JP4715426B2 - Leak diagnostic device for evaporative fuel processing system - Google Patents

Leak diagnostic device for evaporative fuel processing system Download PDF

Info

Publication number
JP4715426B2
JP4715426B2 JP2005281552A JP2005281552A JP4715426B2 JP 4715426 B2 JP4715426 B2 JP 4715426B2 JP 2005281552 A JP2005281552 A JP 2005281552A JP 2005281552 A JP2005281552 A JP 2005281552A JP 4715426 B2 JP4715426 B2 JP 4715426B2
Authority
JP
Japan
Prior art keywords
fuel
temperature
engine
amount
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005281552A
Other languages
Japanese (ja)
Other versions
JP2007092585A (en
Inventor
裕也 石井
毅 露木
一央 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005281552A priority Critical patent/JP4715426B2/en
Publication of JP2007092585A publication Critical patent/JP2007092585A/en
Application granted granted Critical
Publication of JP4715426B2 publication Critical patent/JP4715426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は蒸発燃料処理システムのリーク診断装置に関する。   The present invention relates to a leak diagnosis apparatus for an evaporated fuel processing system.

車両用エンジンには、燃料タンク内で発生した燃料蒸発ガス(以下、「エバポガス」と呼ぶ)をキャニスタ内の活性炭に吸着させておき、所定の運転条件下で、キャニスタとエンジンの吸気通路とを連通する通路に設けたパージコントロールバルブを開弁し、吸気通路の負圧を利用することで、キャニスタ内に吸着されている燃料粒子を活性炭から脱離させてスロットルバルブ下流の吸気通路に導き、燃焼させるようにした蒸発燃料処理システムが備えられている。   In a vehicular engine, fuel evaporative gas (hereinafter referred to as “evaporative gas”) generated in a fuel tank is adsorbed on activated carbon in the canister, and the canister and the intake passage of the engine are connected under predetermined operating conditions. By opening the purge control valve provided in the communicating passage and using the negative pressure of the intake passage, the fuel particles adsorbed in the canister are desorbed from the activated carbon and led to the intake passage downstream of the throttle valve, An evaporative fuel processing system adapted to be combusted is provided.

この場合、燃料タンクから吸気管までの流路途中にリーク孔が存在していたり、パイプの接合部のシールが不良になると、エバポガスが大気中に放出されてしまうので、これを防止するための種々のリーク診断手法が提案されている。   In this case, if there is a leak hole in the middle of the flow path from the fuel tank to the intake pipe or if the seal at the joint of the pipe becomes poor, the evaporative gas will be released into the atmosphere. Various leak diagnosis methods have been proposed.

その一つに、エンジンの作動中ではなく、エンジンの停止後に行うリーク診断(以下、「停車時エバポリーク診断」と呼ぶ)がある。停車時エバポリーク診断は、エンジン停止後に蒸発燃料処理システム内の圧力と大気圧との差圧の推移を検出し、その差圧の変動量に基づいて行われる。   One of them is a leak diagnosis (hereinafter referred to as “evaporation diagnosis when stopped”) that is performed after the engine is stopped, not during engine operation. The stop-time evaporative diagnosis is performed based on the amount of change in the differential pressure by detecting the transition of the differential pressure between the pressure in the evaporated fuel processing system and the atmospheric pressure after the engine is stopped.

この停車時エバポリーク診断は、エンジン停止後の自然放熱による燃料タンク内の温度変化に起因する蒸発燃料処理システム内の圧力変化に基づくものである。そのため、エンジンを作動させてすぐに停止した場合のように燃料タンク内の温度上昇が不十分であるときには、エンジン停止後の温度変化が小さく、したがって、圧力変化も小さいために誤判定の可能性が高くなる。   This stop-evaporation diagnosis is based on a pressure change in the evaporated fuel processing system caused by a temperature change in the fuel tank due to natural heat dissipation after the engine is stopped. Therefore, when the temperature rise in the fuel tank is insufficient, such as when the engine is stopped immediately after being operated, the temperature change after the engine stops is small, and therefore the pressure change is also small. Becomes higher.

そこで、特許文献1には、停車時エバポリーク診断において、外気温センサにより検出される外気温と燃料タンク内の気層温度センサにより検出される気層温度との差の値が所定値よりも小さい場合には、誤判定を防止するためにリーク診断を禁止する蒸発燃料処理システムのリーク診断装置に関する発明が開示されている。
特開2003−113743号公報
Therefore, in Patent Document 1, the value of the difference between the outside air temperature detected by the outside air temperature sensor and the air layer temperature detected by the air layer temperature sensor in the fuel tank is smaller than a predetermined value in the stop-time evaporation policy. In this case, an invention relating to a leak diagnosis apparatus for an evaporated fuel processing system that prohibits leak diagnosis in order to prevent erroneous determination is disclosed.
JP 2003-113743 A

前述した従来の蒸発燃料処理システムのリーク診断装置は、燃料タンク内の気層温度を検出し、気層温度と外気温の差の大小をリーク診断の禁止条件としている。しかしながら、燃料タンク内の圧力変化は、燃料温度の変化に伴う、燃料の飽和蒸気圧の変化によって生じる圧力変化に起因するところが大きく、気層温度の変化による圧力変化は少ない。   The above-described conventional leak diagnosis apparatus for an evaporative fuel processing system detects the air layer temperature in the fuel tank, and sets the difference between the air layer temperature and the outside air temperature as a prohibition condition for leak diagnosis. However, the pressure change in the fuel tank is largely caused by the pressure change caused by the change in the saturated vapor pressure of the fuel accompanying the change in the fuel temperature, and the pressure change due to the change in the gas layer temperature is small.

例えば、気層温度は外気温より高いが、燃料温度は外気温と変わらず、また、燃料タンク内が飽和蒸気圧に達していないような場合には、燃料成分は蒸発し続ける。このような場合には、気層温度が低下していく一方で、燃料成分は蒸発しているので圧力変化が少なくなり、従来のリーク診断手法では誤診断を起こすおそれがあった。   For example, if the air temperature is higher than the outside air temperature, but the fuel temperature is not different from the outside air temperature, and the inside of the fuel tank does not reach the saturated vapor pressure, the fuel component continues to evaporate. In such a case, while the gas layer temperature decreases, the fuel component evaporates, so the pressure change decreases, and the conventional leak diagnosis method may cause a false diagnosis.

本発明はこのような従来の問題点に着目してなされたものであり、その目的は、停車時エバポリーク診断において、走行中に燃料タンク内の燃料が外部から受ける熱量の大小をリーク診断の判定条件とすることで、より正確なリーク診断を行うことのできる蒸発燃料処理システムのリーク診断装置を提供することにある。   The present invention has been made paying attention to such a conventional problem, and its purpose is to determine whether or not the amount of heat received by the fuel in the fuel tank from the outside during traveling is determined in the leak diagnosis in the stop-time evaporative diagnosis. It is an object of the present invention to provide a leak diagnosis apparatus for an evaporative fuel processing system that can perform a more accurate leak diagnosis under the conditions.

本発明の蒸発燃料処理システムのリーク診断装置は、エンジンの停止状態を検出するエンジン停止状態検出手段と、エンジン停止後に蒸発燃料処理システムのリーク診断を行う手段と、燃料タンク内の燃料が外気温のとき、あるいは冷機始動させるときに持つ熱量を基準として、その燃料が外部から受けた受熱量を演算する演算手段と、エンジン停止時に前記演算された受熱量を第一の所定値と比較して前記リーク診断を許可するか否かを判定する判定手段と、燃料タンク内の燃料温度を検出する燃料温度検出手段と、外気温を検出する外気温検出手段と、エンジン水温を検出するエンジン水温検出手段とを備え、前記演算手段は、エンジンが冷機始動したときはエンジン始動時の燃料温度とエンジン停止時の燃料温度に基づいて受熱量を算出し、エンジンが暖機始動したときはエンジン停止時の燃料温度と外気温に基づいて受熱量を算出することを特徴とするThe leak diagnosis apparatus for an evaporated fuel processing system according to the present invention includes an engine stop state detecting means for detecting a stop state of the engine, a means for performing a leak diagnosis of the evaporated fuel processing system after the engine is stopped, and the fuel in the fuel tank is outside air temperature. The calculation means for calculating the amount of heat received by the fuel from the outside with reference to the amount of heat at the time of starting the cold machine, and the calculated amount of heat received when the engine is stopped are compared with a first predetermined value. Determination means for determining whether or not to permit the leak diagnosis, fuel temperature detection means for detecting the fuel temperature in the fuel tank, outside air temperature detection means for detecting the outside air temperature, and engine water temperature detection for detecting the engine water temperature And when the engine is cold-started, the calculation means calculates the amount of heat received based on the fuel temperature when the engine is started and the fuel temperature when the engine is stopped. And, when the engine starts warming up and calculates the heat quantity based on the fuel temperature and the ambient temperature when the engine is stopped.

本発明によれば、エンジンが冷機始動したときはエンジン始動時の燃料温度とエンジン停止時の燃料温度に基づいて算出し、エンジンが暖機始動したときはエンジン停止時の燃料温度と外気温に基づいて算出する受熱量に基づいて、リーク診断を許可するかどうかを判定しているので、誤診断を防止し、正確なリーク診断を行うことができる。 According to the present invention, when the engine starts cold, the fuel temperature is calculated based on the fuel temperature when the engine is started and the fuel temperature when the engine is stopped. When the engine is warm-started, the fuel temperature and the outside air temperature when the engine is stopped are calculated. based on the received quantity of heat is calculated based on, since it is determined whether or not to allow leakage diagnosis, to prevent misdiagnosis, it is possible to perform an accurate leak diagnosis.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明による蒸発燃料処置システムのリーク診断装置を示す構成図である。   FIG. 1 is a block diagram showing a leak diagnosis apparatus for a fuel vapor treatment system according to the present invention.

図1において、1はエンジンで、2はエンジン1の吸気通路、3は同じく排気通路である。吸気通路2には吸入空気量を検出する吸気量センサ4と、その下流に位置して吸入空気量を制御するスロットルバルブ5が設けられる。さらに吸気通路2には、スロットルバルブ5の下流に位置して燃料を噴射する燃料噴射弁6が設置される。燃料噴射弁6からは吸入空気量に対応して燃料が噴射され、これら燃料と空気の混合気をエンジン1で燃焼させることで、エンジン1は出力を発生する。   In FIG. 1, 1 is an engine, 2 is an intake passage of the engine 1, and 3 is an exhaust passage. The intake passage 2 is provided with an intake air amount sensor 4 that detects the intake air amount and a throttle valve 5 that is located downstream of the intake passage 2 and controls the intake air amount. Furthermore, a fuel injection valve 6 that is located downstream of the throttle valve 5 and injects fuel is installed in the intake passage 2. Fuel is injected from the fuel injection valve 6 according to the amount of intake air, and the engine 1 generates an output by burning the fuel / air mixture in the engine 1.

10は前記エンジン1に供給する燃料を貯蔵する燃料タンクであり、燃料タンク10内に発生したエバポガスを一時的に吸着保持し、吸着保持したエバポガスを運転条件によりエンジン1に吸入し燃焼させるために蒸発燃料処理システム100が備えられる。   A fuel tank 10 stores fuel to be supplied to the engine 1 for temporarily adsorbing and holding the evaporated gas generated in the fuel tank 10 and for sucking and holding the absorbed and adsorbed evaporated gas into the engine 1 according to operating conditions. An evaporative fuel processing system 100 is provided.

前記蒸発燃料処理システム100は、エバポガスを吸着保持する活性炭を充填したキャニスタ11を備える。キャニスタ11は燃料タンク10とエバポガス通路12を介して接続され、吸気通路2に対してもスロットルバルブ5の下流側にパージ通路13を介して接続される。   The evaporative fuel processing system 100 includes a canister 11 filled with activated carbon that adsorbs and holds an evaporative gas. The canister 11 is connected to the fuel tank 10 via an evaporation gas passage 12, and is also connected to the intake passage 2 downstream of the throttle valve 5 via a purge passage 13.

パージ通路13には、吸気通路2にパージされるエバポガスの量(以下、「パージ量」と呼ぶ)を調節するためのパージコントロールバルブ7が設けられる。パージコントロールバルブ7は常閉で、バルブの開度を連続的に制御できるように構成され、後述するコントローラ30によって、パージ量に応じた開閉制御が行われる。   The purge passage 13 is provided with a purge control valve 7 for adjusting the amount of evaporation gas purged into the intake passage 2 (hereinafter referred to as “purge amount”). The purge control valve 7 is normally closed and is configured so that the opening degree of the valve can be continuously controlled. The controller 30 described later performs opening / closing control corresponding to the purge amount.

さらに、キャニスタ11は大気開放口9を介して大気に接続されている。大気開放口9には、常開のドレンカットバルブ8が設けられ、その作動はコントローラ30によって制御される。このドレンカットバルブ8は、後述するリーク診断時に閉じて、燃料タンク10とエバポガス通路12とキャニスタ11とキャニスタ11からパージコントロールバルブ7までのパージ通路13とで構成されるエバポ系内を閉空間とする。   Further, the canister 11 is connected to the atmosphere via the atmosphere opening 9. A normally open drain cut valve 8 is provided at the atmosphere opening 9, and its operation is controlled by the controller 30. The drain cut valve 8 is closed at the time of leak diagnosis, which will be described later, and the inside of the evaporation system constituted by the fuel tank 10, the evaporation gas passage 12, the canister 11, and the purge passage 13 from the canister 11 to the purge control valve 7 is defined as a closed space. To do.

また、キャニスタ11とパージコントロールバルブ7の間のパージ通路13には、パージ通路13内の圧力を検出する圧力センサ14が設けられる。この圧力センサ14はリーク診断時に閉空間とされたエバポ系内の圧力に応じた信号をコントローラ30に出力する。
燃料タンク10内には、燃料を圧送する燃料ポンプ21が設けられ、燃料通路22を介して前記燃料噴射弁6に燃料を供給する。また、燃料タンク10内には、燃料温度を検出する燃温センサ15が設けられる。燃温センサ15は燃料タンク10内の燃料温度に応じた信号をコントローラ30に出力する。
The purge passage 13 between the canister 11 and the purge control valve 7 is provided with a pressure sensor 14 that detects the pressure in the purge passage 13. This pressure sensor 14 outputs a signal to the controller 30 in accordance with the pressure in the evaporation system that is closed in the leak diagnosis.
A fuel pump 21 that pumps fuel is provided in the fuel tank 10 to supply the fuel to the fuel injection valve 6 through a fuel passage 22. A fuel temperature sensor 15 that detects the fuel temperature is provided in the fuel tank 10. The fuel temperature sensor 15 outputs a signal corresponding to the fuel temperature in the fuel tank 10 to the controller 30.

コントローラ30にはさらに、吸気量センサ4に内蔵されて吸気温を検出する吸気温センサ17、外気温を検出する外気温センサ18、エンジン水温を検出する水温センサ19の各検出信号、及びイグニッションスイッチ20からの切り替え信号が入力される。   The controller 30 further includes an intake air temperature sensor 17 that is incorporated in the intake air amount sensor 4 to detect the intake air temperature, an outside air temperature sensor 18 that detects the outside air temperature, each detection signal of the water temperature sensor 19 that detects the engine water temperature, and an ignition switch. A switching signal from 20 is input.

コントローラ30は、CPU、ROM、RAM(図示せず)等からなり、所定の運転条件においてパージコントロールバルブ7を開いてキャニスタ11に吸着した燃料を吸気通路2からエンジン1に吸入燃焼させ、エバポガスのパージを行う一方、エンジン停止後にパージコントロールバルブ7とドレンカットバルブ8を開閉制御することで、エバポ系内のリークの有無を診断する停車時エバポリーク診断を行う。   The controller 30 includes a CPU, a ROM, a RAM (not shown), and the like. The purge control valve 7 is opened under predetermined operating conditions, and the fuel adsorbed to the canister 11 is sucked into the engine 1 through the intake passage 2 and burned. On the other hand, after stopping the engine, the purge control valve 7 and the drain cut valve 8 are controlled to be opened and closed, thereby performing a stop-time evaporative diagnosis for diagnosing the presence or absence of leakage in the evaporation system.

さらに、コントローラ30は停車時エバポリーク診断にあたり、車両の走行中に燃料タンク10内の燃料が受けた熱量の大小を判定し、これに基づいてリーク診断を許可するか否かの判定を行うようになっている。   Further, the controller 30 determines the amount of heat received by the fuel in the fuel tank 10 while the vehicle is running, and determines whether or not to permit the leak diagnosis based on the diagnosis of the stop-time evaporation. It has become.

コントローラ30により実行される停車時エバポリーク診断について、図2のフローチャートを参照して詳しく説明する。なお、このフローは所定の単時間毎に繰り返し実行される。   The stop-time evaporation diagnosis executed by the controller 30 will be described in detail with reference to the flowchart of FIG. This flow is repeatedly executed every predetermined single hour.

まず、各トリップ(エンジンを始動してからエンジンを切るまでの一回の走行)の開始時には、初期燃料温度としてトリップ開始時の燃料温度TFIN(燃温センサ15で検出)がストアされている(図示せず)。
その後、トリップが終了すると、図2に示すルーチンが開始され、ステップS101でイグニッションスイッチ(IGNSW)20がオンされていないかどうかを判定する。イグニッションスイッチ20がオンされていなければ、停車時エバポリーク診断を実施するかどうかの判断をするために、ステップS102以降へ進む。イグニッションスイッチ20がオンされていれば、本ルーチンを終了する。
First, at the start of each trip (one run from when the engine is started to when the engine is turned off), the fuel temperature TFIN at the start of the trip (detected by the fuel temperature sensor 15) is stored as the initial fuel temperature ( Not shown).
Thereafter, when the trip is completed, the routine shown in FIG. 2 is started, and it is determined whether or not the ignition switch (IGNSW) 20 is turned on in step S101. If the ignition switch 20 is not turned on, the process proceeds to step S102 and subsequent steps in order to determine whether or not the stop-time evaporative diagnosis is performed. If the ignition switch 20 is on, this routine is terminated.

次に、ステップS102でトリップ終了時の燃料温度TFOF(燃温センサ15で検出)をストアする。   Next, in step S102, the fuel temperature TFOF at the end of the trip (detected by the fuel temperature sensor 15) is stored.

ステップS103では、始動時のエンジン水温(水温センサ19で検出)及び吸気温度(吸気温センサ17で検出)から、このルーチンを実行する前のトリップが冷機時走行開始(COLDSTART)であったのか、暖機後走行開始であったのかを判断する。具体的には、始動時水温と吸気温度の差が所定値以下で冷機時走行開始と判断し、所定値以上で暖機後走行開始と判断する。   In step S103, from the engine water temperature at the time of start (detected by the water temperature sensor 19) and the intake air temperature (detected by the intake air temperature sensor 17), whether the trip before executing this routine was the cold start running (COLDSTART), It is determined whether the vehicle has started running after warming up. Specifically, when the difference between the starting water temperature and the intake air temperature is equal to or less than a predetermined value, it is determined that the vehicle starts traveling when cold, and when it is equal to or greater than the predetermined value, it is determined that traveling after warming is started.

前回のトリップから十分に時間が経過している場合、すなわち冷機時走行開始の場合は、始動時水温は外気温にほぼ等しくなるため、始動時水温と吸気温の差が小さくなる。一方、前回のトリップからあまり時間が経っていないような場合、すなわち暖機後走行開始の場合は、始動時水温は外気温に比べて高くなっており、始動時水温と吸気温の差は大きくなるためである。   When a sufficient time has elapsed since the previous trip, that is, when the vehicle starts running when cold, the difference between the starting water temperature and the intake air temperature is small because the starting water temperature is approximately equal to the outside air temperature. On the other hand, when the time has not passed since the previous trip, that is, when the vehicle starts running after warming up, the starting water temperature is higher than the outside air temperature, and the difference between the starting water temperature and the intake air temperature is large. It is to become.

そして、ルーチン実行前のトリップが冷機時走行開始であると判断されれば、ステップS104へ進む。同様に暖機後走行開始であると判断されれば、ステップS106へ進む。   If it is determined that the trip before the execution of the routine is the start of running when cold, the process proceeds to step S104. Similarly, if it is determined that running after warm-up is started, the process proceeds to step S106.

ステップS104では、冷機時走行開始と判断された場合に、外気温を基準として走行中に燃料が外部から受ける熱量(以下、「燃料受熱量」と呼ぶ)CDTFが演算される。   In step S104, the amount of heat received by the fuel from the outside during traveling based on the outside air temperature (hereinafter referred to as “fuel heat receiving amount”) CDTF is calculated when it is determined that the vehicle is traveling cold.

一般に、燃料タンク10内の燃料は、走行中に排気系などからの放熱等により外部から熱量を受け、温度が上昇する。本実施の形態では、冷機時走行開始と判断された場合の燃料受熱量CDTFは、トリップ開始時の燃料温度TFINとトリップ終了時の燃料温度TFOFとの温度差、すなわち走行中の燃料温度変化としている。   In general, the fuel in the fuel tank 10 receives an amount of heat from the outside due to heat radiation from an exhaust system or the like during traveling, and the temperature rises. In this embodiment, the amount of fuel heat received CDTF when it is determined that the vehicle starts traveling when cold is the temperature difference between the fuel temperature TFIN at the start of the trip and the fuel temperature TFOF at the end of the trip, that is, the fuel temperature change during the travel. Yes.

冷機時走行開始の場合、トリップ開始時の燃料温度TFINは、ほぼ外気温と同じと推定できるためトリップ終了時の燃料温度TFOFとの温度差を燃料受熱量とすることができるからである。   This is because, in the case of the start of traveling when the vehicle is cold, the fuel temperature TFIN at the start of the trip can be estimated to be substantially the same as the outside air temperature, so that the temperature difference from the fuel temperature TFOF at the end of the trip can be used as the fuel heat receiving amount.

ステップS105では、ステップS104で演算した燃料受熱量CDTFが所定値DOKより大きいか小さいかを判断する。燃料受熱量CDTFが所定値DOK以上であった場合は、停車時エバポリーク診断を実施するにあたり、必要十分な熱量が燃料タンク10内の燃料に蓄えられているとして、ステップS109に進み、停車時エバポリーク診断が実施される。   In step S105, it is determined whether the fuel heat receiving amount CDTF calculated in step S104 is larger or smaller than a predetermined value DOK. If the fuel heat receiving amount CDTF is equal to or greater than the predetermined value DOK, it is assumed that a sufficient amount of heat is stored in the fuel in the fuel tank 10 for performing the stop-evaporation diagnosis, and the process proceeds to step S109. Diagnosis is performed.

必要十分な熱量が燃料タンク10内の燃料に蓄えられていれば、エンジン停止後に外気との熱交換等によって降下する燃料温度の温度変化が大きく、したがって圧力変化も大きくなるため、エバポリーク診断の誤診断を防ぎ、診断精度をあげることができるからである。   If the necessary and sufficient amount of heat is stored in the fuel in the fuel tank 10, the temperature change of the fuel temperature that drops due to heat exchange with the outside air after the engine is stopped is large, and therefore the pressure change is also large. This is because diagnosis can be prevented and diagnosis accuracy can be improved.

逆に、燃料受熱量CDTFが所定値DOK以下であった場合は、停車時エバポリーク診断を実施するにあたり、必要十分な熱量が燃料タンク内の燃料に蓄えられていないとして、リーク診断の実施が禁止される。   Conversely, if the fuel heat received amount CDTF is less than or equal to the predetermined value DOK, it is prohibited to perform leak diagnosis on the assumption that a sufficient amount of heat is not stored in the fuel in the fuel tank when performing the evaporative diagnosis at the time of stopping. Is done.

一方、上述したようにステップS103で暖機後走行開始であると判断された場合は、ステップS106に進む。そして、ステップS106において、外気温センサ18で検出される外気温AMBTEMPがストアされる。   On the other hand, if it is determined in step S103 that the vehicle has started warming up as described above, the process proceeds to step S106. In step S106, the outside air temperature AMBTEMP detected by the outside air temperature sensor 18 is stored.

その後、ステップS107で暖機後走行開始であると判断された場合の燃料受熱量HDTFが演算される。本実施の形態では、暖機後走行開始と判断された場合の燃料受熱量HDTFは、トリップ終了時の燃料温度TFOFと外気温AMBTEMPとの温度差としている。   Thereafter, the fuel heat receiving amount HDTF when it is determined in step S107 that the vehicle has started warming up is calculated. In the present embodiment, the fuel heat receiving amount HDTF when it is determined that the vehicle has started running after warm-up is the temperature difference between the fuel temperature TFOF at the end of the trip and the outside air temperature AMBTEMP.

暖機後走行開始の場合には、すでに外気温と比べてトリップ開始時の燃料温度が上がっている場合がある。この場合、燃料はすでに熱量を持っているので、トリップ開始時の燃料温度TFINとトリップ終了時の燃料温度TFOFとの温度差を燃料受熱量とできない。なぜならば、走行中に外部から受ける熱量によって上昇する燃料温度は、ある温度まで上昇すると、受熱と放熱のバランスから均衡し、それ以上は上昇しなくなる。したがって、仮にトリップ開始時の燃料温度TFINとトリップ終了時の燃料温度TFOFとの温度差を燃料受熱量とすれば、燃料受熱量が少ないとして診断が禁止される場合があり、診断頻度を確保できなくなるからである。   When the vehicle starts running after warming up, the fuel temperature at the start of the trip may already be higher than the outside air temperature. In this case, since the fuel already has heat, the temperature difference between the fuel temperature TFIN at the start of the trip and the fuel temperature TFOF at the end of the trip cannot be the amount of heat received by the fuel. This is because if the fuel temperature that rises due to the amount of heat received from the outside during traveling rises to a certain temperature, it balances the balance between heat reception and heat dissipation and does not rise any further. Therefore, if the temperature difference between the fuel temperature TFIN at the start of the trip and the fuel temperature TFOF at the end of the trip is defined as the amount of received heat, the diagnosis may be prohibited because the amount of received heat is small, and the diagnosis frequency can be secured. Because it disappears.

そこで、暖機後走行開始の場合には、トリップ終了時の燃料温度TFOFと外気温AMBTEMPとの温度差を燃料受熱量としている。   Therefore, in the case of running after warm-up, the temperature difference between the fuel temperature TFOF at the end of the trip and the outside air temperature AMBTEMP is used as the fuel heat receiving amount.

ステップS108では、ステップS107で演算した燃料受熱量HDTFが所定値DDOKより大きいか小さいかを判断する。   In step S108, it is determined whether the fuel heat receiving amount HDTF calculated in step S107 is larger or smaller than a predetermined value DDOK.

燃料受熱量HDTFが所定値DDOK以上であった場合は、停車時エバポリーク診断を実施するにあたり、必要十分な熱量が燃料タンク内の燃料に蓄えられているとして、ステップS109に進み、停車時エバポリーク診断が実施される。   If the fuel heat receiving amount HDTF is equal to or greater than the predetermined value DDOK, it is determined that the necessary and sufficient amount of heat is stored in the fuel in the fuel tank when performing the stop-time evaporation diagnosis. Is implemented.

逆に、燃料受熱量CDTFが所定値DDOK以下であった場合は、停車時エバポリーク診断を実施するにあたり、必要十分な熱量が燃料タンク内の燃料に蓄えられていないとして、リーク診断の実施が禁止される。   On the other hand, if the fuel heat received amount CDTF is less than or equal to the predetermined value DDOK, it is prohibited to perform leak diagnosis on the assumption that a sufficient amount of heat is not stored in the fuel in the fuel tank when performing the evaporative diagnosis at the time of stopping. Is done.

上述したように、冷機時走行開始か暖機後走行開始かで、燃料受熱量の検出手段が異なっている。これは、冷機時走行開始の場合、トリップ開始時の燃料温度TFINは、ほぼ外気温と同じと推定できるためトリップ終了時の燃料温度TFOFとの温度差を燃料受熱量とすることができる。しかし、暖機後走行開始の場合には、すでに外気温と比べてトリップ開始時の燃料温度が上がっている場合がある。この場合、燃料はすでに熱量を持っているので、トリップ開始時の燃料温度TFINとトリップ終了時の燃料温度TFOFとの温度差と、走行中の燃料受熱量との相関関係が薄らぐからである。   As described above, the means for detecting the amount of received fuel differs depending on whether the vehicle starts traveling when the vehicle is cold or after the vehicle is warmed up. This is because, in the case of cold start, the fuel temperature TFIN at the start of the trip can be estimated to be substantially the same as the outside air temperature, so that the temperature difference from the fuel temperature TFOF at the end of the trip can be used as the fuel heat receiving amount. However, when the vehicle starts running after warming up, the fuel temperature at the start of the trip may already be higher than the outside air temperature. In this case, since the fuel already has a heat amount, the correlation between the temperature difference between the fuel temperature TFIN at the start of the trip and the fuel temperature TFOF at the end of the trip and the amount of heat received by the fuel during traveling is weakened.

以上説明した、本実施の形態の蒸発燃料処理システムのリーク診断装置によれば、燃料タンク内の圧力変化の直接的要因である走行中の燃料受熱量をリーク診断の許可条件としている。したがって、リーク診断が許可された場合には、燃料温度変化に伴う十分な圧力変化が得られるので、正確なリーク診断を行うことができる。   According to the leak diagnosis apparatus for an evaporative fuel processing system of the present embodiment described above, the fuel heat reception amount during traveling, which is a direct factor of the pressure change in the fuel tank, is set as a permit condition for leak diagnosis. Accordingly, when the leak diagnosis is permitted, a sufficient pressure change accompanying the fuel temperature change can be obtained, so that an accurate leak diagnosis can be performed.

また、冷機時走行開始の場合には、トリップ開始時の燃料温度とトリップ終了時の燃料温度の差を燃料受熱量としているので、外気温とトリップ終了時の燃料温度の差を燃料受熱量とする場合と比べて、より正確な燃料温度変化を推定でき、誤診断を起こしやすいときには、的確にリーク診断を禁止することができる。   In the case of cold start, the difference between the fuel temperature at the start of the trip and the fuel temperature at the end of the trip is used as the fuel heat reception amount, so the difference between the outside air temperature and the fuel temperature at the end of the trip is the fuel heat reception amount. Compared to the case where the fuel temperature is changed, a more accurate fuel temperature change can be estimated, and when a misdiagnosis is likely to occur, the leak diagnosis can be accurately prohibited.

さらに、停車時エバポリーク診断実行中は、常開のドレンカットバルブ8を閉弁するために通電しなくてはならないので、バッテリの負担が大きくなる。したがって、誤診断を起こしやすいときにはリーク診断を禁止することで、バッテリの無駄な消費を防止することができる。   Further, during execution of the stop-time evaporative diagnosis, it is necessary to energize in order to close the normally open drain cut valve 8, which increases the burden on the battery. Therefore, by prohibiting leak diagnosis when misdiagnosis is likely to occur, wasteful consumption of the battery can be prevented.

本発明は、上記の実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々たる態様での実施が可能である。   The present invention is not limited to the above embodiment, and can be implemented in various modes without departing from the scope of the invention.

例えば、図2のステップS103では、冷機時走行開始であったかどうかの判定を始動時水温と吸気温度の差から判定しているが、これを始動時水温と外気温の差から判定してもよい。また、ステップS106でストアされる外気温を吸気温センサ17で検出してもよい。   For example, in step S103 of FIG. 2, the determination as to whether or not the vehicle has started running when cold is determined from the difference between the starting water temperature and the intake air temperature, but this may be determined from the difference between the starting water temperature and the outside air temperature. . Further, the outside air temperature stored in step S106 may be detected by the intake air temperature sensor 17.

また、冷機時走行開始か暖機後走行開始かを判断せずに、トリップ終了時の燃料温度TFOFをストアした後、トリップ終了時の燃料温度TFOFと外気温AMBTEMPとの温度差を燃料受熱量とし、その燃料受熱量の大小から停車時エボパリーク診断を実施するか否かを判断させるようにしてもよい。すなわち、図2において、ステップS102の後、ステップS103を実施せずステップS106に移行し、ステップS107、S108、S109の処理を行う。   In addition, after storing the fuel temperature TFOF at the end of the trip without determining whether to start traveling when the engine is cold or after warming up, the temperature difference between the fuel temperature TFOF and the outside temperature AMBTEMP at the end of the trip is determined as the amount of received heat. In addition, it may be determined whether or not to perform the evaparak diagnosis when the vehicle stops based on the amount of the heat received by the fuel. That is, in FIG. 2, after step S102, step S103 is not performed, the process proceeds to step S106, and the processes of steps S107, S108, and S109 are performed.

燃料受熱量は外気温を基準としてその大小を判断しているため、トリップ終了時の燃料温度TFOFと外気温AMBTEMPとの温度差を画一的に走行中の燃料受熱量とすれば、冷機時走行開始か否かの判断を行わずとも、リーク診断を実施するために必要十分な熱量が蓄えられているか否かを判断できるからである。   Since the amount of fuel heat received is determined based on the outside air temperature, if the temperature difference between the fuel temperature TFOF at the end of the trip and the outside air temperature AMBTEMP is defined as the amount of fuel heat received during traveling, This is because it is possible to determine whether or not a necessary and sufficient amount of heat has been stored in order to carry out the leak diagnosis without determining whether or not to start running.

本発明は、車両に搭載され、燃料タンク内の燃料が蒸発して生じた燃料蒸発ガスを処理する装置に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in an apparatus that is mounted on a vehicle and processes fuel evaporative gas generated by evaporating fuel in a fuel tank.

本発明による蒸発燃料処理システムのリーク診断装置の構成を示す図である。It is a figure which shows the structure of the leak diagnostic apparatus of the evaporative fuel processing system by this invention. 停車時エバポリーク診断を実行する際のフローチャートである。It is a flowchart at the time of performing the evaporative diagnosis at the time of a stop.

符号の説明Explanation of symbols

100 蒸発燃料処理システム
1 エンジン
2 吸気通路
10 燃料タンク
11 キャニスタ
15 燃料温度センサ(燃料温度検出手段)
17 吸気温センサ(吸気温検出手段)
18 外気温センサ(外気温検出手段)
19 水温センサ(エンジン水温検出手段)
20 イグニッションスイッチ(エンジン停止状態検出手段)
30 コントローラ
DESCRIPTION OF SYMBOLS 100 Evaporative fuel processing system 1 Engine 2 Intake passage 10 Fuel tank 11 Canister 15 Fuel temperature sensor (fuel temperature detection means)
17 Intake air temperature sensor (intake air temperature detection means)
18 Outside air temperature sensor (outside air temperature detecting means)
19 Water temperature sensor (Engine water temperature detection means)
20 Ignition switch (Engine stop state detection means)
30 controller

Claims (3)

燃料タンク内の蒸発燃料を吸気通路にパージする蒸発燃料処理システムにおいて、
エンジンの停止状態を検出するエンジン停止状態検出手段と、
エンジン停止後に蒸発燃料処理システムのリーク診断を行う手段と、
燃料タンク内の燃料が外気温のとき、あるいは冷機始動させるときに持つ熱量を基準として、その燃料が外部から受けた受熱量を演算する演算手段と、
エンジン停止時に前記演算された受熱量を第一の所定値と比較して前記リーク診断を許可するか否かを判定する判定手段と、
燃料タンク内の燃料温度を検出する燃料温度検出手段と、
外気温を検出する外気温検出手段と、
エンジン水温を検出するエンジン水温検出手段とを備え、
前記演算手段は、
エンジンが冷機始動したときはエンジン始動時の燃料温度とエンジン停止時の燃料温度に基づいて受熱量を算出し、
エンジンが暖機始動したときはエンジン停止時の燃料温度と外気温に基づいて受熱量を算出することを特徴とする蒸発燃料処理システムのリーク診断装置。
In an evaporative fuel processing system for purging evaporative fuel in a fuel tank to an intake passage,
Engine stop state detecting means for detecting the engine stop state;
Means for performing a leak diagnosis of the evaporated fuel processing system after the engine is stopped;
Calculation means for calculating the amount of heat received from the outside of the fuel tank when the temperature of the fuel in the fuel tank is at the outside temperature or when starting the cold machine,
A determination means for comparing the calculated amount of heat received when the engine is stopped with a first predetermined value to determine whether to permit the leak diagnosis;
Fuel temperature detecting means for detecting the fuel temperature in the fuel tank;
An outside air temperature detecting means for detecting the outside air temperature;
An engine water temperature detecting means for detecting the engine water temperature,
The computing means is
When the engine starts cold, the amount of heat received is calculated based on the fuel temperature when the engine is started and the fuel temperature when the engine is stopped.
A leak diagnosis apparatus for an evaporative fuel processing system, wherein when the engine is warmed up, the amount of heat received is calculated based on a fuel temperature and an outside air temperature when the engine is stopped .
前記演算手段は、
エンジン始動時のエンジン水温と外気温との差が第二の所定値未満のときは、エンジン始動時の燃料温度とエンジン停止時の燃料温度に基づいて受熱量を算出し、
エンジン始動時のエンジン水温と外気温との差が第二の所定値以上のときは、エンジン停止時の燃料温度と外気温に基づいて受熱量を算出することを特徴とする請求項1に記載の蒸発燃料処理システムのリーク診断装置。
The computing means is
When the difference between the engine water temperature at engine start and the outside air temperature is less than the second predetermined value, the amount of heat received is calculated based on the fuel temperature at engine start and the fuel temperature at engine stop,
The amount of heat received is calculated based on the fuel temperature and the outside air temperature when the engine is stopped when the difference between the engine water temperature at the time of starting the engine and the outside air temperature is a second predetermined value or more. Diagnostic device for evaporative fuel treatment system.
前記判定手段は、
受熱量が第一の所定値以上のときはリーク診断を許可し、受熱量が第一の所定値未満のときはリーク診断を禁止することを特徴とする請求項1あるいは2に記載の蒸発燃料処理システムのリーク診断装置。
The determination means includes
When heat amount of the first predetermined value or more to allow the leakage diagnosis, the evaporated fuel of claim 1 or 2 heat amount when less than a first predetermined value and inhibits the leakage diagnosis Leak diagnostic device for processing system.
JP2005281552A 2005-09-28 2005-09-28 Leak diagnostic device for evaporative fuel processing system Active JP4715426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281552A JP4715426B2 (en) 2005-09-28 2005-09-28 Leak diagnostic device for evaporative fuel processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281552A JP4715426B2 (en) 2005-09-28 2005-09-28 Leak diagnostic device for evaporative fuel processing system

Publications (2)

Publication Number Publication Date
JP2007092585A JP2007092585A (en) 2007-04-12
JP4715426B2 true JP4715426B2 (en) 2011-07-06

Family

ID=37978601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281552A Active JP4715426B2 (en) 2005-09-28 2005-09-28 Leak diagnostic device for evaporative fuel processing system

Country Status (1)

Country Link
JP (1) JP4715426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10184430B2 (en) 2015-06-23 2019-01-22 Nissan Motor Co., Ltd. Diagnostic device for evaporated fuel processing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5012400B2 (en) * 2007-10-18 2012-08-29 株式会社ジェイテクト Driving force transmission device
US10112486B2 (en) 2016-09-21 2018-10-30 Hyundai Motor Company Apparatus for detecting gas leakage of a vehicle equipped with a fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305661A (en) * 1994-05-09 1995-11-21 Nissan Motor Co Ltd Diagnostic device for evaporated fuel treatment device
JP2003035215A (en) * 2001-07-25 2003-02-07 Denso Corp Fuel temperature estimating device and abnormality diagnosing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305661A (en) * 1994-05-09 1995-11-21 Nissan Motor Co Ltd Diagnostic device for evaporated fuel treatment device
JP2003035215A (en) * 2001-07-25 2003-02-07 Denso Corp Fuel temperature estimating device and abnormality diagnosing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10184430B2 (en) 2015-06-23 2019-01-22 Nissan Motor Co., Ltd. Diagnostic device for evaporated fuel processing device

Also Published As

Publication number Publication date
JP2007092585A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
US7272488B2 (en) Leak detecting device for fuel vapor treatment unit
US7484501B2 (en) Fuel vapor treatment apparatus
JP4815972B2 (en) Leak diagnostic device for evaporative fuel processing system
JP2007231814A (en) Leak diagnosis device
JP2007218122A (en) Leakage diagnosis device
JP2007231813A (en) Fuel property judgment device, leak inspection device, and fuel injection quantity control device
JP2011252466A (en) Purge device for purging internal combustion engine during idle stop
JP2014156787A (en) Leak diagnosis device for evaporation gas purge system
JP2005030291A (en) Vehicular control device
JP4715427B2 (en) Leak diagnostic device for evaporative fuel processing system
JP4337730B2 (en) Evaporative fuel treatment device leak diagnosis device
JP2018162737A (en) Evaporative fuel treatment device
JP4622707B2 (en) Evaporative gas processing equipment
JP2009008012A (en) Evaporated fuel treatment device
JP4715426B2 (en) Leak diagnostic device for evaporative fuel processing system
JPH09137756A (en) Failure diagnostic device for evaporated fuel transpiration preventive device of internal combustion engine and fuel supplying midst detection device
JP2007008386A (en) Fuel remaining amount calculating device for vehicle
JP4567534B2 (en) Vehicle control device
JPH07269419A (en) Evaporated fuel treatment device
JP2007205322A (en) Abnormality detector for vaporized fuel treatment device
JP2007009849A (en) Oil supply detection device of vehicle
JP2007085230A (en) Oil filler port opening detector for vaporized fuel processing system
JP4687508B2 (en) Evaporated fuel processing apparatus and evaporated fuel processing method
JP4602169B2 (en) Vehicle control device
JP2004270501A (en) Evaporated fuel treating device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R150 Certificate of patent or registration of utility model

Ref document number: 4715426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3