JP2004233255A - Disconnection detecting system of distribution line - Google Patents

Disconnection detecting system of distribution line Download PDF

Info

Publication number
JP2004233255A
JP2004233255A JP2003024059A JP2003024059A JP2004233255A JP 2004233255 A JP2004233255 A JP 2004233255A JP 2003024059 A JP2003024059 A JP 2003024059A JP 2003024059 A JP2003024059 A JP 2003024059A JP 2004233255 A JP2004233255 A JP 2004233255A
Authority
JP
Japan
Prior art keywords
disconnection
distribution line
phase
section
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003024059A
Other languages
Japanese (ja)
Other versions
JP4117201B2 (en
Inventor
Yoshihiro Fukumoto
佳弘 福本
Koji Maeda
耕二 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003024059A priority Critical patent/JP4117201B2/en
Publication of JP2004233255A publication Critical patent/JP2004233255A/en
Application granted granted Critical
Publication of JP4117201B2 publication Critical patent/JP4117201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a device for specifying a disconnection position of a distribution line by arranging a voltage/current measuring device on the distribution line and analyzing values obtained at each measured point conventionally determines which section of sections divided with the voltage/current measuring device generates disconnection alone, determination of the disconnection position in the section must be inspected by persons and many times are needed. <P>SOLUTION: A disconnection detecting system of the distribution line arranges the voltage/current measuring devices 1-9 on the distribution line 1, finds a difference between a positive phase voltage and reverse phase voltage obtained at each measured point as a function of a distance on the distributed line, and is provided with a disconnection point calculating device 211 for finding the distance in which the value of the difference is similar. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、配電線の断線を検出する断線検出装置に関するものである。
【0002】
【従来の技術】
配電線は空中配線、地中配線にかかわらず、不測の原因により断線する場合がある。この場合、早期に復旧するためには、断線した位置をできるかぎり早く発見する必要があるが、配電線は一般に全長が大変長いので、その検出は容易ではない。 従来の断線検出装置においては配電線上の複数の点で測定した電流、電圧の値から、1つの配電線区間の断線を検出している。(例えば特許文献1参照)
そして、断線が検出された配電線の真の断線点は、例えば人が配電線に沿って黙視点検しつつ移動して発見する必要があるため、長時間かかり、復旧が遅れる原因となっていた。
【0003】
また、配電線末端側に分散電源が存在する場合には、途中の配電線が断線しても必ずしも末端の電圧が大幅には変化しない場合があり、故障区間が標定できない場合があった。また、通常は高圧配電線は中性点が非接地であるため、接地インピーダンスが存在する配電線について、故障区間を標定することは考慮の対象外であった。
【0004】
【特許文献1】
特開平2−266822号公報(第8頁、第1図)
【0005】
【発明が解決しようとする課題】
従来の断線検出装置は以上のように構成されているので、この装置により断線区間までは自動的に検出可能であっても、断線点は検出できないという課題があった。また、配電線末端側に分散電源が存在する場合には、途中の配電線が断線しても故障区間が標定できない場合があった。また、通常は高圧配電線は中性点が非接地であるため、接地インピーダンスが存在する配電線について、故障区間を標定することは考慮されていないという課題があった。
【0006】
この発明は上記の課題を解決するためになされたものであり、故障区間だけでなく故障点を標定できる断線検出装置を得ることを目的とする。また配電線末端側に分散電源が存在する場合でも統一的な取り扱いにより故障区間および故障点を標定できる装置を得ることを目的とする。また通常は高圧配電線は中性点が非接地であるが接地インピーダンスが存在する配電線に対しても、統一的な取り扱いにより故障区間および故障点を標定できる装置を得ることを目的とする。
【0007】
【課題を解決するための手段】
この発明に係る配電線の断線検出装置は、複数の区間に区分した配電線の区間のそれぞれに測定点を設定する。この測定点のそれぞれに、前記配電線の前記測定点での電圧と電流とを検出し、方向も含めた正相・逆相・零相の電圧と電流を演算してデータ化し、このデータを通信線を介して外部へ伝送するセンサを配置する。
前記複数区間のそれぞれのセンサから通信線を介して前記データを受信し、前記配電線の正相電流と逆相電流と零相電流との和を演算し、前記正相電流値が零でなく、かつ、前記配電線の正相電流と逆相電流と零相電流との和が零となるとき、前記配電線に1線の断線があることを示す断線検出信号を出力する1線断線判定処理装置を備えたものである。
また、各測定点の正相電圧と逆相電圧とをもとに、各測定点の正相電圧と逆相電圧との差を求め、この差が一致する前記配電線上の位置を前記配電線上の距離の関数として求め、この位置のデータを断線位置信号として出力する第1の断線点演算装置を備えたものである。
【0008】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1の配電線の断線検出装置を図1に基づいて説明する。
図1において、配電線1上に電流・電圧を測定する電流・電圧測定装置2〜9が設置されている。電流・電圧測定装置2〜9は測定した電流・電圧を通信線10を通じて断線判定装置11に通信する。電流・電圧測定装置2〜9は、また、測定値を正相・逆相・零相の電圧・電流に変換する。
図2は電流・電圧測定装置2〜9と、断線判定装置11によりデータを処理する処理ブロックの構成を説明する図である。
【0009】
次に動作について説明する。
図3は地点90と地点91との間を接続する3相(a,b,c相)の配電線1のa相の点99に断線が発生した場合の動作を説明する図である。図で地点90と地点91には変圧器記号を付しているが、これは説明の都合上、区間の理解を明確にするために記載したものであり、両端にどのような機器が接続されているかは問題ではない。 今、a相断線点99の左側、即ち地点90側の電圧は、右側、即ち地点91側の電圧より3・V大きいとする。ここでVは任意数である。断線点99の右側のa相、b相、c相の電圧をそれぞれV, V, Vとすると断線点左側のa相、b相、c相の電圧はそれぞれV+(3・V), V, V となる。
断線点99の右側の零相、正相、逆相の電圧を、それぞれV,V,Vとすると、断線点99の左側の零相、正相、逆相の電圧は、それぞれ対称座標法の定義から、a=ej(2π/3)として
(V+3V+V+V) /3=V+V −−−−−−−−−−−−−−−(1)
(V+3V+aV+a)/3=V+V −−−−−−−−−−−−−−−(2)
(V+3V+a+aV)/3=V+V −−−−−−−−−−−−−−−(3)
【0010】
配電線左側の相電圧をE、断線点99からみた左側の零相、正相、逆相インピーダンスをZ0s, Z1s, Z2s 零相電流、正相電流、逆相電流をそれぞれI,I,Iとすると
+V = −Z0s −−−−−−−−−−−−−−−(4)
+V = E−Z1s −−−−−−−−−−−−−−−(5)
+V = −Z2s −−−−−−−−−−−−−−−(6)
配電線右側の相電圧をE、配電線断線点からみた右側の零相、正相、逆相インピーダンスをZ0r, Z1r, Z2rとすると
= Z0r −−−−−−−−−−−−−−−(7)
= E+Z1r −−−−−−−−−−−−−−−(8)
= Z2r −−−−−−−−−−−−−−−(9)
a相の電流をIaとするとき、
= I+ I+ I
a相は断線しているので Ia=0 即ち
+ I+ I = 0 −−−−−−−−−−−−−−−(10)
【0011】
(4), (5), (6)式から
=−Z0S−V
=Es−Z1S−V
=−Z2S−V
これらを(7),(8),(9)式に代入して
=−V/(Zor+Zos
=−V+(E−E)/(Z1r+Z1s
=−V/(Z2r+Z2s
ここで Z = Z + Z0r
= Z1s + Z1r
= Z2s + Z2r
−E=E
Δ = Z + Z + Z
とした上で、これを(10)式に代入して
0=−ZV−Z(V−E)−V Z
これより
V = Z E / Δ −−−−−−−−−−−−−−−(11)
を得る。
【0012】
また、
= − Z E / Δ −−−−−−−−−−−−−−−(12)
= ( Z + Z )E / Δ −−−−−−−−−−−−−−−(13)
= − Z E / Δ −−−−−−−−−−−−−−−(14)
となるから、(12), (13), (14)式から配電線上でI=0でない場合で、方向も含めた正相電流、逆相電流および零相電流の和がゼロ即ち
+ I + I = 0 & I≠0 −−−−−−−−−−−−−−−(15)
を検出することにより配電線の1線に断線のあることを容易に検出できる。
【0013】
なお、配電線が高圧配電線のように非接地系である場合には、零相インピーダンスは正相、逆相インピーダンスよりずっと大きくZ >> Z, Z >>Zとなるので (11)式は以下のようになる。
V ≒ 3E Z / (Z+Z) −−−−−−−−−−−−−−−(16)
同様に(12)〜(14)式は以下のようになる。
≒ 0 −−−−−−−−−−−−−−−(17)
≒ E / (Z+Z) −−−−−−−−−−−−−−−(18)
≒ − E / (Z+Z) −−−−−−−−−−−−−−−(19)
以上に説明した演算は断線判定処理装置11a(1線断線判定処理装置という)内で実行され、断線検出後は断線の有無を示す断線検出信号87が出力される。
【0014】
実施の形態2.
実施の形態1で説明した、I + I + I = 0 & I≠0を検出することにより配電線に1線の断線があることを検出した後に、断線点を区間標定する第1の方法について説明する。
(2)式および(11)式から断線点前後で正相電圧差
V = Z E / Δ
が発生する。そこで複数の測定点からのデータについて、相隣る測定点間で差を求める。2つの測定点の間の区間内に断線がない場合、正相電圧差は極めて小さく、断線のある区間の両側にある測定点のデータ間には、上記の式に近い値の差が生じる。これにより最大の差を生じる区間内に断線点があると区間標定することが可能である。上記の演算処理は、断線判定処理装置11a内の区間判定装置111(第1の区間判定装置)において実行され、判定した区間は、外部へ例えば断線区間信号88として出力される。
図4に、横軸に配電線の距離をとり、この距離上の複数の測定点(図では例として5点)で測定した正相電圧をプロットしたものを示す。相隣る測定点間の差をとる代わりに、各測定点をつなぐ線を延長して断線地点の両側の延長線の高さの差を正相電圧差として求めても良い。この差が上記の式に示す値となる区間で断線が生じていることになる。図4において測定に誤差が少なければ、正確な計算により測定装置区間内の断線位置を特定することも可能である。しかし、正相電圧差の距離による変化は断線位置を特定するには不十分な場合もあるので区間内の位置の特定には後述する実施の形態5以後の方法が適している。
【0015】
実施の形態3.
実施の形態1で説明した、I + I + I = 0 & I≠0を検出することにより配電線に1線の断線があることを検出した後に、断線点を区間標定する第2の方法について説明する。
(3)式および(11)式から断線点前後で逆相電圧差
V = Z E / Δ
が発生する。そこで複数の測定点からのデータの相隣る測定点間で差を求める。2つの測定点の間の区間内に断線がない場合、逆相電圧差は極めて小さく、断線のある区間の両側にある測定点のデータ間には、上記の式に近い値の差が生じる。これにより差が最大となる区間を断線点であると区間標定することが可能である。上記の演算処理は、断線判定処理装置11a内の区間判定装置111(第2の区間判定装置)において実行され、区間は例えば断線区間信号88として出力される。
図5に、横軸に配電線の距離をとり、この距離上の複数の測定点(図では例として5点)で測定した逆相電圧をプロットしたものを示す。相隣る測定点間のデータの差をとる代わりに、各測定点をつなぐ線を延長して断線地点の両側の延長線の高さの差をもとめてもよい。この差が上記式に示す値となる区間で断線が生じていることになる。区間内の断線位置の特定については実施の形態2で説明したと同様である。
【0016】
実施の形態4.
実施の形態1で説明した、I + I + I = 0 & I≠0を検出することにより配電線に1線の断線があることを検出した後に、断線点を区間標定する第3の方法について説明する。
(1)式および(11)式から断線点前後で零相電圧差
V = Z E / Δ
が発生する。そこで複数の測定点からのデータを相隣る測定点間で差を求める。2つの測定点の間の区間内に断線がない場合、零相電圧差は極めて小さく、断線のある区間の両側にある測定点のデータ間には、上記の式に近い値の差が生じる。これにより断線点を区間標定することが可能である。
上記の演算処理は、断線判定処理装置11a内の区間判定装置111(第3の区間判定装置)において実行され、判定した区間は、外部へ、例えば断線区間信号88として出力される。
図6に、横軸に配電線の距離をとり、この距離上の複数の測定点(図では例として5点)で測定した逆相電圧をプロットしたものを示す。相隣る測定点間の差をとる代わりに、各測定点を繋ぐ線を延長して断線地点の両側の延長線の高さの差をもとめてもよい。この差が上記の式に示す値となる区間で断線が生じていることになる。区間内の断線位置の特定については実施の形態2で説明したと同様である。
【0017】
実施の形態5.
上記実施の形態2〜4で説明した断線区間の標定の後、区間内の断線位置をより正確に求める第1の方法について説明する。(2),(3)式および(11)式から断線点前後で正相電圧と逆相電圧の差が等しいため、正相電圧と逆相電圧の差を標定した断線区間の前後の複数の測定点で比較し、この差の値を配電線の距離に応じてグラフ上で延長し、この差が一致する距離点を求めることにより、断線点の位置を点標定することが可能である。
図7は正相電圧と逆相電圧の差、即ち、図3の断線位置99の左端では(V+V)−(V+V)を、右端ではV−Vを測定し、この測定をそれぞれ他端へ向かって進めた場合の各測定位置のデータの一例を示している。この値が一致する位置が断線位置である。上記の演算処理は、断線判定処理装置11a内の断線点演算装置211(第1の断線点演算装置という)において実行され、求めた断線点は、外部へ、例えば最寄りの測定点からの距離を示す断線位置信号89として出力される。
【0018】
実施の形態6.
区間内の断線位置をより正確に求める第2の方法について説明する。(1),(2)式および(11)式から断線点前後で正相電圧と零相電圧の差が等しいため、正相電圧と零相電圧の差を標定した断線区間の前後の複数の測定点で比較し、これを距離に応じてグラフ上で延長し、両者が一致する点を見つけることにより断線点を点標定することが可能である。
図8は正相電圧と零相電圧の差、即ち、図3の断線位置99の左端では(V+V)−(V+V)を、右端ではV−Vを測定し、この測定をそれぞれ他端へ向かって進めた場合の各測定位置のデータの一例を示している。この値が一致する位置が断線位置である。上記の演算処理は、断線判定処理装置11a内の断線点演算装置211(第2の断線点演算装置という)において実行され、求めた断線点は、外部へ、例えば最寄りの測定点からの距離を示す断線位置信号89として出力される。
【0019】
実施の形態7.
区間内の断線位置をより正確に求める第3の方法について説明する。(1),(3)式および(11)式から断線点前後で逆相電圧と零相電圧が等しいため、標定した断線区間の前後で、逆相電圧と零相電圧の差を複数の測定点で比較し、これをグラフ上で距離に応じて延長し、両者が一致する点を見つけることにより、断線点を点標定することが可能である。
図9は逆相電圧と零相電圧の差、即ち、図3の断線位置99の左端では(V+V)−(V+V)を、右端ではV−Vを測定し、この測定をそれぞれ他端へ向かって進めた場合の各測定位置のデータの一例を示している。この値が一致する位置が断線位置である。上記の演算処理は、断線判定処理装置11a内の断線点演算装置211(第3の断線点演算装置という)において実行され、求めた断線点は、外部へ、例えば最寄りの測定点からの距離を示す断線位置信号89として出力される。
【0020】
実施の形態8.
実施の形態5〜7で、配電線上で方向も含めた逆相電流、正相電流および零相電流の和がゼロ即ちI + I + I = 0を検出し、また断線区間の標定をした後に、区間内の断線位置を標定する場合について説明した。上記実施の形態では、断線位置が電圧・電流測定装置の間にあるものとして説明したが、実際には配電線の最も端に設置された測定装置の、更に外側に断線点がある場合も想定される。本実施形態では、断線位置が測定点より外側(配電線の端部)にある場合でも標定できるものについて説明する。
(4),(6)式および(12),(14)式から断線点直前(断線点の左側即ち電源側)の正相、逆相電圧はそれぞれ
0s = −Z0s = Z0sE/ Δ = {ZE/ Δ}x {Z0s/ (Z0s+Z0r)} −−−−−−−(20)
2s = −Z2s = Z2sE/ Δ = {ZE/ Δ}x {Z2s/ (Z2s+Z2r)} −−−−−−−(21)
となるので
0s / Z0r = Z2s / Z2r 即ち断線点から左側を見た逆相インピーダンスと零相インピーダンスの比が、断線点から右側を見た逆相インピーダンスと零相インピーダンスの比に等しい場合は断線点直前の零相電圧V0s と断線点直前の逆相電圧V2sは等しい。
【0021】
一方(7),(9)式および(12),(14)式から断線点直後(断線点の右側即ち負荷側)の正相、逆相電圧はそれぞれ
0r = Z0r = −Z0rE/ Δ = {−ZE/ Δ}x {Z0r/ ( Z0s+Z0r)} −−−−(22)
2r = Z2r = −Z2rE/ Δ = {−ZE/ Δ }x {Z2r/ (Z2s+Z2r)} −−−−(23)
となるので
0s / Z0r = Z2s / Z2r 即ち断線点から左側を見た逆相インピーダンスと零相インピーダンスの比が断線点から右側を見た逆相インピーダンスと零相インピーダンスの比に等しい場合は断線点直後の零相電圧V と断線点直後の逆相電圧V は等しい。
このことを利用すれば、断線が電圧・電流を検出する装置より外側にしかない場合も断線点の標定が可能な装置を得ることができる。
上記の演算処理は、断線判定処理装置11a内の断線点演算装置211(第4の断線点演算装置という)において実行され、求めた断線点は、外部へ、例えば最寄りの測定点からの距離を示す断線位置信号89として出力される。
図10は、横軸の距離上に配置された各測定点において測定した零相電圧と逆相電圧との一例を示し、これを延長して両者が一致する位置を見つける場合について示している。
【0022】
実施の形態9.
実施の形態1〜8では1線の断線の場合の検出について説明した。本実施の形態以後では、一地点において2線が断線した場合について説明する。
図11は配電線のb相およびc相で二線断線が発生したことを示す。配電線b,c相で同一地点2線断線が発生したときb,c相2線断線時の断線個所199と299でのb相断線点両側の電圧差を3U 、c相断線点両側の電圧差を3Uとする。
即ち、b相断線点199の左側の電圧は、右側の電圧より3U大きく、c相断線点299の左側電圧は右側電圧より3U大きいとする。断線点右側のa相、b相、c相の電圧をそれぞれV, V, Vとすると、断線点199、299の左側のa相、b相、c相の電圧はそれぞれV, V+ 3 U, V + 3 Uとなる。
断線点199の右側の零相、正相、逆相の電圧をV ,Vとすると、断線点199の左側の零相、正相、逆相の電圧は、それぞれ対称座標法の定義から a=ej(2π/3)として
(V+V+3 U +V+3 U)/3=V+ U + U −−−−−−−−−−−−−−−(24)
(V+aV+3 aU +a+3 a)/3=V+ aU + a −−−−−−(25)
(V+a+3 a +aV+3 aU)/3= V+ a + aU −−−−−−(26)
が成立する。
【0023】
配電線左側の相電圧をE、断線点から左側を見た零相、正相、逆相インピーダンスをZ0s, Z1s, Z2sとし、零相、正相、逆相の各電流をI,I,Iとすると
+ U + U = − Z0s −−−−−−−−−−−−−−−(27)
+ aU + a = E − Z1s −−−−−−−−−−(28)
+ a + aU = − Z2s −−−−−−−−−−−−−(29)
配電線右側の相電圧をE、配電線断線点からみた右側の零相、正相、逆相インピーダンスをZ0r, Z1r, Z2rとすると
= Z0r −−−−−−−−−−−−−−−(30)
= E + Z1r −−−−−−−−−−(31)
= Z2r −−−−−−−−−−−−−−−(32)
b相、c相は断線しているのでI= 0, I= 0であるから
= I= I= I/3 −−−−−−−−−−−−−−−(33)
【0024】
(27),(28),(29)式の左辺同士、右辺同士を合計すると
+ V+ V =− Z0s + E − Z1s − Z2s −−−−−−−−−−−−−−−(34)
(30),(31),(32)式を(34)式に代入して(33)式を利用すると
= I= I= E/ (Z+ Z+ Z) −−−−−−−−−−−−−−−(35)
ただしE=E−E, Z=Z0s+Z0r, Z=Z1s+Z1r, Z=Z2s+Z2r
断線前後の正相電圧差U、逆相電圧差U、零相電圧差Uはそれぞれ
= (E − Z1s) − (E+Z1r) = E (Z+ Z)/ (Z+ Z+ Z) −−−−−−−(36)
= − Z2s − Z2r = −E Z/ (Z+ Z+ Z) −−−−−−−−−−−−−−−(37)
= − Z0s − Z0r = −E Z/ (Z+ Z+ Z) −−−−−−−−−−−−−−−(38)
(36),(37),(38)式から
+ U + U = 0 −−−−−−−−−−−−−−−(39)
(39)式から、左側測定点の正相電圧差 U=0でない場合で、左側測定点の正相電圧と右側測定点の正相電圧との差U と、左側測定点の逆相電圧と零相電圧の和と、右側測定点の逆相電圧と零相電圧の和との差U + U の大きさが等しく、符号が逆、即ち
= − (U + U) = U & U≠0−−−−−−−−−−−−−−−(40)
ただしU = E (Z+ Z)/ (Z+ Z+ Z
であれば、左右の測定点の間に2線断線が存在することが検出できる。
理解を助けるため、図12に上記の状態を図示する。
【0025】
高圧配電線では非接地系のため、零相インピーダンスは正相インピーダンス、逆相インピーダンスよりずっと大きくZ >> Z, Z >> Zとなるので、(36),(37),(38)式は以下のようになる。
≒ E −−−−−−−−−−−−−−−(41)
≒ 0 −−−−−−−−−−−−−−−(42)
≒−E −−−−−−−−−−−−−(43)
以上に説明した演算は、断線判定処理装置11a(2断線判定処理装置という)内で実行され、断線検出後は断線の有無を示す断線検出信号87が出力される。
【0026】
実施の形態10.
実施の形態9で同一地点2線断線のあることを検出した後に、その断線位置の区間を標定する方法(1線断線の場合と区別するため第4の方法という)について説明する。
(36)式から断線点前後で正相電圧差
= E (Z+ Z)/ (Z+ Z+ Z)が発生する。
そこで、複数の測定点からのデータについて、相隣る測定点間で差を求める。2つの測定点の間の区間内に断線がない場合、正相電圧差は極めて小さく、断線のある区間の両側にある測定点のデータ間には、上記の差に近い値の差が生じる。これにより、最大の差を生じる区間内に断線点があると区間評定することが可能である。上記の演算処理は、断線判定処理装置11a内の区間判定装置111(第4の区間判定装置)において実行され、判定した区間は、外部へ、例えば断線区間信号88として出力される。
図13に、横軸に配電線の距離をとり、この距離上に複数の測定点(図では例として5点)で測定した正相電圧をプロットしたものを示す。相隣る測定点の差をとる代わりに、各測定点をつなぐ線を延長して断線地点の両側の延長線の高さの差を正相電圧差として求めてもよい。この差が上記の式に示す値となる区間で断線が生じていることになる。図13において測定に誤差が少なければ、正確な計算により測定装置区間内の断線位置を特定することも可能である。しかし、正相電圧差の距離による変化は断線位置を特定するには不十分な場合もあるので、区間内の位置の特定には後述する実施の形態13の方法が適している。
【0027】
実施の形態11.
同一地点の2線断線区間を標定する第5の方法について説明する。
(37)式から断線点前後で逆相電圧差
= − E Z/ (Z+ Z+ Z)が発生する。
そこで、複数の測定点からのデータについて、相隣る測定点間で差を求める。2つの測定点の間の区間内に断線がない場合、逆相電圧差は極めて小さく、断線のある区間の両側にある測定点のデータ間には、上記の差に近い値の差が生じる。これにより、最大の差を生じる区間内に断線点があると区間評定することが可能である。上記の演算処理は、断線判定処理装置11a内の区間判定装置111(第5の区間判定装置)において実行され、判定した区間は、外部へ、例えば断線区間信号88として出力される。
図14に、横軸に配電線の距離をとり、この距離上に複数の測定点(図では例として5点)で測定した逆相電圧をプロットしたものを示す。相隣る測定点間の差をとる代わりに、各測定点をつなぐ線を延長して断線地点の両側の延長線の高さの差を逆相電圧差として求めてもよい。この差が上記の式に示す値となる区間で断線が生じていることになる。区間内の断線位置の特定については実施の形態10で説明したのと同様である。
【0028】
実施の形態12.
同一地点の2線断線した区間を標定する第6の方法について説明する。
(38)式から断線点前後で零相電圧差
= − E Z/ (Z+ Z+ Z)が発生する。
そこで、複数の測定点からのデータについて、相隣る測定点間で差を求める。2つの測定点の間の区間内に断線がない場合、零相電圧差は極めて小さく、断線のある区間の両側にある測定点のデータ間には、上記の差に近い値の差が生じる。これにより、最大の差を生じる区間内に断線点があると区間評定することが可能である。上記の演算処理は、断線判定処理装置11a内の区間判定装置111(第6の区間判定装置)において実行され、判定した区間は、外部へ、例えば断線区間信号88として出力される。
図15に、横軸に配電線の距離をとり、この距離上の複数の測定点(図では例として5点)で測定した零相電圧をプロットしたものを示す。相隣る測定点間の差をとる代わりに、各測定点をつなぐ線を延長して断線地点の両側の延長線の高さの差を零相電圧差として求めてもよい。この差が上記の式に示す値となる区間で断線が生じていることになる。区間内の断線位置の特定については実施の形態10で説明したのと同様である。
【0029】
実施の形態13.
実施の形態10〜12において、2線が断線している区間を標定した後、区間内の断線位置をもっと正確に確定する方法について説明する。 (39)式から断線点前後で方向も含めた正相電圧差と逆相電圧差と零相電圧差の和がゼロに等しい。そこで図16に示すように断線点前後での正相電圧、逆相電圧および零相電圧の和V + V + V を複数の測定点で測定する。そして配電線の両端から測定値を順次結んだ線を延長すると、同じ値を示す一点が求められる。この点が同一地点2線断線点である。
上記の演算処理は、断線判定処理装置11a内の断線点演算装置211(第5の断線点演算装置という)において実行され、求めた断線点は、外部へ、例えば最寄りの測定点からの距離を示す断線位置信号89として出力される。
【0030】
【発明の効果】
以上のように、この発明によれば、配電線における複数箇所の電圧・電流を正相電圧、逆相電圧、零相電圧、正相電流、逆相電流、零相電流に変換して処理するするように構成したので、配電線の1線断線および同一地点2線断線の故障区間が標定でき、更に、区間内における故障位置の標定も可能であるという効果が得られる。また配電線末端側に分散電源が存在する場合でも統一的な取り扱いにより故障区間および故障点を標定できる装置が得られる。また通常は高圧配電線は中性点が非接地であるが接地インピーダンスが存在しても統一的な取り扱いにより故障区間および故障点を標定できる。
【図面の簡単な説明】
【図1】この発明の全ての実施の形態における配電線の断線検出装置の構成及び配置を説明する図である。
【図2】断線判定装置と電流・電圧測定装置の内部構成と接続を説明する図である。
【図3】配電線の断線位置を説明する図である。
【図4】本発明の実施の形態2の配電線断線検出装置の動作を説明する図である。
【図5】本発明の実施の形態3の配電線断線検出装置の動作を説明する図である。
【図6】本発明の実施の形態4の配電線断線検出装置の動作を説明する図である。
【図7】本発明の実施の形態5の配電線断線検出装置の動作を説明する図である。
【図8】本発明の実施の形態6の配電線断線検出装置の動作を説明する図である。
【図9】本発明の実施の形態7の配電線断線検出装置の動作を説明する図である。
【図10】本発明の実施の形態8の配電線断線検出装置の動作を説明する図である。
【図11】実施の形態9〜13における配電線の断線位置を説明する図である。
【図12】本発明の実施の形態9の配電線断線検出装置の動作を説明する図である。
【図13】本発明の実施の形態10の配電線断線検出装置の動作を説明する図である。
【図14】本発明の実施の形態11の配電線断線検出装置の動作を説明する図である。
【図15】本発明の実施の形態12の配電線断線検出装置の動作を説明する図である。
【図16】本発明の実施の形態13の配電線断線検出装置の動作を説明する図である。
【符号の説明】
1 配電線、 2〜9 電流・電圧を測定する装置、
10 通信線、 11 断線判定装置、
11a 断線判定処理装置(1線断線判定処理装置又は2線断線判定処理装置)、
87 断線検出信号、 88 断線区間信号、 89 断線位置信号、
111 第1〜第6区間判定装置、
211 第1〜第5断線点演算装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a disconnection detection device that detects a disconnection of a distribution line.
[0002]
[Prior art]
Distribution lines may be disconnected for unexpected reasons, regardless of whether they are aerial wiring or underground wiring. In this case, it is necessary to find the position of the disconnection as soon as possible in order to recover early. However, the detection of the distribution line is not easy because the entire length of the distribution line is generally very long. In a conventional disconnection detecting device, disconnection of one distribution line section is detected from current and voltage values measured at a plurality of points on a distribution line. (For example, see Patent Document 1)
And the true disconnection point of the distribution line where the disconnection was detected, for example, it is necessary for a person to move and find along the distribution line while performing a silent inspection, which takes a long time, causing a delay in recovery. .
[0003]
In addition, when a distributed power source exists on the terminal side of the distribution line, even if the distribution line on the way is disconnected, the terminal voltage may not always change significantly, and the fault section may not be located. In addition, since the neutral point of a high-voltage distribution line is normally ungrounded, it is not considered to locate a fault section for a distribution line having a ground impedance.
[0004]
[Patent Document 1]
JP-A-2-266822 (page 8, FIG. 1)
[0005]
[Problems to be solved by the invention]
Since the conventional disconnection detecting device is configured as described above, there is a problem that the disconnection point cannot be detected even if the device can be automatically detected up to the disconnection section. Further, when a distributed power source exists at the terminal side of the distribution line, a faulty section may not be located even if the distribution line in the middle is disconnected. In addition, since the neutral point of the high-voltage distribution line is normally ungrounded, there is a problem that it is not considered to locate the fault section in the distribution line having the ground impedance.
[0006]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has as its object to provide a disconnection detection device capable of locating not only a fault section but also a fault point. It is another object of the present invention to obtain a device capable of locating a fault section and a fault point by unified handling even when a distributed power source exists at the end of a distribution line. It is another object of the present invention to obtain a device capable of locating a fault section and a fault point by unified handling of a high-voltage power distribution line, even if the neutral point is ungrounded but a grounding impedance exists.
[0007]
[Means for Solving the Problems]
A distribution line disconnection detection device according to the present invention sets a measurement point in each section of a distribution line divided into a plurality of sections. At each of these measurement points, the voltage and current at the measurement point of the distribution line are detected, and the positive and negative phase and zero phase voltages and currents including the directions are calculated and converted into data. A sensor for transmitting to outside through a communication line is arranged.
The data is received from each sensor of the plurality of sections via a communication line, and a sum of a positive-phase current, a negative-phase current, and a zero-phase current of the distribution line is calculated, and the positive-phase current value is not zero. And when the sum of the positive-phase current, the negative-phase current, and the zero-phase current of the distribution line becomes zero, outputs a disconnection detection signal indicating that the distribution line has a disconnection of one line. It is provided with a processing device.
Further, based on the positive-phase voltage and the negative-phase voltage at each measurement point, a difference between the positive-phase voltage and the negative-phase voltage at each measurement point is obtained, and a position on the distribution line where the difference matches is determined on the distribution line. And a first disconnection point arithmetic unit that outputs data of this position as a disconnection position signal.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, a distribution line disconnection detection device according to a first embodiment of the present invention will be described with reference to FIG.
In FIG. 1, current / voltage measuring devices 2 to 9 for measuring current / voltage are installed on a distribution line 1. The current / voltage measuring devices 2 to 9 communicate the measured current / voltage to the disconnection judging device 11 through the communication line 10. The current / voltage measuring devices 2 to 9 also convert the measured values into positive-phase / negative-phase / zero-phase voltage / current.
FIG. 2 is a diagram illustrating a configuration of a processing block for processing data by the current / voltage measurement devices 2 to 9 and the disconnection determination device 11.
[0009]
Next, the operation will be described.
FIG. 3 is a diagram for explaining an operation when a disconnection occurs at a point 99 of the a-phase of the three-phase (a, b, c-phase) distribution line 1 connecting the point 90 and the point 91. In the figure, a point 90 and a point 91 are provided with transformer symbols for the sake of explanation, for the sake of clarity of understanding of the section, and what kind of equipment is connected to both ends. Does not matter. Now, it is assumed that the voltage on the left side of the a-phase disconnection point 99, that is, the voltage on the point 90 side is larger than the voltage on the right side, that is, the point 91 side by 3 · V. Here, V is an arbitrary number. The voltages of the a-phase, b-phase, and c-phase on the righta, Vb, VcThen, the voltages of the a-phase, b-phase, and c-phase on the left side of the disconnection point are each Va+ (3 · V), Vb, Vc  Becomes
The zero-phase, positive-phase, and negative-phase voltages on the right side of0, V1, V2Then, the zero-phase, positive-phase, and negative-phase voltages on the left side of the break point 99 are a = e from the definition of the symmetric coordinate method.j (2π / 3)As
(Va+ 3V + Vb+ Vc) / 3 = V0+ V-------------------------(-)
(Va+ 3V + aVb+ A2Vc) / 3 = V1+ V----------------------(-)
(Va+ 3V + a2Vb+ AVc) / 3 = V2+ V----------------------(-)
[0010]
Set the phase voltage on the left side of the distribution line to Es, The zero-phase, positive-phase, and negative-phase impedances on the left side as viewed from the disconnection point 99 are Z0s, Z1s, Z2s ,Zero-phase current, positive-phase current, and negative-phase current0, I1, I2Then
V0+ V = -Z0sI0      −−−−−−−−−−−−−−−−− (4)
V1+ V = Es-Z1sI1      −−−−−−−−−−−−−−−−− (5)
V2+ V = -Z2sI2      −−−−−−−−−−−−−−−−− (6)
Set the phase voltage on the right side of the distribution line to Er, The zero-phase, positive-phase, and negative-phase impedance on the right side as viewed from the distribution line disconnection point0r, Z1r, Z2rThen
V0 = Z0rI0      −−−−−−−−−−−−−−−−− (7)
V1 = Er+ Z1rI1      −−−−−−−−−−−−−−−−− (8)
V2 = Z2rI2      −−−−−−−−−−−−−−−− (9)
When the current of the a-phase is Ia,
Ia = I0+ I1+ I2
Since phase a is broken, Ia = 0
I0+ I1+ I2 = 0---------------------(-) (10)
[0011]
From equations (4), (5) and (6)
V0= -Z0SI0-V
V1= Es-Z1SI1-V
V2= -Z2SI2-V
Substituting these into equations (7), (8) and (9)
I0= -V / (Zor+ Zos)
I1= −V + (ES-Er) / (Z1r+ Z1s)
I2= -V / (Z2r+ Z2s)
Where Z0  = Z0 S  + Z0r,
Z1  = Z1s  + Z1r,
Z2  = Z2s  + Z2r
Es-Er= E
Δ = Z0  Z1  + Z1  Z2  + Z2  Z0
And then substitute this into equation (10)
0 = -Z1Z2V-Z0  Z2(VE) -VZ0Z1
Than this
V = Z0  Z2  E / Δ −−−−−−−−−−−−−−− (11)
Get.
[0012]
Also,
I0  = -Z2  E / Δ −−−−−−−−−−−−−−− (12)
I1  = (Z0  + Z2  ) E / Δ −−−−−−−−−−−−−−− (13)
I2  = -Z0  E / Δ −−−−−−−−−−−−−−− (14)
From the equations (12), (13), and (14), I1= 0, and the sum of the positive-phase current, the negative-phase current, and the zero-phase current including the direction is zero, that is,
I1  + I2  + I0  = 0 & I1≠ 0 −−−−−−−−−−−−−−−− (15)
Is detected, it can be easily detected that one of the distribution lines is broken.
[0013]
When the distribution line is an ungrounded system such as a high-voltage distribution line, the zero-phase impedance is much larger than the positive-phase impedance and the negative-phase impedance.0  >>> Z1, Z0  >> Z2Thus, equation (11) becomes as follows.
V ≒ 3EZ2  / (Z1+ Z2) -------------------------------------------------------- (16)
Similarly, equations (12) to (14) are as follows.
I0  ≒ 0 −−−−−−−−−−−−−−−− (17)
I1  ≒ E / (Z1+ Z2) ---------------------------------------- (18)
I2  ≒ -E / (Z1+ Z2) --------------------------- (19)
The above-described calculation is executed in the disconnection determination processing device 11a (referred to as a one-line disconnection determination processing device), and after the disconnection is detected, a disconnection detection signal 87 indicating the presence or absence of the disconnection is output.
[0014]
Embodiment 2 FIG.
I described in the first embodiment.1  + I2  + I0  = 0 & I1A first method of locating a break point in a section after detecting that there is one break in the distribution line by detecting $ 0 will be described.
From equations (2) and (11), the positive-sequence voltage difference before and after the disconnection point
V = Z0  Z2  E / Δ
Occurs. Therefore, a difference between adjacent measurement points is obtained for data from a plurality of measurement points. If there is no disconnection in the section between the two measurement points, the positive-sequence voltage difference is very small, and a difference close to the above equation occurs between the data of the measurement points on both sides of the section with the disconnection. Thereby, it is possible to determine the section when there is a disconnection point in the section where the maximum difference occurs. The above arithmetic processing is executed in the section determination device 111 (first section determination device) in the disconnection determination processing device 11a, and the determined section is output to the outside as, for example, a disconnection section signal 88.
FIG. 4 shows a plot of the distribution line distance on the horizontal axis, and plots the positive-sequence voltages measured at a plurality of measurement points (five points in the drawing) on this distance. Instead of taking the difference between adjacent measurement points, the line connecting the measurement points may be extended and the height difference between the extension lines on both sides of the disconnection point may be determined as the positive-phase voltage difference. This means that a disconnection has occurred in a section where this difference has the value shown in the above equation. In FIG. 4, if there is little error in the measurement, it is possible to specify the disconnection position in the measuring device section by accurate calculation. However, since the change in the positive-phase voltage difference due to the distance may not be sufficient to specify the disconnection position, the method in the fifth embodiment and subsequent embodiments described later is suitable for specifying the position in the section.
[0015]
Embodiment 3 FIG.
I described in the first embodiment.1  + I2  + I0  = 0 & I1A description will be given of a second method of locating a break point in a section after detecting that there is one break in the distribution line by detecting $ 0.
From equations (3) and (11), the negative-sequence voltage difference before and after the disconnection point
V = Z0  Z2  E / Δ
Occurs. Therefore, a difference is determined between adjacent measurement points of data from a plurality of measurement points. If there is no disconnection in the section between the two measurement points, the negative-sequence voltage difference is extremely small, and a difference close to the above equation occurs between the data of the measurement points on both sides of the section where the disconnection occurs. In this way, it is possible to determine the section where the difference is maximum as the break point. The above arithmetic processing is executed in the section determination device 111 (second section determination device) in the disconnection determination processing device 11a, and the section is output as, for example, a disconnection section signal 88.
FIG. 5 shows the plot of the negative-sequence voltage measured at a plurality of measurement points (five in the figure as examples) on this distance, taking the distance of the distribution line on the horizontal axis. Instead of taking the difference in data between adjacent measurement points, the line connecting the measurement points may be extended to determine the difference in height between the extension lines on both sides of the disconnection point. This means that a disconnection has occurred in a section where this difference has the value shown in the above equation. The specification of the disconnection position in the section is the same as that described in the second embodiment.
[0016]
Embodiment 4 FIG.
I described in the first embodiment.1  + I2  + I0  = 0 & I1A description will be given of a third method of locating a break point after detecting that there is one break in the distribution line by detecting $ 0.
From Equations (1) and (11), the zero-phase voltage difference before and after the disconnection point
V = Z0  Z2  E / Δ
Occurs. Therefore, a difference between adjacent measurement points is obtained from data from a plurality of measurement points. If there is no disconnection in the section between the two measurement points, the zero-sequence voltage difference is very small, and a difference close to the above equation occurs between the data of the measurement points on both sides of the section with the disconnection. This makes it possible to locate the disconnection point in the section.
The arithmetic processing described above is executed by the section determination device 111 (third section determination device) in the disconnection determination processing device 11a, and the determined section is output to the outside, for example, as a disconnection section signal 88.
FIG. 6 shows a plot of the negative-sequence voltage measured at a plurality of measurement points (five in the figure as examples) on this distance with the distance of the distribution line taken on the horizontal axis. Instead of taking the difference between adjacent measurement points, the line connecting the measurement points may be extended to determine the difference in height between the extension lines on both sides of the disconnection point. This means that a disconnection has occurred in a section where this difference has the value shown in the above equation. The specification of the disconnection position in the section is the same as that described in the second embodiment.
[0017]
Embodiment 5 FIG.
After locating the disconnection section described in the second to fourth embodiments, a first method for more accurately obtaining the disconnection position in the section will be described. From the equations (2), (3) and (11), the difference between the positive-phase voltage and the negative-phase voltage before and after the disconnection point is equal. By comparing the measurement points, the value of the difference is extended on the graph according to the distance of the distribution line, and the distance point at which the difference coincides is obtained, whereby the position of the disconnection point can be located.
FIG. 7 shows the difference between the positive-phase voltage and the negative-phase voltage, that is, (V) at the left end of the disconnection position 99 in FIG.1+ V)-(V2+ V), and V1-V2Are shown, and an example of data at each measurement position when this measurement is advanced toward the other end is shown. The position where this value matches is the disconnection position. The above-described arithmetic processing is executed in the disconnection point calculation device 211 (referred to as a first disconnection point calculation device) in the disconnection determination processing device 11a, and the determined disconnection point is set to the outside, for example, the distance from the nearest measurement point. It is output as the disconnection position signal 89 shown in FIG.
[0018]
Embodiment 6 FIG.
A second method for more accurately obtaining the disconnection position in the section will be described. From the equations (1), (2) and (11), since the difference between the positive-phase voltage and the zero-phase voltage before and after the disconnection point is equal, a plurality of the phases before and after the disconnection section in which the difference between the positive-phase voltage and the zero-sequence voltage is located. It is possible to compare the points at the measurement points, extend the points on the graph according to the distance, and find a point where the two coincide with each other.
FIG. 8 shows the difference between the positive-phase voltage and the zero-phase voltage, that is, (V) at the left end of the disconnection position 99 in FIG.1+ V)-(V0+ V), and V1-V0Are shown, and an example of data at each measurement position when this measurement is advanced toward the other end is shown. The position where this value matches is the disconnection position. The above-described arithmetic processing is executed in the disconnection point calculation device 211 (referred to as a second disconnection point calculation device) in the disconnection determination processing device 11a, and the determined disconnection point is set to the outside, for example, the distance from the nearest measurement point. It is output as the disconnection position signal 89 shown in FIG.
[0019]
Embodiment 7 FIG.
A third method for more accurately determining the disconnection position in the section will be described. From the equations (1), (3) and (11), since the negative-phase voltage and the zero-phase voltage are equal before and after the disconnection point, the difference between the negative-phase voltage and the zero-phase voltage is measured before and after the specified disconnection section. By comparing the points, extending the points on the graph according to the distance, and finding a point where the two coincide with each other, it is possible to locate the disconnection point.
FIG. 9 shows the difference between the negative-phase voltage and the zero-phase voltage, that is, (V) at the left end of the disconnection position 99 in FIG.2+ V)-(V0+ V), and V2-V0Are shown, and an example of data at each measurement position when this measurement is advanced toward the other end is shown. The position where this value matches is the disconnection position. The above-described arithmetic processing is executed in the disconnection point calculation device 211 (referred to as a third disconnection point calculation device) in the disconnection determination processing device 11a, and the determined disconnection point is set to the outside, for example, the distance from the nearest measurement point. It is output as the disconnection position signal 89 shown in FIG.
[0020]
Embodiment 8 FIG.
In the fifth to seventh embodiments, the sum of the negative-phase current, the positive-phase current, and the zero-phase current including the direction on the distribution line is zero, that is, I2  + I1  + I0  The case where the position of the disconnection in the section is located after the detection of = 0 and the location of the disconnection section has been described has been described. In the above embodiment, the description has been given assuming that the disconnection position is between the voltage / current measuring devices. However, in practice, it is assumed that there is a disconnection point further outside the measuring device installed at the end of the distribution line. Is done. In the present embodiment, a description will be given of an apparatus that can be located even when the disconnection position is outside the measurement point (end of the distribution line).
From the equations (4), (6) and (12), (14), the positive-phase voltage and the negative-phase voltage immediately before the disconnection point (left side of the disconnection point, that is, the power supply side) are respectively
V0s  = -Z0sI0  = Z0sZ2E / Δ = {Z0Z2E / Δ} x {Z0s/ (Z0s+ Z0r)} −−−−−−−− (20)
V2s  = -Z2sI2  = Z0Z2sE / Δ = {Z0Z2E / Δ} x {Z2s/ (Z2s+ Z2r)} −−−−−−−− (21)
Because
Z0s  / Z0r  = Z2s  / Z2r  That is, when the ratio of the negative-phase impedance to the zero-phase impedance when viewed from the disconnection point to the left is equal to the ratio of the negative-phase impedance to the zero-phase impedance when viewed to the right from the disconnection point, the zero-phase voltage V0s  And the reverse-phase voltage V immediately before the disconnection point2sAre equal.
[0021]
On the other hand, from equations (7), (9) and (12), (14), the positive-phase and negative-phase voltages immediately after the disconnection point (to the right of the disconnection point, that is, on the load side) are respectively
V0r  = Z0rI0  = -Z0rZ2E / Δ = {− Z0Z2E / Δ} x {Z0r/ (Z0s+ Z0r)} −−−− (22)
V2r  = Z2rI2  = -Z0Z2rE / Δ = {− Z0Z2E / Δ} x {Z2r/ (Z2s+ Z2r)} −−−− (23)
Because
Z0s  / Z0r  = Z2s  / Z2r  That is, when the ratio of the negative-phase impedance and the zero-phase impedance when viewed from the disconnection point to the left is equal to the ratio between the negative-phase impedance and the zero-phase impedance when viewed from the disconnection point to the right, the zero-phase voltage V immediately after the disconnection point0 r  And the reverse-phase voltage V immediately after the disconnection point2 rAre equal.
By utilizing this fact, it is possible to obtain a device capable of locating the disconnection point even when the disconnection is only outside the device for detecting the voltage / current.
The above-described arithmetic processing is executed in the disconnection point calculation device 211 (referred to as a fourth disconnection point calculation device) in the disconnection determination processing device 11a. It is output as the disconnection position signal 89 shown in FIG.
FIG. 10 shows an example of the zero-sequence voltage and the negative-sequence voltage measured at each measurement point arranged on the distance along the horizontal axis, and shows a case in which these are extended to find a position where the two coincide.
[0022]
Embodiment 9 FIG.
In the first to eighth embodiments, detection in the case of one wire break has been described. Hereinafter, a case where two lines are disconnected at one point will be described.
FIG. 11 shows that a two-wire break has occurred in the b-phase and the c-phase of the distribution line. When two wires break at the same point in the distribution lines b and c, the voltage difference on both sides of the b-phase break point at the break points 199 and 299 at the time of the b and c two-wire breaks is 3U.b , The voltage difference on both sides of the c-phase break point is 3UcAnd
That is, the voltage on the left side of the b-phase break point 199 is 3U higher than the voltage on the right side.bThe voltage on the left side of the c-phase break point 299 is 3U higher than the voltage on the right side.cLet's say it's big. The voltages of the a-phase, b-phase, and c-phase on the righta, Vb, VcThen, the voltages of the a-phase, b-phase, and c-phase on the left side of the disconnection points 199 and 299 are Va, Vb+3 Ub, Vc  +3 UcBecomes
The zero-phase, positive-phase, and negative-phase voltages on the right side of the disconnection point 199 are represented by V0 ,V1, V2Then, the zero-phase, positive-phase, and negative-phase voltages on the left side of the disconnection point 199 are respectively a = e from the definition of the symmetric coordinate method.j (2π / 3)As
(Va+ Vb+3 Ub  + Vc+3 Uc) / 3 = V0+ Ub  + Uc      −−−−−−−−−−−−−−−−− (24)
(Va+ AVb+3 aUb  + A2Vc+ 3a2  Uc) / 3 = V1+ AUb  + A2Uc      −−−−−− (25)
(Va+ A2Vb+ 3a2Ub  + AVc+3 aUc) / 3 = V2+ A2Ub  + AUc      −−−−−− (26)
Holds.
[0023]
Set the phase voltage on the left side of the distribution line to Es, The zero-phase, positive-phase, and reverse-phase impedances as viewed from the0s, Z1s, Z2sAnd the zero-phase, positive-phase, and negative-phase currents are represented by I0, I1, I2Then
V0+ Ub  + Uc  = -Z0sI0      −−−−−−−−−−−−−−−−− (27)
V1+ AUb  + A2Uc  = Es  − Z1sI1      −−−−−−−−−−− (28)
V2+ A2Ub  + AUc  = -Z2sI2      −−−−−−−−−−−−−− (29)
Set the phase voltage on the right side of the distribution line to Er, The zero-phase, positive-phase, and negative-phase impedance on the right side as viewed from the distribution line disconnection point0r, Z1r, Z2rThen
V0= Z0rI0      −−−−−−−−−−−−−−−−− (30)
V1= Er  + Z1rI1      −−−−−−−−−−− (31)
V2= Z2rI2      −−−−−−−−−−−−−−−−− (32)
Since phase b and phase c are disconnected, Ib= 0, Ic= 0
I0= I1= I2= Ia/ 3 ---------------------------------------- (33)
[0024]
When the left sides and the right sides of equations (27), (28) and (29) are summed,
V0+ V1+ V2  = −Z0sI0 + Es  − Z1sI1  − Z2sI2      −−−−−−−−−−−−−−−−− (34)
Substituting equations (30), (31) and (32) into equation (34) and using equation (33)
I0  = I1= I2= E / (Z0+ Z1+ Z2) ---------------------------------------- (35)
Where E = Es-Er, Z0= Z0s+ Z0r, Z1= Z1s+ Z1r, Z2= Z2s+ Z2r
Positive phase voltage difference U before and after disconnection1, The negative-sequence voltage difference U2, Zero-phase voltage difference U0Are each
U1= (Es  − Z1sI1)-(Er+ Z1rI1) = E (Z0+ Z2) / (Z0+ Z1+ Z2−−−−−−− (36)
U2= -Z2sI2  − Z2rI2  = -EZ2/ (Z0+ Z1+ Z2) ------------------------------------------ (37)
U0= -Z0sI0  − Z0rI0  = -EZ0/ (Z0+ Z1+ Z2) ------------------------------------------ (38)
From equations (36), (37) and (38)
U1  + U2  + U0    = 0-------------------------(-) (39)
From equation (39), the positive-phase voltage difference U at the left measurement point1= 0, the difference U between the positive phase voltage at the left measurement point and the positive phase voltage at the right measurement point1 And the sum U of the negative-sequence voltage and the zero-sequence voltage at the left measurement point and the sum U of the negative-sequence voltage and the zero-sequence voltage at the right measurement point2  + U0  Are equal in magnitude and opposite in sign, ie
U1=-(U2  + U0) = U & U1≠ 0 −−−−−−−−−−−−−−−− (40)
Where U = E (Z0+ Z2) / (Z0+ Z1+ Z2)
Then, it can be detected that there is a two-line break between the left and right measurement points.
FIG. 12 illustrates the above state for the sake of understanding.
[0025]
In a high-voltage distribution line, the zero-phase impedance is much larger than the positive-phase impedance and the negative-phase impedance because of the ungrounded system.0  >>> Z1, Z0  >>> Z2Therefore, the expressions (36), (37) and (38) are as follows.
U1  ≒ E −−−−−−−−−−−−−−−− (41)
U2  ≒ 0 −−−−−−−−−−−−−−− (42)
U0  ≒ -E-----------------------(-) (43)
The calculation described above is executed in the disconnection determination processing device 11a (referred to as two disconnection determination processing devices), and after the disconnection is detected, a disconnection detection signal 87 indicating the presence or absence of the disconnection is output.
[0026]
Embodiment 10 FIG.
A method of locating the section at the disconnection position after detecting the presence of two disconnections at the same point in the ninth embodiment (referred to as a fourth method to distinguish it from the case of one-line disconnection) will be described.
From equation (36), the positive-phase voltage difference before and after the disconnection point
U1= E (Z0+ Z2) / (Z0+ Z1+ Z2) Occurs.
Therefore, differences between adjacent measurement points are obtained for data from a plurality of measurement points. When there is no disconnection in the section between the two measurement points, the positive-sequence voltage difference is extremely small, and a difference close to the above-described value occurs between the data of the measurement points on both sides of the section where the disconnection occurs. Thereby, it is possible to evaluate the section as having a disconnection point in the section where the maximum difference occurs. The above-described arithmetic processing is executed in the section determination device 111 (fourth section determination device) in the disconnection determination processing device 11a, and the determined section is output to the outside, for example, as a disconnection section signal 88.
FIG. 13 shows a plot of the distribution line distance on the horizontal axis and plotting the positive-sequence voltages measured at a plurality of measurement points (five points in the figure as an example) on this distance. Instead of taking the difference between adjacent measurement points, the line connecting the measurement points may be extended and the height difference between the extension lines on both sides of the disconnection point may be determined as the positive-phase voltage difference. This means that a disconnection has occurred in a section where this difference has the value shown in the above equation. In FIG. 13, if there is little error in the measurement, it is possible to specify the disconnection position in the measuring device section by accurate calculation. However, since the change in the positive-phase voltage difference due to the distance may not be sufficient to specify the disconnection position, the method of Embodiment 13 described later is suitable for specifying the position in the section.
[0027]
Embodiment 11 FIG.
A fifth method for locating a two-line disconnection section at the same point will be described.
From equation (37), the negative phase voltage difference before and after the disconnection point
U2=-EZ2/ (Z0+ Z1+ Z2) Occurs.
Therefore, differences between adjacent measurement points are obtained for data from a plurality of measurement points. If there is no disconnection in the section between the two measurement points, the negative-sequence voltage difference is extremely small, and a difference close to the above-described value occurs between the data of the measurement points on both sides of the section where the disconnection occurs. Thereby, it is possible to evaluate the section as having a disconnection point in the section where the maximum difference occurs. The arithmetic processing described above is executed in the section determination device 111 (fifth section determination device) in the disconnection determination processing device 11a, and the determined section is output to the outside, for example, as a disconnection section signal 88.
FIG. 14 shows the distribution line distance plotted on the horizontal axis, and plotting the reverse-phase voltages measured at a plurality of measurement points (five points in the figure as an example) on this distance. Instead of taking the difference between adjacent measurement points, the line connecting the measurement points may be extended and the height difference between the extension lines on both sides of the disconnection point may be determined as the negative-phase voltage difference. This means that a disconnection has occurred in a section where this difference has the value shown in the above equation. The specification of the disconnection position in the section is the same as that described in the tenth embodiment.
[0028]
Embodiment 12 FIG.
A sixth method for locating a section where two lines are disconnected at the same point will be described.
From equation (38), the zero-phase voltage difference before and after the disconnection point
U0=-EZ0/ (Z0+ Z1+ Z2) Occurs.
Therefore, differences between adjacent measurement points are obtained for data from a plurality of measurement points. If there is no disconnection in the section between the two measurement points, the zero-sequence voltage difference is extremely small, and a difference close to the above-described value occurs between the data of the measurement points on both sides of the section where the disconnection occurs. Thereby, it is possible to evaluate the section as having a disconnection point in the section where the maximum difference occurs. The arithmetic processing described above is executed in the section determination device 111 (sixth section determination device) in the disconnection determination processing device 11a, and the determined section is output to the outside, for example, as a disconnection section signal 88.
FIG. 15 shows a plot of the zero-sequence voltage measured at a plurality of measurement points (five points in the figure as an example) on the distance along the horizontal axis. Instead of taking the difference between adjacent measurement points, the line connecting the measurement points may be extended and the height difference between the extension lines on both sides of the disconnection point may be obtained as the zero-phase voltage difference. This means that a disconnection has occurred in a section where this difference has the value shown in the above equation. The specification of the disconnection position in the section is the same as that described in the tenth embodiment.
[0029]
Embodiment 13 FIG.
In the tenth to twelfth embodiments, a method will be described in which a section in which two lines are disconnected is located, and then a disconnection position in the section is determined more accurately. From equation (39), the sum of the positive-phase voltage difference, the negative-phase voltage difference, and the zero-phase voltage difference including the direction before and after the disconnection point is equal to zero. Therefore, as shown in FIG. 16, the sum V of the positive-phase voltage, the negative-phase voltage, and the zero-phase voltage before and after the disconnection point is obtained.1  + V2  + V0    Is measured at a plurality of measurement points. When a line connecting measurement values is sequentially extended from both ends of the distribution line, one point indicating the same value is obtained. This point is the same point 2 line break point.
The above-described arithmetic processing is executed in the disconnection point calculation device 211 (referred to as a fifth disconnection point calculation device) in the disconnection determination processing device 11a, and the determined disconnection point is set to the outside, for example, the distance from the nearest measurement point. It is output as the disconnection position signal 89 shown in FIG.
[0030]
【The invention's effect】
As described above, according to the present invention, voltages and currents at a plurality of points in a distribution line are converted into a positive-phase voltage, a negative-phase voltage, a zero-phase voltage, a positive-phase current, a negative-phase current, and a zero-phase current and processed. With such a configuration, it is possible to locate a fault section in which the distribution line has a one-wire break and a two-wire break at the same point, and further, it is possible to locate a fault location in the section. Further, even when a distributed power source exists at the terminal side of the distribution line, a device that can locate a fault section and a fault point by unified handling can be obtained. Normally, the neutral point of the high-voltage distribution line is ungrounded, but even if there is a ground impedance, the fault section and the fault point can be located by unified handling.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration and an arrangement of a distribution line disconnection detection device according to all embodiments of the present invention.
FIG. 2 is a diagram illustrating an internal configuration and connection of a disconnection determination device and a current / voltage measurement device.
FIG. 3 is a diagram illustrating a disconnection position of a distribution line.
FIG. 4 is a diagram illustrating an operation of a distribution line disconnection detection device according to a second embodiment of the present invention.
FIG. 5 is a diagram illustrating an operation of a distribution line disconnection detection device according to a third embodiment of the present invention.
FIG. 6 is a diagram illustrating an operation of a distribution line disconnection detection device according to a fourth embodiment of the present invention.
FIG. 7 is a diagram illustrating an operation of a distribution line disconnection detection device according to a fifth embodiment of the present invention.
FIG. 8 is a diagram illustrating the operation of a distribution line disconnection detection device according to a sixth embodiment of the present invention.
FIG. 9 is a diagram illustrating the operation of a distribution line disconnection detection device according to a seventh embodiment of the present invention.
FIG. 10 is a diagram illustrating an operation of a distribution line disconnection detection device according to an eighth embodiment of the present invention.
FIG. 11 is a diagram illustrating a disconnection position of a distribution line according to the ninth to thirteenth embodiments.
FIG. 12 is a diagram illustrating an operation of a distribution line disconnection detection device according to a ninth embodiment of the present invention.
FIG. 13 is a diagram illustrating the operation of the distribution line disconnection detection device according to the tenth embodiment of the present invention.
FIG. 14 is a diagram illustrating an operation of a distribution line disconnection detection device according to an eleventh embodiment of the present invention.
FIG. 15 is a diagram illustrating an operation of a distribution line disconnection detection device according to a twelfth embodiment of the present invention.
FIG. 16 is a diagram illustrating the operation of the distribution line disconnection detection device according to the thirteenth embodiment of the present invention.
[Explanation of symbols]
1 distribution line, 2-9 current / voltage measuring device,
10 communication line, 11 disconnection determination device,
11a disconnection determination processing device (1 line disconnection determination processing device or 2 line disconnection determination processing device),
87 disconnection detection signal, 88 disconnection section signal, 89 disconnection position signal,
111 first to sixth section determination devices,
211 first to fifth disconnection point calculation devices.

Claims (13)

複数の区間に区分した配電線の前記区間のそれぞれに設定された測定点に配置され、前記測定点での前記配電線の電圧と電流とを検出し、正相・逆相・零相の電圧と電流を演算してデータ化し、このデータを通信線を介して外部へ伝送するセンサ、
前記複数区間のそれぞれのセンサから、前記通信線を介して前記データを受信し、前記配電線の正相電流値と逆相電流値と零相電流値との和を演算し、前記正相電流値が零でなく、かつ、前記正相電流値と逆相電流値と零相電流値との和が零となるとき、前記配電線に1線の断線があることを示す断線検出信号を出力する1線断線判定処理装置を備えたことを特徴とする配電線の断線検出装置。
It is arranged at a measurement point set in each of the sections of the distribution line divided into a plurality of sections, detects a voltage and a current of the distribution line at the measurement point, and detects positive-phase, reverse-phase, and zero-phase voltages. And a sensor that calculates the current and converts it into data, and transmits this data to the outside via a communication line.
From each of the sensors in the plurality of sections, the data is received via the communication line, and the sum of a positive-phase current value, a negative-phase current value, and a zero-phase current value of the distribution line is calculated, and the positive-phase current is calculated. When the value is not zero and the sum of the positive-phase current value, the negative-phase current value, and the zero-phase current value becomes zero, a disconnection detection signal indicating that there is one disconnection in the distribution line is output. An apparatus for detecting a disconnection of a distribution line, comprising:
前記1線断線判定処理装置は、前記の各区間の両端にある前記測定点の間の正相電圧の差を全ての前記区間について求め、この差が最も大となる区間に前記1線の断線があると判定して断線区間信号を出力する第1の区間判定装置を備えたことを特徴とする請求項1に記載の配電線の断線検出装置。The one-line disconnection determination processing device obtains a difference between positive-phase voltages between the measurement points at both ends of each of the sections for all of the sections, and determines a disconnection of the one-line in a section where the difference is the largest. The disconnection detection device for a distribution line according to claim 1, further comprising a first section determination device that determines that there is a disconnection section and outputs a disconnection section signal. 前記1線断線判定処理装置は、前記の各区間の両端にある前記測定点の間の逆相電圧の差を全ての前記区間について求め、この差が最も大となる区間に前記1線の断線があると判定して断線区間信号を出力する第2の区間判定装置を備えたことを特徴とする請求項1に記載の配電線の断線検出装置。The one-line disconnection determination processing device obtains a difference in the negative-sequence voltage between the measurement points at both ends of each of the sections for all the sections, and determines the disconnection of the one line in the section where the difference is the largest. The disconnection detection device for a distribution line according to claim 1, further comprising a second section determination device that determines that there is a disconnection section signal and outputs a disconnection section signal. 前記1線断線判定処理装置は、前記の各区間の両端にある前記測定点の間の零相電圧の差を全ての前記区間について求め、この差が最も大となる区間に前記断線があると判定して断線区間信号を出力する第3の区間判定装置を備えたことを特徴とする請求項1に記載の配電線の断線検出装置。The one-line disconnection determination processing device obtains a difference in a zero-sequence voltage between the measurement points at both ends of each of the sections for all the sections, and determines that there is the disconnection in a section where the difference is the largest. 2. The distribution line disconnection detection device according to claim 1, further comprising a third section determination device that determines and outputs a disconnection interval signal. 前記1線断線判定処理装置は、前記の各測定点の正相電圧と逆相電圧とをもとに、前記各測定点の前記正相電圧と前記逆相電圧との差を求め、この差が一致する前記配電線上の位置を前記配電線上の距離の関数として求め、この位置のデータを断線位置信号として出力する第1の断線点演算装置を備えたことを特徴とする請求項2から4のいずれか一項に記載の配電線の断線検出装置。The one-line disconnection determination processing device obtains a difference between the positive-phase voltage and the negative-phase voltage at each of the measurement points based on the positive-phase voltage and the negative-phase voltage at each of the measurement points. 5. A first disconnection point calculating device for obtaining a position on the distribution line where the values of the two coincide with each other as a function of a distance on the distribution line, and outputting data of the position as a disconnection position signal. The disconnection detection device for a distribution line according to any one of the above. 前記1線断線判定処理装置は、前記の各測定点の正相電圧と零相電圧とをもとに、前記各測定点の前記正相電圧と前記零相電圧との差を求め、この差が一致する前記配電線上の位置を前記配電線上の距離の関数として求め、この位置のデータを断線位置信号として出力する第2の断線点演算装置を備えたことを特徴とする請求項2から4のいずれか一項に記載の配電線の断線検出装置。The one-line disconnection determination processing device obtains a difference between the positive-sequence voltage and the zero-sequence voltage at each of the measurement points based on the positive-sequence voltage and the zero-sequence voltage at each of the measurement points. 5. A second disconnection point calculating device for obtaining a position on the distribution line where the values of the two coincide with each other as a function of a distance on the distribution line, and outputting data of the position as a disconnection position signal. The disconnection detection device for a distribution line according to any one of the above. 前記1線断線判定処理装置は、前記の各測定点の逆相電圧と零相電圧とをもとに、前記各測定点の前記逆相電圧と前記零相電圧との差を求め、この差が一致する前記配電線上の位置を前記配電線上の距離の関数として求め、この位置のデータを断線位置信号として出力する第3の断線点演算装置を備えたことを特徴とする請求項2から4のいずれか一項に記載の配電線の断線検出装置。The one-line disconnection determination processing device obtains a difference between the negative-phase voltage and the zero-phase voltage at each of the measurement points based on the negative-phase voltage and the zero-phase voltage at each of the measurement points, and calculates the difference. 5. A third disconnection point calculating device for determining a position on the distribution line where the values of the two coincide with each other as a function of a distance on the distribution line, and outputting data of the position as a disconnection position signal. The disconnection detection device for a distribution line according to any one of the above. 前記1線断線判定処理装置は、前記の各測定点の逆相電圧と零相電圧とをもとに、前記各測定点の前記逆相電圧と前記零相電圧とが一致する前記配電線上の位置を前記配電線上の距離の関数として求め、この位置のデータを断線位置信号として出力する第4の断線点演算装置を備えたことを特徴とする請求項2から4のいずれか一項に記載の配電線の断線検出装置。The one-line disconnection determination processing device is based on the negative-sequence voltage and the zero-sequence voltage at each of the measurement points, on the distribution line where the negative-sequence voltage and the zero-sequence voltage at each of the measurement points match. 5. The apparatus according to claim 2, further comprising a fourth disconnection point calculation device that obtains a position as a function of a distance on the distribution line, and outputs data of the position as a disconnection position signal. 6. Distribution line disconnection detector. 複数の区間に区分した配電線の前記区間のそれぞれに設定された測定点に配置され、前記測定点での前記配電線の電圧と電流とを検出し、正相・逆相・零相の電圧と電流を演算してデータ化し、このデータを通信線を介して外部へ伝送するセンサ、
前記複数区間のそれぞれのセンサから前記通信線を介して前記データを受信し、前記配電線上の相隣る2つの前記測定点における正相電圧値と逆相電圧値と零相電圧値から、前記両地点間の正相電圧値の差Uと、前記両地点間の逆相電圧値と零相電圧値との和の差U+Uとを演算し、Uが零でなく、かつ、
=−(U+U)となるとき、前記配電線上の同一地点に2線の断線があることを示す断線検出信号を出力する2線断線判定処理装置を備えたことを特徴とする配電線の断線検出装置。
It is arranged at a measurement point set in each of the sections of the distribution line divided into a plurality of sections, detects a voltage and a current of the distribution line at the measurement point, and detects positive-phase, reverse-phase, and zero-phase voltages. And a sensor that calculates the current and converts it into data, and transmits this data to the outside via a communication line.
Receiving the data from the respective sensors of the plurality of sections via the communication line, from the positive-phase voltage value, the negative-phase voltage value, and the zero-phase voltage value at two adjacent measurement points on the distribution line, the difference U 1 of the positive phase voltage value between both points, the calculated and the difference U 2 + U 0 of the sum of the negative-phase voltage value and the zero-phase voltage value between both points, rather than U 1 is zero, and ,
When U 1 = − (U 2 + U 0 ), there is provided a two-wire disconnection determination processing device that outputs a disconnection detection signal indicating that there is a two-wire disconnection at the same point on the distribution line. Distribution line disconnection detection device.
前記2線断線判定処理装置は、前記の各区間の両端にある前記測定点の間の正相電圧の差を全ての区間について求め、この差が最も大となる区間に前記2線の断線があると判定して断線区間信号を出力する第4の区間判定装置を備えたことを特徴とする請求項9に記載の配電線の断線検出装置。The two-line disconnection determination processing device obtains the difference in the positive-sequence voltage between the measurement points at both ends of each of the sections for all the sections, and the section in which the difference is the largest indicates the disconnection of the two lines. The disconnection detection device for a distribution line according to claim 9, further comprising a fourth section determination device that determines that there is a connection and outputs a disconnection section signal. 前記2線断線判定処理装置は、前記の各区間の両端にある前記測定点の間の逆相電圧の差を全ての区間について求め、この差が最も大となる区間に前記2線の断線があると判定して断線区間信号を出力する第5の区間判定装置を備えたことを特徴とする請求項9に記載の配電線の断線検出装置。The two-wire disconnection determination processing device obtains the difference in the negative-phase voltage between the measurement points at both ends of each of the sections for all the sections, and the section in which the difference is the largest indicates the disconnection of the two lines. The disconnection detection device for a distribution line according to claim 9, further comprising a fifth section determination device that determines that there is a disconnection section signal and outputs a disconnection section signal. 前記2線断線判定処理装置は、前記の各区間の両端にある前記測定点の間の零相電圧の差を全ての区間について求め、この差が最も大となる区間に前記2線の断線があると判定して断線区間信号を出力する第6の区間判定装置を備えたことを特徴とする請求項9に記載の配電線の断線検出装置。The two-line disconnection determination processing device obtains a difference in the zero-sequence voltage between the measurement points at both ends of each of the sections for all the sections. 10. The distribution line disconnection detecting apparatus according to claim 9, further comprising a sixth section determining device that determines that there is a disconnection section signal and outputs a disconnection section signal. 前記2線断線判定処理装置は、前記の各測定点の正相電圧と逆相電圧値と零相電圧値との和を求め、この和が一致する前記配電線上の位置を前記配電線上の距離の関数として求め、この位置のデータを断線位置信号として出力する第5の断線点演算装置を備えたことを特徴とする請求項10から12のいずれか一項に記載の配電線の断線検出装置。The two-wire disconnection determination processing device obtains a sum of the positive-sequence voltage, the negative-sequence voltage value, and the zero-sequence voltage value of each of the measurement points, and determines a position on the distribution line where the sum coincides with a distance on the distribution line. The disconnection detecting device for a distribution line according to any one of claims 10 to 12, further comprising a fifth disconnection point calculating device that obtains the position as a disconnection position signal and obtains the position data as a disconnection position signal. .
JP2003024059A 2003-01-31 2003-01-31 Distribution line breakage detector Expired - Fee Related JP4117201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024059A JP4117201B2 (en) 2003-01-31 2003-01-31 Distribution line breakage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024059A JP4117201B2 (en) 2003-01-31 2003-01-31 Distribution line breakage detector

Publications (2)

Publication Number Publication Date
JP2004233255A true JP2004233255A (en) 2004-08-19
JP4117201B2 JP4117201B2 (en) 2008-07-16

Family

ID=32952700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024059A Expired - Fee Related JP4117201B2 (en) 2003-01-31 2003-01-31 Distribution line breakage detector

Country Status (1)

Country Link
JP (1) JP4117201B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820754B1 (en) 2007-03-19 2008-04-11 오성종합기술(주) A phase information transmitter and a phase identify apparatus for indistribution line using telephone network
CN107632225A (en) * 2017-08-11 2018-01-26 国网湖南省电力公司 A kind of small current system Earth design method
CN115113001A (en) * 2022-07-12 2022-09-27 国网江苏省电力有限公司宿迁供电分公司 Self-adaptive power distribution network single-phase disconnection fault positioning method
KR102621071B1 (en) * 2023-07-06 2024-01-04 (주)포유텍 Underground electric power line monitoring system using sub pipe

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102508097B (en) * 2011-10-31 2014-04-16 三一重工股份有限公司 Segmented detection device and detection method of line fault
CN109765459B (en) * 2019-01-22 2021-06-11 清大智能(北京)科技有限公司 Single-phase earth fault positioning method and system based on in-situ study and judgment
CN111257696B (en) * 2020-03-03 2021-05-04 西南交通大学 Estimation-based power transmission line fault detection method under limited PMU

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820754B1 (en) 2007-03-19 2008-04-11 오성종합기술(주) A phase information transmitter and a phase identify apparatus for indistribution line using telephone network
CN107632225A (en) * 2017-08-11 2018-01-26 国网湖南省电力公司 A kind of small current system Earth design method
CN107632225B (en) * 2017-08-11 2019-07-23 国网湖南省电力公司 A kind of small current system Earth design method
CN115113001A (en) * 2022-07-12 2022-09-27 国网江苏省电力有限公司宿迁供电分公司 Self-adaptive power distribution network single-phase disconnection fault positioning method
CN115113001B (en) * 2022-07-12 2023-10-20 国网江苏省电力有限公司宿迁供电分公司 Self-adaptive power distribution network single-phase disconnection fault positioning method
KR102621071B1 (en) * 2023-07-06 2024-01-04 (주)포유텍 Underground electric power line monitoring system using sub pipe

Also Published As

Publication number Publication date
JP4117201B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
CN103941141B (en) A kind of leakage current detection circuit, direct-current high-voltage system, detection method and device
CN103891077A (en) Travelling-wave based fault protection of high-voltage transmission lines
CN103733458A (en) A method of distance protection of parallel transmission line
JP2004233255A (en) Disconnection detecting system of distribution line
US20160349310A1 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
JP4993728B2 (en) Effective leakage current measuring instrument
Ding et al. A novel fault location algorithm for mixed overhead‐cable transmission system using unsynchronized current data
CN110231539B (en) Single-pole ground fault detection system for true bipolar direct current transmission and distribution line
US20010013771A1 (en) Phase failure monitoring
JPH0219779A (en) Locating method for grounding fault point in three terminal parallel circuit duplex power transmission line of high resistance
JPH11344525A (en) Fault point plotting device
JP4121979B2 (en) Non-grounded circuit insulation monitoring method and apparatus
CN110794336A (en) Insulation detection method of alternating current system
CN110470950B (en) Fault location method for power transmission line
JP2609331B2 (en) Accident point locator for parallel two-circuit power system
CN110470949A (en) Fault positioning method for transmission line
JP2002098729A (en) Leak current probing device
CN108572301A (en) Mixing breakdown of conducting wires localization method and system based on 3 current acquisitions
JP4284030B2 (en) Failure section locating method and failure section locating system
JP2010112920A (en) Cable section accident detection device
JP2568097B2 (en) Power cable accident section detection method
JP5101334B2 (en) Leakage current measuring device
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines
JPH09304468A (en) Method for locating fault-point of parallel two line system
JP2003315403A (en) Method for locating fault point

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees