JPH0219779A - Locating method for grounding fault point in three terminal parallel circuit duplex power transmission line of high resistance - Google Patents

Locating method for grounding fault point in three terminal parallel circuit duplex power transmission line of high resistance

Info

Publication number
JPH0219779A
JPH0219779A JP16973988A JP16973988A JPH0219779A JP H0219779 A JPH0219779 A JP H0219779A JP 16973988 A JP16973988 A JP 16973988A JP 16973988 A JP16973988 A JP 16973988A JP H0219779 A JPH0219779 A JP H0219779A
Authority
JP
Japan
Prior art keywords
line
ground fault
point
power transmission
fault point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16973988A
Other languages
Japanese (ja)
Other versions
JPH07122651B2 (en
Inventor
Kenji Murata
村田 賢次
Kazuo Sonohara
園原 和夫
Susumu Ito
進 伊藤
Tokuo Emura
徳男 江村
Yasuhiro Yamamoto
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP63169739A priority Critical patent/JPH07122651B2/en
Publication of JPH0219779A publication Critical patent/JPH0219779A/en
Publication of JPH07122651B2 publication Critical patent/JPH07122651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To permit locating of a simplex earth short circuit fault point according to a zero phase current shunt ratio method by calculating a correction coefficient for calculating a distance from a power transmission terminal till an earth short circuit point based on a track length of a power transmission previously. CONSTITUTION:A calculating instrument for the earth short circuit fault point is located at an A terminal side of a three terminal system circuit duplex, converting a zero phase current of circuits 5a, 5b being detected at zero phase detecting circuits 8a, 8b into a current signal of a prescribed converting ratio at a transformer 9. Its data is subjected to an A/D conversion 10 and planted in a data memory 11. And, a command signal calculating the earth short circuit fault point is outputted based on the amount of its zero phase current at an earth short circuit detecting part 12. Also, a memory 13 stores previously respective correction coefficients r1, r2, r3 for calculating the earth short circuit fault point between respective circuit duplex terminals A, B, C and a circuit duplex branch point 4. And, a CPU 14 executes a prescribed operation from the coefficients r1, r2, r3 and the zero phase current, calculating the distance from the power-transmission terminal till the earth short circuit point. These information are displayed at a displaying part 15.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、高抵抗系3端子平行2回線送電線における
地絡故障点標定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for locating a ground fault point in a high-resistance three-terminal parallel two-circuit power transmission line.

〈従来の技術〉 従来から変電所間の送電線は、電力供給の信頼度向上の
ため、一般的に平行2回線方式で行われている。上記送
電線は、建造物内で保守管理されている変電所等と比較
して、外部(M撃による絶縁破壊、或は鳥や樹木の接触
等)に起因する故障が不可避であり、故障の多くは地絡
敵陣であって、故障発生時には、故障点探索作業が伴う
が、特に、山間部における地絡故障点探索は非常に困難
な場合がある。
<Prior Art> Conventionally, power transmission lines between substations have generally been constructed using a parallel two-circuit system in order to improve the reliability of power supply. Compared to substations, etc. that are maintained and managed inside buildings, the above power transmission lines are unavoidably subject to failures caused by external factors (insulation breakdown due to M strike, contact with birds or trees, etc.), and failures are less likely to occur. Most of the ground faults are enemy lines, and when a fault occurs, it is necessary to search for a fault point, but searching for a ground fault fault point can be particularly difficult in mountainous areas.

そこで、故障点を標定する方法が種々提案され、実施さ
れている。
Therefore, various methods for locating the failure point have been proposed and implemented.

従来からの高抵抗系平行2回線送電線における地絡故障
点標定方法としては、平行2回線のそれぞれの回線の零
相電流lot、1G2を検出して零相電流の分流比10
1/(l O1+ 102)  (但し、1−1または
2)を算出し、この零相電流分流比に基いて送電端から
地絡故障点までの距離を算出する方法がある。
The conventional method for locating a ground fault fault point in a high-resistance parallel two-circuit transmission line is to detect the zero-sequence current of each of the two parallel lines, 1G2, and calculate the zero-sequence current shunt ratio of 10.
There is a method of calculating 1/(l O1+ 102) (1-1 or 2) and calculating the distance from the power transmission end to the ground fault point based on this zero-sequence current shunt ratio.

第4図は上記■の方法をさらに詳細に説明するための図
であり、送電側(a)には、高抵抗(b)で中性点が接
地されたY−Y型変圧器(c)を配置すると共に、受電
側(d)に非接地のY−Δ型変圧器(e)を配置してい
る。上記両度圧器(a) (d)は、母線(gl)(g
2)に接続され、これらの母線(gl)(g2)の間に
長さがJの2回線送電線(fl) <r2>を接続して
いる。
Fig. 4 is a diagram for explaining the above method (2) in more detail. On the power transmission side (a), there is a Y-Y type transformer (c) with a high resistance (b) and a grounded neutral point. and an ungrounded Y-Δ type transformer (e) on the power receiving side (d). The above double pressure gauges (a) and (d) have busbars (gl) (g
2), and a two-circuit power transmission line (fl) <r2> with a length of J is connected between these buses (gl) and (g2).

上記高抵抗系平行2回線送電線において、送電端から距
離Xの地点で地絡敵陣が発生し、地絡故障点から大地に
地絡電流が流出している場合を想定する。
Assume that in the high-resistance parallel two-circuit power transmission line described above, a ground fault occurs at a point at a distance X from the power transmission end, and a ground fault current flows from the ground fault point to the ground.

第5図は、第4図の零相回路を示し、回線(rl)の零
相電流を101、回線(r2)の零相電流をi02、地
絡故障点から流出する電流量をl Of、母線(gl)
の零相電圧を90、地絡故障点の零相電圧を9or1単
位長さ当りの事故インピーダンスを20、回線間の相互
インピーダンスを之■とすれば、母線(gl)から地絡
故障点までの電圧降下は回線(rl)(r2)の各々に
対して次のようになる。
FIG. 5 shows the zero-sequence circuit of FIG. 4, where the zero-sequence current of the line (rl) is 101, the zero-sequence current of the line (r2) is i02, and the amount of current flowing out from the ground fault point is l Of. Bus line (gl)
If the zero-sequence voltage at the ground fault point is 90, the fault impedance per unit length is 20, and the mutual impedance between the lines is The voltage drop is as follows for each of the lines (rl) (r2).

V OQ Of’−x之0i01+x之m102yo 
 −vor−xzOf02+x之wi01+(24X)
之O102−(24−X )  之a+102上記2つ
の式の差により、次式が得られる。
V OQ Of'-x之0i01+x之m102yo
-vor-xzOf02+x之wi01+(24X)
之O102−(24−X)之a+102The following equation is obtained by the difference between the above two equations.

X(之〇−之II> I Ol−(2J −x )(之
0−2m)i02上式とf OL+ 102− lor
なる関係式より下式が成立する。
X(〇〇-之II> I Ol-(2J-x)(之0-2m) i02 Above formula and f OL+ 102- lor
From the relational expression, the following formula holds true.

101−1(24−x)/24)   tOfi02−
(X/2J)−1Of’ 上記二つの式に基いて零相電流比を算出すれば、回線(
「1)の零相電流比は 2 t02/(f01+ 102) −x/ Jとなり
、上記式から送電端から地絡故障点までの距離Xを算出
することができる。尚、回線(r2)の零相電流分流比
は、 2 t01/(t01+ 102)  −21−xとな
る。従って、何れの零相電流分流比からも距1lItx
を算出できる。
101-1(24-x)/24) tOfi02-
(X/2J)-1Of' If the zero-sequence current ratio is calculated based on the above two formulas, the line (
The zero-sequence current ratio of "1) is 2 t02/(f01+ 102) -x/ J, and the distance X from the power transmission end to the ground fault point can be calculated from the above formula. The zero-sequence current shunt ratio is 2 t01/(t01+102) -21-x. Therefore, from any zero-sequence current shunt ratio, the distance 1lItx
can be calculated.

即ち、各回線(fl)(r2)ノ零相電流l 01. 
 i 021:のみ基いて地絡故障点を標定することが
できる。
That is, the zero-sequence current l 01 of each line (fl) (r2).
The ground fault point can be located based only on i 021:.

〈発明が解決しようとする課題〉 上記の零相電流分流比による地絡故障点算出方法は、送
電端においてそれぞれの回線から検出される零相電流の
分流比のみに基いて送電端から地絡故障点までの距離を
算出しているので、簡易であるという特徴を有するが、
送電線を分岐して負荷を接続する方式、即ち3端子系統
における一線地絡故障点の標定には適用することができ
ないという問題がある。即ち、3端子系統においては1
、送電線を複数に分岐し、負荷を接続していることから
、上述の零相電流分流比による方法をそのまま適用して
故障点の算出を行うことができないという問題がある。
<Problems to be Solved by the Invention> The method for calculating the ground fault fault point using the zero-sequence current shunt ratio described above is based only on the shunt ratio of the zero-sequence current detected from each line at the transmission end. It has the feature of being simple because it calculates the distance to the failure point, but
There is a problem in that it cannot be applied to a system in which a power transmission line is branched and a load is connected, that is, to locate a line-to-ground fault point in a three-terminal system. That is, in a 3-terminal system, 1
Since the power transmission line is branched into a plurality of lines and the loads are connected, there is a problem in that the above-mentioned method using the zero-sequence current shunt ratio cannot be directly applied to calculate the failure point.

この発明は、上記の問題に鑑み、高抵抗系3端子平行2
回線送電線においても、零相電流分流比法により一線地
絡故障点を標定することを可能にする高抵抗系3端子平
行2回線送電線における地絡故障点標定方法を提供する
ことを目的とする。
In view of the above-mentioned problems, this invention has developed a high-resistance 3-terminal parallel 2
The purpose of the present invention is to provide a method for locating a ground fault fault point in a high-resistance three-terminal parallel two-circuit power transmission line, which makes it possible to locate the single-line ground fault fault point using the zero-sequence current shunt ratio method. do.

く課題を解決するための手段〉 上記目的を達成するための、この発明の高抵抗系3端子
平行2回線送電線における地絡故障点標定方法は、高抵
抗系3端子平行2回線送電線の送電線路長に基いて送電
端から地絡点までの距離、或は2回線分岐点から地絡故
障点までの距離を算出するための補正係数を予め算出し
ておき、高抵抗系3端子平行2回線の送電端の各回線か
ら検出される零相電流と、上記補正係数とを要素として
、送電端から地絡故障点までの距離、或は2回線分岐点
から地絡故障点までの距離を算出する方法である。
Means for Solving the Problems To achieve the above object, the method of locating a ground fault fault point in a high-resistance three-terminal parallel two-circuit power transmission line according to the present invention is A correction coefficient is calculated in advance to calculate the distance from the power transmission end to the ground fault point, or from the two-line branch point to the ground fault point, based on the length of the power transmission line. The distance from the power transmission end to the ground fault point, or the distance from the two line branch point to the ground fault fault point, using the zero-sequence current detected from each line at the power transmission end of the two lines and the above correction coefficient as elements. This is a method of calculating.

く作用〉 以上のこの発明によれば、送電線路長に基いて送電端か
ら地絡故障点までの距離、或は2回線分岐点から地絡故
障点までの距離を算出するための予め計算された補正係
数と、送電端の零相電流とを要素として後述する所定の
演算を行い、送電端から地絡故障点までの距離、或は2
回線分岐点から地絡故障点までの距離を算出することに
より、高抵抗系3端子平行2回線送電線においても一線
地絡故障点の標定を行うことができる。
According to the invention described above, the distance from the power transmission end to the ground fault fault point or the distance from the two-line branch point to the ground fault fault point is calculated in advance based on the length of the power transmission line. The distance from the power transmission end to the ground fault point, or
By calculating the distance from the line branch point to the ground fault point, it is possible to locate the single line ground fault point even in a high-resistance three-terminal parallel two-circuit power transmission line.

さらに詳細に説明すれば、送電端から地絡故障点までの
距離、或は2回線分岐点から地絡故障点までの距離を算
出するための補正係数は、高抵抗系3端子平行2回線の
回路を解析し、零相差電流に基いた簡易な等価回路(以
下差電流等価回路と略称する)に置き換えることにより
導き出される。
To explain in more detail, the correction coefficient for calculating the distance from the power transmission end to the ground fault point, or the distance from the two-line branch point to the ground fault point, is It is derived by analyzing the circuit and replacing it with a simple equivalent circuit based on zero-sequence difference current (hereinafter abbreviated as difference current equivalent circuit).

上記補正係数は、以下に示すようにして算出することが
できる。
The above correction coefficient can be calculated as shown below.

一般に、高抵抗系3端子平行2回線は負荷線に対して分
岐される単回線を有することが多くこの単回線中の何れ
の箇所で一線地絡故障が発生しても、零相電流の流出地
点は当該単回線と2回線との接続点であると見なせる。
In general, high-resistance three-terminal parallel two-circuit lines often have a single line that branches to the load line, and even if a single-line ground fault occurs at any point in this single line, zero-sequence current will flow out. The point can be considered to be the connection point between the single line and the two lines.

従って、高抵抗系3端子平行2回線送電線で一線地絡故
障を議論する場合は、単回線を省略した純粋な3端子平
行2回線として扱うことができる(第2図C参照)。
Therefore, when discussing single-line ground faults in high-resistance three-terminal parallel two-circuit power transmission lines, it can be treated as a pure three-terminal parallel two-circuit line, omitting the single line (see Figure 2C).

さらに、3端子平行2回線の零相回路(第2図C参照)
を、それぞれの回線の零相電流の差に基いて得られる差
電流等価回路(第2図C参照)に置き換える。
Furthermore, a zero-phase circuit with three terminals and two parallel lines (see Figure 2C)
is replaced with a difference current equivalent circuit (see FIG. 2C) obtained based on the difference in zero-sequence current of each line.

そして、送電端から分岐点までの距離をJa。Then, the distance from the power transmission end to the branch point is Ja.

分岐点から2つの受電端までの距離をそれぞれjb、j
c、送電端から2回線分岐点に流れ込む差電流をA10
、各受電端から分岐点に流れ込む差電流をそれぞれΔt
O′、ΔIO′、地絡故障点から流出する差電流をΔI
o「とし、送電端と分岐点との間に地絡敵陣が発生した
場合には、差電流等価回路(第2図C参照)に基いて解
析すれば、下記 JaΔio ibΔ1o’ = (Ja−x)△1of 1b△tO’−Jc△10’−0 ΔlO+△10′ 十△IO′−△iorなる三つの式
が得られ、また、地絡故障点から流出する零相電流!o
rは、各回線の送電端側における各回線の零相電流10
1,102の単純和であるからl Of−101+ i
 02となる。        1・)・(但し、ja
、Jb、 jcは送電線路の長さであるから既知の値で
あり、また、零相差電流△10も送電端側における零相
電流の差であるから既知の値である) 上記四つの式を解くことにより、未知数X。
The distances from the branch point to the two power receiving ends are jb and j, respectively.
c, the difference current flowing from the power transmission end to the two line branch point is A10
, the difference current flowing from each power receiving end to the branch point is Δt
O', ΔIO', the difference current flowing out from the ground fault point is ΔI
o'', and if a ground fault occurs between the power transmission end and the branch point, then by analyzing it based on the differential current equivalent circuit (see Figure 2 C), the following JaΔio ibΔ1o' = (Ja-x ) △1of 1b△tO'-Jc△10'-0 ΔlO+△10'10△IO'-△ior are obtained, and the zero-sequence current flowing from the ground fault point!o
r is the zero-sequence current 10 of each line on the power transmission end side of each line
Since it is a simple sum of 1,102, l Of-101+ i
It becomes 02. 1・)・(However, ja
, Jb, and jc are known values because they are the lengths of the power transmission lines, and the zero-sequence difference current △10 is also a known value because it is the difference in zero-sequence currents on the transmission end side.) The above four equations are By solving, the unknown number X.

△io′、△IO′を求めることができる。Δio' and ΔIO' can be obtained.

この場合において、零相電流分流比を用いれば、送電端
から地絡故障点までの距離Xをさらに簡単に算出するこ
とができる。即ち、零相電流分流比は上記四つの式に基
いて 2I02/(101+102) = (Jb +Jc )x/ ()a Jb +Jb 
Jc +JaノC) で与えられる。
In this case, if the zero-sequence current shunt ratio is used, the distance X from the power transmission end to the ground fault point can be calculated more easily. In other words, the zero-sequence current shunting ratio is 2I02/(101+102) = (Jb +Jc)x/ ()a Jb +Jb based on the above four formulas.
It is given by Jc + Ja no C).

従って、式中の ()b+ノc )/ (Ja Jb −+−Jb ja
 +Ja Je)を補正係数とし、送電端側の各回線か
ら零相電流を検出して零相電流分流比と補正係数と乗算
することにより、送電端から地絡故障点までの距離Xを
求めることができる。
Therefore, ()b+noc)/(Ja Jb −+−Jb ja
+Ja Je) as a correction coefficient, detect the zero-sequence current from each line on the transmission end side, and multiply it by the zero-sequence current shunt ratio and the correction coefficient to find the distance X from the transmission end to the ground fault point. I can do it.

また、分岐点と受電端との間に地絡敵陣が発生した場合
においても、上記同様に回路解析を行うことにより、他
の補正係数を用いて2回線分岐点から地絡故障点までの
距離を算出することができる。
In addition, even if a ground fault occurs between the branch point and the receiving end, by performing circuit analysis in the same manner as above, it is possible to calculate the distance from the two-line branch point to the ground fault point using other correction coefficients. can be calculated.

〈実施例〉 以下、この発明の高抵抗系3端子平行2回線送電線おけ
る地絡故障点標定方法の実施例を添付図面に基いて詳細
に説明する。
<Example> Hereinafter, an example of the method for locating a ground fault fault point in a high-resistance three-terminal parallel two-circuit power transmission line according to the present invention will be described in detail with reference to the accompanying drawings.

第1図は一般的な高抵抗系3端子平行2回線送電線、お
よびこの発明に係る地絡故障点標定方法に適用される地
絡故障点算出装置を示す図であり、高抵抗系3端子平行
2回線送電線(以下3端子系と略称する)は、送電側に
配置される高抵抗(1)により接地された変圧器■と、
変圧器(2)と負荷(3a)(3b)との間に接続され
、2回線分岐点(4)から2方向に分岐された平行2回
線(5a) (5b)と、平行2回線(5a) (5b
)の所定の位置から分岐される単回線0(6)と、単回
線(6)に接続される負荷(7)とを有する。
FIG. 1 is a diagram showing a general high-resistance three-terminal parallel two-circuit power transmission line and a ground fault point calculation device applied to the ground fault fault point locating method according to the present invention. A parallel two-circuit power transmission line (hereinafter referred to as a three-terminal system) consists of a transformer ■ grounded by a high resistance (1) placed on the power transmission side,
Two parallel circuits (5a) (5b) are connected between the transformer (2) and the loads (3a) (3b), and are branched in two directions from the two-circuit branch point (4). ) (5b
), and a load (7) connected to the single line (6).

上記負荷(3a)(lb)(7)と送電線とは、既に示
した第4図の変圧器(d)と同様なY−Δ型変圧器を介
在させて接続されているが、第1図では省略する。
The above-mentioned loads (3a) (lb) (7) and the power transmission line are connected through a Y-Δ type transformer similar to the transformer (d) in Fig. 4 already shown. Omitted in the figure.

尚、送電側の2回線端子をA1負荷(3a)の2回線端
子をB1負荷(3b)の2回線端子をCとしている。
Note that the two-line terminal on the power transmission side is the two-line terminal of the A1 load (3a), and the two-line terminal of the B1 load (3b) is C.

そして、地絡故障点算出装置は、3端子系2回線のそれ
ぞれの回線(5a) (5b)のA端子側に介在させら
れ、それぞれの回線(5a) (5b)の零相電流を検
出する零相検出回路(8a) (8b)と、零相検出回
路(8a) (8b)により検出される零相電流を所定
の変流比の電流信号に変換するトランス(9)と、トラ
ンス(9)からのアナログデータをディジタルデータに
変換するA/D変換器(lO)と、A/D変換部00)
により変換されたディジタル信号を格納するデータメモ
リ(11)と、零相電流の大きさに基いて地絡故障を検
出して地絡故障点算出指令信号を出力する地絡検出部(
12)と、2回線端子Aと2回線分岐点(4)間の一線
地絡故障点を算出するための補正係数γ112回線分岐
点(4)と2回線端子B間の地絡故障点を算出するため
の補正係数72、および2回線分岐点(4)と2回線端
子C間の地絡故障点を算出するための補正係数73を格
納しているメモリ(13)と、地絡故障点算出指令信号
に応じて予めメモリ(13)に格納している補正係数γ
1.γ2.γ3と零相電流とを要素として所定の演算を
行って送電端から地絡故障点、或は2回線分岐点(4)
から地絡故障点までの距離を算出するC P U (1
4)と、CPU(14)により算出された送電端から地
絡故障点までの距離等の情報を表示する表示部(15)
とを有する。
The ground fault point calculation device is interposed on the A terminal side of each line (5a) (5b) of the two lines of the three-terminal system, and detects the zero-sequence current of each line (5a) (5b). A transformer (9) that converts the zero-sequence current detected by the zero-sequence detection circuit (8a) (8b) into a current signal with a predetermined current transformation ratio; ), an A/D converter (lO) that converts analog data from ) into digital data, and an A/D converter 00)
a data memory (11) that stores digital signals converted by
12) and a correction coefficient γ11 for calculating the single-line ground fault fault point between the 2nd line terminal A and the 2nd line branch point (4).Calculate the ground fault fault point between the 2nd line branch point (4) and the 2nd line terminal B. A memory (13) that stores a correction coefficient 72 for calculating the ground fault fault point between the second line branch point (4) and the second line terminal C, and a memory (13) for calculating the ground fault fault point. Correction coefficient γ stored in memory (13) in advance according to the command signal
1. γ2. A predetermined calculation is performed using γ3 and zero-sequence current as elements, and the ground fault point from the power transmission end or the two-line branch point (4)
CPU (1
4) and a display unit (15) that displays information such as the distance from the power transmission end to the ground fault point calculated by the CPU (14).
and has.

さらに詳細に説明すれば、零相検出回路(8a)(二つ
の零相検出回路(8a) (8b)は同じ構成でなので
、零相検出回路(8a)のみの構成を説明する)は、3
端子系2回線の回線(5a)のA端子側に介在させられ
、各相のの電流を検出するC T (81)(82)(
83)を有し、それぞれのCT (81)(82)(8
3)により検出した電流をベクトル加算して回線(5a
)の零相電流を検出し、トランス(9]に出力するもの
である。尚、零相電流の検出方法は上述のほか、公知の
零相変流器による方法を使用することが可能である。
To explain in more detail, the zero-phase detection circuit (8a) (the two zero-phase detection circuits (8a) and (8b) have the same configuration, so the configuration of only the zero-phase detection circuit (8a) will be explained) is 3.
C T (81) (82) (
83), and each CT (81)(82)(8
The current detected by 3) is vector-added to the line (5a
) and outputs it to the transformer (9).In addition to the above-mentioned method for detecting the zero-sequence current, it is also possible to use a known method using a zero-sequence current transformer. .

A/D変換部00)は、トランス(9)により所定の変
流比にされた電流アナログデータを所定のサンプリング
周期でディジタルデータに変換してデータメモリ(11
)に供給している。
The A/D converter 00) converts the current analog data, which has been converted to a predetermined current conversion ratio by the transformer (9), into digital data at a predetermined sampling period, and stores the data in the data memory (11).
).

データメモリ(11)は各回線(5a) (5b)の零
相電流に関するデータが常時供給され、このデータを格
納するものである。メモリとしては、例えば、般の、半
導体メモリ等が使用される。
The data memory (11) is always supplied with data regarding the zero-sequence current of each line (5a) (5b) and stores this data. As the memory, for example, a general semiconductor memory or the like is used.

地絡検出部(12)は、零相電流の大きさと所定の閾値
とを比較し零相電流が所定の閾値を越えた場合に地絡故
障と判定し、CP U (14)に地絡故障発生の旨の
信号を出力するものである。尚、母線に接続されるPT
により零相電圧90を検出し、これを地絡故障発生の旨
の信号とすることも可能である。
The ground fault detection unit (12) compares the magnitude of the zero-sequence current with a predetermined threshold, determines that a ground fault has occurred when the zero-sequence current exceeds the predetermined threshold, and alerts the CPU (14) to a ground fault. It outputs a signal indicating the occurrence. In addition, the PT connected to the bus
It is also possible to detect the zero-phase voltage 90 and use this as a signal indicating that a ground fault has occurred.

上記CP U (14)は、補正係数71と、零相電流
101.102から得られる零相電流分流比101/(
101+102)  (但し、1−1または2)とを乗
算等して、送電端から地絡故障点までの距離を算出する
。そして、算出した距離が2回線分岐点(4)以遠であ
れば、さらに算出した距離に補正係数72.γ3を乗算
などして2回線2回線分岐点(4)から地絡故障点まで
の距離を算出するものである。
The CPU (14) has a correction coefficient 71 and a zero-sequence current shunt ratio 101/(
101+102) (However, 1-1 or 2) is multiplied to calculate the distance from the power transmission end to the ground fault point. If the calculated distance is beyond the 2nd circuit branch point (4), the calculated distance is further added with a correction factor of 72. The distance from the two-line two-line branch point (4) to the ground fault point is calculated by multiplying by γ3.

上記補正係数γ1.γ2.γ3、および送電端から地絡
故障点までの距離の算出を第2図の等価回路に基いて説
明する。
The above correction coefficient γ1. γ2. Calculation of γ3 and the distance from the power transmission end to the ground fault point will be explained based on the equivalent circuit shown in FIG. 2.

上記3端子系において、単回線(6)の何れの点で一線
地絡故障が発生しても、2回線端子(A、  BC)に
おける零相電流の分流比は同じである。従って、送電端
から見た場合における地絡故障による零相電流の発生点
は、当該単回線と2回線との接続点で発生したものと見
なすことができる。故に、上記高抵抗系3端子系は単回
線(6)を省略することができる(第2図A参照)。尚
、単回線(6)は単回線分岐点から負荷(7)までの回
線を調べることにより、地絡故障点を比較的簡単に探索
することができる。
In the above three-terminal system, no matter where a single-line ground fault occurs at any point in the single-line terminal (6), the zero-sequence current diversion ratio at the two-line terminals (A, BC) remains the same. Therefore, the point at which zero-sequence current occurs due to a ground fault when viewed from the power transmission end can be considered to occur at the connection point between the single circuit and the two circuits. Therefore, the single line (6) can be omitted in the high-resistance three-terminal system (see FIG. 2A). Incidentally, for the single line (6), by checking the line from the single line branch point to the load (7), the ground fault point can be relatively easily searched for.

第2図Aは送電線路の距離関係を説明するための図であ
り、第2図Bは、零相回路の零相インピーダンス、零相
電流、および零相電圧の関係を説明するための図であり
、第2図Cは第2図A、  Bを差電流に基いてさらに
簡略化した等価回路である。
Figure 2A is a diagram for explaining the distance relationship of power transmission lines, and Figure 2B is a diagram for explaining the relationship among zero-sequence impedance, zero-sequence current, and zero-sequence voltage of a zero-phase circuit. 2C is an equivalent circuit obtained by further simplifying FIGS. 2A and 2B based on the difference current.

即ち、第2図Aにおいて2回線端子A(送電端)と2回
線分岐点(4)との距離をJa、2回線分岐点(4)と
2回線端子B(受電端)との距離をJb、2回線分岐点
(4)と2回線端子C(受電端)との距離をJcとする
。そして、2回線端子Aと2回線分岐点(4)との間の
回線(5a)に−線地絡故障が発生し、端子Aと地絡故
障点との距離をXとする。尚、上記1a、Jb、Jcは
既知であり、Xは未知数である。
That is, in Figure 2 A, the distance between the 2nd line terminal A (power transmitting end) and the 2nd line branch point (4) is Ja, and the distance between the 2nd line branch point (4) and the 2nd line terminal B (power receiving end) is Jb. , the distance between the second line branch point (4) and the second line terminal C (power receiving end) is Jc. Then, a - line ground fault occurs in the line (5a) between the second line terminal A and the second line branch point (4), and the distance between the terminal A and the ground fault point is assumed to be X. Note that the above 1a, Jb, and Jc are known, and X is an unknown quantity.

また、第2図Bにおいて、各線路の単位長当りの零相イ
ンピーダンスを20.2回線間の零相相互インピーダン
スを之■、2回線端子Aから回線(5a)側に流れる零
相電流を10f2回線端子Aから回線(5b)側に流れ
る零相電流をi02.2回線端子Bから回線(5a)に
流れる電流をill’  2回線端子Bから回線(5b
)に流れる電流をi02’  2回線端子Cから回線(
5a)に流れ込む電流を!01′2回線端子Cから回線
(5b)に流れ込む電流を102’、地絡故障点から流
出する零相電流をi 0f。
In addition, in Figure 2B, the zero-sequence impedance per unit length of each line is 20.2 The zero-sequence mutual impedance between the two lines is The zero-sequence current flowing from line terminal A to line (5b) is i02.2 The current flowing from line terminal B to line (5a) is ill' 2 The zero-sequence current flowing from line terminal B to line (5b)
) from i02' 2 line terminal C to line (
The current flowing into 5a)! 01'2 The current flowing into the line (5b) from line terminal C is 102', and the zero-sequence current flowing out from the ground fault point is i0f.

2回線端子Aと大地間の電位差を90.2回線端子Bと
大地間の電位差を90′  2回線端子Cと大地間の電
位差を90′としている。また、回線(5b)に地絡故
障点と対象に仮想地絡故障点を設定し、この点から流出
する零相電流を1吋′としている。
The potential difference between the second line terminal A and the ground is 90', the potential difference between the second line terminal B and the ground is 90', and the potential difference between the second line terminal C and the ground is 90'. In addition, a virtual ground fault point is set in line (5b) to correspond to the ground fault point, and the zero-sequence current flowing from this point is set to 1 inch.

上記等価回路を電圧降下剤(キルヒホッフ第2法則)、
電流連続則(キルヒホッフ第1法則)に基いて解析する
The above equivalent circuit is a voltage drop agent (Kirchoff's second law),
Analyze based on the current continuity law (Kirchhoff's first law).

■2回線端子Aと2回線端子Bとの間の電位差を算出す
れば、 1)回線(5a)側では、 QO−QO’ sex (之0101十之mt02)+
(ja −x)  czo  (101−1ff)+2
ff1(t02− iff” ) ] −jb  (之
0i01’ −之m102’)となる。
■If we calculate the potential difference between 2nd line terminal A and 2nd line terminal B, we get: 1) On the line (5a) side, QO-QO' sex (之0101十之mt02)+
(ja -x) czo (101-1ff)+2
ff1(t02-if") ] -jb (之0i01'-之m102').

2)回線(5b)側では、 QO−vO’ −x (之1Ii01+之0102)+
(Ja −x)  [Zm  (101−10f) 十
zo  (t02−10f′ ) コ − lb   
(プしIIl  l  01’   −in   l 
 02’  )となる。
2) On the line (5b) side, QO-vO' -x (之1Ii01+之0102)+
(Ja -x) [Zm (101-10f) 十zo (t02-10f') Co - lb
(P IIl l 01' -in l
02').

上記回線(5a)側と回線(5b)側の電圧降下式同士
を減算すれば、 0−X(之〇−之ra )  (fol−102) +
(Ja−x)(之0 2m )  [(IOL−to2
)(10f−iff” ) ] −Jb  (之0−i
m )(iol’ −102’ ) となる。そして、之〇−之■を消去し、101−1o2
−ΔjO、i 01’ −i02’ −Δi0 ’t 
Of’ −i 01” −Δi of’となる差電流で
上記減算式を示すと、 0−xΔto + (Ja−x)[△lO−Δiof”
]JbΔ10′ と変形できる。従って、 JaΔ1O−jbΔlO′ −CJa−x)Δior          ・・・(
1)を導き出せる。
If we subtract the voltage drop equations on the line (5a) side and line (5b) side above, we get 0-X(之〇-之ra)(fol-102)+
(Ja-x) (no 0 2m) [(IOL-to2
) (10f-iff” ) ] -Jb (之0-i
m)(iol'-102'). Then, delete 〇-》■, 101-1o2
-ΔjO, i 01'-i02' -Δi0 't
If the above subtraction formula is expressed with a difference current of Of' -i 01" -Δi of', then 0-xΔto + (Ja-x) [ΔlO-Δiof"
]JbΔ10'. Therefore, JaΔ1O−jbΔlO′ −CJa−x)Δior...(
1) can be derived.

■2回線端子Bと2回線端子Cとの間の電位差を電圧降
下剤に基いて算出すれば、 JbΔ10’−jcΔlo’−0−・・■を導き出せる
■If the potential difference between the 2nd line terminal B and the 2nd line terminal C is calculated based on the voltage drop agent, JbΔ10'-jcΔlo'-0-...■ can be derived.

■電流連続則に基いて各回線(5a) (5b)から流
出する零相電流を求めれば、 i01+ill’  + iol’  −iff’tO
z+ io2’ + lo2′−ior′となる。そし
て、両式の差をとり、 Δi0 +ΔlO’ +Δi0 ’ −Δtol’  
 =i3)を導き出せる。従って、上記(1)、 (2
)、 (3)式に基いてさらに簡略化した差電流等価回
路で示すことができる(第2図C参照)。
■If we calculate the zero-sequence current flowing out from each line (5a) (5b) based on the current continuity law, we get i01+ill' + iol'-if'tO
z+io2'+lo2'-ior'. Then, take the difference between both equations and get Δi0 +ΔlO'+Δi0'−Δtol'
= i3) can be derived. Therefore, the above (1), (2
), it can be shown by a further simplified differential current equivalent circuit based on equation (3) (see Figure 2C).

■次に、第2図Cの等価回路に基いて、送電端Aから2
回線分岐点(4)までの間に地絡故障が発生した場合に
おける送電端から地絡故障点までの距離x1および補正
係数γlを求める。
■Next, based on the equivalent circuit in Figure 2C,
In the case where a ground fault occurs up to the line branch point (4), the distance x1 from the power transmission end to the ground fault point and the correction coefficient γl are determined.

(1)、 (2)、 (3)式から Δto = [1−((jb +Jc ) x/ (J
a Jb+jb jc +ja jc ) ) ]Δi
ofが得られる。また、地絡故障点から流出する零相電
流10fは、各回線(5a) (5b)の零相電流の和
(101+ 102)であることを考慮すれば、零相電
流分流比は下式(4) (4) ’ に示すことができ
る。
From equations (1), (2), and (3), Δto = [1-((jb + Jc) x/ (J
a Jb + jb jc + ja jc ) ) ] Δi
of is obtained. Furthermore, if we consider that the zero-sequence current 10f flowing out from the ground fault point is the sum (101+102) of the zero-sequence currents of each line (5a) (5b), the zero-sequence current shunting ratio can be calculated using the following formula ( 4) (4) ' can be shown.

2 I02/ (101+ 102) −(Jb  +Jc  )  x/  (4a  、i
’b−+Jb  Jc  +、ia )c)     
                =、(4)2101
/(101+102) −2−((Jb +Jc ) x/ ia Jb +J
bJc十1aノc))         ・・・(4)
′ここで、(4) (4) ’式の中の (JaJb+ JbJc+JaJc)/(Jb十Jc) は固定値であるから、これを補正係数71とする。
2 I02/ (101+102) −(Jb +Jc) x/ (4a, i
'b-+Jb Jc+, ia)c)
=, (4)2101
/(101+102) −2−((Jb +Jc) x/ ia Jb +J
bJc 11a no c)) ... (4)
' Here, (4) (4) ' Since (JaJb+JbJc+JaJc)/(Jb+Jc) in the equation is a fixed value, this is set as the correction coefficient 71.

そして、零相電流1o1.fo2を検出して、xi  
=271  を旧/(101十102)((但し、i−
1または2である。)なる式に基いて送電端から地絡故
障点までの距離Xを算出すれば、xi =2f Ja 
+Jb ic /(Jb +jc)l −xx2調X 成る解が得られる。上記X1およびX2の内、小さい値
(距離)は、この場合はX2であり、2回線分岐点(4
)までの距離をJaよりも小さく、送電端Aから地絡故
障点までの距離を与えることが分る。尚、地絡回線はx
lの大きな°値を与える1回線側である。
And zero-sequence current 1o1. Detect fo2 and xi
= 271 old / (101 + 102) ((However, i-
1 or 2. ) If we calculate the distance X from the power transmission end to the ground fault point based on the formula, xi = 2f Ja
+Jb ic /(Jb +jc)l -xx2 key X A solution is obtained. Of the above X1 and X2, the smaller value (distance) is X2 in this case, which is the 2-line branch point (4
) is smaller than Ja, giving the distance from the power transmission end A to the ground fault point. In addition, the ground fault line is
This is the one-line side that gives a large ° value of l.

従って、零相電流の大きさ、或は零相電流分流比の大き
さを比較し、小さい値を示す回線(5a)に地絡故障が
発生していることがわかると共に、Xlまたはx2の内
の小さい値(距離)から地路地点側が分る。
Therefore, by comparing the magnitude of the zero-sequence current or the magnitude of the zero-sequence current shunt ratio, it can be seen that a ground fault has occurred in the line (5a) that shows a smaller value, and that The side of the road point can be determined from the small value (distance) of .

■次いで、第2図りの等価回路に基いて、2回線分岐点
(4)から受電端までの間に一線地絡故障が発生した場
合における2回線分岐点(4)から地絡故障点までの距
111tX’ 、および補正係数72.γ3を求める。
■Next, based on the equivalent circuit shown in the second diagram, if a single-line ground fault occurs between the 2-line branch point (4) and the receiving end, then distance 111tX', and correction coefficient 72. Find γ3.

上記■と同様にして ja△1O−Jb△l Ot = −x/△) of 
 −(5)Ja△fO−1c△i0’−0−(6)△1
0+△lO′ +△i0’−△f of    −(7
)が導かれ、上式(5)、 (6)、 (7)により△
1n−(jc(〕b −x’ )/ (Ja)b+Jb
 Jc +Ja jc )l△1ofが求められる。さ
らに、i 01’−i01+ i02であるから、零相
電流分流比は、下式(11)(11’)で表される。
Similarly to ■ above, ja△1O−Jb△l Ot = −x/△) of
-(5) Ja△fO-1c△i0'-0-(6)△1
0+△lO′ +△i0′−△f of −(7
) is derived, and from the above equations (5), (6), and (7), △
1n-(jc(]b-x')/(Ja)b+Jb
Jc + Ja jc )l△1of is calculated. Furthermore, since i01'-i01+i02, the zero-sequence current shunting ratio is expressed by the following equations (11) and (11').

2102/ (101+f02) −tJa  (Jb +Jc )+Jc x’ l /
ia Jb 十Jb Jc +1a jc )    
 ・(8)2101/ (101+102) −2−(Ja  (Jb +Jc ) lJe x’ 
l /(Ja Jb +Jb Jc +Ja Jc) 
   −(8)’上記(8) (8) ’式から先に説
明した補正係数71を用いて、 xi −2rL t01/ (fOt+ f02)−J
a +Jc(2Jb −x’ )/ (Jb +Jc 
)X2−2γ1i02/(101+102)−Ja+ノ
e x’ / (Jb +Jc )が得られるが、これ
らの値の内の小さい値は、この場合はx2であり、2回
線分岐点までの距離jaよりも大きい。そして、 (Jb +Jc )/Jcを補正係数72とし、(Jb
+je)/Jbを補正係数73とすることにより、 (x2 −ja  )  γ2           
    ・・・(9)(x2 −Ja  )  γ3 
              ・・・(9)′なる計算
式(9) (9) ’を考えてみると、計算式(9)′
 により、2回線分岐点(4)から地絡故障点までの距
離が得られる。即ち、上記計算式(9)は2回線分岐点
(4)と2回線端子Bとの間に地絡故障が発生した場合
における2回線分岐点(4)から地絡故障点までの距離
を与え、一方、上記計算式(9)′ は2回線分岐点(
4)と2回線端子Cとの間に一線地絡故障が発生した場
合における2回線分岐点(4)から地絡故障点までの距
離を与えることになる。即ち、2回線端子B側および2
回線端子C側の何れの側で地絡しているのか分からない
が、2回線分岐点(4)から地絡故障点までの距離は分
るのであるから、容易に地絡故障点を見出だすことがで
きる。
2102/ (101+f02) -tJa (Jb +Jc)+Jc x'l/
ia Jb 10 Jb Jc +1a jc)
・(8)2101/ (101+102) −2−(Ja (Jb +Jc) lJex'
l/(Ja Jb +Jb Jc +Ja Jc)
-(8)' (8) (8) ' From the above equation, using the correction coefficient 71 explained earlier, xi -2rL t01/ (fOt+ f02) -J
a +Jc (2Jb -x')/ (Jb +Jc
) It's also big. Then, (Jb + Jc )/Jc is set as the correction coefficient 72, and (Jb
+je)/Jb as the correction coefficient 73, (x2 -ja) γ2
...(9)(x2-Ja) γ3
...(9)' Considering the calculation formula (9) (9) ', the calculation formula (9)'
As a result, the distance from the two-line branch point (4) to the ground fault point can be obtained. In other words, the above calculation formula (9) gives the distance from the 2nd line branch point (4) to the ground fault point when a ground fault occurs between the 2nd line branch point (4) and the 2nd line terminal B. , On the other hand, the above calculation formula (9)′ is calculated at the two-line branch point (
4) and the second line terminal C when a single line ground fault occurs, the distance from the second line branch point (4) to the ground fault point is given. That is, 2 line terminals B side and 2
Although it is not known which side of the line terminal C side the ground fault is occurring, since the distance from the 2nd circuit branch point (4) to the ground fault fault point can be determined, it is easy to find the ground fault fault point. You can.

上記のようにして送電端から地絡故障点までの距離を算
出する為の補正係数γl、γ2.γ3を予め算出し、こ
れをメモリ(13)に格納しておく。
Correction coefficients γl, γ2. for calculating the distance from the power transmission end to the ground fault point as described above. γ3 is calculated in advance and stored in the memory (13).

第3図はCP U (14)により地絡故障点を標定す
るためのフローチャートを示し、ステップ■において、
地絡検出部(12)からの地絡故障点算出指令信号によ
り処理フローをスタートする。
FIG. 3 shows a flowchart for locating the ground fault point by the CPU (14).
The processing flow is started by a ground fault fault point calculation command signal from the ground fault detection section (12).

ステップ■において、零相電流分流比と補正係数とを乗
算する。即ち、下式の計算を実行する。
In step (2), the zero-sequence current shunting ratio and the correction coefficient are multiplied. That is, the following calculation is executed.

Xl  −271tel/  (t01+102)(但
し、iは1または2であり、回線(5a) (5b)の
添字を示す) ステップ■において、乗算値x1とx2の内から小さい
方の乗算値x m1nlを取り出す。
Xl -271tel/ (t01+102) (where i is 1 or 2 and indicates the subscript of line (5a) (5b)) In step Take it out.

ステップ■において、乗算値x talnJが、送電端
から分岐点(4)までの距離jaよりも大きいか否かを
判別し、乗算値x m1ntが距離Jaよりも小さいと
判別した場合には、ステップ■において、乗算値x I
Qintを送電端から地絡故障点までの距離を算出する
と共に、乗算値x m1ntを与えない回線側に地絡故
障が発生していると標定する。
In step ■, it is determined whether the multiplication value x talnJ is greater than the distance ja from the power transmission end to the branch point (4), and if it is determined that the multiplication value x m1nt is smaller than the distance Ja, step In ■, the multiplication value x I
Qint is used to calculate the distance from the power transmission end to the ground fault point, and it is determined that a ground fault has occurred on the line side that does not give the multiplication value x m1nt.

逆に、上記ステップ■において、乗算値X lniが距
離jaよりも大きいと判別した場合、即ち分岐点から受
電端間での間に地絡故障が発生している判別した場合に
は、ステップ■において、乗算値x ll1ntを与え
ない回線側に地絡故障が発生し、ていると標定すると共
に、 x’ −(xmlnl−Ja ) 72式に基いて2回
線分岐点(4)と2回線端子Bとの間に発生している場
合における2回線分岐点(4)から地絡故障点間での距
離を算出し、ステップ■において、乗算値x ff1i
n!を与えない回線側に地絡故障が発生していると標定
すると共に、x’ = (xmlni−Ja ) 73
式に基いて2回線端子Cとの間に発生している場合にお
ける2回線分岐点(4)から地絡故障点までの距離を算
出する。
On the other hand, if it is determined in the above step (■) that the multiplication value , it is determined that a ground fault has occurred on the line side that does not give the multiplication value Calculate the distance from the two-line branch point (4) to the ground fault point in the case where the ground fault has occurred between
n! In addition to locating that a ground fault has occurred on the line side that does not give
Based on the formula, the distance from the two-line branch point (4) to the ground fault point in the case where a fault occurs between the two-line terminal C is calculated.

尚、上記ステップ■をステップ■よりも、先に行わせる
ことも可能である。
Note that it is also possible to perform the above step (2) before step (2).

〈発明の効果〉 以上のこの発明によれば、零相電流分流比に基いて、高
抵抗系3端子平行2回線送電における送電端から地絡故
障点までの距離、或は2回線分岐点から地絡故障点まで
の距離を算出するための補正係数を算出しているので、
補正係数と零相電流とを要素として所定の演算を行い、
送電端から地絡故障点までの距離、或は2回線分岐点か
ら地絡故障点までの距離を算出することができる。
<Effects of the Invention> According to the invention described above, the distance from the power transmission end to the ground fault point in high-resistance three-terminal parallel two-line power transmission, or from the two-line branch point Since the correction coefficient is calculated to calculate the distance to the ground fault point,
Perform a predetermined calculation using the correction coefficient and zero-sequence current as elements,
The distance from the power transmission end to the ground fault point or the distance from the two-line branch point to the ground fault point can be calculated.

従って、高抵抗系3端子平行2回線送電線においても零
相電流の検出値に基いて地絡故障点の検出を行うことが
できるという特有の効果を奏する。
Therefore, even in a high-resistance three-terminal parallel two-circuit power transmission line, a unique effect is achieved in that a ground fault point can be detected based on the detected value of the zero-sequence current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高抵抗系3端子平行2回線送電線、およびこの
発明に係る地絡故障点標定方法に適用される地絡故障点
算出装置を示す図、 第2図は高抵抗系3端子平行2回線送電線の等価回路を
示す図、 第3図は地絡故障点を標定するためのフローチャート、 第4図は零相電流分流比による地絡故障点算出方法を説
明するための図、 第5図は第4図に示す平行2回線の零相回路図。 第3図 (8a) (8b)・・・零相検出回路、(12)・・
・地絡検出部、(13)・・・メモリ、(14)・・・
CPU(A) (C) 第 図 (B) (D)
Fig. 1 is a diagram showing a high-resistance three-terminal parallel two-circuit power transmission line and a ground fault point calculation device applied to the ground fault fault point locating method according to the present invention; Fig. 2 is a high-resistance three-terminal parallel Figure 3 is a flowchart for locating the ground fault point; Figure 4 is a diagram illustrating the method for calculating the ground fault point using the zero-sequence current shunting ratio; FIG. 5 is a zero-phase circuit diagram of two parallel lines shown in FIG. Figure 3 (8a) (8b)...Zero phase detection circuit, (12)...
・Ground fault detection section, (13)...memory, (14)...
CPU (A) (C) Figure (B) (D)

Claims (1)

【特許請求の範囲】 1、高抵抗系3端子平行2回線送電線の送電線路長に基
いて送電端から地絡点までの距離、或は2回線分岐点か
ら地絡故障点までの距離を算出するための補正係数を予
め算出しておき、 高抵抗系3端子平行2回線の送電端の各回線から検出さ
れる零相電流と、上記補正係数とを要素として、送電端
から地絡故障点までの距離、或は2回線分岐点から地絡
故障点までの距離を算出することを特徴とする高抵抗系
3端子平行2回線送電線における地絡故障点標定方法。
[Claims] 1. Based on the transmission line length of a high-resistance 3-terminal parallel 2-circuit power transmission line, the distance from the power transmission end to the ground fault point, or the distance from the 2-line branch point to the ground fault point. The correction coefficient for calculation is calculated in advance, and the zero-sequence current detected from each line at the transmission end of a high resistance system 3-terminal parallel 2 circuits and the above correction coefficient are used as elements to detect a ground fault from the transmission end. A method for locating a ground fault point in a high-resistance three-terminal parallel two-circuit power transmission line, the method comprising calculating the distance to a point or the distance from a two-line branch point to a ground fault point.
JP63169739A 1988-07-07 1988-07-07 Ground fault fault location method for high resistance 3-terminal parallel 2-circuit transmission line Expired - Lifetime JPH07122651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63169739A JPH07122651B2 (en) 1988-07-07 1988-07-07 Ground fault fault location method for high resistance 3-terminal parallel 2-circuit transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63169739A JPH07122651B2 (en) 1988-07-07 1988-07-07 Ground fault fault location method for high resistance 3-terminal parallel 2-circuit transmission line

Publications (2)

Publication Number Publication Date
JPH0219779A true JPH0219779A (en) 1990-01-23
JPH07122651B2 JPH07122651B2 (en) 1995-12-25

Family

ID=15891949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63169739A Expired - Lifetime JPH07122651B2 (en) 1988-07-07 1988-07-07 Ground fault fault location method for high resistance 3-terminal parallel 2-circuit transmission line

Country Status (1)

Country Link
JP (1) JPH07122651B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459522A2 (en) * 1990-05-31 1991-12-04 Nissin Electric Company, Limited Fault location method for a parallel two-circuit transmission line with N terminals
CN102621449A (en) * 2012-03-16 2012-08-01 河南理工大学 Single phase ground fault section locating method in small current grounding system
CN102768324A (en) * 2012-04-10 2012-11-07 河南理工大学 Single-phase ground fault section positioning method for low-current grounding system
CN103066575A (en) * 2012-12-24 2013-04-24 上海电力学院 Control method of rapidly finding fault
CN103513161A (en) * 2013-09-27 2014-01-15 孙双春 Power transmission and transformation system fault searching locating instrument and searching method
CN112946419A (en) * 2021-01-29 2021-06-11 西南交通大学 Electrified railway AT fault distance measurement correction coefficient calculation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200077A (en) * 1987-02-16 1988-08-18 Fuji Electric Co Ltd Trouble point locating system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200077A (en) * 1987-02-16 1988-08-18 Fuji Electric Co Ltd Trouble point locating system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459522A2 (en) * 1990-05-31 1991-12-04 Nissin Electric Company, Limited Fault location method for a parallel two-circuit transmission line with N terminals
US5485394A (en) * 1990-05-31 1996-01-16 Nissin Electric Company, Limited Fault location method for a parallel two-circuit transmission line with n terminals
CN102621449A (en) * 2012-03-16 2012-08-01 河南理工大学 Single phase ground fault section locating method in small current grounding system
CN102768324A (en) * 2012-04-10 2012-11-07 河南理工大学 Single-phase ground fault section positioning method for low-current grounding system
CN103066575A (en) * 2012-12-24 2013-04-24 上海电力学院 Control method of rapidly finding fault
CN103513161A (en) * 2013-09-27 2014-01-15 孙双春 Power transmission and transformation system fault searching locating instrument and searching method
CN112946419A (en) * 2021-01-29 2021-06-11 西南交通大学 Electrified railway AT fault distance measurement correction coefficient calculation method

Also Published As

Publication number Publication date
JPH07122651B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
EP0459522B1 (en) Fault location method for a parallel two-circuit transmission line with N terminals
KR100473798B1 (en) Method for detecting line to ground fault location for power systems
EP0464662B1 (en) Method and means for fault location in a multi-terminal network
JPH0219779A (en) Locating method for grounding fault point in three terminal parallel circuit duplex power transmission line of high resistance
JPH06347503A (en) Ground fault position locating apparatus
US11327105B2 (en) Fault location in multi-terminal tapped lines
JP3756026B2 (en) Fault location method for transmission lines
JPH11344525A (en) Fault point plotting device
Jiao et al. An analytical approach to locate evolving faults on transmission lines based on sparse wide area measurements
JP2004233255A (en) Disconnection detecting system of distribution line
JP3019227B2 (en) Transmission and distribution line accident diagnosis method
Yi et al. Hvdc line fault location using wavelets to mitigate impact of frequency dependent line parameters
JP2984294B2 (en) Method of locating short-circuit fault point of three-terminal parallel two-circuit transmission line
Bello et al. A Comparative Study of Different Traveling Wave Fault Location Techniques
JPH09304468A (en) Method for locating fault-point of parallel two line system
JP2920981B2 (en) Fault location method for two-circuit transmission line
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines
Anierobi et al. Review of Impedance-Based Fault Location Algorithm in Electric Power Transmission Line, using computerized fault recorders.
bin Wan Mahmood et al. Fault point identification in a power network using single-point measurement
JP3277534B2 (en) Fault location method for 3-terminal parallel 2-circuit transmission line
JP4490758B2 (en) Accident identification device for power transmission system
CN117406031B (en) Power distribution network single-phase earth fault positioning method and device based on transient information fusion
Dubey et al. Locating double-line-to-ground faults using hybrid current profile approach
JPH0436668A (en) Fault point locating method for n-terminal parallel two-line transmission line
JPH0798353A (en) Short circuit fault point orienting method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 13