车系统有限公司 Desorption diagnostic device and oil tank leakage diagnostic system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282637A (en) * 2010-12-28 2013-09-04 罗伯特·博世有限公司 Device for selectively regenerating or performing tank leakage diagnosis of a tank ventilation system
CN103282637B (en) * 2010-12-28 2016-06-01 罗伯特·博世有限公司 It is alternatively used for the regeneration of box ventilation system or performs the device of case leak diagnostics

Also Published As

Publication number Publication date
JP2004324476A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4356991B2 (en) Evaporative gas purge system leak diagnosis device
US7213450B2 (en) Evaporated fuel treatment device for internal combustion engine
JP6319036B2 (en) Fuel evaporative gas purge system
US7036359B2 (en) Failure diagnostic system for fuel vapor processing apparatus
US20140299111A1 (en) Venting system for a fuel tank
JP2014156787A (en) Leak diagnosis device for evaporation gas purge system
JP2006336553A (en) Abnormality diagnosing device for evaporation gas purge system
JP2003269265A (en) Failure diagnostic system for fuel vapor purge system
US8850873B2 (en) Evaporated fuel leak detecting apparatus
JP4117839B2 (en) Evaporative gas purge system leak diagnosis device
JP2001012318A (en) Failure diagnostic device for evaporative fuel processing device
JP3664074B2 (en) Abnormality diagnosis device for evaporative gas purge system
JP2004300997A (en) Leakage diagnostic device for evaporated gas purging system
JP4433174B2 (en) Evaporative fuel control device for internal combustion engine
WO2020137322A1 (en) Leakage diagnostic device for evaporated fuel treatment apparatus
JP2004293438A (en) Leak diagnosing device of evaporation gas purging system
JP4356988B2 (en) Evaporative gas purge system leak diagnosis device
JP2004301027A (en) Leakage diagnostic device for evaporation gas purging system
JP2000120495A (en) Evaporated gas purging system
JP4715426B2 (en) Leak diagnostic device for evaporative fuel processing system
JP2005030334A (en) Leakage diagnostic apparatus for evaporation gas purging system
JP2006291728A (en) Leak diagnosis device for evaporated gas purge system
JP3948002B2 (en) Abnormality diagnosis device for evaporative gas purge system
JP3449249B2 (en) Abnormality diagnosis device for evaporative gas purge system
JP2004278409A (en) Leak diagnostic device for evaporated gas purge system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees