JP4117201B2 - Distribution line breakage detector - Google Patents

Distribution line breakage detector Download PDF

Info

Publication number
JP4117201B2
JP4117201B2 JP2003024059A JP2003024059A JP4117201B2 JP 4117201 B2 JP4117201 B2 JP 4117201B2 JP 2003024059 A JP2003024059 A JP 2003024059A JP 2003024059 A JP2003024059 A JP 2003024059A JP 4117201 B2 JP4117201 B2 JP 4117201B2
Authority
JP
Japan
Prior art keywords
disconnection
phase
zero
difference
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003024059A
Other languages
Japanese (ja)
Other versions
JP2004233255A (en
Inventor
佳弘 福本
耕二 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003024059A priority Critical patent/JP4117201B2/en
Publication of JP2004233255A publication Critical patent/JP2004233255A/en
Application granted granted Critical
Publication of JP4117201B2 publication Critical patent/JP4117201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、配電線の断線を検出する断線検出装置に関するものである。
【0002】
【従来の技術】
配電線は空中配線、地中配線にかかわらず、不測の原因により断線する場合がある。この場合、早期に復旧するためには、断線した位置をできるかぎり早く発見する必要があるが、配電線は一般に全長が大変長いので、その検出は容易ではない。 従来の断線検出装置においては配電線上の複数の点で測定した電流、電圧の値から、1つの配電線区間の断線を検出している。(例えば特許文献1参照)
そして、断線が検出された配電線の真の断線点は、例えば人が配電線に沿って黙視点検しつつ移動して発見する必要があるため、長時間かかり、復旧が遅れる原因となっていた。
【0003】
また、配電線末端側に分散電源が存在する場合には、途中の配電線が断線しても必ずしも末端の電圧が大幅には変化しない場合があり、故障区間が標定できない場合があった。また、通常は高圧配電線は中性点が非接地であるため、接地インピーダンスが存在する配電線について、故障区間を標定することは考慮の対象外であった。
【0004】
【特許文献1】
特開平2-266822号公報(第8頁、第1図)
【0005】
【発明が解決しようとする課題】
従来の断線検出装置は以上のように構成されているので、この装置により断線区間までは自動的に検出可能であっても、断線点は検出できないという課題があった。また、配電線末端側に分散電源が存在する場合には、途中の配電線が断線しても故障区間が標定できない場合があった。また、通常は高圧配電線は中性点が非接地であるため、接地インピーダンスが存在する配電線について、故障区間を標定することは考慮されていないという課題があった。
【0006】
この発明は上記の課題を解決するためになされたものであり、故障区間だけでなく故障点を標定できる断線検出装置を得ることを目的とする。また配電線末端側に分散電源が存在する場合でも統一的な取り扱いにより故障区間および故障点を標定できる装置を得ることを目的とする。また通常は高圧配電線は中性点が非接地であるが接地インピーダンスが存在する配電線に対しても、統一的な取り扱いにより故障区間および故障点を標定できる装置を得ることを目的とする。
【0007】
【課題を解決するための手段】
この発明に係る配電線の断線検出装置は、複数の区間に区分した配電線の前記区間のそれぞれに設定された測定点に配置され、前記測定点での前記配電線の電圧と電流とを検出し、正相・逆相・零相の電圧と電流を演算してデータ化し、このデータを通信線を介して外部へ伝送するセンサ、
前記複数区間のそれぞれのセンサから、前記通信線を介して前記データを受信し、前記配電線の正相電流値と逆相電流値と零相電流値との和を演算し、前記正相電流値が零でなく、かつ、前記正相電流値と逆相電流値と零相電流値との和が零となるとき、前記配電線に1線の断線があることを示す断線検出信号を出力し、
前記の各区間の両端にある前記測定点の間の正相電圧の差、又は逆相電圧の差、または零相電圧の差のいずれか一つを全ての前記区間について求め、この差が最も大となる区間に前記1線の断線があると判定して断線区間信号を出力する区間判定装置、及び
前記の各測定点の正相電圧と逆相電圧とをもとに、前記各測定点の前記正相電圧と前記逆相電圧との差を求め、この差を前記配電線上の距離に対して線形近似する近似式を前記区間判定装置により前記 1 線の断線があると判定された前記区間の両側で別々に作成し、両側の近似式の値が互いに一致する前記配電線上の位置を求め、この位置のデータを断線位置信号として出力する第1の断線点演算装置を有する1線断線判定処理装置を備えたものである。
【0008】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1の配電線の断線検出装置を図1に基づいて説明する。
図1において、配電線1上に電流・電圧を測定する電流・電圧測定装置2〜9が設置されている。電流・電圧測定装置2〜9は測定した電流・電圧を通信線10を通じて断線判定装置11に通信する。電流・電圧測定装置2〜9は、また、測定値を正相・逆相・零相の電圧・電流に変換する。
図2は電流・電圧測定装置2〜9と、断線判定装置11によりデータを処理する処理ブロックの構成を説明する図である。
【0009】
次に動作について説明する。
図3は地点90と地点91との間を接続する3相(a,b,c相)の配電線1のa相の点99に断線が発生した場合の動作を説明する図である。図で地点90と地点91には変圧器記号を付しているが、これは説明の都合上、区間の理解を明確にするために記載したものであり、両端にどのような機器が接続されているかは問題ではない。 今、a相断線点99の左側、即ち地点90側の電圧は、右側、即ち地点91側の電圧より3・V大きいとする。ここでVは任意数である。断線点99の右側のa相、b相、c相の電圧をそれぞれVa, Vb, Vcとすると断線点左側のa相、b相、c相の電圧はそれぞれVa+(3・V), Vb, Vc となる。
断線点99の右側の零相、正相、逆相の電圧を、それぞれV,V,Vとすると、断線点99の左側の零相、正相、逆相の電圧は、それぞれ対称座標法の定義から、a=ej(2π/3)として
(Va+3V+Vb+Vc) /3=V0+V ---------------(1)
(Va+3V+aVb+a2Vc)/3=V1+V ---------------(2)
(Va+3V+a2Vb+aVc)/3=V2+V ---------------(3)
【0010】
配電線左側の相電圧をEs、断線点99からみた左側の零相、正相、逆相インピーダンスをZ0s, Z1s, Z2s 零相電流、正相電流、逆相電流をそれぞれI,I,Iとすると
V0+V = −Z0sI0 ---------------(4)
V1+V = Es−Z1sI1 ---------------(5)
V2+V = −Z2sI2 ---------------(6)
配電線右側の相電圧をEr、配電線断線点からみた右側の零相、正相、逆相インピーダンスをZ0r, Z1r, Z2rとすると
V0 = Z0rI0 ---------------(7)
V1 = Er+Z1rI1 ---------------(8)
V2 = Z2rI2 ---------------(9)
a相の電流をIaとするとき、
Ia = I0+ I1+ I2
a相は断線しているので Ia=0 即ち
I0+ I1+ I2 = 0 ---------------(10)
【0011】
(4), (5), (6)式から
=−Z0S−V
=Es−Z1S−V
=−Z2S−V
これらを(7),(8),(9)式に代入して
=−V/(Zor+Zos
=−V+(E−E)/(Z1r+Z1s
=−V/(Z2r+Z2s
ここで Z0 = Z0 + Z0r,
Z1 = Z1s + Z1r,
Z2 = Z2s + Z2r
−E=E
Δ = Z0 Z1 + Z1 Z2 + Z2 Z0
とした上で、これを(10)式に代入して
0=−Z1Z2V−Z0 Z2(V−E)−V Z0Z1
これより
V = Z0 Z2 E / Δ ---------------(11)
を得る。
【0012】
また、
I0 = - Z2 E / Δ ---------------(12)
I1 = ( Z0 + Z2 )E / Δ ---------------(13)
I2 = - Z0 E / Δ ---------------(14)
となるから、(12), (13), (14)式から配電線上でI1=0でない場合で、方向も含めた正相電流、逆相電流および零相電流の和がゼロ即ち
I1 + I2 + I0 = 0 & I1≠0 ---------------(15)
を検出することにより配電線の1線に断線のあることを容易に検出できる。
【0013】
なお、配電線が高圧配電線のように非接地系である場合には、零相インピーダンスは正相、逆相インピーダンスよりずっと大きくZ0 >> Z1, Z0 >>Z2となるので (11)式は以下のようになる。
V ≒ 3E Z2 / (Z1+Z2) ---------------(16)
同様に(12)〜(14)式は以下のようになる。
I0 ≒ 0 ---------------(17)
I1 ≒ E / (Z1+Z2) ---------------(18)
I2 ≒ − E / (Z1+Z2) ---------------(19)
以上に説明した演算は断線判定処理装置11a(1線断線判定処理装置という)内で実行され、断線検出後は断線の有無を示す断線検出信号87が出力される。
【0014】
実施の形態2.
実施の形態1で説明した、I1 + I2 + I0 = 0 & I1≠0を検出することにより配電線に1線の断線があることを検出した後に、断線点を区間標定する第1の方法について説明する。
(2)式および(11)式から断線点前後で正相電圧差
V = Z0 Z2 E / Δ
が発生する。そこで複数の測定点からのデータについて、相隣る測定点間で差を求める。2つの測定点の間の区間内に断線がない場合、正相電圧差は極めて小さく、断線のある区間の両側にある測定点のデータ間には、上記の式に近い値の差が生じる。これにより最大の差を生じる区間内に断線点があると区間標定することが可能である。上記の演算処理は、断線判定処理装置11a内の区間判定装置111(第1の区間判定装置)において実行され、判定した区間は、外部へ例えば断線区間信号88として出力される。
図4に、横軸に配電線の距離をとり、この距離上の複数の測定点(図では例として5点)で測定した正相電圧をプロットしたものを示す。相隣る測定点間の差をとる代わりに、各測定点をつなぐ線を延長して断線地点の両側の延長線の高さの差を正相電圧差として求めても良い。この差が上記の式に示す値となる区間で断線が生じていることになる。図4において測定に誤差が少なければ、正確な計算により測定装置区間内の断線位置を特定することも可能である。しかし、正相電圧差の距離による変化は断線位置を特定するには不十分な場合もあるので区間内の位置の特定には後述する実施の形態5以後の方法が適している。
【0015】
実施の形態3.
実施の形態1で説明した、I1 + I2 + I0 = 0 & I1≠0を検出することにより配電線に1線の断線があることを検出した後に、断線点を区間標定する第2の方法について説明する。
(3)式および(11)式から断線点前後で逆相電圧差
V = Z0 Z2 E / Δ
が発生する。そこで複数の測定点からのデータの相隣る測定点間で差を求める。2つの測定点の間の区間内に断線がない場合、逆相電圧差は極めて小さく、断線のある区間の両側にある測定点のデータ間には、上記の式に近い値の差が生じる。これにより差が最大となる区間を断線点であると区間標定することが可能である。上記の演算処理は、断線判定処理装置11a内の区間判定装置111(第2の区間判定装置)において実行され、区間は例えば断線区間信号88として出力される。
図5に、横軸に配電線の距離をとり、この距離上の複数の測定点(図では例として5点)で測定した逆相電圧をプロットしたものを示す。相隣る測定点間のデータの差をとる代わりに、各測定点をつなぐ線を延長して断線地点の両側の延長線の高さの差をもとめてもよい。この差が上記式に示す値となる区間で断線が生じていることになる。区間内の断線位置の特定については実施の形態2で説明したと同様である。
【0016】
実施の形態4.
実施の形態1で説明した、I1 + I2 + I0 = 0 & I1≠0を検出することにより配電線に1線の断線があることを検出した後に、断線点を区間標定する第3の方法について説明する。
(1)式および(11)式から断線点前後で零相電圧差
V = Z0 Z2 E / Δ
が発生する。そこで複数の測定点からのデータを相隣る測定点間で差を求める。2つの測定点の間の区間内に断線がない場合、零相電圧差は極めて小さく、断線のある区間の両側にある測定点のデータ間には、上記の式に近い値の差が生じる。これにより断線点を区間標定することが可能である。
上記の演算処理は、断線判定処理装置11a内の区間判定装置111(第3の区間判定装置)において実行され、判定した区間は、外部へ、例えば断線区間信号88として出力される。
図6に、横軸に配電線の距離をとり、この距離上の複数の測定点(図では例として5点)で測定した逆相電圧をプロットしたものを示す。相隣る測定点間の差をとる代わりに、各測定点を繋ぐ線を延長して断線地点の両側の延長線の高さの差をもとめてもよい。この差が上記の式に示す値となる区間で断線が生じていることになる。区間内の断線位置の特定については実施の形態2で説明したと同様である。
【0017】
実施の形態5.
上記実施の形態2〜4で説明した断線区間の標定の後、区間内の断線位置をより正確に求める第1の方法について説明する。(2),(3)式および(11)式から断線点前後で正相電圧と逆相電圧の差が等しいため、正相電圧と逆相電圧の差を標定した断線区間の前後の複数の測定点で比較し、この差の値を配電線の距離に応じてグラフ上で延長し、この差が一致する距離点を求めることにより、断線点の位置を点標定することが可能である。
図7は正相電圧と逆相電圧の差、即ち、図3の断線位置99の左端では(V+V)−(V+V)を、右端ではV−Vを測定し、この測定をそれぞれ他端へ向かって進めた場合の各測定位置のデータの一例を示している。この値が一致する位置が断線位置である。上記の演算処理は、断線判定処理装置11a内の断線点演算装置211(第1の断線点演算装置という)において実行され、求めた断線点は、外部へ、例えば最寄りの測定点からの距離を示す断線位置信号89として出力される。
【0018】
実施の形態6.
区間内の断線位置をより正確に求める第2の方法について説明する。(1),(2)式および(11)式から断線点前後で正相電圧と零相電圧の差が等しいため、正相電圧と零相電圧の差を標定した断線区間の前後の複数の測定点で比較し、これを距離に応じてグラフ上で延長し、両者が一致する点を見つけることにより断線点を点標定することが可能である。
図8は正相電圧と零相電圧の差、即ち、図3の断線位置99の左端では(V+V)−(V+V)を、右端ではV−Vを測定し、この測定をそれぞれ他端へ向かって進めた場合の各測定位置のデータの一例を示している。この値が一致する位置が断線位置である。上記の演算処理は、断線判定処理装置11a内の断線点演算装置211(第2の断線点演算装置という)において実行され、求めた断線点は、外部へ、例えば最寄りの測定点からの距離を示す断線位置信号89として出力される。
【0019】
実施の形態7.
区間内の断線位置をより正確に求める第3の方法について説明する。(1),(3)式および(11)式から断線点前後で逆相電圧と零相電圧が等しいため、標定した断線区間の前後で、逆相電圧と零相電圧の差を複数の測定点で比較し、これをグラフ上で距離に応じて延長し、両者が一致する点を見つけることにより、断線点を点標定することが可能である。
図9は逆相電圧と零相電圧の差、即ち、図3の断線位置99の左端では(V+V)−(V+V)を、右端ではV−Vを測定し、この測定をそれぞれ他端へ向かって進めた場合の各測定位置のデータの一例を示している。この値が一致する位置が断線位置である。上記の演算処理は、断線判定処理装置11a内の断線点演算装置211(第3の断線点演算装置という)において実行され、求めた断線点は、外部へ、例えば最寄りの測定点からの距離を示す断線位置信号89として出力される。
【0020】
実施の形態8.
実施の形態5〜7で、配電線上で方向も含めた逆相電流、正相電流および零相電流の和がゼロ即ちI2 + I1 + I0 = 0を検出し、また断線区間の標定をした後に、区間内の断線位置を標定する場合について説明した。上記実施の形態では、断線位置が電圧・電流測定装置の間にあるものとして説明したが、実際には配電線の最も端に設置された測定装置の、更に外側に断線点がある場合も想定される。本実施形態では、断線位置が測定点より外側(配電線の端部)にある場合でも標定できるものについて説明する。
(4),(6)式および(12),(14)式から断線点直前(断線点の左側即ち電源側)の正相、逆相電圧はそれぞれ
V0s = -Z0sI0 = Z0sZ2E/ Δ = {Z0Z2E/ Δ}x {Z0s/ (Z0s+Z0r)} -------(20)
V2s = -Z2sI2 = Z0Z2sE/ Δ = {Z0Z2E/ Δ}x {Z2s/ (Z2s+Z2r)} -------(21)
となるので
Z0s / Z0r = Z2s / Z2r 即ち断線点から左側を見た逆相インピーダンスと零相インピーダンスの比が、断線点から右側を見た逆相インピーダンスと零相インピーダンスの比に等しい場合は断線点直前の零相電圧V0s と断線点直前の逆相電圧V2sは等しい。
【0021】
一方(7),(9)式および(12),(14)式から断線点直後(断線点の右側即ち負荷側)の正相、逆相電圧はそれぞれ
V0r = Z0rI0 = -Z0rZ2E/ Δ = {-Z0Z2E/ Δ}x {Z0r/ ( Z0s+Z0r)} ----(22)
V2r = Z2rI2 = -Z0Z2rE/ Δ = {-Z0Z2E/ Δ }x {Z2r/ (Z2s+Z2r)} ----(23)
となるので
Z0s / Z0r = Z2s / Z2r 即ち断線点から左側を見た逆相インピーダンスと零相インピーダンスの比が断線点から右側を見た逆相インピーダンスと零相インピーダンスの比に等しい場合は断線点直後の零相電圧V0 と断線点直後の逆相電圧V2 は等しい。
このことを利用すれば、断線が電圧・電流を検出する装置より外側にしかない場合も断線点の標定が可能な装置を得ることができる。
上記の演算処理は、断線判定処理装置11a内の断線点演算装置211(第4の断線点演算装置という)において実行され、求めた断線点は、外部へ、例えば最寄りの測定点からの距離を示す断線位置信号89として出力される。
図10は、横軸の距離上に配置された各測定点において測定した零相電圧と逆相電圧との一例を示し、これを延長して両者が一致する位置を見つける場合について示している。
【0022】
実施の形態9.
実施の形態1〜8では1線の断線の場合の検出について説明した。本実施の形態以後では、一地点において2線が断線した場合について説明する。
図11は配電線のb相およびc相で二線断線が発生したことを示す。配電線b,c相で同一地点2線断線が発生したときb,c相2線断線時の断線個所199と299でのb相断線点両側の電圧差を3Ub 、c相断線点両側の電圧差を3Ucとする。
即ち、b相断線点199の左側の電圧は、右側の電圧より3Ub大きく、c相断線点299の左側電圧は右側電圧より3Uc大きいとする。断線点右側のa相、b相、c相の電圧をそれぞれVa, Vb, Vcとすると、断線点199、299の左側のa相、b相、c相の電圧はそれぞれVa, Vb+ 3 Ub, Vc + 3 Ucとなる。
断線点199の右側の零相、正相、逆相の電圧をV0 ,Vとすると、断線点199の左側の零相、正相、逆相の電圧は、それぞれ対称座標法の定義から a=ej(2π/3)として
(Va+Vb+3 Ub +Vc+3 Uc)/3=V0+ Ub + Uc ---------------(24)
(Va+aVb+3 aUb +a2Vc+3 a2 Uc)/3=V1+ aUb + a2Uc ------(25)
(Va+a2Vb+3 a2Ub +aVc+3 aUc)/3= V2+ a2Ub + aUc ------(26)
が成立する。
【0023】
配電線左側の相電圧をEs、断線点から左側を見た零相、正相、逆相インピーダンスをZ0s, Z1s, Z2sとし、零相、正相、逆相の各電流をI,I,Iとすると
V0+ Ub + Uc = - Z0sI0 ---------------(27)
V1+ aUb + a2Uc = Es - Z1sI1 ----------(28)
V2+ a2Ub + aUc = - Z2sI2 -------------(29)
配電線右側の相電圧をEr、配電線断線点からみた右側の零相、正相、逆相インピーダンスをZ0r, Z1r, Z2rとすると
V0= Z0rI0 ---------------(30)
V1= Er + Z1rI1 ----------(31)
V2= Z2rI2 ---------------(32)
b相、c相は断線しているのでIb= 0, Ic= 0であるから
I0= I1= I2= Ia/3 ---------------(33)
【0024】
(27),(28),(29)式の左辺同士、右辺同士を合計すると
V0+ V1+ V2 =− Z0sI0 + Es − Z1sI1 − Z2sI2 ---------------(34)
(30),(31),(32)式を(34)式に代入して(33)式を利用すると
I0 = I1= I2= E/ (Z0+ Z1+ Z2) ---------------(35)
ただしE=Es−Er, Z0=Z0s+Z0r, Z1=Z1s+Z1r, Z2=Z2s+Z2r
断線前後の正相電圧差U1、逆相電圧差U2、零相電圧差U0はそれぞれ
U1= (Es - Z1sI1) - (Er+Z1rI1) = E (Z0+ Z2)/ (Z0+ Z1+ Z2) -------(36)
U2= - Z2sI2 - Z2rI2 = -E Z2/ (Z0+ Z1+ Z2) ---------------(37)
U0= - Z0sI0 - Z0rI0 = -E Z0/ (Z0+ Z1+ Z2) ---------------(38)
(36),(37),(38)式から
U1 + U2 + U0 = 0 ---------------(39)
(39)式から、左側測定点の正相電圧差 U=0でない場合で、左側測定点の正相電圧と右側測定点の正相電圧との差U1 と、左側測定点の逆相電圧と零相電圧の和と、右側測定点の逆相電圧と零相電圧の和との差U2 + U0 の大きさが等しく、符号が逆、即ち
U1= − (U2 + U0) = U & U1≠0---------------(40)
ただしU = E (Z0+ Z2)/ (Z0+ Z1+ Z2)
であれば、左右の測定点の間に2線断線が存在することが検出できる。
理解を助けるため、図12に上記の状態を図示する。
【0025】
高圧配電線では非接地系のため、零相インピーダンスは正相インピーダンス、逆相インピーダンスよりずっと大きくZ0 >> Z1, Z0 >> Z2となるので、(36),(37),(38)式は以下のようになる。
U1 ≒ E ---------------(41)
U2 ≒ 0 ---------------(42)
U0 ≒−E -------------(43)
以上に説明した演算は、断線判定処理装置11a(2断線判定処理装置という)内で実行され、断線検出後は断線の有無を示す断線検出信号87が出力される。
【0026】
実施の形態10.
実施の形態9で同一地点2線断線のあることを検出した後に、その断線位置の区間を標定する方法(1線断線の場合と区別するため第4の方法という)について説明する。
(36)式から断線点前後で正相電圧差
U1= E (Z0+ Z2)/ (Z0+ Z1+ Z2)が発生する。
そこで、複数の測定点からのデータについて、相隣る測定点間で差を求める。2つの測定点の間の区間内に断線がない場合、正相電圧差は極めて小さく、断線のある区間の両側にある測定点のデータ間には、上記の差に近い値の差が生じる。これにより、最大の差を生じる区間内に断線点があると区間評定することが可能である。上記の演算処理は、断線判定処理装置11a内の区間判定装置111(第4の区間判定装置)において実行され、判定した区間は、外部へ、例えば断線区間信号88として出力される。
図13に、横軸に配電線の距離をとり、この距離上に複数の測定点(図では例として5点)で測定した正相電圧をプロットしたものを示す。相隣る測定点の差をとる代わりに、各測定点をつなぐ線を延長して断線地点の両側の延長線の高さの差を正相電圧差として求めてもよい。この差が上記の式に示す値となる区間で断線が生じていることになる。図13において測定に誤差が少なければ、正確な計算により測定装置区間内の断線位置を特定することも可能である。しかし、正相電圧差の距離による変化は断線位置を特定するには不十分な場合もあるので、区間内の位置の特定には後述する実施の形態13の方法が適している。
【0027】
実施の形態11.
同一地点の2線断線区間を標定する第5の方法について説明する。
(37)式から断線点前後で逆相電圧差
U2= - E Z2/ (Z0+ Z1+ Z2)が発生する。
そこで、複数の測定点からのデータについて、相隣る測定点間で差を求める。2つの測定点の間の区間内に断線がない場合、逆相電圧差は極めて小さく、断線のある区間の両側にある測定点のデータ間には、上記の差に近い値の差が生じる。これにより、最大の差を生じる区間内に断線点があると区間評定することが可能である。上記の演算処理は、断線判定処理装置11a内の区間判定装置111(第5の区間判定装置)において実行され、判定した区間は、外部へ、例えば断線区間信号88として出力される。
図14に、横軸に配電線の距離をとり、この距離上に複数の測定点(図では例として5点)で測定した逆相電圧をプロットしたものを示す。相隣る測定点間の差をとる代わりに、各測定点をつなぐ線を延長して断線地点の両側の延長線の高さの差を逆相電圧差として求めてもよい。この差が上記の式に示す値となる区間で断線が生じていることになる。区間内の断線位置の特定については実施の形態10で説明したのと同様である。
【0028】
実施の形態12.
同一地点の2線断線した区間を標定する第6の方法について説明する。
(38)式から断線点前後で零相電圧差
U0= - E Z0/ (Z0+ Z1+ Z2)が発生する。
そこで、複数の測定点からのデータについて、相隣る測定点間で差を求める。2つの測定点の間の区間内に断線がない場合、零相電圧差は極めて小さく、断線のある区間の両側にある測定点のデータ間には、上記の差に近い値の差が生じる。これにより、最大の差を生じる区間内に断線点があると区間評定することが可能である。上記の演算処理は、断線判定処理装置11a内の区間判定装置111(第6の区間判定装置)において実行され、判定した区間は、外部へ、例えば断線区間信号88として出力される。
図15に、横軸に配電線の距離をとり、この距離上の複数の測定点(図では例として5点)で測定した零相電圧をプロットしたものを示す。相隣る測定点間の差をとる代わりに、各測定点をつなぐ線を延長して断線地点の両側の延長線の高さの差を零相電圧差として求めてもよい。この差が上記の式に示す値となる区間で断線が生じていることになる。区間内の断線位置の特定については実施の形態10で説明したのと同様である。
【0029】
実施の形態13.
実施の形態10〜12において、2線が断線している区間を標定した後、区間内の断線位置をもっと正確に確定する方法について説明する。 (39)式から断線点前後で方向も含めた正相電圧差と逆相電圧差と零相電圧差の和がゼロに等しい。そこで図16に示すように断線点前後での正相電圧、逆相電圧および零相電圧の和V1 + V2 + V0 を複数の測定点で測定する。そして配電線の両端から測定値を順次結んだ線を延長すると、同じ値を示す一点が求められる。この点が同一地点2線断線点である。
上記の演算処理は、断線判定処理装置11a内の断線点演算装置211(第5の断線点演算装置という)において実行され、求めた断線点は、外部へ、例えば最寄りの測定点からの距離を示す断線位置信号89として出力される。
【0030】
【発明の効果】
以上のように、この発明によれば、配電線における複数箇所の電圧・電流を正相電圧、逆相電圧、零相電圧、正相電流、逆相電流、零相電流に変換して処理するするように構成したので、配電線の1線断線および同一地点2線断線の故障区間が標定でき、更に、区間内における故障位置の標定も可能であるという効果が得られる。また配電線末端側に分散電源が存在する場合でも統一的な取り扱いにより故障区間および故障点を標定できる装置が得られる。また通常は高圧配電線は中性点が非接地であるが接地インピーダンスが存在しても統一的な取り扱いにより故障区間および故障点を標定できる。
【図面の簡単な説明】
【図1】 この発明の全ての実施の形態における配電線の断線検出装置の構成及び配置を説明する図である。
【図2】 断線判定装置と電流・電圧測定装置の内部構成と接続を説明する図である。
【図3】 配電線の断線位置を説明する図である。
【図4】 本発明の実施の形態2の配電線断線検出装置の動作を説明する図である。
【図5】 本発明の実施の形態3の配電線断線検出装置の動作を説明する図である。
【図6】 本発明の実施の形態4の配電線断線検出装置の動作を説明する図である。
【図7】 本発明の実施の形態5の配電線断線検出装置の動作を説明する図である。
【図8】 本発明の実施の形態6の配電線断線検出装置の動作を説明する図である。
【図9】 本発明の実施の形態7の配電線断線検出装置の動作を説明する図である。
【図10】 本発明の実施の形態8の配電線断線検出装置の動作を説明する図である。
【図11】 実施の形態9〜13における配電線の断線位置を説明する図である。
【図12】 本発明の実施の形態9の配電線断線検出装置の動作を説明する図である。
【図13】 本発明の実施の形態10の配電線断線検出装置の動作を説明する図である。
【図14】 本発明の実施の形態11の配電線断線検出装置の動作を説明する図である。
【図15】 本発明の実施の形態12の配電線断線検出装置の動作を説明する図である。
【図16】 本発明の実施の形態13の配電線断線検出装置の動作を説明する図である。
【符号の説明】
1 配電線、 2〜9 電流・電圧を測定する装置、
10 通信線、 11 断線判定装置、
11a 断線判定処理装置(1線断線判定処理装置又は2線断線判定処理装置)、
87 断線検出信号、 88 断線区間信号、 89 断線位置信号、
111 第1〜第6区間判定装置、
211 第1〜第5断線点演算装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a disconnection detecting device for detecting disconnection of a distribution line.
[0002]
[Prior art]
Distribution lines may be disconnected due to unforeseen causes, regardless of aerial wiring or underground wiring. In this case, in order to recover quickly, it is necessary to find the disconnected position as soon as possible. However, since the distribution line is generally very long, its detection is not easy. In a conventional disconnection detection device, disconnection in one distribution line section is detected from current and voltage values measured at a plurality of points on the distribution line. (For example, see Patent Document 1)
And the true disconnection point of the distribution line where the disconnection is detected, for example, it takes a long time because it is necessary for a person to move and discover along the distribution line, causing a delay in recovery. .
[0003]
In addition, when a distributed power source is present at the terminal end of the distribution line, the terminal voltage may not change significantly even if the distribution line in the middle is disconnected, and the failure section may not be determined. In addition, since the neutral point of the high-voltage distribution line is normally ungrounded, it is out of consideration to determine the failure section for the distribution line with ground impedance.
[0004]
[Patent Document 1]
JP-A-2-266822 (page 8, FIG. 1)
[0005]
[Problems to be solved by the invention]
Since the conventional disconnection detection apparatus is configured as described above, there is a problem that even if a disconnection section can be automatically detected by this apparatus, a disconnection point cannot be detected. In addition, when a distributed power source exists on the terminal side of the distribution line, the failure section may not be able to be standardized even if the distribution line in the middle is disconnected. In addition, since the neutral point of the high-voltage distribution line is normally ungrounded, there is a problem that no consideration is given to locating a failure section for a distribution line having a ground impedance.
[0006]
The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a disconnection detection device capable of locating not only a failure section but also a failure point. It is another object of the present invention to provide a device that can locate a failure section and a failure point by unified handling even when a distributed power source is present at the end of a distribution line. Further, it is an object of the present invention to obtain a device capable of locating a failure section and a failure point by uniform handling even for a distribution line having a ground impedance that is normally ungrounded in a high-voltage distribution line.
[0007]
[Means for Solving the Problems]
  The distribution line disconnection detecting device according to the present invention is arranged at a measurement point set in each of the sections of the distribution line divided into a plurality of sections, and detects the voltage and current of the distribution line at the measurement points. Sensors that calculate normal-phase, reverse-phase, and zero-phase voltages and currents and convert them to data, and transmit this data to the outside via communication lines.
  The data is received from each sensor of the plurality of sections via the communication line, and the sum of the positive phase current value, the negative phase current value, and the zero phase current value of the distribution line is calculated, and the positive phase current When the value is not zero and the sum of the positive phase current value, the negative phase current value, and the zero phase current value is zero, a disconnection detection signal is output to indicate that there is one disconnection in the distribution line.And
Difference in positive phase voltage between the measurement points at both ends of each sectionOr any one of the difference of the negative phase voltage or the difference of the zero phase voltageCalculate for all the sections, determine that there is a disconnection of the one line in the section where this difference is the largest, and output a disconnection section signalDoSection judgmentEquipment, and
SaidBased on the positive phase voltage and the negative phase voltage at each measurement point, to determine the difference between the positive phase voltage and the negative phase voltage at each measurement point,An approximation formula that linearly approximates this difference with respect to the distance on the distribution line is obtained by the section determination device. 1 Create separately on both sides of the section determined to have a broken wire, and find the position on the distribution line where the values of the approximate expressions on both sides match each other, A first disconnection point calculation device for outputting data of this position as a disconnection position signal1 withA wire breakage determination processing device is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Hereinafter, a disconnection detecting device for a distribution line according to Embodiment 1 of the present invention will be described with reference to FIG.
In FIG. 1, current / voltage measuring devices 2 to 9 for measuring current / voltage are installed on a distribution line 1. The current / voltage measuring devices 2 to 9 communicate the measured current / voltage to the disconnection determination device 11 through the communication line 10. The current / voltage measuring devices 2 to 9 also convert the measured values into positive phase / reverse phase / zero phase voltages / currents.
FIG. 2 is a diagram for explaining the configuration of processing blocks for processing data by the current / voltage measuring devices 2 to 9 and the disconnection determining device 11.
[0009]
Next, the operation will be described.
FIG. 3 is a diagram for explaining the operation in the case where a disconnection occurs at the a-phase point 99 of the three-phase (a, b, c-phase) distribution line 1 that connects the point 90 and the point 91. In the figure, the transformer symbols are attached to the points 90 and 91, but for convenience of explanation, this is described in order to clarify the section, and what kind of equipment is connected to both ends. It doesn't matter. Now, it is assumed that the voltage on the left side of the a-phase disconnection point 99, that is, the point 90 side is 3 · V larger than the voltage on the right side, that is, the point 91 side. Here, V is an arbitrary number. The voltage of the a-phase, b-phase, and c-phase on the right side of the disconnection point 99 is Va, Vb, VcThen, the voltage of the a-phase, b-phase, and c-phase on the left side of the disconnection point is Va+ (3 ・ V), Vb, Vc  It becomes.
The zero-phase, normal-phase, and reverse-phase voltages on the right side of the disconnection point 99 are respectively expressed as V0, V1, V2Then, the zero-phase voltage, the positive-phase voltage, and the negative-phase voltage on the left side of the disconnection point 99 are respectively expressed as a = e from the definition of the symmetric coordinate method.j (2π / 3)As
(Va+ 3V + Vb+ Vc) / 3 = V0+ V --------------- (1)
(Va+ 3V + aVb+ a2Vc) / 3 = V1+ V --------------- (2)
(Va+ 3V + a2Vb+ aVc) / 3 = V2+ V --------------- (3)
[0010]
E phase voltage on the left side of the distribution linesThe zero-phase, positive-phase, and negative-phase impedances on the left as viewed from the disconnection point 99 are Z0s, Z1s, Z2s ,Zero phase current, positive phase current, and negative phase current0, I1, I2If
V0+ V = −Z0sI0   ---------------(Four)
V1+ V = Es−Z1sI1   ---------------(Five)
V2+ V = −Z2sI2   --------------- (6)
E phase voltage on the right side of the distribution linerThe zero-phase, positive-phase, and negative-phase impedances on the right side as viewed from the disconnection point of the distribution line0r, Z1r, Z2rIf
V0 = Z0rI0   --------------- (7)
V1 = Er+ Z1rI1   --------------- (8)
V2 = Z2rI2   --------------- (9)
When the a-phase current is Ia,
Ia = I0+ I1+ I2
Since phase a is disconnected, Ia = 0
I0+ I1+ I2 = 0 --------------- (10)
[0011]
From equations (4), (5), (6)
V0= -Z0SI0-V
V1= Es-Z1SI1-V
V2= -Z2SI2-V
Substituting these into equations (7), (8) and (9)
I0= -V / (Zor+ Zos)
I1= -V + (ES-Er) / (Z1r+ Z1s)
I2= -V / (Z2r+ Z2s)
Where Z0 = Z0 S + Z0r,
Z1 = Z1s + Z1r,
Z2 = Z2s + Z2r
Es-Er= E
Δ = Z0 Z1 + Z1 Z2 + Z2 Z0
And substituting this into equation (10)
0 = -Z1Z2V-Z0 Z2(VE) -V Z0Z1
Than this
V = Z0 Z2 E / Δ --------------- (11)
Get.
[0012]
Also,
I0 =-Z2 E / Δ --------------- (12)
I1 = (Z0 + Z2 ) E / Δ --------------- (13)
I2 =-Z0 E / Δ --------------- (14)
Therefore, from the equations (12), (13), (14), I1If not = 0, the sum of positive phase current, negative phase current and zero phase current including direction is zero,
I1 + I2 + I0 = 0 & I1≠ 0 --------------- (15)
By detecting this, it can be easily detected that one line of the distribution line is broken.
[0013]
When the distribution line is ungrounded like the high-voltage distribution line, the zero-phase impedance is much larger than the positive-phase and negative-phase impedances.0 >> Z1, Z0 >> Z2Therefore, Equation (11) is as follows.
V ≒ 3E Z2 / (Z1+ Z2) --------------- (16)
Similarly, the expressions (12) to (14) are as follows.
I0 ≒ 0 --------------- (17)
I1 ≒ E / (Z1+ Z2) --------------- (18)
I2 ≒ − E / (Z1+ Z2) --------------- (19)
The calculation described above is executed in the disconnection determination processing device 11a (referred to as a one-wire disconnection determination processing device), and a disconnection detection signal 87 indicating the presence or absence of disconnection is output after the disconnection is detected.
[0014]
Embodiment 2. FIG.
I described in the first embodiment1 + I2 + I0 = 0 & I1A first method for locating the disconnection point after detecting that there is one disconnection in the distribution line by detecting ≠ 0 will be described.
Positive phase voltage difference before and after the disconnection point from Equation (2) and Equation (11)
V = Z0 Z2 E / Δ
Will occur. Therefore, for data from a plurality of measurement points, a difference is calculated between adjacent measurement points. When there is no disconnection in the section between the two measurement points, the positive phase voltage difference is extremely small, and a difference in value close to the above equation occurs between the data of the measurement points on both sides of the section with the disconnection. This makes it possible to determine the section if there is a disconnection point in the section where the maximum difference occurs. The above arithmetic processing is executed by the section determination device 111 (first section determination apparatus) in the disconnection determination processing apparatus 11a, and the determined section is output to the outside as, for example, a disconnection section signal 88.
FIG. 4 shows a plot of the positive phase voltage measured at a plurality of measurement points on this distance (5 points as an example in the figure) with the distance of the distribution line on the horizontal axis. Instead of taking the difference between adjacent measurement points, the line connecting the measurement points may be extended to obtain the difference in height between the extension lines on both sides of the disconnection point as the positive phase voltage difference. A disconnection occurs in a section where this difference becomes the value shown in the above equation. If there is little error in measurement in FIG. 4, it is also possible to specify the disconnection position in the measuring device section by accurate calculation. However, since the change due to the distance of the positive phase voltage difference may not be sufficient for specifying the disconnection position, the method after the fifth embodiment described later is suitable for specifying the position in the section.
[0015]
Embodiment 3 FIG.
I described in the first embodiment1 + I2 + I0 = 0 & I1A second method for locating the disconnection point after detecting that there is one disconnection in the distribution line by detecting ≠ 0 will be described.
Reverse phase voltage difference before and after the disconnection point from Eqs. (3) and (11)
V = Z0 Z2 E / Δ
Will occur. Therefore, a difference is obtained between adjacent measurement points of data from a plurality of measurement points. When there is no disconnection in the section between the two measurement points, the negative phase voltage difference is extremely small, and a difference in value close to the above equation occurs between the data of the measurement points on both sides of the section with the disconnection. Accordingly, it is possible to determine the section where the difference is the maximum as the disconnection point. The above arithmetic processing is executed in the section determination device 111 (second section determination apparatus) in the disconnection determination processing device 11a, and the section is output as a disconnection section signal 88, for example.
FIG. 5 shows a plot of the negative phase voltage measured at a plurality of measurement points (5 points as an example in the figure) on the distance with the distance of the distribution line on the horizontal axis. Instead of taking the difference in data between adjacent measurement points, a line connecting each measurement point may be extended to find the difference in height between the extension lines on both sides of the disconnection point. A disconnection occurs in a section where this difference becomes a value shown in the above formula. The specification of the disconnection position in the section is the same as that described in the second embodiment.
[0016]
Embodiment 4 FIG.
I described in the first embodiment1 + I2 + I0 = 0 & I1A third method for determining the section of the disconnection point after detecting that there is one disconnection in the distribution line by detecting ≠ 0 will be described.
Zero-phase voltage difference before and after the disconnection point from equations (1) and (11)
V = Z0 Z2 E / Δ
Will occur. Therefore, the difference between adjacent measurement points is obtained from data from a plurality of measurement points. When there is no disconnection in the section between the two measurement points, the zero-phase voltage difference is extremely small, and a difference in value close to the above equation occurs between the data at the measurement points on both sides of the section with the disconnection. This makes it possible to determine the section of the disconnection point.
The arithmetic processing described above is executed by the section determination device 111 (third section determination apparatus) in the disconnection determination processing device 11a, and the determined section is output to the outside, for example, as a disconnection section signal 88.
FIG. 6 shows a plot of the negative phase voltage measured at a plurality of measurement points (five points as an example in the figure) on the distance with the distance of the distribution line on the horizontal axis. Instead of taking the difference between adjacent measurement points, a line connecting the measurement points may be extended to obtain the difference in height between the extension lines on both sides of the disconnection point. A disconnection occurs in a section where this difference becomes the value shown in the above equation. The specification of the disconnection position in the section is the same as that described in the second embodiment.
[0017]
Embodiment 5 FIG.
A description will be given of a first method for obtaining the disconnection position in the section more accurately after the determination of the disconnection section described in the second to fourth embodiments. From (2), (3) and (11), the difference between the positive and negative phase voltages is the same before and after the disconnection point. By comparing the measurement points, extending the difference value on the graph according to the distance of the distribution line, and obtaining the distance point where the difference coincides, the position of the disconnection point can be pointed.
7 shows the difference between the positive phase voltage and the negative phase voltage, that is, at the left end of the disconnection position 99 in FIG.1+ V)-(V2+ V), V at the right end1-V2This shows an example of data at each measurement position when this measurement is advanced toward the other end. The position where these values match is the disconnection position. The above calculation processing is executed in the disconnection point calculation device 211 (referred to as the first disconnection point calculation device) in the disconnection determination processing device 11a, and the calculated disconnection point is obtained by, for example, measuring the distance from the nearest measurement point. It is output as a disconnection position signal 89 shown.
[0018]
Embodiment 6 FIG.
A second method for more accurately obtaining the disconnection position in the section will be described. Since the difference between the positive-phase voltage and the zero-phase voltage is the same before and after the disconnection point from Equations (1), (2) and (11), multiple It is possible to point the disconnection point by comparing at the measurement point, extending this on the graph according to the distance, and finding the point where both match.
FIG. 8 shows the difference between the positive phase voltage and the zero phase voltage, that is, at the left end of the disconnection position 99 in FIG.1+ V)-(V0+ V), V at the right end1-V0This shows an example of data at each measurement position when this measurement is advanced toward the other end. The position where these values match is the disconnection position. The above calculation processing is executed in the disconnection point calculation device 211 (referred to as a second disconnection point calculation device) in the disconnection determination processing device 11a, and the calculated disconnection point is determined by measuring the distance from the nearest measurement point, for example. It is output as a disconnection position signal 89 shown.
[0019]
Embodiment 7 FIG.
A third method for more accurately obtaining the disconnection position in the section will be described. From (1), (3), and (11), the reverse phase voltage and the zero phase voltage are the same before and after the disconnection point, so multiple measurements of the difference between the negative phase voltage and the zero phase voltage before and after the standardized disconnection section It is possible to point the broken point by comparing the points, extending this according to the distance on the graph, and finding a point where both coincide.
9 shows the difference between the negative phase voltage and the zero phase voltage, that is, at the left end of the disconnection position 99 in FIG.2+ V)-(V0+ V), V at the right end2-V0This shows an example of data at each measurement position when this measurement is advanced toward the other end. The position where these values match is the disconnection position. The above calculation processing is executed in the disconnection point calculation device 211 (referred to as the third disconnection point calculation device) in the disconnection determination processing device 11a, and the calculated disconnection point is determined by measuring the distance from the nearest measurement point, for example. It is output as a disconnection position signal 89 shown.
[0020]
Embodiment 8 FIG.
In Embodiments 5 to 7, the sum of the negative phase current, the positive phase current and the zero phase current including the direction on the distribution line is zero, that is, I2 + I1 + I0 The case where the position of the disconnection in the section is determined after detecting = 0 and determining the section of the disconnection has been described. In the above embodiment, the disconnection position is described as being between the voltage / current measurement devices. However, in reality, it is assumed that there is a disconnection point further outside the measurement device installed at the end of the distribution line. Is done. In the present embodiment, a description will be given of what can be determined even when the disconnection position is outside the measurement point (the end of the distribution line).
From the equations (4), (6) and (12), (14), the positive and negative phase voltages immediately before the disconnection point (to the left of the disconnection point, that is, the power supply side)
V0s = -Z0sI0 = Z0sZ2E / Δ = (Z0Z2E / Δ} x {Z0s/ (Z0s+ Z0r)} ------- (20)
V2s = -Z2sI2 = Z0Z2sE / Δ = (Z0Z2E / Δ} x {Z2s/ (Z2s+ Z2r)} -------(twenty one)
Because
Z0s / Z0r = Z2s / Z2r That is, if the ratio of the negative phase impedance and the zero phase impedance viewed from the disconnection point to the left side is equal to the ratio of the negative phase impedance and the zero phase impedance viewed from the disconnection point to the right side, the zero phase voltage V immediately before the disconnection point0s And reverse phase voltage V just before the disconnection point2sAre equal.
[0021]
On the other hand, from equations (7), (9) and (12), (14), the positive and negative voltages immediately after the disconnection point (to the right of the disconnection point, that is, the load side) are
V0r = Z0rI0 = -Z0rZ2E / Δ = {-Z0Z2E / Δ} x {Z0r/ (Z0s+ Z0r)} ----(twenty two)
V2r = Z2rI2 = -Z0Z2rE / Δ = {-Z0Z2E / Δ} x {Z2r/ (Z2s+ Z2r)} ----(twenty three)
Because
Z0s / Z0r = Z2s / Z2r That is, if the ratio of the negative phase impedance and the zero phase impedance viewed from the disconnection point to the left side is equal to the ratio of the negative phase impedance and the zero phase impedance viewed from the disconnection point to the right side, the zero phase voltage V immediately after the disconnection point0 r And reverse phase voltage V immediately after the disconnection point2 rAre equal.
By utilizing this fact, it is possible to obtain a device capable of locating the disconnection point even when the disconnection is outside the voltage / current detecting device.
The above calculation processing is executed in the disconnection point calculation device 211 (referred to as a fourth disconnection point calculation device) in the disconnection determination processing device 11a, and the calculated disconnection point is determined by measuring the distance from the nearest measurement point, for example. It is output as a disconnection position signal 89 shown.
FIG. 10 shows an example of the zero-phase voltage and the negative-phase voltage measured at each measurement point arranged on the distance on the horizontal axis, and shows a case where a position where both coincide with each other is extended.
[0022]
Embodiment 9 FIG.
In the first to eighth embodiments, the detection in the case of the disconnection of one line has been described. In the following description of the present embodiment, a case where two wires are disconnected at one point will be described.
FIG. 11 shows that two-wire breakage occurred in the b-phase and c-phase of the distribution line. When a two-wire break occurs at the same point in the distribution lines b and c, the voltage difference between both sides of the b-phase break point at the break points 199 and 299 when the b and c phases are disconnected is 3U.b The voltage difference between both sides of the c-phase disconnection point is 3U.cAnd
That is, the voltage on the left side of the b-phase disconnection point 199 is 3U higher than the voltage on the right side.bLarge, the left side voltage of the c-phase disconnection point 299 is 3U than the right side voltagecSuppose it's big. The voltage of a phase, b phase, and c phase on the right side of the disconnection point is Va, Vb, VcThen, the voltages of the a-phase, b-phase, and c-phase on the left side of the disconnection points 199 and 299 are Va, Vb+ 3 Ub, Vc + 3 UcIt becomes.
Zero-phase, positive-phase, and negative-phase voltages on the right side of the disconnection point 199 are V0 ,V1, V2Then, the zero-phase, normal-phase, and reverse-phase voltages on the left side of the disconnection point 199 are expressed by the symmetric coordinate method as follows: a = ej (2π / 3)As
(Va+ Vb+3 Ub + Vc+3 Uc) / 3 = V0+ Ub + Uc   ---------------(twenty four)
(Va+ aVb+3 aUb + a2Vc+3 a2 Uc) / 3 = V1+ aUb + a2Uc   ------(twenty five)
(Va+ a2Vb+3 a2Ub + aVc+3 aUc) / 3 = V2+ a2Ub + aUc   ------ (26)
Is established.
[0023]
E phase voltage on the left side of the distribution linesZ, zero phase, positive phase, and negative phase impedance when looking at the left side from the disconnection point0s, Z1s, Z2sAnd zero-phase, normal-phase, and reverse-phase currents as I0, I1, I2If
V0+ Ub + Uc =-Z0sI0   --------------- (27)
V1+ aUb + a2Uc = Es -Z1sI1   ---------- (28)
V2+ a2Ub + aUc =-Z2sI2   ------------- (29)
E phase voltage on the right side of the distribution linerThe zero-phase, positive-phase, and negative-phase impedances on the right side as viewed from the disconnection point of the distribution line0r, Z1r, Z2rIf
V0= Z0rI0   --------------- (30)
V1= Er + Z1rI1   ---------- (31)
V2= Z2rI2   --------------- (32)
b phase and c phase are disconnected, so Ib= 0, Ic= 0
I0= I1= I2= Ia/ 3 --------------- (33)
[0024]
(27), (28), (29)
V0+ V1+ V2 = −Z0sI0 + Es − Z1sI1 − Z2sI2   --------------- (34)
Substituting Equations (30), (31), and (32) into Equation (34) and using Equation (33)
I0 = I1= I2= E / (Z0+ Z1+ Z2) --------------- (35)
Where E = Es−Er, Z0= Z0s+ Z0r, Z1= Z1s+ Z1r, Z2= Z2s+ Z2r
Positive phase voltage difference U before and after disconnection1, Reverse phase voltage difference U2, Zero phase voltage difference U0Each
U1= (Es -Z1sI1)-(Er+ Z1rI1) = E (Z0+ Z2) / (Z0+ Z1+ Z2------- (36)
U2=-Z2sI2 -Z2rI2 = -E Z2/ (Z0+ Z1+ Z2) --------------- (37)
U0=-Z0sI0 -Z0rI0 = -E Z0/ (Z0+ Z1+ Z2) --------------- (38)
From equations (36), (37), (38)
U1 + U2 + U0  = 0 --------------- (39)
From equation (39), the positive phase voltage difference U at the left measurement point1If = 0, the difference U between the positive phase voltage at the left measurement point and the positive phase voltage at the right measurement point U1 Difference between the negative phase voltage and the zero phase voltage at the left measurement point, and the sum of the negative phase voltage and the zero phase voltage at the right measurement point U2 + U0 Are equal in magnitude and opposite in sign, i.e.
U1= − (U2 + U0) = U & U1≠ 0 --------------- (40)
Where U = E (Z0+ Z2) / (Z0+ Z1+ Z2)
Then, it can be detected that a two-wire disconnection exists between the left and right measurement points.
To help understanding, the above state is illustrated in FIG.
[0025]
Since the high-voltage distribution line is ungrounded, the zero-phase impedance is much larger than the positive-phase impedance and the negative-phase impedance.0 >> Z1, Z0 >> Z2Therefore, equations (36), (37), and (38) are as follows.
U1 ≒ E --------------- (41)
U2 ≒ 0 --------------- (42)
U0 ≒ −E ------------- (43)
The calculation described above is executed in the disconnection determination processing device 11a (referred to as “two disconnection determination processing device”), and after detecting the disconnection, a disconnection detection signal 87 indicating the presence or absence of disconnection is output.
[0026]
Embodiment 10 FIG.
A method of locating the section of the disconnection position after detecting that there is a disconnection at the same point in the ninth embodiment (referred to as a fourth method in order to distinguish from the case of a one-wire disconnection) will be described.
Positive phase voltage difference before and after the disconnection point from equation (36)
U1= E (Z0+ Z2) / (Z0+ Z1+ Z2) Occurs.
Therefore, for data from a plurality of measurement points, a difference is obtained between adjacent measurement points. When there is no disconnection in the section between the two measurement points, the positive phase voltage difference is extremely small, and a difference in value close to the above difference occurs between the data of the measurement points on both sides of the section with the disconnection. Thus, it is possible to evaluate the section if there is a disconnection point in the section where the maximum difference occurs. The above arithmetic processing is executed by the section determination device 111 (fourth section determination apparatus) in the disconnection determination processing device 11a, and the determined section is output to the outside, for example, as a disconnection section signal 88.
FIG. 13 shows a plot of positive phase voltages measured at a plurality of measurement points (in the figure, five points as an example) on the horizontal axis with the distance of the distribution line on the horizontal axis. Instead of taking the difference between adjacent measurement points, the line connecting the measurement points may be extended to obtain the difference in height between the extension lines on both sides of the disconnection point as the positive phase voltage difference. A disconnection occurs in a section where this difference becomes the value shown in the above equation. If there is little error in measurement in FIG. 13, it is also possible to specify the disconnection position in the measuring device section by accurate calculation. However, since the change due to the distance of the positive phase voltage difference may be insufficient for specifying the disconnection position, the method of the thirteenth embodiment described later is suitable for specifying the position in the section.
[0027]
Embodiment 11 FIG.
A fifth method for locating the 2-wire disconnection section at the same point will be described.
Reverse phase voltage difference before and after the disconnection point from equation (37)
U2=-E Z2/ (Z0+ Z1+ Z2) Occurs.
Therefore, for data from a plurality of measurement points, a difference is obtained between adjacent measurement points. When there is no disconnection in the section between the two measurement points, the negative phase voltage difference is very small, and a difference in value close to the above difference occurs between the data of the measurement points on both sides of the section with the disconnection. Thus, it is possible to evaluate the section if there is a disconnection point in the section where the maximum difference occurs. The above arithmetic processing is executed by the section determination device 111 (fifth section determination apparatus) in the disconnection determination processing device 11a, and the determined section is output to the outside, for example, as a disconnection section signal 88.
FIG. 14 shows a plot of the negative phase voltage measured at a plurality of measurement points (five points in the figure as an example) on the distance with the distance of the distribution line on the horizontal axis. Instead of taking the difference between adjacent measurement points, the line connecting the measurement points may be extended to obtain the difference in height between the extension lines on both sides of the disconnection point as a reverse phase voltage difference. A disconnection occurs in a section where this difference becomes the value shown in the above equation. The specification of the disconnection position in the section is the same as that described in the tenth embodiment.
[0028]
Embodiment 12 FIG.
A sixth method for locating a section where two wires are disconnected at the same point will be described.
Zero phase voltage difference before and after the disconnection point from equation (38)
U0=-E Z0/ (Z0+ Z1+ Z2) Occurs.
Therefore, for data from a plurality of measurement points, a difference is obtained between adjacent measurement points. When there is no disconnection in the section between the two measurement points, the zero-phase voltage difference is extremely small, and a difference close to the above difference occurs between the data at the measurement points on both sides of the section with the disconnection. Thus, it is possible to evaluate the section if there is a disconnection point in the section where the maximum difference occurs. The above arithmetic processing is executed in the section determination device 111 (sixth section determination device) in the disconnection determination processing device 11a, and the determined section is output to the outside, for example, as a disconnection section signal 88.
FIG. 15 shows a plot of the zero-phase voltage measured at a plurality of measurement points (five points in the figure as an example) on the distance with the distance of the distribution line on the horizontal axis. Instead of taking the difference between adjacent measurement points, the line connecting the measurement points may be extended to obtain the difference in height between the extension lines on both sides of the disconnection point as the zero-phase voltage difference. A disconnection occurs in a section where this difference becomes the value shown in the above equation. The specification of the disconnection position in the section is the same as that described in the tenth embodiment.
[0029]
Embodiment 13 FIG.
In the tenth to twelfth embodiments, a method of determining the disconnection position in the section more accurately after the section where the two lines are disconnected will be described. From the equation (39), the sum of the positive phase voltage difference, the negative phase voltage difference and the zero phase voltage difference including the direction before and after the disconnection point is equal to zero. Therefore, as shown in FIG. 16, the sum V of the positive phase voltage, the negative phase voltage and the zero phase voltage before and after the disconnection point.1 + V2 + V0  Is measured at multiple measurement points. And if the line which connected the measured value sequentially from the both ends of a distribution line is extended, the point which shows the same value will be calculated | required. This point is the same point 2 wire disconnection point.
The above calculation processing is executed in the disconnection point calculation device 211 (referred to as the fifth disconnection point calculation device) in the disconnection determination processing device 11a, and the calculated disconnection point is determined by measuring the distance from the nearest measurement point, for example. It is output as a disconnection position signal 89 shown.
[0030]
【The invention's effect】
As described above, according to the present invention, the voltage / current at a plurality of locations in the distribution line is converted into a normal phase voltage, a negative phase voltage, a zero phase voltage, a positive phase current, a negative phase current, and a zero phase current for processing. Since it is configured as described above, it is possible to determine the failure section of the one-line disconnection of the distribution line and the two-wire disconnection at the same point, and further, it is possible to determine the fault position in the section. In addition, even when a distributed power source exists on the terminal side of the distribution line, a device capable of locating a failure section and a failure point by unified handling can be obtained. Usually, the high-voltage distribution line is ungrounded at the neutral point, but even if there is a ground impedance, the failure section and the failure point can be determined by unified handling.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram for explaining the configuration and arrangement of a distribution line disconnection detecting device in all embodiments of the present invention.
FIG. 2 is a diagram for explaining internal configurations and connections of a disconnection determination device and a current / voltage measurement device.
FIG. 3 is a diagram for explaining a disconnection position of a distribution line.
FIG. 4 is a diagram for explaining the operation of a distribution line disconnection detection apparatus according to a second embodiment of the present invention.
FIG. 5 is a diagram for explaining the operation of a distribution line disconnection detection apparatus according to a third embodiment of the present invention.
FIG. 6 is a diagram for explaining the operation of a distribution line disconnection detection apparatus according to a fourth embodiment of the present invention.
FIG. 7 is a diagram for explaining the operation of the distribution line disconnection detection apparatus according to the fifth embodiment of the present invention;
FIG. 8 is a diagram for explaining the operation of a distribution line disconnection detection apparatus according to a sixth embodiment of the present invention.
FIG. 9 is a diagram for explaining the operation of the distribution line disconnection detecting device according to the seventh embodiment of the present invention;
FIG. 10 is a diagram for explaining the operation of a distribution line disconnection detection apparatus according to an eighth embodiment of the present invention.
FIG. 11 is a diagram for explaining a disconnection position of a distribution line in the ninth to thirteenth embodiments.
FIG. 12 is a diagram for explaining the operation of the distribution line disconnection detection apparatus according to the ninth embodiment of the present invention;
FIG. 13 is a diagram for explaining the operation of the distribution line disconnection detecting device according to the tenth embodiment of the present invention;
FIG. 14 is a diagram for explaining the operation of the distribution line disconnection detecting device according to the eleventh embodiment of the present invention;
FIG. 15 is a diagram for explaining the operation of the distribution line disconnection detection apparatus according to the twelfth embodiment of the present invention;
FIG. 16 is a diagram for explaining the operation of the distribution line disconnection detection apparatus according to the thirteenth embodiment of the present invention;
[Explanation of symbols]
1 distribution line, 2-9 device for measuring current and voltage,
10 communication line, 11 disconnection determination device,
11a Disconnection determination processing device (1-wire disconnection determination processing device or 2-wire disconnection determination processing device),
87 Disconnection detection signal, 88 Disconnection section signal, 89 Disconnection position signal,
111 1st-6th area determination apparatus,
211 1st-5th disconnection point arithmetic unit.

Claims (5)

複数の区間に区分した配電線の前記区間のそれぞれに設定された測定点に配置され、前記測定点での前記配電線の電圧と電流とを検出し、正相・逆相・零相の電圧と電流を演算してデータ化し、このデータを通信線を介して外部へ伝送するセンサ、
前記複数区間のそれぞれのセンサから、前記通信線を介して前記データを受信し、前記配電線の正相電流値と逆相電流値と零相電流値との和を演算し、前記正相電流値が零でなく、かつ、前記正相電流値と逆相電流値と零相電流値との和が零となるとき、前記配電線に1線の断線があることを示す断線検出信号を出力し、
前記の各区間の両端にある前記測定点の間の正相電圧の差、又は逆相電圧の差、または零相電圧の差のいずれか一つを全ての前記区間について求め、この差が最も大となる区間に前記1線の断線があると判定して断線区間信号を出力する区間判定装置、及び
前記の各測定点の正相電圧と逆相電圧とをもとに、前記各測定点の前記正相電圧と前記逆相電圧との差を求め、この差を前記配電線上の距離に対して線形近似する近似式を前記区間判定装置により前記 1 線の断線があると判定された前記区間の両側で別々に作成し、両側の近似式の値が互いに一致する前記配電線上の位置を求め、この位置のデータを断線位置信号として出力する第1の断線点演算装置を有する1線断線判定処理装置を備えたことを特徴とする配電線の断線検出装置。
It is arranged at the measurement points set in each of the sections of the distribution line divided into a plurality of sections, detects the voltage and current of the distribution lines at the measurement points, and the voltage of the normal phase, reverse phase, zero phase And a sensor that calculates current and converts it to data, and transmits this data to the outside via a communication line
The data is received from each sensor of the plurality of sections via the communication line, the sum of the positive phase current value, the negative phase current value, and the zero phase current value of the distribution line is calculated, and the positive phase current When the value is not zero and the sum of the positive phase current value, the negative phase current value, and the zero phase current value is zero, a disconnection detection signal is output to indicate that there is one disconnection in the distribution line. And
Any one of the difference of the positive phase voltage, the difference of the negative phase voltage, or the difference of the zero phase voltage between the measurement points at both ends of each of the intervals is obtained for all the intervals, and this difference is the largest. A section determination device that determines that there is a disconnection of the one line in a section that is large and outputs a disconnection section signal , and
Based on the positive-phase voltage and the negative voltage at each measurement point of the said obtains the difference between the positive phase voltage and the negative-phase voltage of each measurement point, with respect to the distance the difference of the power distribution line Create an approximate expression for linear approximation separately on both sides of the section determined that there is a disconnection of the one line by the section determination device, find the position on the distribution line where the values of the approximate expressions on both sides match each other , A distribution line disconnection detection device comprising a one-wire disconnection determination processing device having a first disconnection point computing device that outputs data of this position as a disconnection position signal.
複数の区間に区分した配電線の前記区間のそれぞれに設定された測定点に配置され、前記測定点での前記配電線の電圧と電流とを検出し、正相・逆相・零相の電圧と電流を演算してデータ化し、このデータを通信線を介して外部へ伝送するセンサ、
前記複数区間のそれぞれのセンサから、前記通信線を介して前記データを受信し、前記配電線の正相電流値と逆相電流値と零相電流値との和を演算し、前記正相電流値が零でなく、かつ、前記正相電流値と逆相電流値と零相電流値との和が零となるとき、前記配電線に1線の断線があることを示す断線検出信号を出力し、
前記の各区間の両端にある前記測定点の間の正相電圧の差、又は逆相電圧の差、または零相電圧の差のいずれか一つを全ての前記区間について求め、この差が最も大となる区間に前記1線の断線があると判定して断線区間信号を出力する区間判定装置、及び
前記の各測定点の正相電圧と零相電圧とをもとに、前記各測定点の前記正相電圧と前記零相電圧との差を求め、この差を前記配電線上の距離に対して線形近似する近似式を前記区間判定装置により前記 1 線の断線があると判定された前記区間の両側で別々に作成し、両側の近似式の値が互いに一致する前記配電線上の位置を求め、この位置のデータを断線位置信号として出力する第2の断線点演算装置を有する1線断線判定処理装置を備えたことを特徴とする配電線の断線検出装置。
It is arranged at the measurement points set in each of the sections of the distribution line divided into a plurality of sections, detects the voltage and current of the distribution lines at the measurement points, and the voltage of the normal phase, reverse phase, zero phase And a sensor that calculates current and converts it to data, and transmits this data to the outside via a communication line
The data is received from each sensor of the plurality of sections via the communication line, the sum of the positive phase current value, the negative phase current value, and the zero phase current value of the distribution line is calculated, and the positive phase current When the value is not zero and the sum of the positive phase current value, the negative phase current value, and the zero phase current value is zero, a disconnection detection signal is output to indicate that there is one disconnection in the distribution line. And
Determined for the positive difference between the phase voltage or the difference between the negative-phase voltage or all of the section of any one of the difference between the zero-phase voltage, between the measuring points at the ends of each section of the, the difference is most A section determination device that determines that there is a disconnection of the one line in a section that is large and outputs a disconnection section signal , and
Based on the positive phase voltage and the zero phase voltage at each measurement point, the difference between the positive phase voltage and the zero phase voltage at each measurement point is obtained, and this difference is calculated with respect to the distance on the distribution line. Create an approximate expression for linear approximation separately on both sides of the section determined that there is a disconnection of the one line by the section determination device, find the position on the distribution line where the values of the approximate expressions on both sides match each other, A distribution line disconnection detection device comprising a one-wire disconnection determination processing device having a second disconnection point calculation device that outputs data of this position as a disconnection position signal.
複数の区間に区分した配電線の前記区間のそれぞれに設定された測定点に配置され、前記測定点での前記配電線の電圧と電流とを検出し、正相・逆相・零相の電圧と電流を演算してデータ化し、このデータを通信線を介して外部へ伝送するセンサ、
前記複数区間のそれぞれのセンサから、前記通信線を介して前記データを受信し、前記配電線の正相電流値と逆相電流値と零相電流値との和を演算し、前記正相電流値が零でなく、かつ、前記正相電流値と逆相電流値と零相電流値との和が零となるとき、前記配電線に1線の断線があることを示す断線検出信号を出力し、
前記の各区間の両端にある前記測定点の間の正相電圧の差、又は逆相電圧の差、または零相電圧の差のいずれか一つを全ての前記区間について求め、この差が最も大となる区間に前記1線の断線があると判定して断線区間信号を出力する区間判定装置、及び
前記の各測定点の逆相電圧と零相電圧とをもとに、前記各測定点の前記逆相電圧と前記零相電圧との差を求め、この差を前記配電線上の距離に対して線形近似する近似式を前記区間判定装置により前記 1 線の断線があると判定された前記区間の両側で別々に作成し、両側の近似式の値が互いに一致する前記配電線上の位置を求め、この位置のデータを断線位置信号として出力する第3の断線点演算装置を有する1線断線判定処理装置を備えたことを特徴とする配電線の断線検出装置。
It is arranged at the measurement points set in each of the sections of the distribution line divided into a plurality of sections, detects the voltage and current of the distribution lines at the measurement points, and the voltage of the normal phase, reverse phase, zero phase And a sensor that calculates current and converts it to data, and transmits this data to the outside via a communication line
The data is received from each sensor of the plurality of sections via the communication line, the sum of the positive phase current value, the negative phase current value, and the zero phase current value of the distribution line is calculated, and the positive phase current When the value is not zero and the sum of the positive phase current value, the negative phase current value, and the zero phase current value is zero, a disconnection detection signal is output to indicate that there is one disconnection in the distribution line. And
Determined for the positive difference between the phase voltage or the difference between the negative-phase voltage or all of the section of any one of the difference between the zero-phase voltage, between the measuring points at the ends of each section of the, the difference is most A section determination device that determines that there is a disconnection of the one line in a section that is large and outputs a disconnection section signal , and
Based on the negative phase voltage and the zero phase voltage at each measurement point, the difference between the negative phase voltage and the zero phase voltage at each measurement point is obtained, and this difference is calculated with respect to the distance on the distribution line. Create an approximate expression for linear approximation separately on both sides of the section determined that there is a disconnection of the one line by the section determination device, find the position on the distribution line where the values of the approximate expressions on both sides match each other, A distribution line disconnection detection device comprising a one-wire disconnection determination processing device having a third disconnection point calculation device that outputs data of this position as a disconnection position signal.
複数の区間に区分した配電線の前記区間のそれぞれに設定された測定点に配置され、前記測定点での前記配電線の電圧と電流とを検出し、正相・逆相・零相の電圧と電流を演算してデータ化し、このデータを通信線を介して外部へ伝送するセンサ、
前記複数区間のそれぞれのセンサから、前記通信線を介して前記データを受信し、前記配電線の正相電流値と逆相電流値と零相電流値との和を演算し、前記正相電流値が零でなく、かつ、前記正相電流値と逆相電流値と零相電流値との和が零となるとき、前記配電線に1線の断線があることを示す断線検出信号を出力し、
前記の各区間の両端にある前記測定点の間の正相電圧の差、又は逆相電圧の差、または零相電圧の差のいずれか一つを全ての前記区間について求め、この差が最も大となる区間に前記1線の断線があると判定して断線区間信号を出力する区間判定装置、及び
前記の各測定点の逆相電圧と零相電圧とをもとに、前記逆相電圧と前記零相電圧のそれぞれについて、前記配電線上の距離に対して線形近似する近似式を作成し、前記逆相電圧の近似式の値と前記零相電圧の近似式の値とが互いに一致する前記配電線上の位置を求め、
この位置のデータを断線位置信号として出力する第4の断線点演算装置を有する1線断線判定処理装置を備えたことを特徴とする配電線の断線検出装置。
It is arranged at the measurement points set in each of the sections of the distribution line divided into a plurality of sections, detects the voltage and current of the distribution lines at the measurement points, and the voltage of the normal phase, reverse phase, zero phase And a sensor that calculates current and converts it to data, and transmits this data to the outside via a communication line
The data is received from each sensor of the plurality of sections via the communication line, the sum of the positive phase current value, the negative phase current value, and the zero phase current value of the distribution line is calculated, and the positive phase current When the value is not zero and the sum of the positive phase current value, the negative phase current value, and the zero phase current value is zero, a disconnection detection signal is output to indicate that there is one disconnection in the distribution line. And
Determined for the positive difference between the phase voltage or the difference between the negative-phase voltage or all of the section of any one of the difference between the zero-phase voltage, between the measuring points at the ends of each section of the, the difference is most A section determination device that determines that there is a disconnection of the one line in a section that is large and outputs a disconnection section signal , and
Based on the negative phase voltage and the zero phase voltage at each of the measurement points, for each of the negative phase voltage and the zero phase voltage , create an approximate expression that linearly approximates the distance on the distribution line, Find the position on the distribution line where the value of the approximate expression of the negative phase voltage and the value of the approximate expression of the zero phase voltage match each other,
A distribution line disconnection detection device comprising a one-wire disconnection determination processing device having a fourth disconnection point calculation device that outputs data of this position as a disconnection position signal.
複数の区間に区分した配電線の前記区間のそれぞれに設定された測定点に配置され、前記測定点での前記配電線の電圧と電流とを検出し、正相・逆相・零相の電圧と電流を演算してデータ化し、このデータを通信線を介して外部へ伝送するセンサ、
前記複数区間のそれぞれのセンサから前記通信線を介して前記データを受信し、前記配電線上の相隣る2つの前記測定点における正相電圧値と逆相電圧値と零相電圧値から、前記両地点のそれぞれにおける正相電圧値の前記両地点間の差U と、前記両地点のそれぞれにおける逆相電圧値と零相電圧値との和の前記両地点間の差(U +U )とを演算し、Uが零でなく、かつ、
=−(U+U)となるとき、前記配電線上の同一地点に2線の断線があることを示す断線検出信号を出力し、
前記の各区間の両端にある前記測定点の間の正相電圧の差、または逆相電圧の差、または零相電圧の差のいずれか一つを全ての区間について求め、この差が最も大となる区間に前記2線の断線があると判定して断線区間信号を出力する区間判定装置、及び
前記の各測定点の正相電圧値と逆相電圧値と零相電圧値との和を求め、この和を前記配電線上の距離に対して線形近似する近似式を前記区間判定装置により前記2線の断線があると判定された前記区間の両側で別々に作成し、両側の近似式の値が互いに一致する前記配電線上の位置を求め、
この位置のデータを断線位置信号として出力する第5の断線点演算装置を有する2線断線判定処理装置を備えたことを特徴とする配電線の断線検出装置。
It is arranged at the measurement points set in each of the sections of the distribution line divided into a plurality of sections, detects the voltage and current of the distribution lines at the measurement points, and the voltage of the normal phase, reverse phase, zero phase And a sensor that calculates current and converts it to data, and transmits this data to the outside via a communication line
Wherein the respective sensors of a plurality segments via the communication line to receive the data, from the positive-phase voltage values and the negative-phase voltage value and the zero-phase voltage values at two neighboring one of said measurement points of said power distribution line, said The difference U 1 between the two points of the positive phase voltage value at each of the two points and the difference (U 2 + U 0) of the sum of the negative phase voltage value and the zero phase voltage value at each of the two points. ) , U 1 is not zero, and
When U 1 = − (U 2 + U 0 ), a disconnection detection signal indicating that there is a disconnection of two wires at the same point on the distribution line is output ,
Any one of the difference of the positive phase voltage, the difference of the negative phase voltage, or the difference of the zero phase voltage between the measurement points at both ends of each of the above intervals is obtained for all the intervals, and this difference is the largest. A section determination device that determines that there is a disconnection of the two wires in the section and outputs a disconnection section signal ; and
It calculates the sum of the positive-phase voltage values and the negative-phase voltage value and the zero-phase voltage values for each measurement point of the said approximation equation to linearly approximate the sum with respect to the distance of the distribution line by the section determination unit 2 Create separately on both sides of the section determined to have a broken line, find the position on the distribution line where the values of the approximate expressions on both sides match each other,
A distribution line disconnection detection device comprising a two-wire disconnection determination processing device having a fifth disconnection point calculation device that outputs data of this position as a disconnection position signal.
JP2003024059A 2003-01-31 2003-01-31 Distribution line breakage detector Expired - Fee Related JP4117201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024059A JP4117201B2 (en) 2003-01-31 2003-01-31 Distribution line breakage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024059A JP4117201B2 (en) 2003-01-31 2003-01-31 Distribution line breakage detector

Publications (2)

Publication Number Publication Date
JP2004233255A JP2004233255A (en) 2004-08-19
JP4117201B2 true JP4117201B2 (en) 2008-07-16

Family

ID=32952700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024059A Expired - Fee Related JP4117201B2 (en) 2003-01-31 2003-01-31 Distribution line breakage detector

Country Status (1)

Country Link
JP (1) JP4117201B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063904A1 (en) * 2011-10-31 2013-05-10 湖南三一智能控制设备有限公司 Segmented detection device and detection method for line fault
CN109765459A (en) * 2019-01-22 2019-05-17 清大智能(北京)科技有限公司 It is a kind of based on the method for locating single-phase ground fault studied and judged on the spot and system
CN111257696A (en) * 2020-03-03 2020-06-09 西南交通大学 Estimation-based power transmission line fault detection method under limited PMU

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820754B1 (en) 2007-03-19 2008-04-11 오성종합기술(주) A phase information transmitter and a phase identify apparatus for indistribution line using telephone network
CN107632225B (en) * 2017-08-11 2019-07-23 国网湖南省电力公司 A kind of small current system Earth design method
CN115113001B (en) * 2022-07-12 2023-10-20 国网江苏省电力有限公司宿迁供电分公司 Self-adaptive power distribution network single-phase disconnection fault positioning method
KR102621071B1 (en) * 2023-07-06 2024-01-04 (주)포유텍 Underground electric power line monitoring system using sub pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063904A1 (en) * 2011-10-31 2013-05-10 湖南三一智能控制设备有限公司 Segmented detection device and detection method for line fault
CN109765459A (en) * 2019-01-22 2019-05-17 清大智能(北京)科技有限公司 It is a kind of based on the method for locating single-phase ground fault studied and judged on the spot and system
CN109765459B (en) * 2019-01-22 2021-06-11 清大智能(北京)科技有限公司 Single-phase earth fault positioning method and system based on in-situ study and judgment
CN111257696A (en) * 2020-03-03 2020-06-09 西南交通大学 Estimation-based power transmission line fault detection method under limited PMU
CN111257696B (en) * 2020-03-03 2021-05-04 西南交通大学 Estimation-based power transmission line fault detection method under limited PMU

Also Published As

Publication number Publication date
JP2004233255A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
FI118492B (en) A system and method for determining the location of an earth fault
US9170284B2 (en) A.C. power measuring apparatus and A.C. power measuring method
TWI557412B (en) Leakage current calculation device and leakage current calculation method
CA2295342A1 (en) Fault-detection for powerlines
CN103308817B (en) Array base palte line detection apparatus and detection method
US9829519B2 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
CN103499637B (en) A kind of Fully-digital high-precision three-dimensional flux leakage signal acquisition device
US20130154674A1 (en) Method of high voltage detection and accurate phase angle measurement in cordless phasing meters
JP4117201B2 (en) Distribution line breakage detector
US9897647B2 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
WO2013106985A1 (en) Method for identifying fault direction without voltage measurement information and directional element thereof
JP4993728B2 (en) Effective leakage current measuring instrument
KR101406546B1 (en) Sinusoidal insulation monitoring apparatus having operation frequency setting function
EP3206041A1 (en) A system and a method for monitoring transformer bushings
CN111521857B (en) Multi-conductor current measuring system based on TMR tunnel magnetic resistance
CN203405561U (en) Direct current power source grounding fault searching device
CN104111402A (en) Wiring detection method and device for electric power cable cross interconnecting system
CN104459426A (en) Cable detection system
WO2011033548A1 (en) Capacitive voltage sensor
CN203550911U (en) Conductor sag distance measuring equipment for high-voltage transmission line
CN206038784U (en) Live line measurement zinc oxide arrester's wireless tester
JPH0729477U (en) Insulation leakage current measuring device
JP5750313B2 (en) Wiring confirmation tester and method for outlet with ground electrode
JPH0219779A (en) Locating method for grounding fault point in three terminal parallel circuit duplex power transmission line of high resistance
US20150346251A1 (en) Detector circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees