JP4117766B2 - 循環データ測定装置 - Google Patents
循環データ測定装置 Download PDFInfo
- Publication number
- JP4117766B2 JP4117766B2 JP2001400461A JP2001400461A JP4117766B2 JP 4117766 B2 JP4117766 B2 JP 4117766B2 JP 2001400461 A JP2001400461 A JP 2001400461A JP 2001400461 A JP2001400461 A JP 2001400461A JP 4117766 B2 JP4117766 B2 JP 4117766B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- living body
- circulation
- blood
- circulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Description
【発明の属する技術分野】
本発明は、生体中を循環する体液および循環器を構成する組織の測定装置にかかわり、特に血液の状態を把握し健康の評価、疾患の診断、薬品の効果の評価等を行う技術に関する。
【0002】
【従来の技術】
従来、生体の健康の評価、疾患の診断、生体への薬品の影響の把握等を行うために、血液の情報を利用するいろいろな方法が行われている。例えば医療的には、生体から血液を採集し、その血液を成分分析装置にかけて血液中に含まれるいろいろな血液成分の割合から循環データを求めて健康状態を評価するといった方法等がある。しかしながら、この方法では採血するときに針を生体内に刺す必要があるので、一般家庭のような医療機関から離れた場所にいるときに循環データを測定し健康状態を評価したい場合のために、医療機関以外でも循環データを測定し健康状態を評価できる装置も考えられている。それは非侵襲的に生体表面から波動を入力し、生体を流れる体液、特に血液に反射させて動きや位置から血液状態を解析して循環データを測定して健康状態を評価する装置である。
【0003】
医療的に健康評価を行う従来例としては、専門雑誌「食品研究成果情報,NO.11 1999年発行」に菊池佑二氏が「毛細血管モデルを用いた全血流動性の測定」というタイトルで発表した方法、すなわち被検者から血液を採取し、リソグラフィックな手法で製作されたマイクロチャネルアレイを用いて、定圧下の血流の通過時間から血液レオロジーを計測する方法が知られている。この方法を用いることにより、循環データとして血液レオロジーを計測することができ、この値により健康状態を評価することができる。
【0004】
また、家庭等で非侵襲的に健康評価を行う従来例としては、生体の皮膚面から光等の波動を送信して反射してくる光を受信し、血管を流れる血液の流量を検出する形態がある。これは、検出された血流量を微分することにより循環データの1つである加速度脈波を求め、健康状態を評価する。従来の循環データ測定装置の信号処理部5の内部構成と、信号処理部5と循環センサ部101の接続状態を示すブロック図を図16に示す。図示するように、信号処理部5は、駆動部501、受信部502、信号演算部503、出力部504によって概略構成されている。駆動部501は循環センサ101に設置された発光素子103を点灯させ、光を血管に向けて入射するための駆動エネルギーを送信する。受信部502は循環センサ101に設置された受光素子104が光を受信した時に発生する信号を受信する。信号演算部503は、内部に備えた記憶領域(図示省略)に記憶されている処理プログラムを実行することによって、循環データの測定に関する各種処理を実行し、その処理結果を出力部504に出力する。そして、信号演算部503は受信信号レベルを血流量に変換し、その値を2回微分することにより循環データとして加速度脈波を求めている。
【0005】
【発明が解決しようとする課題】
しかしながら、マイクロチャネルアレイを用いた血液レオロジー測定法では、どうしても被検者から血液を採取するために、注射針を用いて肘部に針を刺し、採血を行わなければならず、医療機関等に行く必要がある。また、従来例に示したような生体表面から波動を入力し、生体を流れる体液に反射させて動きや位置から血液状態を解析し、循環データを求めて健康状態を評価する場合において、生体の測定部位の表面や内部の温度の影響が生体内の血液の流動状態に影響し、循環データが変化してしまうため、本来の健康状態を評価すべき循環データの測定が困難となっている。
【0006】
対策として生体の温度変化が少ない部位に対して波動の送受信を行い、非侵襲測定及び評価を行えば正確に測定する方法が考えられる。しかしながら、容易に波動を送受信できる部位で測定することを考えると手足や指部のような末端部位になってしまう。しかしこれらの部位では生体や環境の状態によって、循環センサの測定感度や精度が悪くなってしまう場合がある。これは気温が寒い場合、また生体にストレスがある場合、生理現象として末端部位への体液、主に血液の供給量が少なくなり、循環センサを用いて例えば血液流速情報を検知しようとしても血液の絶対量が少ないためセンサの測定感度が小さくなってしまうためである。このままでは循環データの正確な測定ができないので、どれくらい生体の端末部位の循環状態が悪くなっているかを計測しなければならないという課題がある。
【0007】
そこで、本発明が解決しようとする課題は非侵襲的に生体表面から波動を入力し、生体を流れる体液に反射させて動きや位置から血液等の状態を解析し、循環データを求めて健康状態を評価するときに、生体の測定部位や環境温度やストレスの状態にかかわらず、精度良く正確に循環データを測定することにある。その結果として、正確な健康状態を評価することが可能になる。
【0008】
【課題を解決するための手段】
課題を解決するために、本発明では測定部位の温度測定または、保温する手段を用意した。これは循環データを測定する際に、体液の循環量や速度がどれくらい少なくなっているかを求める指標として、体液が生体の熱を運搬しているということに着目し補正する方法である。例えば環境温度やストレスの影響により体液の循環状態が悪くなっているときには、体液によって運搬されるはずの熱が運ばれてこない。すなわち部位の温度が低くなる。そこで、この部位の温度を測ったり、保温して定温になるようにることによって、体液の循環に及ぼしている環境温度やストレスの影響を調べることができ、この結果をもとに循環データを補正すると、環境温度やストレス状態に影響されない正確な循環データを求めることができる。
【0009】
そこで、本発明によれば、生体表面から内部に波動を送受信して前記生体内部の循環データの情報を検出する測定装置に、循環データを検出する循環センサ機能と生体の温度を検出する温度センサ機能を提供する。
【0010】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の温度を検出する温度センサ機能を持たせた上、温度センサ機能が生体の表面温度を測定する機能を提供する。
【0011】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の温度を検出する温度センサ機能を持たせた上、温度センサ機能が生体の深部温度を測定する機能を提供する。
【0012】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の温度を検出する温度センサ機能を持たせた上、循環データを検出する循環センサ機能が有する循環センサ内部に温度センサが配置され、温度センサ手段によって温度を検知している構成を提供する。
【0013】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の温度を検出する温度センサ機能を持たせた上、循環データを検出する循環センサ機能が有する循環センサが検知した波動の時間的変化から循環データとして血液レオロジーを解析する機能を提供する。
【0014】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の温度を検出する温度センサ機能を持たせた上、循環データを検出する循環センサ機能に循環データをドップラシフト信号の形態で検出する機能を提供する。
【0015】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の温度を検出する温度センサ機能を持たせた上、循環データを検出する循環センサ機能に血管内の血液から反射してくる波動を検出する機能を提供する。
【0016】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の温度を検出する温度センサ機能を持たせた上、循環データを検出する循環センサ機能に血管内の血液の流速を波動として検出する機能を提供する。
【0017】
また、本発明によれば、生体表面から内部に波動を送受信して生体内部の循環データの情報を検出する測定装置に、循環データを検出する循環センサ機能と生体の測定部位温度を保温する機能を提供する。
【0018】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の測定部位温度を保温する機能を持たせた上、生体の測定部位温度を保温する保温部に加熱機能を持つ構造を提供する。
【0019】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の測定部位温度を保温する機能を持たせた上、生体の測定部位温度を検出する温度センサ機能を提供する。
【0020】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の測定部位温度を保温する機能を持たせた上、生体の測定部位温度を検出する温度センサ機能と生体の測定部位温度を保温する機能部に加熱機能と冷却機能を持つ構造を提供する。
【0021】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の測定部位温度を保温する機能を持たせた上、循環データを検出する循環センサ機能に循環センサが検知した波動の時間的変化から循環データとして血液レオロジーを解析する機能を提供する。またこれに加えて、生体の測定部位温度を検出する温度センサ機能も提供する。
【0022】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の測定部位温度を保温する機能を持たせた上、循環データを検出する循環センサ機能に循環データをドップラシフト信号の形態で検出する機能を提供する。またこれに加えて、生体の測定部位温度を検出する温度センサ機能も提供する。
【0023】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の測定部位温度を保温する機能を持たせた上、循環データを検出する循環センサ機能に血管内の血液から反射してくる波動を検出する機能を提供する。またこれに加えて、生体の測定部位温度を検出する温度センサ機能も提供する。
【0024】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の測定部位温度を保温する機能を持たせた上、循環データを検出する循環センサ機能に血管内の血液の流速を波動として検出する機能を提供する。またこれに加えて、生体の測定部位温度を検出する温度センサ機能も提供する。
【0025】
また、本発明によれば、循環データの測定装置に循環データを検出する循環センサ機能と生体の温度を検出する温度センサ機能を持たせた上、循環データを求めるときに温度センサ機能によって検出した温度データを用いて補正を行う機能を提供する。
【0026】
また、本発明によれば、循環データ測定装置に、循環データを検出する循環センサ機能と生体の温度を検出する温度センサ機能と生体の測定部位温度を保温する機能を持たせた上、循環データを求めるときに温度センサ機能によって検出した温度データを用いて補正を行う機能を提供する。
【0027】
【発明の実施の形態】
本発明の循環データ測定装置の測定原理は、脈拍の拍動時にあらわれる循環成分、例えば血液の流れる速度や血流量の時間変化の形から循環データを求めるものである。そして、本発明の循環データ測定装置は、皮膚面から波動を送受信して生体内の循環データを非侵襲的に検出する手段と、測定部位の温度を検出する手段または測定部位を一定温度に保温する手段、もしくは両方の手段を基本構成とするものである。循環データ例えば体液や血液の流動性は液体の温度と密接な関係に有り、例えば環境温度が低ければ流動性が低くなり、体温も低くなる。
【0028】
皮膚面から体内に向けて放射される定周波数の波動信号は体内物質に反射されて返ってくる。この反射波動信号を受信してその中に含まれている体液情報を検出するのであるが、反射物質は血管内の血流に特定されるものではない。血管内の血流であれば速度成分を持って移動しているのでその反射波は波動の周波数がドップラ効果によってシフトされるが、骨や血管といった速度成分を持たない静止物質の場合には定周波数のまま反射されて返ってくる。
また、速度成分をもつ物質としては着目している血管内の血液に限らず多様な方向を向いている毛細管内の血液やリンパ液など多種多様な物質が存在しそれらからの反射波が受信波には重畳されている。発信側の周波数と同じ成分は静止物質からの反射であるからこれは容易に除去できる。
また、体内物質に反射して返ってくる場合、反射波動の周波数がドップラシフトするばかりではなく、反射物の波動の吸収度合いによって反射強度も変化する。この反射強度変化を生体内を流れる体液の容積変化として検出し、循環データを取得することも可能である。さらに容積変化成分を微分して例えば加速度脈波成分として循環データを取得することも可能である。
また、体内物質に反射して返ってくる時間の遅れを検出することにより、生体内部の構造、例えば血管径や血管厚の変化を検出することもできる。これらの形状変化成分もまた、循環データの一部として考えることができる。これら循環データから生体の健康状態を評価することが本測定装置の最終目的となる。
【0029】
また、本発明において検出したい物理量は着目している体液の流速等であるが、循環器内の流れの平均流速は一般に最も周波数成分としてレベルの高い信号が対応することで、その成分を抽出する。なお、流速検出に用いる波動には超音波が使用されるのが一般的であるが、レーザ等他の波動を用いることも可能である。また、容積変化を検出する場合にはレーザーやダイオード等の光を使用して循環データを検出する。
【0030】
以下、添付図面を参照して、本発明の実施の形態に係る循環データ測定装置について説明する。
【0031】
【実施例1】
図1は実施例1について、生体301と循環データ測定装置の循環センサ部101、温度センサ部201、生体内の血管401を示したものである。循環センサ101は送受信部が生体方向に向くように設置され、さらに温度センサ201が循環センサ101内部に埋め込まれ、生体表面に接するように配置されている。本実施例においては超音波を用いて送受信を行う。そして温度センサ201はサーミスタを用いた。
【0032】
実施例1の循環データ測定装置の信号処理部5の内部構成と、信号処理部5と循環センサ部101、及び温度センサ部201の接続状態を示すブロック図を図2に示す。図示するように、信号処理部5は、駆動部501、受信部502、信号演算部503、出力部504、温度受信部505によって概略構成されている。
【0033】
実施例1の駆動部501は循環センサ101に設置されたPZT102を振動させ、超音波を血管401に向けて入射するための駆動電圧を送信する。受信部502は循環センサ101に設置されたPZT102が超音波を受信した時に発生する電圧を受信する。また、温度センサ201が測定した温度は電圧にトランスデュートされ、その電圧を温度受信部505が受信する。信号演算部503は、内部に備えた記憶領域(図示省略)に記憶されている処理プログラムを実行することによって、循環データの測定に関する各種処理を実行し、その処理結果を出力部504に出力する。
【0034】
また、信号演算部503は、PZT102から発せられた超音波の周波数と受信された超音波の周波数を比較する事により、血流のドップラ効果を算出する。そして、周波数の変化より血管401を流れる血流速度算出し、その速度の時間変化を求める。また、この血流速度を算出するときに、循環センサ101が生体表面に接している部分の温度を、温度センサ201が検知し、この温度を用いて血流速度を補正する。生体内部の血管401や血液等は温度変化に敏感であり、低温になると血管401が収縮し、血流速度が下がるため、温度センサ201による補正を行ったほうが、より正確に血流速度を求めることができる。
【0035】
そして、この補正を行うときに温度センサ201が循環センサ内部にあるため、より循環データ測定部に近い温度データを検出することができる。したがって、精度の高い温度補正を実現できる。さらに、脈拍の拍動時にあらわれる血流速度の時間変化の形が、血液のレオロジーと相関関係があり、この脈拍拍動時にあらわれる血流速度変化から循環データとして血液レオロジーを求めている。例えば、血流変化が大きければ、血液の粘度が低い状態であるといえる。
【0036】
次に、実施例1の循環データ測定方法について説明する。本実施例では循環データとして血液のレオロジーを求めた。図3に血流速度の脈拍拍動に伴う時間変化のグラフを示した。血液レオロジーの特徴成分として、最大血流速度Vxがあげられる。この最大血流速度Vxが血液レオロジーと相関関係にある。血液レオロジーを表す指標をTnとすると、Tnは最大血流速度Vxと温度補正係数C1の積で表される(式1)。
【0037】
Tn= C1×Vx (1)
実施例1において、循環センサ101内部に設置した温度センサ201によって検知された温度を用いて補正係数C1を算出したところ、温度補正を行わない場合と比較して血液レオロジーの測定精度が約30%向上した。
【0038】
【実施例2】
図4は実施例2について、生体301と循環データ測定装置の循環センサ部101、深部温度センサ部202、生体内の血管401を示したものである。循環センサ101は送受信部が生体方向に向くように設置され、さらに深部温度センサ202が循環センサ101内部に埋め込まれ、生体表面に接するように配置されている。本実施例においては超音波を用いて送受信を行う。ここで、深部温度センサ202についてセンサ部分を拡大した図5を用いて説明する。
【0039】
深部温度センサは熱流発生器203と熱流測定器204と温度センサ205が積層して構成されている。熱流発生器203は生体301に対して定常熱流を発生することができる。そして、熱流測定器204は生体301内部から生体表面に流出してくる熱流を測定することができる。温度センサ205は生体301表面の温度を測定している。
【0040】
実施例2の循環データ測定装置の信号処理部5の内部構成と、信号処理部5と循環センサ部101、及び深部温度センサ部202の接続状態を示すブロック図を図6に示す。図示するように、信号処理部5は、駆動部501、受信部502、信号演算部503、出力部504、深部温度受信部508、熱流発生部506、熱流測定部507によって概略構成されている。
【0041】
実施例2の駆動部501は循環センサ101に設置されたPZT102を振動させ、超音波を血管401に向けて入射するための駆動電圧を送信する。受信部502は循環センサ101に設置されたPZT102が超音波を受信した時に発生する電圧を受信する。また、深部温度センサ202が測定した深部温度は電圧にトランスデュートされ、その電圧を深部温度受信部508が受信する。深部温度を測定するためには、熱流測定部507が生体301内部から流出してくる熱流を測定する。そして、この熱流と同じ量の熱流を生体301内部に向けて熱流発生部506から発生する。
【0042】
熱流発生部506より発生した熱流は生体301から流れ出た熱流と生体301表面においてぶつかることにより、熱流が打ち消され定常状態となる。熱流が定常状態であるということは、生体301表面と生体301深部との間に温度差が生じていないことを表している。すなわち、生体301表面の温度は生体301深部の温度と等しい値となっている。そこで、温度センサ205が検知する温度は深部温度となる。
【0043】
信号演算部503は、内部に備えた記憶領域(図示省略)に記憶されている処理プログラムを実行することによって、循環データの測定に関する各種処理を実行し、その処理結果を出力部504に出力する。また、信号演算部503は、PZT102から発せられた超音波の周波数と受信された超音波の周波数を比較する事により、血流のドップラ効果を算出する。そして、周波数の変化より血管401を流れる血流速度算出し、その速度の時間変化を求める。
【0044】
また、この血流速度を算出するときに、循環センサ101が生体301の深部温度を、深部温度センサ202が検知し、この温度を用いて血流速度を補正する。補正方法は実施例1に説明した方法と同じである。この補正を行うに際して、深部温度センサ202は深部の温度を捕らえているため、より循環部に近い温度データを検出することができる。したがって、精度の高い温度補正を実現できる。
【0045】
実施例2において、循環センサ101内部に設置した深部温度センサ202によって検知された温度を用いて式1の補正係数C1を算出したところ、温度補正を行わない場合と比較して血液レオロジーの測定精度が約35%向上した。
【0046】
【実施例3】
図7は実施例3について、生体301と循環データ測定装置の循環センサ部101、保温器601、生体内の血管401を示したものである。循環センサ101は送受信部が生体方向に向くように設置され、さらに保温器601が循環センサ101の周囲を覆うように設置されている。保温器601は循環センサ101及び循環センサ101が接している生体301表面周辺の温度を保温する機能を持っている。本実施例では保温器として断熱効果もあるウレタン樹脂を用いた。
【0047】
本実施例においては超音波を用いて送受信を行う。実施例2では循環センサ101に設置されたPZT102を振動させ、超音波を血管401に向けて入射する。血管401中を流れる血液に反射して返ってきた超音波はPZT102によって受信される。実施例3のブロック図は省略するが、従来の循環データ測定装置のブロック図と同じである。
【0048】
実施例3において、循環センサ101を覆うように配置した保温器601の効果により、循環データ測定時の生体温度ばらつきが軽減される。実際に保温器601を用いない場合と比較して血液レオロジーの測定精度が約5%向上した。
【0049】
【実施例4】
図8は実施例4について、生体301と循環データ測定装置の循環センサ部101、保温器602を示したものである。循環センサ101は送受信部が生体方向に向くように設置され、さらに保温器602が生体の測定部位全体を保温するように構成されている。本実施例において、保温器602は容器に37℃のお湯を入れて、その中に循環センサ101を装着した部位を挿入し、保温効果を持たせる機能とした。
【0050】
本実施例においても実施例3と同様に、超音波を用いて送受信を行う。本実施例では循環センサ101に設置されたPZT102を振動させ、超音波を生体301内部の血管に向けて入射する。血管中を流れる血液に反射して返ってきた超音波はPZT102によって受信される。実施例4のブロック図は省略するが、従来の循環データ測定装置のブロック図と同じである。
【0051】
実施例4において、循環データ測定部位全体を取り囲んで保温するような構成にした保温器602の効果により、循環データ測定時の生体温度ばらつきが非常に軽減された。実際に保温器602を用いない場合と比較して血液レオロジーの測定精度が約50%向上した。
【0052】
【実施例5】
図9は実施例5について、生体301と循環データ測定装置の循環センサ部101、保温器601、ヒーター701、生体内の血管401を示したものである。循環センサ101は送受信部が生体方向に向くように設置され、さらに保温器601が循環センサ101の周囲を覆うように設置されている。そして、保温器601の内部に、生体301の表面に接するようにヒーター701配置され、生体301表面の温度を加熱することにより表面周辺の温度を保温する機能を持っている。本実施例では保温器601として断熱効果もあるウレタン樹脂を用いた。またヒーター701には金属のニクロム材を用いた。
【0053】
実施例5の循環データ測定装置の信号処理部5の内部構成と、信号処理部5と循環センサ部101、及びヒーター部701の接続状態を示すブロック図を図10に示す。図示するように、信号処理部5は、駆動部501、受信部502、信号演算部503、出力部504、加熱部509によって概略構成されている。
【0054】
実施例5の駆動部501は循環センサ101に設置されたPZT102を振動させ、超音波を血管401に向けて入射するための駆動電圧を送信する。受信部502は循環センサ101に設置されたPZT102が超音波を受信した時に発生する電圧を受信する。また、加熱部509は循環センサ及び生体301の測定表面付近を保温するためにヒーター701に電力を与える。信号演算部503は、内部に備えた記憶領域(図示省略)に記憶されている処理プログラムを実行することによって、循環データの測定に関する各種処理を実行し、その処理結果を出力部504に出力する。また、信号演算部503は、PZT102から発せられた超音波の周波数と受信された超音波の周波数を比較する事により、血流のドップラ効果を算出する。そして、周波数の変化より血管401を流れる血流速度算出し、その速度の時間変化を求める。これ以降の循環データを求める手順は従来の循環データ測定方法と同じである。
【0055】
実施例5において、循環センサ101を覆うように配置した保温器601及びヒーター701の効果により、循環データ測定時の生体温度ばらつきが非常に軽減された。実際に保温器601及びヒーター701を用いない場合と比較して血液レオロジーの測定精度が約50%向上した。また、本実施例ではヒーター701を保温器601内部に配置したが、保温器601を無くして、ヒーター701と循環センサ101のみの構成にしても、測定精度向上の効果は得られ、約40%向上を示した。
【0056】
【実施例6】
図11は実施例6について、生体301と循環データ測定装置の循環センサ部101、保温器601、温度センサ201、生体内の血管401を示したものである。循環センサ101は送受信部が生体方向に向くように設置され、さらに保温器601が循環センサ101の周囲を覆うように設置されている。保温器601は循環センサ101及び循環センサ101が接している生体301表面周辺の温度を保温する機能を持っている。また、温度センサ201が循環センサ101内部に埋め込まれ、生体表面に接するように配置されている。本実施例では保温器として断熱効果もあるウレタン樹脂を用いた。温度センサ201にはサーミスタを用いた。
【0057】
本実施例においては超音波を用いて送受信を行う。実施例6では循環センサ101に設置されたPZT102を振動させ、超音波を血管401に向けて入射する。血管401中を流れる血液に反射して返ってきた超音波はPZT102によって受信される。実施例6のブロック図は省略するが、実施例1の循環データ測定装置のブロック図(図2)と同じである。
【0058】
実施例6において、循環センサ101を覆うように配置した保温器601の効果により、循環データ測定時の生体温度ばらつきが軽減される。さらに循環センサ101内部埋め込まれた温度センサ201が循環センサ101が測定した最大血流速度Vxに対して補正を行うので、測定精度がさらに向上する。この補正方法は実施例1と同様である。実際に保温器601と温度センサ201を用いない場合と比較して血液レオロジーの測定精度が約10%向上した。また、実施例4に示したように保温器601を大きくして測定部位全体を覆うような構成にして測定しても測定精度向上の効果はある。実施例としては示さないが、実施例4と同様に37℃のお湯中で測定したところ、約70%の精度向上効果があった。
【0059】
【実施例7】
図12は実施例7について、生体301と循環データ測定装置の循環センサ部101、保温器601、ヒーター701、温度センサ201、生体内の血管401を示したものである。循環センサ101は送受信部が生体方向に向くように設置され、さらに保温器601が循環センサ101の周囲を覆うように設置されている。そして、保温器601の内部に、生体301の表面に接するようにヒーター701配置され、生体301表面の温度を加熱することにより表面周辺の温度を保温する機能を持っている。そして、温度センサ201が循環センサ101内部に埋め込まれ、生体表面に接するように配置されている。本実施例では保温器601として断熱効果もあるウレタン樹脂を用いた。ヒーター701には金属のニクロム材を用いた。温度センサ201にはサーミスタを用いた。
【0060】
実施例7の循環データ測定装置の信号処理部5の内部構成と、信号処理部5と循環センサ部101、温度センサ部201、及びヒーター部701の接続状態を示すブロック図を図13に示す。図示するように、信号処理部5は、駆動部501、受信部502、信号演算部503、出力部504、加熱部509、温度受信部505によって概略構成されている。
【0061】
実施例7の駆動部501は循環センサ101に設置されたPZT102を振動させ、超音波を血管401に向けて入射するための駆動電圧を送信する。受信部502は循環センサ101に設置されたPZT102が超音波を受信した時に発生する電圧を受信する。また、加熱部509は循環センサ及び生体301の測定表面付近を保温するためにヒーター701に電力を与える。また、温度センサ201が測定した温度は電圧にトランスデュートされ、その電圧を温度受信部505が受信する。温度受信部505は受信した温度データを加熱部509にフィードバックし、設定温度よりも測定温度が高ければ加熱部509は加熱を中止する。
【0062】
また、設定温度よりも測定温度が低ければ加熱部509は加熱を開始する。本実施例においては、温度設定を37℃とした。信号演算部503は、内部に備えた記憶領域(図示省略)に記憶されている処理プログラムを実行することによって、循環データの測定に関する各種処理を実行し、その処理結果を出力部504に出力する。また、信号演算部503は、PZT102から発せられた超音波の周波数と受信された超音波の周波数を比較する事により、血流のドップラ効果を算出する。そして、周波数の変化より血管401を流れる血流速度算出し、その速度の時間変化を求める。
【0063】
また、この血流速度を算出するときに、循環センサ101が生体表面に接している部分の温度を、温度センサ201が検知し、この温度を用いて血流速度を補正する。生体内部の血管401や血液等は温度変化に敏感であり、低温になると血管401が収縮し、血流速度が下がるため、それを防ぐために加熱部509の制御によりヒーター701を駆動し、温度を生体301の温度付近(本実施例では37℃)に保っている。そして、さらに温度センサ201を用いて測定結果の温度補正を行っている。この補正を行うときに温度センサ201が循環センサ内部にあるため、より循環データ測定部に近い温度データを検出することができる。したがって、精度の高い温度補正を実現できる。
【0064】
実施例7の循環データ測定方法については実施例1と同様の方法である。実際に保温器601とヒーター701と温度センサ201を用いない場合と比較して血液レオロジーの測定精度が約75%向上した。また、本実施例ではヒーター701を保温器601内部に配置したが、保温器601を無くして、ヒーター701と循環センサ101のみの構成にしても、測定精度向上の効果は得られ、約70%向上を示した。
【0065】
【実施例8】
図14は実施例8について、生体301と循環データ測定装置の循環センサ部101、保温器601、ペルチェ素子801、温度センサ201、生体内の血管401を示したものである。循環センサ101は送受信部が生体方向に向くように設置され、さらに保温器601が循環センサ101の周囲を覆うように設置されている。そして、保温器601の内部に、生体301の表面に接するようにペルチェ素子801配置され、生体301表面の温度を加熱したり冷却したりすることにより表面周辺の温度を調節して一定に保つ機能を持っている。
【0066】
そして、温度センサ201が循環センサ101内部に埋め込まれ、生体表面に接するように配置されている。本実施例では保温器601として断熱効果もあるウレタン樹脂を用いた。ペルチェ素子801には生体温付近でもっもとペルチェ効果が高いBi-Te系の半導体化合物を用いた。温度センサ201にはサーミスタを用いた。
【0067】
実施例8の循環データ測定装置の信号処理部5の内部構成と、信号処理部5と循環センサ部101、温度センサ部201、及びペルチェ素子部801の接続状態を示すブロック図を図15に示す。図示するように、信号処理部5は、駆動部501、受信部502、信号演算部503、出力部504、温度調節部509、温度受信部505によって概略構成されている。
【0068】
実施例8の駆動部501は循環センサ101に設置されたPZT102を振動させ、超音波を血管401に向けて入射するための駆動電圧を送信する。受信部502は循環センサ101に設置されたPZT102が超音波を受信した時に発生する電圧を受信する。また、温度調節部510は循環センサ101及び生体301の測定表面付近を一定温度に保つためにペルチェ素子801を制御する。また、温度センサ201が測定した温度は電圧にトランスデュートされ、その電圧を温度受信部505が受信する。温度受信部505は受信した温度データを温度調節部510にフィードバックし、設定温度よりも測定温度が高ければ温度調節部510はペルチェ素子801の生体301側が冷却されるように電流を流す。また、設定温度よりも測定温度が低ければ温度調節部510はペルチェ素子801の生体301側が発熱するように電流を反転させて流す。このようにして温度調節を行い、本実施例においては、37℃一定に保つように温度制御した。信号演算部503は、内部に備えた記憶領域(図示省略)に記憶されている処理プログラムを実行することによって、循環データの測定に関する各種処理を実行し、その処理結果を出力部504に出力する。また、信号演算部503は、PZT102から発せられた超音波の周波数と受信された超音波の周波数を比較する事により、血流のドップラ効果を算出する。
【0069】
そして、周波数の変化より血管401を流れる血流速度算出し、その速度の時間変化を求める。また、この血流速度を算出するときに、循環センサ101が生体表面に接している部分の温度を、温度センサ201が検知し、この温度を用いて血流速度を補正する。生体内部の血管401や血液等は温度変化に敏感であり、血流速度が温度の影響を受ける。それを防ぐために温度調節部510の制御によりペルチェ素子801を駆動し、温度を生体301の温度付近(本実施例では37℃)に保っている。その温度調節の精度は0.1℃のバラツキの範囲である。そして、さらに温度センサ201を用いて測定結果の温度補正を行っている。この補正を行うときに温度センサ201が循環センサ内部にあるため、より循環データ測定部に近い温度データを検出することができる。したがって、精度の高い温度補正を実現できる。
【0070】
実施例8の循環データ測定方法については実施例1と同様の方法である。実際に保温器601とペルチェ素子801と温度センサ201を用いない場合と比較して血液レオロジーの測定精度が約90%向上した。また、本実施例ではペルチェ素子801を保温器601内部に配置したが、保温器601を無くして、ペルチェ801と循環センサ101のみの構成にしても、測定精度向上の効果は得られ、約85%向上を示した。
【0071】
尚、本実施例で用いられた温度センサすべてにおいて、温度センサとしてサーミスタを用いているが、サーミスタ以外にも、Pt等の測温抵抗体、熱電対、化合物半導体を用いても温度測定上なんら変わりは無い。また、本実施例で用いられた保温器601すべてにおいてウレタン樹脂を用いたが、ウレタン樹脂以外にも発泡スチロールや合成樹脂、繊維、布等の断熱作用がある材料であれば保温上何でもかまわない。
また、本実施例で用いられたヒーター701すべてにおいて金属のニクロム材を用いたが、ニクロム材以外にもセラミックヒーターや金属薄膜による発熱抵抗体、サーメットや半導体を用いて加熱してもヒーターとしての特性上何ら変わらない。
【0072】
また、本実施例1から8では、循環データとして血液の流れを測定し、血流速度変化から血液のレオロジーを求めているが、循環データとして求めるものが血液でなくリンパ液でも、また、流速でなくても流量や部位内の血液や血管の容積変化であっても何ら問題無く循環データを測定できる。また、送受信波動が超音波で無くても光を用いても同様に問題無く測定できる。また、波動の測定対象がドップラシフト量でなくて反射信号強度やエコーのような時間遅れ量を測定しても問題無く、これらの測定に対して温度補正を行ったり、保温状態で測定を行うことによって、高精度な循環データを測定することができる。
【0073】
【発明の効果】
以上のように、本発明によれば、生体表面から内部に波動を送受信して前記生体内部の循環データの情報を検出する測定装置に、循環データを検出する循環センサ機能と生体の温度を検出する温度センサ機能を提供することにより、温度補正を行わない場合に比較して高精度な循環データの測定が可能となった。そして、生体表面の温度を用いても深部温度を用いても、温度補正の効果があった。さらに温度センサと循環センサ内部に温度センサを配置することにより補正効果があがった。また、これらの状態において、温度補正を行うことにより高精度な血液レオロジーの測定が可能となった。さらにこれらの測定に対して、ドップラシフト信号や血管内の血液から反射してくる波動や血管内の血液の流速を用いることにより、温度補正による測定精度が向上した。
【0074】
また、本発明によれば、生体表面から内部に波動を送受信して前記生体内部の循環データの情報を検出する測定装置に、循環データを検出する循環センサ機能と生体の測定部位温度を保温する機能を提供することにより、保温を行わない場合に比較して高精度な循環データの測定が可能となった。そして、これらの状態において、血液レオロジーを生体の測定部位を保温した状態で求めることにより高精度な循環データの測定が可能となった。さらにこれらの測定に対して、ドップラシフト信号や血管内の血液から反射してくる波動や血管内の血液の流速を用いることにより、保温した状態での測定精度が向上した。
【0075】
また、本発明によれば、生体表面から内部に波動を送受信して前記生体内部の循環データの情報を検出する測定装置に、循環データを検出する循環センサ機能と生体の温度を検出する温度センサ機能と加熱機能または加熱・冷却機能による温度調節機能を提供することにより、温度補正と加熱や温度調節を行わない場合に比較して高精度な循環データの測定が可能となった。そして、生体表面の温度を用いても深部温度を用いても、温度補正と加熱や温度調節の効果があった。さらに温度センサと循環センサ内部に温度センサを配置することにより精度向上効果があがった。また、これらの状態において、温度補正を行うことにより高精度な血液レオロジーの測定が可能となった。さらにこれらの測定に対して、ドップラシフト信号や血管内の血液から反射してくる波動や血管内の血液の流速を用いることにより、温度補正による測定精度が向上した。
【0076】
また、本発明によれば、生体表面から内部に波動を送受信して前記生体内部の循環データの情報を検出する測定装置に、循環データを検出する循環センサ機能と生体の測定部位温度を保温する機能と、生体の温度を検出する温度センサ機能、加熱機能または加熱・冷却機能による温度調節機能のいずれかまたは両方を提供することにより、保温を行わない場合に比較して高精度な循環データの測定が可能となった。そして、これらの状態において、血液レオロジーを生体の測定部位を保温した状態で求めることにより高精度な循環データの測定が可能となった。さらにこれらの測定に対して、ドップラシフト信号や血管内の血液から反射してくる波動や血管内の血液の流速を用いることにより、保温した状態での測定精度が向上した。
【図面の簡単な説明】
【図1】 本発明の実施例1について、循環データ測定装置と測定部位の断面図である。
【図2】 本発明の実施例1について、信号処理部の内部構成を示すブロック図である。
【図3】 本発明の循環データ測定装置が計測した血流速度の脈拍拍動に伴う時間変化のグラフである。
【図4】 本発明の実施例2について、循環データ測定装置と測定部位の断面図である。
【図5】 本発明の実施例2について、循環データ測定装置と測定部位の拡大断面図である。
【図6】 本発明の実施例2について、信号処理部の内部構成を示すブロック図である。
【図7】 本発明の実施例3について、循環データ測定装置と測定部位の断面図である。
【図8】 本発明の実施例4について、循環データ測定装置と測定部位の断面図である。
【図9】 本発明の実施例5について、循環データ測定装置と測定部位の断面図である。
【図10】 本発明の実施例5について、信号処理部の内部構成を示すブロック図である。
【図11】 本発明の実施例6について、循環データ測定装置と測定部位の断面図である。
【図12】 本発明の実施例7について、循環データ測定装置と測定部位の断面図である。
【図13】 本発明の実施例7について、信号処理部の内部構成を示すブロック図である。
【図14】 本発明の実施例8について、循環データ測定装置と測定部位の断面図である。
【図15】 本発明の実施例8について、信号処理部の内部構成を示すブロック図である。
【図16】 従来例について、信号処理部の内部構成を示すブロック図である。
【符号の説明】
101 循環センサ
102 PZT
103 発光素子
104 受光素子
201 温度センサ
202 深部温度センサ
203 熱流発生器
204 熱流測定器
205 温度センサ
301 生体
401 血管
501 駆動部
502 受信部
503 信号演算部
504 出力部
505 温度受信部
506 熱流発生
507 熱流測定部
508 深部温度受信部
509 加熱部
510 温度調節部
601 保温器
602 保温器
701 ヒーター
801 ペルチェ素子
Claims (13)
- 生体表面から内部に波動を送受信して生体内部を循環する体液の循環データを検出する循環データ測定装置であって、
前記循環データを検出する循環センサ手段と、前記生体の温度を検出する温度センサ手段とを有し、
前記循環センサ手段が検出した前記波動の時間的変化から前記循環データとして血液レオロジーを求め、前記温度センサ手段が検出した温度データを用いて前記血液レオロジーを補正するものであり、
前記生体の測定部位を保温するとともに、断熱効果を有する材料からなる保温手段を備えることを特徴とする循環データ測定装置。 - 前記温度センサ手段は、前記生体の表面温度を測定するように構成することを特徴とする請求項1記載の循環データ測定装置。
- 前記温度センサ手段は、前記生体の深部温度を測定するように構成することを特徴とする請求項1記載の循環データ測定装置。
- 前記循環センサ手段の一部を構成し前記生体表面から内部に波動を送受信する循環センサの内部に温度センサを配置し、前記温度センサ手段によって生体温度を検知することを特徴とする請求項1乃至3のいずれかに記載の循環データ測定装置。
- 前記循環センサ手段では、前記循環データをドップラシフト信号の形態で検出することを特徴とする請求項1乃至4のいずれか1項に記載の循環データ測定装置。
- 前記循環センサ手段では、血管内の血液から反射してくる波動を検出することを特徴とする請求項1乃至5のいずれか1項に記載の循環データ測定装置。
- 前記循環センサ手段では、血管内の血液の流速を前記波動として検出することを特徴とする請求項1乃至6のいずれか1項に記載の循環データ測定装置。
- 前記温度センサは、前記保温手段によって保温される前記測定部位の温度を検出することを特徴とする請求項1に記載の循環データ測定装置。
- 生体表面から前記生体内部に波動を送受信して前記生体内部の血流速度を検出する循環センサ手段と、前記生体の温度を検出する温度センサ手段と、前記温度センサ手段により検出された温度データを用いて前記循環センサ手段で検出された前記血流速度を補正し、補正された前記血流速度を用いて血液レオロジーを求める機能を有する信号演算部と、前記生体の測定部位を保温するとともに、断熱効果を有する材料からなる保温手段とを有することを特徴とする循環データ測定装置。
- 前記温度センサ手段は、前記生体の表面温度を測定するように構成することを特徴とする請求項9に記載の循環データ測定装置。
- 前記温度センサ手段は、前記生体の深部温度を測定するように構成することを特徴とする請求項9に記載の循環データ測定装置。
- 前記循環センサ手段の一部を構成し前記生体表面から内部に波動を送受信する循環センサの内部に温度センサを配置し、前記温度センサ手段によって生体温度を検出することを特徴とする請求項9に記載の循環データ測定装置。
- 前記温度センサは、前記保温手段によって保温される前記測定部位の温度を検出することを特徴とする請求項9に記載の循環データ測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001400461A JP4117766B2 (ja) | 2001-12-28 | 2001-12-28 | 循環データ測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001400461A JP4117766B2 (ja) | 2001-12-28 | 2001-12-28 | 循環データ測定装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003190166A JP2003190166A (ja) | 2003-07-08 |
JP4117766B2 true JP4117766B2 (ja) | 2008-07-16 |
Family
ID=27605026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001400461A Expired - Fee Related JP4117766B2 (ja) | 2001-12-28 | 2001-12-28 | 循環データ測定装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4117766B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019149954A1 (en) * | 2018-02-05 | 2019-08-08 | Medyria Ag | Arrangement with catheter and sensor arrangement |
-
2001
- 2001-12-28 JP JP2001400461A patent/JP4117766B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003190166A (ja) | 2003-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8277388B2 (en) | Blood rheology measuring apparatus | |
JP4206218B2 (ja) | 循環動態測定装置 | |
US4960109A (en) | Multi-purpose temperature sensing probe for hyperthermia therapy | |
US12036012B2 (en) | Sensor for measuring a flow of a fluid | |
CN101660955B (zh) | 测量超声诊断设备探头表面温度的方法 | |
JP4412644B2 (ja) | 循環動態測定装置 | |
JP2003159250A5 (ja) | ||
JP3848589B2 (ja) | 循環動態測定装置 | |
JP2008296061A (ja) | 循環動態測定装置 | |
US7942819B2 (en) | Ultrasonic bone evaluation apparatus | |
JP4117766B2 (ja) | 循環データ測定装置 | |
JP3913612B2 (ja) | 循環動態測定装置 | |
US7927011B2 (en) | Method of estimating surface temperature of a diagnostic ultrasound probe | |
RU2118122C1 (ru) | Способы измерения скорости распространения пульсовой волны, артериального давления, температуры тела, содержания гемоглобина в крови и устройства для их осуществления | |
JP4754597B2 (ja) | 循環動態測定装置、循環動態センサ | |
JP2004154376A (ja) | 循環動態測定装置 | |
JP3816400B2 (ja) | 循環動態測定装置 | |
Joseph et al. | Non-invasive estimation of arterial compliance | |
JPH03258251A (ja) | 温度分布測定装置 | |
JP2003210426A (ja) | 循環動態測定装置 | |
Omata et al. | A Hybrid IC Based on Phase-Shift Resonance for Cuff-less Continuous Blood Pressure Measurements | |
JPH04352971A (ja) | 生体内部の測温方法 | |
WO2023150353A1 (en) | Thermoacoustic sensor with fluid mixing for measurement of acoustic power of ultrasound transducers over a wide frequency range | |
Ruano et al. | Tissue temperature estimation with pulse-echo in blood flow presence | |
WO2024028153A1 (en) | Apparatus for performing non-invasive thermodilution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040304 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060919 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061017 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080415 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080417 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4117766 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091108 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D03 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130502 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140502 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |