JP3948002B2 - Abnormality diagnosis device for evaporative gas purge system - Google Patents

Abnormality diagnosis device for evaporative gas purge system Download PDF

Info

Publication number
JP3948002B2
JP3948002B2 JP01217198A JP1217198A JP3948002B2 JP 3948002 B2 JP3948002 B2 JP 3948002B2 JP 01217198 A JP01217198 A JP 01217198A JP 1217198 A JP1217198 A JP 1217198A JP 3948002 B2 JP3948002 B2 JP 3948002B2
Authority
JP
Japan
Prior art keywords
pressure
evaporation gas
purge system
gas purge
fuel tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01217198A
Other languages
Japanese (ja)
Other versions
JPH11210568A (en
Inventor
摩島  嘉裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP01217198A priority Critical patent/JP3948002B2/en
Priority to US09/204,141 priority patent/US6148803A/en
Publication of JPH11210568A publication Critical patent/JPH11210568A/en
Application granted granted Critical
Publication of JP3948002B2 publication Critical patent/JP3948002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、燃料タンク内の燃料が蒸発して生じたエバポガス(燃料蒸発ガス)を内燃機関の吸気管にパージ(放出)するエバポガスパージシステムの異常の有無を診断するエバポガスパージシステムの異常診断装置に関するものである。
【0002】
【従来の技術】
従来より、エバポガスパージシステムにおいては、燃料タンク内から発生するエバポガスが大気中に漏れ出すことを防止するため、燃料タンク内のエバポガス通路を通してキャニスタ内に吸着すると共に、このキャニスタ内に吸着されているエバポガスを内燃機関の吸気管へパージするパージ通路の途中にパージ制御弁を設け、内燃機関の運転状態に応じてパージ制御弁の開閉を制御することによって、キャニスタから吸気管へパージするエバポガスのパージ流量を制御するようになっている。このエバポガスパージシステムから大気中にエバポガスが漏れる異常が長期間放置されるのを防止するために、エバポガスの漏れを早期に検出する必要がある。
【0003】
そこで、特開平5−125997号公報に示すように、燃料タンク内からパージ制御弁までのエバポガスパージ系内の圧力を検出する圧力センサを設け、エバポガスパージ系内に大気圧を導入してエバポガスパージ系を密閉した状態で、エバポガスパージ系内の大気圧からの圧力変化量ΔP1 を検出した後、パージ制御弁を一時的に開弁してエバポガスパージ系内に負圧を導入してエバポガスパージ系を密閉した状態で、エバポガスパージ系の負圧からの圧力変化量ΔP2 を検出し、これら2回の圧力変化量ΔP1 ,ΔP2 を比較して、エバポガスパージ系の漏れを診断するようにしたものがある。
【0004】
【発明が解決しようとする課題】
ところで、エバポガスパージ系が正常な場合の圧力変化は、燃料の蒸発により生じるものであるから、燃料の蒸発量(エバポガスの発生量)が少なくなるほど圧力変化量が小さくなる。燃料の蒸発は、エバポガス成分の分圧が飽和蒸気圧より低いために生じるものであるから、エバポガス成分の分圧と飽和蒸気圧との差圧が小さくなるほど、燃料の蒸発量が少なくなって圧力変化量が小さくなり、エバポガス成分の分圧が飽和蒸気圧まで上昇すると、それ以上は、燃料が蒸発しなくなり、エバポガスパージ系の圧力が変化しなくなる。
【0005】
圧力変化測定開始時のエバポガス成分の分圧は、燃料温度等の燃料系の状態の影響を受けて変化するため、圧力変化量の測定値が測定開始時の燃料系の状態によって変化してしまう。この結果、圧力変化量に基づいて行う異常診断が燃料系の状態の影響を受けてしまい、これが異常診断精度を低下させる原因となっている。
【0006】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、燃料系の状態の影響を受けずに、エバポガスパージ系の異常診断を精度良く行うことができるエバポガスパージシステムの異常診断装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1のエバポガスパージシステムの異常診断装置によれば、異常診断手段は、燃料タンク内のエバポガス成分の分圧が飽和蒸気圧に近いと推定されるときに、エバポガスパージ系の圧力変化を測定する前に、燃料タンク内のエバポガスを放出してエバポガス濃度を低減する操作(以下「エバポガス濃度低減操作」という)を行う。このようにすれば、燃料タンク内のエバポガス成分の分圧が飽和蒸気圧に近い場合でも、圧力変化測定前にエバポガスパージ系内のエバポガス成分の分圧と飽和蒸気圧との差圧を十分に大きくすることができ、燃料系の状態の影響を受けずに、エバポガスパージ系の異常診断を精度良く行うことができる。しかも、エバポガス成分の分圧が飽和蒸気圧と比較して十分に低い(つまりエバポガス成分の分圧と飽和蒸気圧との差が大きい)と推定される場合には、エバポガス濃度低減操作を省略して、エバポガスパージ系の圧力変化を測定することができるので、エバポガスパージ系の異常診断の所要時間を短くすることができ、迅速な異常診断を行うことができる。
【0008】
この場合、エバポガスパージ系の圧力変化の測定は、エバポガスパージ系内に大気圧を導入した状態からの圧力変化の測定と、所定圧力を導入した状態からの圧力変化の測定との両方を行っても良いし、いずれか一方のみを行っても良いが、大気圧からの圧力変化の測定は、所定圧力からの圧力変化の測定と比較して、測定開始時のエバポガス成分の分圧と飽和蒸気圧との差圧が小さいため、燃料系の状態の影響を受けやすい。
【0009】
従って、請求項2のように、エバポガス濃度低減操作を行う際に、エバポガスパージ系内の圧力を所定圧力に変化させて燃料タンク内のエバポガスを放出した後、大気圧近傍に戻して、大気圧からの圧力変化の測定を行うようにすれば良い。このようにすれば、燃料系の状態の影響を受けずに、大気圧からの圧力変化を精度良く測定することができる。
【0010】
また、大気圧からの圧力変化と、負圧からの圧力変化の両方を測定する場合には、いずれを先に行っても良いが、負圧からの圧力変化の測定を先に行う場合には、請求項3のように、負圧からの圧力変化の測定を行ってから所定時間経過後にエバポガス濃度低減操作を行った後に大気圧からの圧力変化の測定を行うようにすれば良い。つまり、負圧からの圧力変化の測定を行ってから大気圧付近に戻すと、エバポガスパージ系内のエバポガス成分が急激に飽和状態となり、暫くの間は、エバポガスパージ系内の状態が不安定になるため、エバポガスパージ系内の状態が安定するまでの所定時間が経過するのを待って、エバポガス濃度低減操作を行うことで、圧力変化測定前に、燃料タンク内のエバポガス濃度を確実に低減させるものである。
【0011】
また、エバポガス濃度低減操作の終了時にエバポガスパージ系内の圧力を大気圧近傍に戻す際に、請求項4のように、キャニスタ閉塞手段を開放し且つパージ制御弁を閉鎖するようにしたり、或は、請求項5のように、キャニスタ閉塞手段及びパージ制御弁の両方を開放するようにしても良い。いずれの場合も、キャニスタ閉塞手段を開放することで、エバポガスパージ系内に大気圧を導入できる。このとき、請求項4では、大気圧導入時にパージ制御弁を閉鎖することで、エバポガスパージ系内のエバポガスが吸気管内に吸入されることを防止し、一方、請求項5では、大気圧導入時にパージ制御弁を開放することで、キャニスタ内に吸着したエバポガスが燃料タンク内へ戻ることを防止する。
【0012】
ところで、エバポガスパージ系内のエバポガス成分の分圧が飽和蒸気圧と比較して十分に低ければ、圧力変化測定前にエバポガス濃度低減操作を行う必要がない。
【0013】
そこで、請求項6のように、燃料温度判定手段で判定した燃料温度とその変化量の少なくとも一方に基づいてエバポガス濃度低減操作を実行するか省略するかを判定するようにしても良い。つまり、燃料温度やその変化量を基に、エバポガス成分の分圧が飽和蒸気圧と比較して十分に低いと推定される場合には、エバポガス濃度低減操作を省略して、圧力変化の測定を行う。これにより、エバポガスパージ系の異常診断の所要時間を短くすることができる。
【0014】
また、請求項7のように、異常診断を行う前に、エバポガスパージ系内の圧力を大気圧近傍に調整して圧力変化を測定する予備測定を1回又は複数回行い、その測定結果に基づいてエバポガス濃度低減操作を実行するか省略するかを判定するようにしても良い。つまり、予備測定により、エバポガスパージ系内のエバポガス成分の分圧が飽和蒸気圧と比較して十分に低いと推定されれば、エバポガス濃度低減操作を省略する。これにより、エバポガス濃度低減操作を必要最小限にとどめることができる。
【0015】
【発明の実施の形態】
[実施形態(1)]
以下、本発明の実施形態(1)を図1乃至図5に基づいて説明する。まず、図1に基づいてシステム全体の概略構成を説明する。エンジン11の吸気管12の上流側にはエアクリーナ13が設けられ、このエアクリーナ13を通過した空気がスロットルバルブ14を通してエンジン11の各気筒に吸入される。スロットルバルブ14の開度は、アクセルペダル15の踏込み量によって調節される。また、吸気管12には、各気筒毎に燃料噴射弁16が設けられている。各燃料噴射弁16には、燃料タンク17内の燃料(ガソリン)が燃料ポンプ18により燃料配管19を介して送られてくる。燃料タンク17には、燃料タンク17内の圧力を検出する半導体圧力センサ等の圧力センサ20が設けられている。
【0016】
次に、エバポガスパージシステム21の構成を説明する。燃料タンク17には、連通管22を介してキャニスタ23が接続されている。このキャニスタ23内には、エバポガスを吸着する活性炭等の吸着体24が収容されている。また、キャニスタ23の底面部には、大気に連通する大気連通管25が設けられ、この大気連通管25にはキャニスタ閉塞弁26(キャニスタ閉塞手段)が取り付けられている。
【0017】
このキャニスタ閉塞弁26は、電磁弁により構成され、オフ状態では、スプリング(図示せず)により開弁状態に維持され、キャニスタ23の大気連通管25が大気に開放された状態に保たれる。そして、このキャニスタ閉塞弁26に所定電圧が印加されると、キャニスタ閉塞弁26が閉弁状態に切り換わり、大気連通管25が閉塞された状態になる。
【0018】
一方、キャニスタ23と吸気管12との間には、吸着体24に吸着されているエバポガスを吸気管12にパージ(放出)するためのパージ通路30a,30bが設けられ、このパージ通路30a,30b間にパージ流量を調整するパージ制御弁31が設けられている。このパージ制御弁31は、電磁弁により構成されている。
【0019】
このパージ制御弁31のソレノイドコイル(図示せず)には、パルス信号にて電圧が印加され、このパルス信号の周期に対するパルス幅の比率(デューティ比)を調整することによって、パージ制御弁31の開閉周期に対する開弁時間の比率を調整して、キャニスタ23から吸気管12へのエバポガスのパージ流量を制御するようになっている。
【0020】
また、燃料タンク17の給油口17aには、リリーフ弁付きの燃料キャップ38が装着され、燃料タンク内圧が−40mmHg〜150mmHg(リリーフ圧)を越える内圧となった場合にリリーフ弁が開放して圧抜きすようになっている。従って、燃料タンク17からキャニスタ23までの区間は、常にこのリリーフ圧範囲内の圧力に抑えられている。
【0021】
次に、制御系の構成を説明する。制御回路39は、CPU40、ROM41、RAM42、入出力回路43等をコモンバス44を介して相互に接続して構成されている。また、入出力回路43には、スロットルセンサ45、アイドルスイッチ46、車速センサ47、吸気管圧力センサ49、冷却水温センサ50、吸気温センサ51等、エンジン運転状態を検出する各種センサが接続され、これら各種センサから入出力回路43を介して入力される信号及びROM41やRAM42内に記憶されたプログラムやデータ等に基づいて、燃料噴射制御、点火制御、エバポガスパージ制御、エバポガスパージシステム21の異常診断等を実行し、燃料噴射弁16、点火プラグ52、キャニスタ閉塞弁26、パージ制御弁31等に入出力回路43を介して駆動信号を出力すると共に、エバポガスパージシステム21の異常を検出した時には警告ランプ53を点灯して運転者に知らせる。
【0022】
以下、制御回路39が実行するエバポガスパージシステム21の異常診断プログラムについて図2乃至図4のフローチャートを用いて説明する。この異常診断プログラムは、イグニッションスイッチ(図示せず)がオン操作されると、所定時間毎(例えば256msec毎)に繰り返し実行され、特許請求の範囲でいう異常診断手段としての役割を果たす。本プログラムが起動されると、まず図2のステップ101〜105で、フラグF1〜F5の設定状態から現在の処理がどの段階まで進んでいるか否かを判定しつつ、種々のステップへ分岐する。尚、各フラグF1〜F5は、イグニッションスイッチのオン直後に初期化処理により「0」にリセットされる。
【0023】
全てのフラグF1〜F5が「0」に設定されているとき、即ちステップ101〜105の判定が全て「No」のときには、図3のステップ106に進み、燃料温度及び燃料温度変化量に基づいてエバポガス濃度低減操作(ステップ107〜118)を実行するか否かを判定する。この場合、燃料温度は、燃料タンク17等に燃料温度センサ(図示せず)を取り付けて検出するようにしても良いが、冷却水温、吸気温(又は外気温)、始動からの運転時間、運転状態等を基にして燃料温度を推定するようにしても良い。
【0024】
ステップ106で判定するエバポガス濃度低減操作の実行条件は、▲1▼燃料温度が所定温度α以上、且つ▲2▼燃料温度変化量が所定量β以下であり、これら2つの条件を満たすときには、燃料タンク17内のエバポガス成分の分圧が飽和蒸気圧に近いと推定されるため、エバポガス濃度低減操作を次のようにして実行する。
【0025】
まず、ステップ108で、キャニスタ閉塞弁26を全閉にした後、ステップ109で、パージ制御弁31を開放し、燃料タンク17からパージ制御弁31までのエバポガスパージ系内に吸気管12の負圧を導入する(図5の時刻T1 〜T2 )。これにより、エバポガスパージ系内のエバポガスを吸気管12内に吸い込ませてエバポガスパージ系内のエバポガス成分の濃度(分圧)を低下させ、エバポガスパージ系内のエバポガス成分の分圧と飽和蒸気圧との差圧を大きくする。
【0026】
次のステップ110で、圧力センサ20で検出した燃料タンク内圧PTが所定の負圧(例えば−5mmHg)まで低下したか否かを判定し、まだ−5mmHgまで低下していなければ、ステップ111に進み、第1フラグF1を負圧導入中であることを意味する「1」にセットして本プログラムを終了する。この場合には、次回以降の本プログラム実行時には、ステップ101で「Yes」と判定されるようになり、ステップ101→ステップ110→……の順序で処理を繰り返して燃料タンク内圧PTが−5mmHg以下に低下するまで負圧導入(パージ制御弁31の開放)を続ける。
【0027】
これにより、図5の時刻T2 で、燃料タンク内圧PTが−5mmHgまで低下すると、ステップ110の判定が「Yes」となり、ステップ112に進み、第1フラグF1を「0」にリセットする。この後、ステップ113で、キャニスタ閉塞弁26を全開すると共に、ステップ114で、パージ制御弁31を全閉し、エバポガスパージ系内に大気圧を導入する。
【0028】
次のステップ115で、燃料タンク内圧PTが大気圧(0mmHg)に戻ったか否かを判定し、まだ大気圧に戻っていなければ、ステップ116に進み、第2フラグF2を大気圧導入中であることを意味する「1」にセットして本プログラムを終了する。この場合には、次回以降の本プログラム実行時には、ステップ101で「No」、ステップ102で「Yes」と判定されるようになり、ステップ101→ステップ102→ステップ115→……の順序で処理を繰り返して燃料タンク内圧PTが大気圧に戻るまで大気圧導入を続ける。
【0029】
これにより、燃料タンク内圧PTが大気圧に戻ると、ステップ115の判定が「Yes」となり、ステップ117に進み、第2フラグF2を「0」にリセットする。この後、ステップ118で、キャニスタ閉塞弁26を全閉してエバポガスパージ系を密閉し、ステップ122〜127の処理により、大気圧からの圧力変化量ΔP1 を測定する。
【0030】
一方、前述したステップ106で、燃料温度<α、燃料温度変化量>βのいずれかに該当する場合には、燃料タンク17内のエバポガス成分の分圧と飽和蒸気圧との差圧が比較的大きいと推定されので、上述したエバポガス濃度低減操作を行う必要がない。従って、この場合には、エバポガス濃度低減操作を省略して、ステップ120,121に進み、パージ制御弁31とキャニスタ閉塞弁26とを共に全閉して、エバポガスパージ系を密閉し、ステップ122〜127の処理により、大気圧からの圧力変化量ΔP1 を測定する。
【0031】
大気圧からの圧力変化量ΔP1 の測定は、まずステップ122で、図5の時刻T3 における燃料タンク内圧P1aを読み込み、タイマTをリセットスタートさせた後、ステップ123に進み、タイマTのカウント値が例えば15秒以上になったか否かを判定する。もし、15秒経過前であれば、ステップ124に進み、第3フラグF3を圧力変化測定中を意味する「1」にセットして本プログラムを終了する。
【0032】
このように、第3フラグF3が「1」にセットされることで、次回以降の本プログラム実行時には、ステップ101,102で「No」、ステップ103で「Yes」と判定されるようになり、ステップ101〜103→ステップ123→……の順序で処理を繰り返す。この間、燃料タンク内圧PTは図5の時刻T3 から時刻T4 の間において燃料タンク17内の燃料からのエバポガスの発生量に応じて0mmHgから上昇する。
【0033】
その後、時刻T3 (P1aの検出時点)から15秒が経過すると、図4のステップ125に進み、圧力センサ20で検出した燃料タンク内圧P1bを読み込み、続くステップ126で、15秒間の圧力変化量ΔP1 (=P1b−P1a)を算出した後、ステップ127で、第3フラグF3をリセットして、大気圧からの圧力変化量ΔP1 の測定を終了する。
【0034】
この後、ステップ128で、パージ制御弁31を開放すると同時に、タイマTをリセットスタートする。パージ制御弁31が開放されることで、それ以前の大気圧下のエバポガスパージ系内に吸気管負圧を導入する(図5の時刻T4 〜T5 )。従って、エバポガスパージ系にリークがなければ、燃料タンク内圧PTは低下し始める。
【0035】
次のステップ129で、圧力センサ20で検出した燃料タンク内圧PTが所定の負圧(例えば−15mmHg)まで低下したか否かを判定し、まだ−15mmHgまで低下していなければ、ステップ130に進み、負圧導入開始から所定時間(例えば2秒)が経過したか否かを判定する。もし、2秒経過前であれば、ステップ133に進み、第4フラグF4を負圧導入中であることを意味する「1」にセットして本プログラムを終了する。
【0036】
このように、第4フラグF4が「1」にセットされることで、次回以降の本プログラム実行時には、ステップ101〜103で「No」、ステップ104で「Yes」と判定されるようになり、ステップ101〜104→ステップ129→……の順序で処理を繰り返す。
【0037】
このような処理により、ステップ130の方がステップ129よりも先に「Yes」となった場合、つまり、負圧導入開始から所定時間(例えば2秒)が経過しても燃料タンク内圧PTが所定の負圧(例えば−15mmHg)まで低下しない場合には、燃料タンク17内に負圧を導入できない状態になっていることを意味する。燃料タンク17内に負圧を導入できなくなる原因としては、エバポガスパージ系のどこかに詰まりが発生していることが考えられる。この場合には、ステップ131に進み、詰まりフラグFclose を詰まり発生を意味する「1」にセットすると共に、ステップ132で、警告ランプ53を点灯して異常を報知し、本プログラムを終了する。
【0038】
一方、ステップ129の方がステップ130よりも先に「Yes」となった場合、つまり負圧導入開始から所定時間(例えば2秒)内に燃料タンク内圧PTが所定の負圧(例えば−15mmHg)まで低下した場合には、ステップ134に進み、第4フラグF4を「0」にリセットし、続くステップ135で、パージ制御弁31を再び全閉して、負圧導入を終了する(図5の時刻T5 )。この後、ステップ136に進み、エバポガスパージ系を負圧密閉状態にした直後の時刻T6 で、圧力センサ20で検出した燃料タンク内圧P2aを読み込んで記憶すると共にタイマTをリセットスタートする。これ以後、燃料タンク内圧PTは、図5の時刻T6 から時刻T7 の間で、燃料タンク17内でのエバポガスの発生量に応じて−15mmHgから上昇していくことになる。
【0039】
そして、次のステップ137で、燃料タンク内圧P2aの読み込み後、15秒が経過したか否かを判定し、15秒経過前であれば、ステップ138に進み、第5フラグF5を圧力変化検出中を意味する「1」に設定して本プログラムを終了する。これにより、次回以降の本プログラム実行時には、ステップ101〜104で「No」、ステップ105で「Yes」と判定されるようになり、ステップ101〜105→ステップ137→……の順序で処理を繰り返す。
【0040】
その後、燃料タンク内圧P2aの読み込みから15秒が経過すると、ステップ139に進み、時刻T7 で圧力センサ20により検出した燃料タンク内圧P2bを読み込んで記憶し、密閉後15秒間の圧力変化量ΔP2 (=P2b−P2a)を算出する。
【0041】
この後、ステップ141で、次式で示されたリーク判定条件に基づいてリーク有りか否かを判定する。
ΔP2 >α・ΔP1 +β
【0042】
ここで、αは大気圧と負圧の違いによる燃料蒸発量の差を補正する係数、βは圧力センサ20の検出精度、キャニスタ閉塞弁26の圧力漏れなどを補正する係数である。上式を満たせば、「リーク有り」と判定される。即ち、燃料タンク17からパージ制御弁31までの密閉区間にリーク原因があるならば、正圧下では密閉区間から大気中への流出が起こる一方、負圧下では大気中から密閉区間への空気の流入が起こる。従って、「(大気圧下の圧力変化量ΔP1 )=(燃料タンク17からのエバポガスの発生量)−(密閉区間から大気中への流出量)」よりも「(負圧下の圧力変化量ΔP2 )=(燃料タンク17からのエバポガスの発生量)+(大気中から密閉区間への流入量)」の方が大きくなる。この関係から、上式のリーク判定条件が導き出されたものである。
【0043】
上式のリーク判定条件を満足する場合、つまりステップ141で「リーク有り」と判定された場合には、燃料タンク17から吸気管12までのパージ経路のどこかにリーク原因となる部分が有ることを意味し、ステップ142に進み、リークフラグFleakを「1」に設定し、続くステップ143で、警告ランプ53を点灯して異常を報知し、本プログラムを終了する。
【0044】
これに対し、ステップ141で「NO」と判定された場合、つまりリーク無しと判定された場合には、ステップ144に進み、第1〜第5の各フラグF1〜F5を「0」にリセットして本プログラムを終了する。
【0045】
以上説明した本実施形態(1)では、大気圧からの圧力変化量ΔP1 を測定する前に、燃料タンク17内のエバポガスを放出してエバポガス濃度を低減するようにしたので、圧力変化量ΔP1 の測定前に燃料タンク17内のエバポガス成分の分圧と飽和蒸気圧との差圧を十分に大きくすることができ、燃料温度等の燃料系の状態の影響を受けずに、大気圧からの圧力変化量ΔP1 を精度良く測定することができて、エバポガスパージ系の異常診断を精度良く行うことができる。
【0046】
また、本実施形態(1)では、燃料温度と燃料温度変化量とに基づいてエバポガス濃度低減操作の実行条件が成立するか否かを判定し、該実行条件が不成立の場合(つまりエバポガス成分の分圧が飽和蒸気圧と比較して十分に低いと推定される場合)には、エバポガス濃度低減操作を省略して、圧力変化量ΔP1 の測定を行うようにしたので、エバポガスパージ系の異常診断の所要時間を短くすることができ、迅速な異常診断を行うことができる。
【0047】
尚、エバポガス濃度低減操作の実行条件は、燃料温度と燃料温度変化量のいずれか一方のみで判定するようにしても良い。また、エバポガス濃度低減操作の実行条件を判定する処理を省略して、毎回、エバポガス濃度低減操作を実行するようにしても良く、この場合でも、本発明の所期の目的を十分に達成できる。
【0048】
[実施形態(2)]
上記実施形態(1)では、エバポガス濃度低減操作の終了時に燃料タンク内圧PTを大気圧に戻す時(T2 〜T3 )に、キャニスタ閉塞弁25を開放し且つパージ制御弁31を閉鎖するようにしたが、図6に示す本発明の実施形態(2)では、エバポガス濃度低減操作の終了時に燃料タンク内圧PTを大気圧に戻す時(T2 〜T3 )に、キャニスタ閉塞弁25及びパージ制御弁31の両方を開放する。このようにすれば、大気圧導入時にパージ制御弁31を開放することで、キャニスタ23内に吸着したエバポガスが燃料タンク17内へ戻ることを防止でき、燃料タンク17内のエバポガス濃度を確実に低減できる。
【0049】
[実施形態(3)]
上記実施形態(1),(2)では、大気圧からの圧力変化量ΔP1 を測定した後、負圧からの圧力変化量ΔP2 を測定するようにしたが、図7に示す本発明の実施形態(3)では、負圧からの圧力変化量ΔP2 を測定して燃料タンク内圧PTを大気圧に戻してから所定時間経過後に、エバポガス濃度低減操作を行った上で、大気圧からの圧力変化量ΔP1 を測定するようにしている。本実施形態(3)においても、圧力変化量ΔP2 ,ΔP1 の測定方法やエバポガス濃度低減操作の方法は、前述した実施形態(1)又は(2)と同じである。
【0050】
この場合、負圧からの圧力変化量ΔP2 の測定を行ってから大気圧に戻すと、燃料タンク17内のエバポガス成分が急激に飽和状態となり、暫くの間は、燃料タンク17内の状態が不安定になるため、燃料タンク17内の状態が安定するまでの所定時間が経過するのを待って、エバポガス濃度低減操作を行うことで、圧力変化量ΔP1 の測定前に燃料タンク17内のエバポガス濃度を確実に低減させるものである。
【0051】
[実施形態(4)]
前記実施形態(1)では、燃料温度と燃料温度変化量とに基づいてエバポガス濃度低減操作を実行するか否かを判定するようにしたが、図8に示す本発明の実施形態(4)では、エバポガスパージ系の異常診断を行う前に、燃料タンク内圧PTを大気圧に調整して圧力変化量ΔP0 を測定する予備測定を行い、その圧力変化量ΔP0 を所定値と比較してエバポガス濃度低減操作を実行するか省略するかを判定する。つまり、圧力変化量ΔP0 が所定値未満の場合には、燃料タンク17内のエバポガス成分の分圧が飽和蒸気圧に近いと推定され、燃料タンク17内のエバポガス濃度を低減する必要があるため、前記実施形態(1)と同様の方法で、燃料タンク17内のエバポガスを放出してエバポガス濃度を低減する。一方、圧力変化量ΔP0 が所定値以上の場合には、燃料タンク17内のエバポガス成分の分圧が飽和蒸気圧と比較して十分に低いと推定され、燃料タンク17内のエバポガス濃度を低減する必要がないため、エバポガス濃度低減操作を省略して大気圧からの圧力変化量ΔP1 の測定を行う。
尚、圧力変化量ΔP0 の測定回数は、1回でも良いが、2回以上でも良い。
【0052】
[実施形態(5)]
上記各実施形態(1)〜(4)では、いずれも、燃料タンク内圧PTを大気圧に戻す際に、キャニスタ閉塞弁25を開放してエバポガスパージ系内に大気圧を導入するようにしたが、図9に示す本発明の実施形態(5)では、燃料タンク17からキャニスタ23までのパージ経路に開放弁61を設け、燃料タンク内圧PTを大気圧に戻す際に、開放弁61を開放してエバポガスパージ系内に大気圧を導入する。
【0053】
尚、図1,図9のシステム構成例では、圧力センサ20で燃料タンク17の内圧を検出するようにしたが、例えば燃料タンク17とキャニスタ23とを連通させる連通管22内の圧力を検出するようにしても良く、要は、燃料タンク17からパージ制御弁31までのエバポガスパージ系のいずれかの箇所の圧力を検出するようにすれば良い。
【図面の簡単な説明】
【図1】本発明の実施形態(1)を示すシステム全体の概略構成図
【図2】異常診断プログラムの処理の流れを示すフローチャート(その1)
【図3】異常診断プログラムの処理の流れを示すフローチャート(その2)
【図4】異常診断プログラムの処理の流れを示すフローチャート(その3)
【図5】本発明の実施形態(1)における異常診断時のパージ制御弁とキャニスタ閉塞弁との開閉と燃料タンク内圧の変化の関係を説明するタイムチャート
【図6】本発明の実施形態(2)における異常診断時のパージ制御弁とキャニスタ閉塞弁との開閉と燃料タンク内圧の変化の関係を説明するタイムチャート
【図7】本発明の実施形態(3)における異常診断時のパージ制御弁とキャニスタ閉塞弁との開閉と燃料タンク内圧の変化の関係を説明するタイムチャート
【図8】本発明の実施形態(4)における異常診断時のパージ制御弁とキャニスタ閉塞弁との開閉と燃料タンク内圧の変化の関係を説明するタイムチャート
【図9】本発明の実施形態(5)を示すシステム全体の概略構成図
【符号の説明】
11…エンジン(内燃機関)、12…吸気管、14…スロットルバルブ、16…燃料噴射弁、17…燃料タンク、18…燃料ポンプ、20…圧力センサ、21…エバポガスパージシステム、22…連通管、23…キャニスタ、24…吸着体、26…キャニスタ閉塞弁、30a,30b…パージ通路、31…パージ制御弁、39…制御回路(異常診断手段)、53…警告ランプ、61…開閉弁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an abnormality diagnosis apparatus for an evaporative gas purge system for diagnosing the presence or absence of an abnormality in an evaporative gas purge system that purges (releases) evaporative gas (fuel evaporative gas) generated by evaporation of fuel in a fuel tank into an intake pipe of an internal combustion engine. It is about.
[0002]
[Prior art]
Conventionally, in an evaporative gas purge system, in order to prevent the evaporative gas generated from the fuel tank from leaking into the atmosphere, the evaporative gas is adsorbed in the canister through the evaporative gas passage in the fuel tank and is adsorbed in the canister. A purge control valve is provided in the purge passage for purging the evaporation gas to the intake pipe of the internal combustion engine, and the purge gas is purged from the canister to the intake pipe by controlling the opening and closing of the purge control valve according to the operating state of the internal combustion engine. The flow rate is controlled. In order to prevent the abnormality in which the evaporation gas leaks from the evaporation gas purge system into the atmosphere from being left for a long period of time, it is necessary to detect the leakage of the evaporation gas at an early stage.
[0003]
Therefore, as shown in Japanese Patent Application Laid-Open No. 5-125997, a pressure sensor is provided for detecting the pressure in the evaporation gas purge system from the fuel tank to the purge control valve, and the atmospheric pressure is introduced into the evaporation gas purge system. After detecting the pressure change amount ΔP1 from the atmospheric pressure in the evaporation gas purge system with the system sealed, the purge control valve is temporarily opened to introduce a negative pressure into the evaporation gas purge system. The pressure change amount ΔP2 from the negative pressure of the evaporative gas purge system is detected in a sealed state, and these two pressure change amounts ΔP1 and ΔP2 are compared to diagnose leakage of the evaporative gas purge system. is there.
[0004]
[Problems to be solved by the invention]
By the way, since the pressure change when the evaporation gas purge system is normal is caused by the evaporation of fuel, the pressure change amount decreases as the fuel evaporation amount (evaporation gas generation amount) decreases. Since the evaporation of fuel occurs because the partial pressure of the evaporated gas component is lower than the saturated vapor pressure, the amount of fuel evaporated decreases as the differential pressure between the evaporated gas component and the saturated vapor pressure decreases. When the amount of change decreases and the partial pressure of the vapor gas component increases to the saturated vapor pressure, the fuel no longer evaporates and the pressure of the vapor gas purge system does not change.
[0005]
The partial pressure of the evaporative gas component at the start of the pressure change measurement changes due to the influence of the fuel system state such as the fuel temperature, so the measured value of the pressure change changes depending on the fuel system state at the start of the measurement. . As a result, the abnormality diagnosis performed based on the amount of change in pressure is affected by the state of the fuel system, which causes a decrease in abnormality diagnosis accuracy.
[0006]
The present invention has been made in consideration of such circumstances, and the object of the present invention is to provide an evaporative gas purge system that can accurately diagnose the abnormalities of the evaporative gas purge system without being affected by the state of the fuel system. It is to provide an abnormality diagnosis device.
[0007]
[Means for Solving the Problems]
  In order to achieve the above object, according to the abnormality diagnosis apparatus for an evaporation gas purge system of claim 1 of the present invention, the abnormality diagnosis means comprises:When the partial pressure of the evaporative gas component in the fuel tank is estimated to be close to the saturated vapor pressure,Before measuring the pressure change of the evaporation gas purge system, an operation for releasing the evaporation gas in the fuel tank and reducing the evaporation gas concentration (hereinafter referred to as “evaporation gas concentration reduction operation”) is performed. This way,Even when the partial pressure of the vapor component in the fuel tank is close to the saturated vapor pressure,Before measuring the pressure change, the differential pressure between the vapor pressure component and the saturated vapor pressure in the evaporation gas purge system can be increased sufficiently, and the abnormality of the evaporation gas purge system can be diagnosed without being affected by the state of the fuel system. It can be performed with high accuracy.In addition, when it is estimated that the partial pressure of the evaporated gas component is sufficiently lower than the saturated vapor pressure (that is, the difference between the partial pressure of the evaporated gas component and the saturated vapor pressure is large), the operation for reducing the evaporated gas concentration is omitted. Thus, since the pressure change of the evaporation gas purge system can be measured, the time required for abnormality diagnosis of the evaporation gas purge system can be shortened, and rapid abnormality diagnosis can be performed.
[0008]
In this case, the pressure change of the evaporation gas purge system is measured by measuring both the pressure change from the state where the atmospheric pressure is introduced into the evaporation gas purge system and the pressure change from the state where the predetermined pressure is introduced. However, the measurement of the pressure change from the atmospheric pressure may be performed in comparison with the measurement of the pressure change from the predetermined pressure. Since the differential pressure from the pressure is small, it is easily affected by the state of the fuel system.
[0009]
Accordingly, when performing the operation for reducing the evaporation gas concentration as in claim 2, the pressure in the evaporation gas purge system is changed to a predetermined pressure to release the evaporation gas in the fuel tank, and then returned to the vicinity of the atmospheric pressure. It is sufficient to measure the pressure change from In this way, it is possible to accurately measure the pressure change from the atmospheric pressure without being affected by the state of the fuel system.
[0010]
Also, when measuring both the pressure change from atmospheric pressure and the pressure change from negative pressure, either may be performed first, but when measuring the pressure change from negative pressure first According to the third aspect of the present invention, the pressure change from the atmospheric pressure may be measured after the evaporative gas concentration reducing operation is performed after the elapse of a predetermined time after the pressure change from the negative pressure is measured. In other words, if the pressure change from negative pressure is measured and then returned to near atmospheric pressure, the evaporated gas component in the evaporated gas purge system suddenly becomes saturated, and the evaporated gas purge system becomes unstable for a while. Therefore, the evaporative gas concentration in the fuel tank is reliably reduced before the pressure change measurement by performing the evaporative gas concentration reduction operation after waiting for a predetermined time until the state in the evaporative gas purge system becomes stable. Is.
[0011]
Further, when the pressure in the evaporation gas purge system is returned to the vicinity of the atmospheric pressure at the end of the evaporation gas concentration reduction operation, the canister closing means is opened and the purge control valve is closed as in claim 4, or As in claim 5, both the canister closing means and the purge control valve may be opened. In either case, the atmospheric pressure can be introduced into the evaporation gas purge system by opening the canister closing means. At this time, in claim 4, the purge control valve is closed when the atmospheric pressure is introduced to prevent the evaporation gas in the evaporation gas purge system from being sucked into the intake pipe, while in claim 5, the atmospheric pressure is introduced. By opening the purge control valve, the evaporation gas adsorbed in the canister is prevented from returning into the fuel tank.
[0012]
By the way, if the partial pressure of the evaporation gas component in the evaporation gas purge system is sufficiently lower than the saturated vapor pressure, there is no need to perform the evaporation gas concentration reduction operation before measuring the pressure change.
[0013]
Therefore, as in claim 6, it may be determined whether to perform the evaporative gas concentration reduction operation or not based on at least one of the fuel temperature determined by the fuel temperature determination means and the amount of change. In other words, if it is estimated that the partial pressure of the evaporated gas component is sufficiently lower than the saturated vapor pressure based on the fuel temperature and the amount of change, the operation for reducing the evaporated gas concentration is omitted and the pressure change is measured. Do. Thereby, the time required for abnormality diagnosis of the evaporation gas purge system can be shortened.
[0014]
Further, as described in claim 7, before making an abnormality diagnosis, a preliminary measurement for adjusting the pressure in the evaporation gas purge system to near atmospheric pressure and measuring a pressure change is performed once or a plurality of times, and based on the measurement result. Thus, it may be determined whether to perform the evaporation gas concentration reduction operation or not. That is, if it is estimated by preliminary measurement that the partial pressure of the vapor component in the vapor purge system is sufficiently lower than the saturated vapor pressure, the vapor gas concentration reduction operation is omitted. As a result, the operation of reducing the evaporation gas concentration can be minimized.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment (1)]
Hereinafter, an embodiment (1) of the present invention will be described with reference to FIGS. First, a schematic configuration of the entire system will be described with reference to FIG. An air cleaner 13 is provided on the upstream side of the intake pipe 12 of the engine 11, and air that has passed through the air cleaner 13 is sucked into each cylinder of the engine 11 through the throttle valve 14. The opening degree of the throttle valve 14 is adjusted by the depression amount of the accelerator pedal 15. The intake pipe 12 is provided with a fuel injection valve 16 for each cylinder. The fuel (gasoline) in the fuel tank 17 is sent to each fuel injection valve 16 through a fuel pipe 19 by a fuel pump 18. The fuel tank 17 is provided with a pressure sensor 20 such as a semiconductor pressure sensor for detecting the pressure in the fuel tank 17.
[0016]
Next, the configuration of the evaporation gas purge system 21 will be described. A canister 23 is connected to the fuel tank 17 via a communication pipe 22. In the canister 23, an adsorbent 24 such as activated carbon that adsorbs the evaporative gas is accommodated. Further, an atmospheric communication pipe 25 communicating with the atmosphere is provided on the bottom surface of the canister 23, and a canister closing valve 26 (canister closing means) is attached to the atmospheric communication pipe 25.
[0017]
The canister closing valve 26 is constituted by an electromagnetic valve, and is kept open by a spring (not shown) in the off state, and the atmosphere communication pipe 25 of the canister 23 is kept open to the atmosphere. When a predetermined voltage is applied to the canister closing valve 26, the canister closing valve 26 is switched to a closed state, and the atmosphere communication pipe 25 is closed.
[0018]
On the other hand, between the canister 23 and the intake pipe 12, purge passages 30a and 30b for purging (releasing) the evaporated gas adsorbed by the adsorbent 24 to the intake pipe 12 are provided, and the purge passages 30a and 30b are provided. A purge control valve 31 for adjusting the purge flow rate is provided therebetween. The purge control valve 31 is constituted by an electromagnetic valve.
[0019]
A voltage is applied to the solenoid coil (not shown) of the purge control valve 31 by a pulse signal, and by adjusting the ratio of the pulse width to the period of the pulse signal (duty ratio), the purge control valve 31 The purge gas purge flow rate from the canister 23 to the intake pipe 12 is controlled by adjusting the ratio of the valve opening time to the opening / closing cycle.
[0020]
A fuel cap 38 with a relief valve is attached to the fuel filler port 17a of the fuel tank 17, and when the internal pressure of the fuel tank exceeds -40 mmHg to 150 mmHg (relief pressure), the relief valve is opened and the pressure is increased. It comes to pull out. Therefore, the section from the fuel tank 17 to the canister 23 is always kept at a pressure within this relief pressure range.
[0021]
Next, the configuration of the control system will be described. The control circuit 39 is configured by connecting a CPU 40, a ROM 41, a RAM 42, an input / output circuit 43, and the like to each other via a common bus 44. The input / output circuit 43 is connected to various sensors for detecting the engine operating state, such as a throttle sensor 45, an idle switch 46, a vehicle speed sensor 47, an intake pipe pressure sensor 49, a cooling water temperature sensor 50, an intake air temperature sensor 51, and the like. Abnormal diagnosis of fuel injection control, ignition control, evaporation gas purge control, evaporation gas purge system 21 based on signals input from these various sensors via the input / output circuit 43 and programs and data stored in the ROM 41 and RAM 42 And a drive signal is output to the fuel injection valve 16, the spark plug 52, the canister closing valve 26, the purge control valve 31 and the like via the input / output circuit 43, and a warning is given when an abnormality of the evaporation gas purge system 21 is detected. The lamp 53 is turned on to inform the driver.
[0022]
Hereinafter, the abnormality diagnosis program of the evaporation gas purge system 21 executed by the control circuit 39 will be described with reference to the flowcharts of FIGS. This abnormality diagnosis program is repeatedly executed every predetermined time (for example, every 256 msec) when an ignition switch (not shown) is turned on, and serves as an abnormality diagnosis means in the claims. When the program is started, first, in steps 101 to 105 in FIG. 2, the process branches to various steps while determining whether or not the current process has progressed from the set state of the flags F1 to F5. The flags F1 to F5 are reset to “0” by the initialization process immediately after the ignition switch is turned on.
[0023]
When all the flags F1 to F5 are set to “0”, that is, when all the determinations at steps 101 to 105 are “No”, the process proceeds to step 106 in FIG. 3, and based on the fuel temperature and the fuel temperature change amount. It is determined whether or not an evaporation gas concentration reduction operation (steps 107 to 118) is to be executed. In this case, the fuel temperature may be detected by attaching a fuel temperature sensor (not shown) to the fuel tank 17 or the like, but the cooling water temperature, the intake air temperature (or the outside air temperature), the operation time from the start, the operation The fuel temperature may be estimated based on the state or the like.
[0024]
The execution conditions of the evaporation gas concentration reduction operation determined in step 106 are: (1) the fuel temperature is equal to or higher than the predetermined temperature α, and (2) the fuel temperature change amount is equal to or lower than the predetermined amount β. Since the partial pressure of the vapor gas component in the tank 17 is estimated to be close to the saturated vapor pressure, the vapor gas concentration reduction operation is executed as follows.
[0025]
First, in step 108, the canister closing valve 26 is fully closed, and in step 109, the purge control valve 31 is opened, and the negative pressure of the intake pipe 12 is introduced into the evaporation gas purge system from the fuel tank 17 to the purge control valve 31. Is introduced (time T1 to T2 in FIG. 5). As a result, the evaporation gas in the evaporation gas purge system is sucked into the intake pipe 12 to reduce the concentration (partial pressure) of the evaporation gas component in the evaporation gas purge system. Increase the differential pressure.
[0026]
In the next step 110, it is determined whether or not the internal pressure PT of the fuel tank detected by the pressure sensor 20 has decreased to a predetermined negative pressure (for example, −5 mmHg). If not yet decreased to −5 mmHg, the process proceeds to step 111. Then, the first flag F1 is set to “1” which means that negative pressure is being introduced, and this program is terminated. In this case, when the program is executed next time or later, it is determined as “Yes” in step 101, and the processing is repeated in the order of step 101 → step 110 → ……, so that the fuel tank internal pressure PT is −5 mmHg or less. The introduction of negative pressure (opening of the purge control valve 31) is continued until the pressure decreases.
[0027]
Accordingly, when the fuel tank internal pressure PT decreases to −5 mmHg at time T2 in FIG. 5, the determination in step 110 becomes “Yes”, the process proceeds to step 112, and the first flag F1 is reset to “0”. Thereafter, in step 113, the canister closing valve 26 is fully opened, and in step 114, the purge control valve 31 is fully closed to introduce atmospheric pressure into the evaporation gas purge system.
[0028]
In the next step 115, it is determined whether or not the internal pressure PT of the fuel tank has returned to the atmospheric pressure (0 mmHg). If not yet returned to the atmospheric pressure, the routine proceeds to step 116 where the second flag F2 is being introduced into the atmospheric pressure. Set to “1” which means that the program is finished. In this case, when this program is executed next time or later, “No” is determined in step 101 and “Yes” is determined in step 102, and processing is performed in the order of step 101 → step 102 → step 115 →. The atmospheric pressure introduction is continued until the fuel tank internal pressure PT returns to the atmospheric pressure repeatedly.
[0029]
Accordingly, when the fuel tank internal pressure PT returns to the atmospheric pressure, the determination in step 115 becomes “Yes”, the process proceeds to step 117, and the second flag F2 is reset to “0”. Thereafter, in step 118, the canister closing valve 26 is fully closed to seal the evaporation gas purge system, and the pressure change ΔP1 from the atmospheric pressure is measured by the processing in steps 122 to 127.
[0030]
On the other hand, if the fuel temperature <α and the fuel temperature change amount> β correspond to either of the fuel temperature <α and the fuel temperature change amount> β in step 106 described above, the differential pressure between the partial pressure of the evaporated gas component in the fuel tank 17 and the saturated vapor pressure is relatively Since it is estimated that it is large, it is not necessary to perform the above-described evaporative gas concentration reduction operation. Therefore, in this case, the operation for reducing the evaporation gas concentration is omitted, and the process proceeds to Steps 120 and 121. The purge control valve 31 and the canister closing valve 26 are both fully closed, and the evaporation gas purge system is sealed. By the process 127, the pressure change amount ΔP1 from the atmospheric pressure is measured.
[0031]
In step 122, the pressure change amount ΔP1 from the atmospheric pressure is measured. First, the internal pressure P1a of the fuel tank at time T3 in FIG. 5 is read, the timer T is reset and started, and then the process proceeds to step 123. For example, it is determined whether or not it has become 15 seconds or longer. If 15 seconds have elapsed, the process proceeds to step 124, where the third flag F3 is set to “1” which means that the pressure change is being measured, and this program is terminated.
[0032]
Thus, by setting the third flag F3 to “1”, it is determined that “No” is determined in steps 101 and 102 and “Yes” is determined in step 103 when the program is executed next time. The processing is repeated in the order of steps 101 to 103 → step 123 →. During this time, the fuel tank internal pressure PT rises from 0 mmHg in accordance with the amount of vapor generated from the fuel in the fuel tank 17 between time T3 and time T4 in FIG.
[0033]
Thereafter, when 15 seconds elapse from the time T3 (detection time of P1a), the process proceeds to step 125 in FIG. 4 to read the fuel tank internal pressure P1b detected by the pressure sensor 20, and in step 126, the pressure change amount ΔP1 for 15 seconds. After calculating (= P1b−P1a), in step 127, the third flag F3 is reset, and the measurement of the pressure change amount ΔP1 from the atmospheric pressure is ended.
[0034]
Thereafter, in step 128, the purge control valve 31 is opened, and at the same time, the timer T is reset and started. When the purge control valve 31 is opened, the intake pipe negative pressure is introduced into the previous evaporative gas purge system under atmospheric pressure (time T4 to T5 in FIG. 5). Therefore, if there is no leak in the evaporation gas purge system, the fuel tank internal pressure PT begins to decrease.
[0035]
In the next step 129, it is determined whether or not the fuel tank internal pressure PT detected by the pressure sensor 20 has decreased to a predetermined negative pressure (for example, −15 mmHg). If not yet decreased to −15 mmHg, the process proceeds to step 130. Then, it is determined whether or not a predetermined time (for example, 2 seconds) has elapsed since the negative pressure introduction start. If 2 seconds have elapsed, the process proceeds to step 133, the fourth flag F4 is set to “1” which means that negative pressure is being introduced, and the program is terminated.
[0036]
In this way, by setting the fourth flag F4 to “1”, it is determined that “No” in steps 101 to 103 and “Yes” in step 104 when the program is executed next time, The processing is repeated in the order of steps 101 to 104 → step 129 →.
[0037]
As a result of such processing, when the result of step 130 is “Yes” before step 129, that is, even if a predetermined time (for example, 2 seconds) elapses from the start of the introduction of the negative pressure, the fuel tank internal pressure PT is predetermined When the pressure does not drop to a negative pressure (for example, −15 mmHg), it means that the negative pressure cannot be introduced into the fuel tank 17. A possible cause of the inability to introduce negative pressure into the fuel tank 17 is that clogging has occurred somewhere in the evaporation gas purge system. In this case, the process proceeds to step 131, where the clogging flag Fclose is set to “1” which means that clogging has occurred, and in step 132, the warning lamp 53 is turned on to notify the abnormality, and the program ends.
[0038]
On the other hand, if the result of step 129 is “Yes” before step 130, that is, the fuel tank internal pressure PT is a predetermined negative pressure (for example, −15 mmHg) within a predetermined time (for example, 2 seconds) from the start of the negative pressure introduction. If it has decreased, the process proceeds to step 134, the fourth flag F4 is reset to “0”, and in the subsequent step 135, the purge control valve 31 is fully closed again, and the introduction of the negative pressure is terminated (FIG. 5). Time T5). Thereafter, the routine proceeds to step 136, and at the time T6 immediately after the evaporation gas purge system is brought into the negative pressure sealed state, the fuel tank internal pressure P2a detected by the pressure sensor 20 is read and stored, and the timer T is reset and started. Thereafter, the fuel tank internal pressure PT rises from −15 mmHg in accordance with the amount of vapor generated in the fuel tank 17 between time T6 and time T7 in FIG.
[0039]
Then, in the next step 137, it is determined whether or not 15 seconds have elapsed since the fuel tank internal pressure P2a was read. If 15 seconds have elapsed, the process proceeds to step 138, and the fifth flag F5 is being detected for pressure change. Is set to “1”, meaning that the program is terminated. As a result, at the next and subsequent executions of the program, “No” is determined in steps 101 to 104 and “Yes” is determined in step 105, and the processing is repeated in the order of steps 101 to 105 → step 137 →. .
[0040]
Thereafter, when 15 seconds have elapsed from the reading of the fuel tank internal pressure P2a, the routine proceeds to step 139, where the fuel tank internal pressure P2b detected by the pressure sensor 20 is read and stored at time T7, and the pressure change ΔP2 (= P2b-P2a) is calculated.
[0041]
Thereafter, in step 141, it is determined whether or not there is a leak based on a leak determination condition expressed by the following equation.
ΔP2> α ・ ΔP1 + β
[0042]
Here, α is a coefficient for correcting the difference in the amount of fuel evaporation due to the difference between atmospheric pressure and negative pressure, and β is a coefficient for correcting the detection accuracy of the pressure sensor 20, the pressure leak of the canister closing valve 26, and the like. If the above equation is satisfied, it is determined that there is a leak. That is, if there is a cause of leakage in the sealed section from the fuel tank 17 to the purge control valve 31, outflow from the sealed section to the atmosphere occurs under positive pressure, while air flows from the atmosphere to the sealed section under negative pressure. Happens. Therefore, “(pressure change amount ΔP2 under negative pressure) than“ (pressure change amount ΔP1 under atmospheric pressure) = (amount of evaporative gas generated from the fuel tank 17) − (amount of outflow from the sealed section to the atmosphere) ”. = (Amount of evaporated gas generated from the fuel tank 17) + (amount of inflow from the atmosphere to the sealed section) "is larger. From this relationship, the above-described leak determination condition is derived.
[0043]
If the leak judgment condition of the above equation is satisfied, that is, if it is judged that there is a leak in step 141, there is a part that causes a leak somewhere in the purge path from the fuel tank 17 to the intake pipe 12. In step 142, the leak flag Fleak is set to "1". In the subsequent step 143, the warning lamp 53 is turned on to notify the abnormality, and the program ends.
[0044]
On the other hand, if “NO” is determined in step 141, that is, if it is determined that there is no leak, the process proceeds to step 144, and the first to fifth flags F1 to F5 are reset to “0”. Exit this program.
[0045]
In the present embodiment (1) described above, the evaporation gas concentration in the fuel tank 17 is released to reduce the evaporation gas concentration before the pressure change amount ΔP1 from the atmospheric pressure is measured. Before the measurement, the differential pressure between the vapor pressure component and the saturated vapor pressure in the fuel tank 17 can be sufficiently increased, and the pressure from the atmospheric pressure is not affected by the fuel system state such as the fuel temperature. The change amount ΔP1 can be measured with high accuracy, and abnormality diagnosis of the evaporation gas purge system can be performed with high accuracy.
[0046]
Further, in the present embodiment (1), it is determined whether or not the execution condition of the evaporation gas concentration reduction operation is satisfied based on the fuel temperature and the fuel temperature change amount, and when the execution condition is not satisfied (that is, the evaporation gas component When the partial pressure is estimated to be sufficiently low compared to the saturated vapor pressure), the evaporative gas concentration reduction operation is omitted and the pressure change ΔP1 is measured. The required time can be shortened, and a rapid abnormality diagnosis can be performed.
[0047]
Note that the execution condition of the evaporation gas concentration reduction operation may be determined by only one of the fuel temperature and the fuel temperature change amount. Further, the process for determining the execution condition of the evaporation gas concentration reduction operation may be omitted, and the evaporation gas concentration reduction operation may be executed every time. Even in this case, the intended purpose of the present invention can be sufficiently achieved.
[0048]
[Embodiment (2)]
In the embodiment (1), the canister closing valve 25 is opened and the purge control valve 31 is closed when the fuel tank internal pressure PT is returned to atmospheric pressure (T2 to T3) at the end of the evaporation gas concentration reduction operation. However, in the embodiment (2) of the present invention shown in FIG. 6, when the fuel tank internal pressure PT is returned to the atmospheric pressure at the end of the evaporation gas concentration reduction operation (T2 to T3), the canister closing valve 25 and the purge control valve 31 are Open both. In this way, by opening the purge control valve 31 when the atmospheric pressure is introduced, the evaporation gas adsorbed in the canister 23 can be prevented from returning to the fuel tank 17, and the evaporation gas concentration in the fuel tank 17 is reliably reduced. it can.
[0049]
[Embodiment (3)]
In the above embodiments (1) and (2), after measuring the pressure change amount ΔP1 from the atmospheric pressure, the pressure change amount ΔP2 from the negative pressure is measured, but the embodiment of the present invention shown in FIG. In (3), after a predetermined time has elapsed since the pressure change ΔP2 from the negative pressure was measured and the fuel tank internal pressure PT was returned to the atmospheric pressure, the evaporation gas concentration reduction operation was performed, and the pressure change from the atmospheric pressure. ΔP1 is measured. Also in the present embodiment (3), the method for measuring the pressure change amounts ΔP2 and ΔP1 and the method for reducing the evaporation gas concentration are the same as those in the above-described embodiment (1) or (2).
[0050]
In this case, if the pressure change amount ΔP2 from the negative pressure is measured and then returned to the atmospheric pressure, the evaporated gas component in the fuel tank 17 suddenly becomes saturated, and the state in the fuel tank 17 remains unsatisfactory for a while. In order to become stable, the evaporative gas concentration in the fuel tank 17 is measured before the pressure change amount ΔP1 is measured by waiting for a predetermined time until the state in the fuel tank 17 becomes stable and performing the evaporative gas concentration reducing operation. Is reliably reduced.
[0051]
[Embodiment (4)]
In the embodiment (1), it is determined whether or not the evaporation gas concentration reduction operation is executed based on the fuel temperature and the fuel temperature change amount. However, in the embodiment (4) of the present invention shown in FIG. Before making an abnormality diagnosis of the evaporation gas purge system, a preliminary measurement is performed to measure the pressure change ΔP0 by adjusting the fuel tank internal pressure PT to the atmospheric pressure, and the pressure change ΔP0 is compared with a predetermined value to reduce the evaporation gas concentration. Determine whether to perform or omit the operation. That is, when the pressure change amount ΔP0 is less than the predetermined value, it is estimated that the partial pressure of the evaporated gas component in the fuel tank 17 is close to the saturated vapor pressure, and the evaporated gas concentration in the fuel tank 17 needs to be reduced. In the same manner as in the embodiment (1), the evaporation gas in the fuel tank 17 is released to reduce the evaporation gas concentration. On the other hand, when the pressure change amount ΔP0 is equal to or larger than the predetermined value, it is estimated that the partial pressure of the vapor gas component in the fuel tank 17 is sufficiently lower than the saturated vapor pressure, and the vapor gas concentration in the fuel tank 17 is reduced. Since there is no need, the operation of reducing the evaporation gas concentration is omitted and the pressure change ΔP1 from the atmospheric pressure is measured.
The number of times the pressure change amount ΔP0 is measured may be one time, but may be two or more times.
[0052]
[Embodiment (5)]
In each of the above embodiments (1) to (4), when returning the fuel tank internal pressure PT to atmospheric pressure, the canister closing valve 25 is opened to introduce atmospheric pressure into the evaporation gas purge system. In the embodiment (5) of the present invention shown in FIG. 9, the release valve 61 is provided in the purge path from the fuel tank 17 to the canister 23, and the release valve 61 is opened when the fuel tank internal pressure PT is returned to the atmospheric pressure. Introducing atmospheric pressure into the evaporation gas purge system.
[0053]
1 and 9, the pressure sensor 20 detects the internal pressure of the fuel tank 17. However, for example, the pressure in the communication pipe 22 that connects the fuel tank 17 and the canister 23 is detected. In short, the pressure at any point in the evaporation gas purge system from the fuel tank 17 to the purge control valve 31 may be detected.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an entire system showing an embodiment (1) of the present invention.
FIG. 2 is a flowchart showing a flow of processing of an abnormality diagnosis program (part 1).
FIG. 3 is a flowchart showing a flow of processing of an abnormality diagnosis program (part 2).
FIG. 4 is a flowchart showing a flow of processing of an abnormality diagnosis program (part 3).
FIG. 5 is a time chart for explaining the relationship between the opening / closing of the purge control valve and the canister closing valve and the change in the internal pressure of the fuel tank at the time of abnormality diagnosis in the embodiment (1) of the present invention.
FIG. 6 is a time chart for explaining the relationship between the opening / closing of the purge control valve and the canister closing valve and the change in the fuel tank internal pressure during abnormality diagnosis in the embodiment (2) of the present invention.
FIG. 7 is a time chart for explaining the relationship between the opening / closing of the purge control valve and the canister closing valve and the change in the fuel tank internal pressure during abnormality diagnosis in the embodiment (3) of the present invention.
FIG. 8 is a time chart for explaining the relationship between the opening / closing of the purge control valve and the canister closing valve and the change in the internal pressure of the fuel tank at the time of abnormality diagnosis in the embodiment (4) of the present invention.
FIG. 9 is a schematic configuration diagram of the entire system showing an embodiment (5) of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Throttle valve, 16 ... Fuel injection valve, 17 ... Fuel tank, 18 ... Fuel pump, 20 ... Pressure sensor, 21 ... Evaporative gas purge system, 22 ... Communication pipe, DESCRIPTION OF SYMBOLS 23 ... Canister, 24 ... Adsorber, 26 ... Canister block valve, 30a, 30b ... Purge passageway, 31 ... Purge control valve, 39 ... Control circuit (abnormality diagnostic means), 53 ... Warning lamp, 61 ... Open / close valve

Claims (7)

燃料タンクと内燃機関の吸気管とを連通する通路に、前記燃料タンク内の燃料が蒸発して生じたエバポガスを吸着するキャニスタと、このキャニスタから前記吸気管へのエバポガスのパージを制御するパージ制御弁とを設けたエバポガスパージシステムにおいて、
異常診断時に前記燃料タンクと前記キャニスタとを含むエバポガスパージ系を密閉して該エバポガスパージ系の圧力変化を測定し、その測定値に基づいて前記エバポガスパージ系の異常の有無を診断する異常診断手段を備え、
前記異常診断手段は、前記燃料タンク内のエバポガス成分の分圧が飽和蒸気圧に近いと推定されるときに、前記エバポガスパージ系の圧力変化を測定する前に前記燃料タンク内のエバポガスを放出してエバポガス濃度を低減する操作(以下「エバポガス濃度低減操作」という)を行うことを特徴とするエバポガスパージシステムの異常診断装置。
A canister that adsorbs the evaporation gas generated by evaporation of the fuel in the fuel tank in a passage communicating the fuel tank and the intake pipe of the internal combustion engine, and a purge control that controls the purge of the evaporation gas from the canister to the intake pipe In an evaporation gas purge system provided with a valve,
An abnormality diagnosing means for sealing the evaporation gas purge system including the fuel tank and the canister at the time of abnormality diagnosis, measuring a pressure change of the evaporation gas purge system, and diagnosing the presence or absence of abnormality of the evaporation gas purge system based on the measured value With
When the partial pressure of the vapor gas component in the fuel tank is estimated to be close to the saturated vapor pressure, the abnormality diagnosis unit releases the vapor gas in the fuel tank before measuring the pressure change in the vapor gas purge system. An abnormality diagnosis apparatus for an evaporation gas purge system, which performs an operation for reducing the evaporation gas concentration (hereinafter referred to as an “evaporation gas concentration reduction operation”).
前記異常診断手段は、前記エバポガス濃度低減操作を行う際に、前記エバポガスパージ系内の圧力を所定圧力に変化させて前記燃料タンク内のエバポガスを放出した後、大気圧近傍に戻すことを特徴とする請求項1に記載のエバポガスパージシステムの異常診断装置。  The abnormality diagnosing means changes the pressure in the evaporation gas purge system to a predetermined pressure to release the evaporation gas in the fuel tank and then returns it to near atmospheric pressure when performing the operation for reducing the evaporation gas concentration. The abnormality diagnosis apparatus for an evaporation gas purge system according to claim 1. 前記異常診断手段は、前記エバポガスパージ系内の圧力を負圧に調整した後に1回目の圧力変化を測定し、その後、該エバポガスパージ系内の圧力を大気圧近傍に調整した後に2回目の圧力変化の測定し、両方の圧力変化を比較することで、該エバポガスパージ系の異常の有無を診断するものであり、前記1回目の圧力変化の測定終了から所定時間経過後に前記エバポガス濃度低減操作を行った後に前記2回目の圧力変化の測定を行うことを特徴とする請求項2に記載のエバポガスパージシステムの異常診断装置。  The abnormality diagnosing means measures the first pressure change after adjusting the pressure in the evaporation gas purge system to a negative pressure, and then adjusts the pressure in the evaporation gas purge system to the vicinity of the atmospheric pressure and then the second pressure. By measuring the change and comparing both pressure changes, the evaporative gas purge system is diagnosed for the presence or absence of an abnormality, and the evaporative gas concentration reduction operation is performed after a predetermined time has elapsed since the end of the first pressure change measurement. 3. The apparatus for diagnosing abnormality of an evaporation gas purge system according to claim 2, wherein the second pressure change is measured after the measurement. 前記キャニスタに設けられた大気連通孔を開閉するキャニスタ閉塞手段を備え、
前記異常診断手段は、前記エバポガス濃度低減操作の終了時に前記エバポガスパージ系内の圧力を大気圧近傍に戻す際に、前記キャニスタ閉塞手段を開放し且つ前記パージ制御弁を閉鎖することを特徴とする請求項2又は3に記載のエバポガスパージシステムの異常診断装置。
A canister closing means for opening and closing an air communication hole provided in the canister;
The abnormality diagnosis means opens the canister closing means and closes the purge control valve when returning the pressure in the evaporation gas purge system to near atmospheric pressure at the end of the evaporation gas concentration reduction operation. The abnormality diagnosis apparatus for an evaporation gas purge system according to claim 2 or 3.
前記キャニスタに設けられた大気連通孔を開閉するキャニスタ閉塞手段を備え、
前記異常診断手段は、前記エバポガス濃度低減操作の終了時に前記エバポガスパージ系内の圧力を大気圧近傍に戻す際に、前記キャニスタ閉塞手段及び前記パージ制御弁の両方を開放することを特徴とする請求項2又は3に記載のエバポガスパージシステムの異常診断装置。
A canister closing means for opening and closing an air communication hole provided in the canister;
The abnormality diagnosis means opens both the canister closing means and the purge control valve when returning the pressure in the evaporation gas purge system to near atmospheric pressure at the end of the evaporation gas concentration reduction operation. Item 4. An abnormality diagnosis apparatus for an evaporation gas purge system according to Item 2 or 3.
前記燃料タンク内の燃料の温度を判定する燃料温度判定手段を備え、 前記異常診断手段は、前記燃料温度判定手段で判定した燃料温度とその変化量の少なくとも一方に基づいて前記エバポガス濃度低減操作を実行するか省略するかを判定することを特徴とする請求項1乃至5のいずれかに記載のエバポガスパージシステムの異常診断装置。  Fuel temperature determination means for determining the temperature of the fuel in the fuel tank is provided, and the abnormality diagnosis means performs the operation for reducing the evaporation gas concentration based on at least one of the fuel temperature determined by the fuel temperature determination means and the change amount thereof. 6. The abnormality diagnosis apparatus for an evaporation gas purge system according to claim 1, wherein it is determined whether to execute or omit. 前記異常診断手段は、異常診断を行う前に、前記エバポガスパージ系内の圧力を大気圧近傍に調整して圧力変化を測定する予備測定を1回又は複数回行い、その測定結果に基づいて前記エバポガス濃度低減操作を実行するか省略するかを判定することを特徴とする請求項1乃至6のいずれかに記載のエバポガスパージシステムの異常診断装置。  The abnormality diagnosing means performs one or more preliminary measurements to measure a pressure change by adjusting the pressure in the evaporative gas purge system to near atmospheric pressure before performing abnormality diagnosis, and based on the measurement result, The abnormality diagnosis apparatus for an evaporation gas purge system according to any one of claims 1 to 6, wherein it is determined whether to execute or omit an evaporation gas concentration reduction operation.
JP01217198A 1997-12-04 1998-01-26 Abnormality diagnosis device for evaporative gas purge system Expired - Lifetime JP3948002B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP01217198A JP3948002B2 (en) 1998-01-26 1998-01-26 Abnormality diagnosis device for evaporative gas purge system
US09/204,141 US6148803A (en) 1997-12-04 1998-12-03 Leakage diagnosing device for fuel evaporated gas purge system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01217198A JP3948002B2 (en) 1998-01-26 1998-01-26 Abnormality diagnosis device for evaporative gas purge system

Publications (2)

Publication Number Publication Date
JPH11210568A JPH11210568A (en) 1999-08-03
JP3948002B2 true JP3948002B2 (en) 2007-07-25

Family

ID=11797996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01217198A Expired - Lifetime JP3948002B2 (en) 1997-12-04 1998-01-26 Abnormality diagnosis device for evaporative gas purge system

Country Status (1)

Country Link
JP (1) JP3948002B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552356B2 (en) * 2001-05-25 2010-09-29 三菱自動車工業株式会社 Failure diagnosis device for evaporative fuel treatment equipment
JP4497268B2 (en) * 2001-07-25 2010-07-07 株式会社デンソー Fuel temperature estimation device and abnormality diagnosis device
KR102052965B1 (en) * 2013-04-19 2019-12-06 콘티넨탈 오토모티브 시스템 주식회사 Method for diagnosing leakage of fuel tank of hybrid vehicle
JP6654522B2 (en) * 2016-07-27 2020-02-26 愛三工業株式会社 Evaporative fuel processing equipment

Also Published As

Publication number Publication date
JPH11210568A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
US7082815B1 (en) Evaporated fuel treatment device of internal combustion engine
US7272488B2 (en) Leak detecting device for fuel vapor treatment unit
US6220229B1 (en) Apparatus for detecting evaporative emission control system leak
JP3503584B2 (en) Failure diagnosis device for fuel vapor purge system
JP2759908B2 (en) Evaporative fuel processor for internal combustion engines
JP3198865B2 (en) Failure diagnosis device for evaporation purge system
AU671834B2 (en) Method of detecting faults for fuel evaporative emission treatment system
JP3664074B2 (en) Abnormality diagnosis device for evaporative gas purge system
JP3555678B2 (en) Leak diagnosis device for fuel evaporative gas purge system
JP3948002B2 (en) Abnormality diagnosis device for evaporative gas purge system
JP2004293438A (en) Leak diagnosing device of evaporation gas purging system
JPH11148430A (en) Leak deciding device of fuel evaporative emission purge system
JP2004301027A (en) Leakage diagnostic device for evaporation gas purging system
JP4250972B2 (en) Evaporative fuel control device for internal combustion engine
JP3449249B2 (en) Abnormality diagnosis device for evaporative gas purge system
JP2751763B2 (en) Failure diagnosis device for evaporation purge system
JP2830628B2 (en) Failure diagnosis device for evaporation purge system
JPH06147032A (en) Trouble diagnosing device of evapo-purge system
JP3618272B2 (en) Failure diagnosis device for fuel vapor purge system and fuel vapor purge system
JP3937263B2 (en) Leak diagnostic device for fuel evaporative gas purge system
JPH11344411A (en) Diagnostic apparatus for leakage in fuel evaporative gas purge system
JP2580928B2 (en) Failure diagnosis device for evaporation purge system
JP2001193582A (en) Failure diagnostic device for fuel vapor purging system
JP3322194B2 (en) Leakage diagnosis device for evaporative gas purge system
JP3322213B2 (en) Abnormality diagnosis device for evaporative gas purge system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term