JP4110623B2 - Thin film thermistor device and manufacturing method thereof - Google Patents

Thin film thermistor device and manufacturing method thereof Download PDF

Info

Publication number
JP4110623B2
JP4110623B2 JP21241798A JP21241798A JP4110623B2 JP 4110623 B2 JP4110623 B2 JP 4110623B2 JP 21241798 A JP21241798 A JP 21241798A JP 21241798 A JP21241798 A JP 21241798A JP 4110623 B2 JP4110623 B2 JP 4110623B2
Authority
JP
Japan
Prior art keywords
thin film
temperature
temperature sensing
film
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21241798A
Other languages
Japanese (ja)
Other versions
JP2000049004A (en
Inventor
勉 櫟原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP21241798A priority Critical patent/JP4110623B2/en
Publication of JP2000049004A publication Critical patent/JP2000049004A/en
Application granted granted Critical
Publication of JP4110623B2 publication Critical patent/JP4110623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Thermistors And Varistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の感温部を備え各感温部に半導体薄膜を用いた薄膜サーミスタ装置およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、非接触で温度を測定できる赤外線検出素子の開発が盛んになってきている。特に、サーミスタ型の赤外線検出素子は、高い直流出力が得られ、且つ、小型化、高集積化に適していることが知られており、各種装置の温度センサとしてサーミスタが広く用いられている。ところで、赤外線検出素子では、検出対象から放射される微弱な赤外線を高精度に検出するために、赤外線検出部と温度補償部との少なくとも2つの感温部を備えているのが一般的である。ここに、小型のサーミスタ型の赤外線検出素子の感温部は多結晶シリコンのような多結晶材料により形成されている。なお、サーミスタ型の赤外線検出素子においては、熱的応答性を高速化するために(熱時定数を小さくするために)、素子の熱容量を下げることが望まれており、感温部の膜厚は、0.1μmないし1μmに設定されている。
【0003】
また、温度分布を検出することができるように多数のサーミスタを2次元配列した赤外線画像センサが提案されており、この種の赤外線画像センサを用いると温度分布を画像情報と同様に扱うことが可能になる。
【0004】
赤外線画像センサなどに用いる小型のサーミスタ素子は、従来のように金属酸化物を焼結する方法では製造することができないから、基板上にCVD法により多結晶シリコンよりなる半導体薄膜を成膜し、この半導体薄膜を感温部として機能させることが考えられている。ここにおいて、多結晶シリコンは、減圧CVD法などによって600℃以上で堆積された後、イオン注入装置によってドーパントを注入し、さらに1000℃以上でアニールを行うことによってドーパントが活性化されている。
【0005】
【発明が解決しようとする課題】
ところで、上述の赤外線検出素子では、赤外線検出部と温度補償部とでサーミスタの感度(B定数)にばらつきがあると、つまり感温部間で感度のばらつきがあると、環境温度の補償精度が低くなるという問題があり、また、赤外線画像センサでは各感温部が各画素を構成しているので、感温部間の感度のばらつきが画像ノイズの原因になるという問題がある。
【0006】
一方、上記各従来構成では、感温部が多結晶シリコンにより構成されているが、上述のように減圧CVD法などによって600℃以上で堆積しイオン注入装置によってドーパントを注入し1000℃以上でアニールして形成された多結晶シリコンは、粒径が1μmないし3μmの結晶粒からなり、様々なサイズの結晶粒が集まって半導体薄膜を形成している。
【0007】
したがって、感温部の膜厚を薄くすると、図8に示すように、感温部8を構成する多数の結晶粒8aの中に感温部8の膜厚よりも大きな結晶粒8aが存在することになり、該膜厚よりも大きな結晶粒8aの存在する位置やその数によって各感温部8の素子面積に占める結晶粒界8bの割合が異なり感度がばらついてしまうので、赤外線検出素子や赤外線画像センサの環境温度を略一定に制御するための補正手段を別途に設ける必要があり、装置が複雑化するとともに大型化し、また、高価になるという問題があった。
【0008】
本発明は上記事由に鑑みて為されたものであり、その目的は、複数の感温部間の感度のばらつきが小さな低コストの薄膜サーミスタ装置およびその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
請求項1の発明は、上記目的を達成するために、複数の感温部を備え各感温部に多結晶シリコンよりなる半導体薄膜を用いた薄膜サーミスタ装置の製造方法であって、半導体薄膜は成膜温度を600℃ないし650℃とした減圧CVD法により成膜し、且つ、当該成膜時にドーピングを行うことを特徴とし、各感温部として膜厚に比べて結晶粒の粒径の小さな多結晶シリコンよりなる半導体薄膜を成膜することができ、しかも、成膜時にドーピングを行うことにより、従来のようなイオン注入工程およびイオン注入後のアニール工程が不要となり、半導体薄膜として従来のように半導体薄膜の膜厚に比べて大きな粒径の結晶粒を含んでいるような多結晶シリコンを用いた薄膜サーミスタ装置に比べて、複数の感温部間の感度のばらつきが小さな低コストの薄膜サーミスタ装置を提供することが可能となる。
【0012】
請求項の発明は、複数の感温部を備え各感温部にそれぞれ半導体薄膜を用いた薄膜サーミスタ装置であって、各半導体薄膜は、アモルファスシリコンもしくはアモルファスSiCよりなることを特徴とするものであり、各半導体薄膜に多結晶シリコンを用いた場合に比べて感温部間の感度のばらつきを低減することができ、従来のような補正手段を別途に設ける必要がなくなるから、低コスト化を図ることができる。また、多結晶シリコンの成膜温度に比べて低い成膜温度で感温部を成膜することができる。
【0015】
【発明の実施の形態】
(実施形態1)
本実施形態の薄膜サーミスタ装置は赤外線画像センサであって、図3に示すように複数の薄膜サーミスタ10が単結晶シリコン基板からなる支持基板1上に2次元配列して形成され、各薄膜サーミスタ10が図4に示すようにMOSトランジスタからなるスイッチング素子Sを介して2つの配線L1,L2に接続されている。なお、薄膜サーミスタ10の抵抗値変化を読み取るには、配線L1に電圧を印加してスイッチング素子Sをオンにして配線L2で読み出せばよい。
【0016】
各薄膜サーミスタ10の構成は同じであって、図2に示すように、支持基板1上のS34膜2と該S34膜2上のSiO2膜3とからなる薄膜部4上に形成されている。ここに、薄膜部4は、支持基板1の裏面側から支持基板1に凹所6を設けることにより形成されている。薄膜サーミスタ10は、薄膜部4上に形成されたクロム(Cr)膜よりなる下部電極11aと、下部電極11a上に形成された多結晶シリコン薄膜よりなる感温部8と、感温部8上に形成されたCr膜よりなる上部電極11bとで構成されている。なお、薄膜サーミスタ10の上にはSiON膜12が形成されている。
【0017】
以下、薄膜サーミスタ10の製造方法について説明する。
【0018】
まず、支持基板1の主表面および裏面それぞれにSi34膜を形成し、続いてSiO2膜を形成した後、フォトリソグラフィ技術およびエッチング技術を利用して凹所6を形成する。その後、支持基板1の主表面側のSiO2膜3の全面に、蒸着装置(例えば、EB蒸着装置)などによってCr膜を形成し、フォトリソグラフィ技術及びエッチング技術によって所定形状のCr膜よりなる下部電極11aを形成する。次に、減圧CVD法によって多結晶シリコンよりなる半導体薄膜を主表面側の全面を覆うように形成し、フォトリソグラフィ技術及びエッチング技術によって前記半導体薄膜(多結晶シリコン)の不要部分を除去することにより感温部8を形成し、その後、支持基板1の主表面側の全面を覆うようにCr膜を形成し、フォトリソグラフィ技術及びエッチング技術によって所定形状のCr膜よりなる上部電極11bを形成する。その後、支持基板1の主表面側の全面を覆うようにSiON膜12を形成し、フォトリソグラフィ技術及びエッチング技術によってSiON膜12の不要部分を除去する。なお、本実施形態では、各感温部8の素子サイズは、50μm×50μmとしてある。
【0019】
ところで、本実施形態では、感温部8を構成する多結晶シリコンを成膜温度を600℃ないし650℃とした減圧CVD法によって成膜しているが、その他の成膜条件としては、圧力を0.2Torrないし1Torrとし、原料ガスとして100%ないし20%(N2希釈)のSiH4を用いている。また、本実施形態では、成膜時にドーピングを行うことにより、従来のようなイオン注入工程およびイオン注入後のアニール工程を不要としている。上記条件で成膜された感温部8の結晶粒の粒径は0.03μmないし0.3μmであり、例えば成膜温度を630℃とした場合には、結晶粒の粒径は0.1μmであり、粒径の局所的なばらつきは少なく、成膜温度を700℃としたものに比べて膜の均一性も良好なものが得られる。
【0020】
要するに、本実施形態は、図1に示すように、各感温部8を、感温部8の膜厚に比べて小さな粒径の結晶粒8aからなる多結晶シリコンにより構成した点に特徴がある。しかして、本実施形態では、感温部8として従来のように感温部8の膜厚に比べて大きな粒径の結晶粒8aを含んでいるような多結晶シリコンを用いた場合に比べて、感温部8の素子面積に占める結晶粒界8bの割合がすべての感温部8でほぼ一定となり、結晶粒界8bでトラップされるキャリアの割合が感温部8間でほぼ一定となるので、感温部8の膜厚を1μm以下としても複数の感温部8間の感度のばらつきを低減することができ、従来のような補正手段を別途に設ける必要がなくなるから、低コスト化を図ることができる。また、図5に示すように、結晶粒8aの粒径を揃えることによって、各感温部8の結晶粒の平均粒径のばらつきを小さくすることができ、感温部8間の感度のばらつきをさらに低減することができる。なお、感温部8間の感度のばらつきと温度分解能とは図6に示すような関係があり、感度のばらつきが大きくなると、温度分解能が悪くなるので、温度分解能を向上させるためには、各感温部8の結晶粒の平均粒径のばらつきを小さくすることが望ましい。
【0021】
なお、本実施形態では、感温部8を減圧CVD法によって成膜する際にドーピングを行っているが、成膜後にイオン注入してもよく、この場合には、結晶粒8aの粒径が感温部8の膜厚よりも小さくなるようにアニール条件を決定すればよい(アニール温度を低温化すればよい)。
【0022】
(実施形態2)
本実施形態の薄膜サーミスタ装置の基本構成は実施形態1と略同じであり、感温部8を構成する半導体薄膜がアモルファスである点が相違する。
【0023】
しかして、本実施形態では、各感温部8を構成する半導体薄膜が、アモルファスなので、多結晶のような結晶粒が存在せず、各半導体薄膜に多結晶を用いた場合に比べて感温部8間の感度のばらつきを低減することができ、従来のような補正手段を別途に設ける必要がなくなるから、低コスト化を図ることができる。
【0024】
なお、感温部8を構成する半導体薄膜を形成するには、プラズマCVD法によってSiH4とH2の混合ガスをグロー放電により分解して成膜すればよい。したがって、感温部8の成膜温度を350℃以下にすることができ、従来例や実施形態1に比べて低いエネルギで感温部8を形成することができる。つまり、減圧CVD法に比べて成膜温度を低温化できる上、イオン注入工程やアニール工程などが不要になる。
【0025】
また、原料ガスにCH4等のガスを混入することで、感温部8として例えばアモルファスSiC(以下、a−SiCと称す)等のアモルファス化合物を成膜してもよい。なお、p形a−SiC:H薄膜を成膜するには、原料ガスとしてモノシラン(SiH4)とメタン(CH4)との混合ガスを用い、原料ガスを希釈するガスとして水素ガス(H2)を用い、ドーパントガスとしてはH2希釈のジボラン(B26)を用いればよい。この場合の成膜条件の一例としては、プラズマCVD装置において、基板温度(成膜温度)を270℃、圧力を0.9Torr、希釈ガスをH2、SiH4の流量を50sccm、CH4の流量を170sccm、H2希釈で濃度が0.5%のB26が200sccmとすればよい。
【0026】
(参考例)
本参考例の薄膜サーミスタ装置の基本構成は実施形態1と略同じであり、感温部8を構成する半導体薄膜が、アモルファス相と結晶相とが混在する微結晶シリコンである点が相違する。
【0027】
本参考例では、感温部8が、アモルファス相と結晶相とが混在する微結晶相なので、結晶粒界は存在せず、膜の均一性が高く、各感温部8に多結晶シリコンを用いた従来例に比べて感温部8間の感度のばらつきを低減することができ、従来のような補正手段を別途に設ける必要がなくなるから、低コスト化を図ることができる。また、多結晶シリコンの成膜温度に比べて低い成膜温度で感温部8を成膜することができる。また、感温部8に微結晶シリコンを用いることにより、アモルファスシリコンを用いた場合に比べて導電率を2桁以上向上させることができる。
【0028】
ところで、アモルファス相は結晶相に比べて移動度が2桁程度低く、微結晶相の各種特性は、アモルファス相と結晶相との体積比で決まるので、感温部8間の上記体積比をほぼ一定にすることにより、感温部8間の感度のばらつきをより一層低減することができる。
【0029】
なお、微結晶シリコンの形成される条件については、SiH4ガス/H2ガス流量比と高周波電力を変化させた場合の例を図7に示すが、図7は株式会社培風館より1994年5月20日発行の「アモルファス半導体」の95頁に記載されているものである。なお、基板温度350℃、圧力50mTorrは一定である。図7中、白抜き3/4円の直径は、作製された膜中に含まれる微結晶粒の平均粒径を表しており、黒1/4円の面積は、微結晶の体積分率を表している。図7左下に、粒径10nm、体積分率100%の場合を示してある。図7中Aは「アモルファス」を表しており、このプラズマ条件で作製された膜がアモルファスであったことを示している。すなわち、この図7中Aで囲まれた範囲のプラズマ条件において作製された膜がμc−Si:Hとなることを示している。微結晶シリコンを成膜するには、アモルファスシリコンの成膜条件よりも、水素希釈率を高めたり、高周波電力密度を低くしたり、成膜温度を高めたりすればよい。
【0030】
なお、上記各実施形態および参考例では、薄膜サーミスタ装置として、赤外線画像センサについて説明したが、赤外線画像センサに限定されるものではなく、複数の感温部を備えていればよく、例えば従来例で説明したような赤外線検出部と温度補償部との2つの感温部を備えた赤外線検出素子であってもよい。
【0031】
【発明の効果】
請求項1の発明は、複数の感温部を備え各感温部に多結晶シリコンよりなる半導体薄膜を用いた薄膜サーミスタ装置の製造方法であって、半導体薄膜は成膜温度を600℃ないし650℃とした減圧CVD法により成膜し、且つ、当該成膜時にドーピングを行うことを特徴とし、各感温部として膜厚に比べて結晶粒の粒径の小さな多結晶シリコンよりなる半導体薄膜を成膜することができ、しかも、成膜時にドーピングを行うことにより、従来のようなイオン注入工程およびイオン注入後のアニール工程が不要となり、半導体薄膜として従来のように半導体薄膜の膜厚に比べて大きな粒径の結晶粒を含んでいるような多結晶シリコンを用いた薄膜サーミスタ装置に比べて、複数の感温部間の感度のばらつきが小さな低コストの薄膜サーミスタ装置を提供することが可能となる。
【0034】
請求項の発明は、複数の感温部を備え各感温部にそれぞれ半導体薄膜を用いた薄膜サーミスタ装置であって、各半導体薄膜は、アモルファスシリコンもしくはアモルファスSiCよりなるので、各半導体薄膜に多結晶シリコンを用いた場合に比べて感温部間の感度のばらつきを低減することができ、従来のような補正手段を別途に設ける必要がなくなるから、低コスト化を図ることができるという効果がある。また、多結晶シリコンの成膜温度に比べて低い成膜温度で感温部を成膜することができるという効果がある。
【図面の簡単な説明】
【図1】実施形態1の要部説明図である。
【図2】同上における薄膜サーミスタの断面図である。
【図3】同上の概略構成図である。
【図4】図3の要部説明図である。
【図5】同上の要部説明図である。
【図6】感度のばらつきと温度分解能との関係説明図である。
【図7】微結晶シリコンの成膜条件の説明図である。
【図8】従来例の要部説明図である。
【符号の説明】
8 感温部
8a 結晶粒
8b 結晶粒界
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film thermistor device including a plurality of temperature sensing parts and using a semiconductor thin film for each temperature sensing part, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, development of infrared detection elements that can measure temperature in a non-contact manner has become active. In particular, it is known that a thermistor-type infrared detection element can obtain a high DC output and is suitable for miniaturization and high integration, and thermistors are widely used as temperature sensors for various devices. By the way, in order to detect the weak infrared rays radiated from the detection target with high accuracy, the infrared detection element is generally provided with at least two temperature sensing units, that is, an infrared detection unit and a temperature compensation unit. . Here, the temperature sensitive part of the small thermistor type infrared detecting element is formed of a polycrystalline material such as polycrystalline silicon. In thermistor-type infrared detection element, in order to increase the thermal response (to reduce the thermal time constant), it is desired to reduce the thermal capacity of the element, and the film thickness of the temperature sensitive part Is set to 0.1 μm to 1 μm.
[0003]
In addition, an infrared image sensor in which a number of thermistors are two-dimensionally arranged to detect the temperature distribution has been proposed. When this type of infrared image sensor is used, the temperature distribution can be handled in the same way as image information. become.
[0004]
A small thermistor element used for an infrared image sensor or the like cannot be manufactured by a conventional method of sintering a metal oxide, so a semiconductor thin film made of polycrystalline silicon is formed on a substrate by a CVD method, It is considered that this semiconductor thin film functions as a temperature sensitive part. Here, after the polycrystalline silicon is deposited at 600 ° C. or higher by a low pressure CVD method or the like, the dopant is activated by implanting the dopant with an ion implantation apparatus and further annealing at 1000 ° C. or higher.
[0005]
[Problems to be solved by the invention]
By the way, in the above-described infrared detection element, if the sensitivity (B constant) of the thermistor varies between the infrared detection unit and the temperature compensation unit, that is, if there is variation in sensitivity between the temperature sensing units, the compensation accuracy of the environmental temperature is increased. There is a problem that the temperature is lowered, and in the infrared image sensor, each temperature sensing part constitutes each pixel, and thus there is a problem that variations in sensitivity between the temperature sensing parts cause image noise.
[0006]
On the other hand, in each of the above conventional configurations, the temperature sensitive portion is made of polycrystalline silicon, but as described above, it is deposited at 600 ° C. or higher by the low pressure CVD method or the like, and the dopant is implanted by an ion implantation apparatus and annealed at 1000 ° C. or higher. The formed polycrystalline silicon is composed of crystal grains having a grain size of 1 μm to 3 μm, and crystal grains of various sizes gather to form a semiconductor thin film.
[0007]
Therefore, when the film thickness of the temperature sensitive part is reduced, crystal grains 8a larger than the film thickness of the temperature sensitive part 8 are present in a large number of crystal grains 8a constituting the temperature sensitive part 8 as shown in FIG. In other words, the ratio of the crystal grain boundary 8b in the element area of each temperature sensitive portion 8 varies depending on the position where the crystal grains 8a larger than the film thickness exist and the number thereof, and the sensitivity varies. It is necessary to separately provide a correction means for controlling the ambient temperature of the infrared image sensor to be substantially constant, which causes a problem that the apparatus becomes complicated, becomes larger, and becomes expensive.
[0008]
The present invention has been made in view of the above reasons, and an object of the present invention is to provide a low-cost thin film thermistor device with small variations in sensitivity among a plurality of temperature sensing parts and a method for manufacturing the same.
[0009]
[Means for Solving the Problems]
The invention of claim 1, in order to achieve the above object, a thin film thermistor equipment manufacturing method using the semiconductive thin film of polycrystalline silicon for each temperature sensing unit comprises a plurality of temperature sensing portion, The semiconductor thin film is formed by a low pressure CVD method at a film formation temperature of 600 ° C. to 650 ° C., and doping is performed at the time of the film formation. can be formed of a semiconductor thin film made of small polysilicon diameter, moreover, by performing doping during deposition, ion implantation, ion implantation and subsequent annealing process, such as in the prior art becomes unnecessary, semiconductors Compared to conventional thin film thermistor devices using polycrystalline silicon that contains crystal grains with a grain size larger than the thickness of the semiconductor thin film as a thin film , the sensitivity variation between temperature sensing parts is different. Small crack It is possible to provide a low-cost thin-film thermistor device.
[0012]
The invention of claim 2 is a thin film thermistor device having a plurality of temperature sensing parts and using a semiconductor thin film for each temperature sensing part, wherein each semiconductor thin film is made of amorphous silicon or amorphous SiC. Compared with the case where polycrystalline silicon is used for each semiconductor thin film, it is possible to reduce the variation in sensitivity between the temperature sensitive parts, and it is not necessary to provide a separate correction means as in the past, so the cost is reduced. Can be achieved. Further, the temperature sensitive part can be formed at a film formation temperature lower than the film formation temperature of polycrystalline silicon .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
The thin film thermistor device of the present embodiment is an infrared image sensor, and a plurality of thin film thermistors 10 are two-dimensionally arranged on a support substrate 1 made of a single crystal silicon substrate as shown in FIG. Is connected to two wirings L 1 and L 2 via a switching element S made of a MOS transistor as shown in FIG. In order to read the change in resistance value of the thin film thermistor 10, it is only necessary to apply a voltage to the wiring L 1 to turn on the switching element S and read out the wiring L 2 .
[0016]
The configuration of each thin film thermistor 10 be the same, as shown in FIG. 2, thin film 4 consisting of a S 3 N 4 film 2 on the supporting substrate 1 the S 3 N 4 film 2 on the SiO 2 film 3 which Formed on top. Here, the thin film portion 4 is formed by providing a recess 6 in the support substrate 1 from the back side of the support substrate 1. The thin film thermistor 10 includes a lower electrode 11 a made of a chromium (Cr) film formed on the thin film portion 4, a temperature sensing portion 8 made of a polycrystalline silicon thin film formed on the lower electrode 11 a, and the temperature sensing portion 8. And an upper electrode 11b made of a Cr film. A SiON film 12 is formed on the thin film thermistor 10.
[0017]
Hereinafter, a method for manufacturing the thin film thermistor 10 will be described.
[0018]
First, after forming a Si 3 N 4 film on each of the main surface and the back surface of the support substrate 1 and subsequently forming a SiO 2 film, the recess 6 is formed using a photolithography technique and an etching technique. Thereafter, a Cr film is formed on the entire surface of the SiO 2 film 3 on the main surface side of the support substrate 1 by a vapor deposition apparatus (for example, an EB vapor deposition apparatus) or the like, and a lower portion made of a Cr film having a predetermined shape by a photolithography technique and an etching technique. The electrode 11a is formed. Next, a semiconductor thin film made of polycrystalline silicon is formed so as to cover the entire surface on the main surface side by low pressure CVD, and unnecessary portions of the semiconductor thin film (polycrystalline silicon) are removed by photolithography technique and etching technique. After forming the temperature sensing portion 8, a Cr film is formed so as to cover the entire main surface side of the support substrate 1, and an upper electrode 11b made of a Cr film having a predetermined shape is formed by a photolithography technique and an etching technique. Thereafter, a SiON film 12 is formed so as to cover the entire main surface side of the support substrate 1, and unnecessary portions of the SiON film 12 are removed by a photolithography technique and an etching technique. In the present embodiment, the element size of each temperature sensing unit 8 is 50 μm × 50 μm.
[0019]
By the way, in the present embodiment, the polycrystalline silicon constituting the temperature sensing portion 8 is formed by the low pressure CVD method in which the film formation temperature is 600 ° C. to 650 ° C. As other film formation conditions, the pressure is 0.2 Torr to 1 Torr, and 100% to 20% (N 2 diluted) SiH 4 is used as the source gas. Further, in the present embodiment, the conventional ion implantation process and the annealing process after ion implantation are unnecessary by performing doping at the time of film formation. The crystal grain size of the temperature sensing portion 8 formed under the above conditions is 0.03 μm to 0.3 μm. For example, when the film formation temperature is 630 ° C., the crystal grain size is 0.1 μm. Thus, there is little local variation in particle size, and a film with good film uniformity can be obtained as compared with a film forming temperature of 700 ° C.
[0020]
In short, as shown in FIG. 1, the present embodiment is characterized in that each temperature sensing portion 8 is made of polycrystalline silicon composed of crystal grains 8a having a smaller particle size than the thickness of the temperature sensing portion 8. is there. Thus, in the present embodiment, as compared with the conventional case where polycrystalline silicon that includes crystal grains 8a having a grain size larger than the film thickness of the temperature sensing portion 8 is used as the temperature sensing portion 8. The ratio of the crystal grain boundaries 8b to the element area of the temperature sensitive part 8 is substantially constant in all the temperature sensitive parts 8, and the ratio of carriers trapped at the crystal grain boundaries 8b is substantially constant between the temperature sensitive parts 8. Therefore, even if the film thickness of the temperature sensing portion 8 is 1 μm or less, the sensitivity variation among the plurality of temperature sensing portions 8 can be reduced, and there is no need to separately provide a correction means as in the prior art. Can be achieved. In addition, as shown in FIG. 5, by arranging the grain sizes of the crystal grains 8 a, the variation in the average grain size of the crystal grains of each temperature sensing unit 8 can be reduced, and the sensitivity variation among the temperature sensing units 8. Can be further reduced. Note that the sensitivity variation between the temperature sensing parts 8 and the temperature resolution have a relationship as shown in FIG. 6, and if the sensitivity variation increases, the temperature resolution deteriorates. It is desirable to reduce the variation in the average grain size of the crystal grains of the temperature sensitive portion 8.
[0021]
In the present embodiment, doping is performed when the temperature-sensitive portion 8 is formed by the low pressure CVD method. However, ion implantation may be performed after the film formation, and in this case, the grain size of the crystal grains 8a is What is necessary is just to determine annealing conditions so that it may become smaller than the film thickness of the temperature sensing part 8 (it should just make annealing temperature low).
[0022]
(Embodiment 2)
The basic configuration of the thin film thermistor device of the present embodiment is substantially the same as that of the first embodiment, and is different in that the semiconductor thin film constituting the temperature sensing unit 8 is amorphous.
[0023]
Therefore, in this embodiment, since the semiconductor thin film which comprises each temperature sensing part 8 is amorphous, there is no crystal grain like a polycrystal and compared with the case where a polycrystal is used for each semiconductor thin film. The variation in sensitivity between the units 8 can be reduced, and it is not necessary to separately provide a correction means as in the prior art, so that the cost can be reduced.
[0024]
In order to form the semiconductor thin film constituting the temperature sensitive portion 8, the mixed gas of SiH 4 and H 2 may be decomposed by glow discharge by the plasma CVD method. Therefore, the film forming temperature of the temperature sensing portion 8 can be 350 ° C. or lower, and the temperature sensing portion 8 can be formed with lower energy than in the conventional example or the first embodiment. That is, the film forming temperature can be lowered as compared with the low pressure CVD method, and an ion implantation process or an annealing process is not required.
[0025]
Alternatively, an amorphous compound such as amorphous SiC (hereinafter referred to as a-SiC) may be formed as the temperature sensing portion 8 by mixing a gas such as CH 4 into the source gas. In order to form a p-type a-SiC: H thin film, a mixed gas of monosilane (SiH 4 ) and methane (CH 4 ) is used as a source gas, and hydrogen gas (H 2 is used as a gas for diluting the source gas. ) And diborane (B 2 H 6 ) diluted with H 2 may be used as the dopant gas. As an example of film formation conditions in this case, in the plasma CVD apparatus, the substrate temperature (film formation temperature) is 270 ° C., the pressure is 0.9 Torr, the dilution gas is H 2 , the flow rate of SiH 4 is 50 sccm, and the flow rate is CH 4 . 170 sccm, and B 2 H 6 having a concentration of 0.5% diluted with H 2 may be 200 sccm.
[0026]
(Reference example)
The basic configuration of the thin film thermistor device of the present reference example is substantially the same as that of the first embodiment, except that the semiconductor thin film constituting the temperature sensing portion 8 is microcrystalline silicon in which an amorphous phase and a crystalline phase are mixed.
[0027]
In this reference example, since the temperature sensitive part 8 is a microcrystalline phase in which an amorphous phase and a crystalline phase are mixed, there is no crystal grain boundary, the film uniformity is high, and each temperature sensitive part 8 has polycrystalline silicon. Compared to the conventional example using the temperature sensor, variations in sensitivity between the temperature sensing portions 8 can be reduced, and it is not necessary to separately provide a correction means as in the prior art, so that the cost can be reduced. In addition, the temperature sensitive portion 8 can be formed at a film formation temperature lower than the film formation temperature of polycrystalline silicon. Further, by using microcrystalline silicon for the temperature sensing portion 8, the conductivity can be improved by two orders of magnitude or more compared to the case of using amorphous silicon.
[0028]
By the way, the mobility of the amorphous phase is about two orders of magnitude lower than that of the crystalline phase, and the various characteristics of the microcrystalline phase are determined by the volume ratio of the amorphous phase to the crystalline phase. By making it constant, the variation in sensitivity between the temperature sensing parts 8 can be further reduced.
[0029]
As for the conditions for forming microcrystalline silicon, FIG. 7 shows an example in which the SiH 4 gas / H 2 gas flow ratio and the high-frequency power are changed. FIG. 7 is May 1994 from Baifukan Co., Ltd. This is described on page 95 of “Amorphous Semiconductor” issued on the 20th. The substrate temperature is 350 ° C. and the pressure is 50 mTorr. In FIG. 7, the diameter of the open 3/4 circle represents the average grain size of the microcrystal grains contained in the produced film, and the area of the black 1/4 circle represents the volume fraction of the microcrystal. Represents. In the lower left of FIG. 7, the case of a particle size of 10 nm and a volume fraction of 100% is shown. In FIG. 7, A represents “amorphous”, which indicates that the film produced under this plasma condition was amorphous. That is, the film produced under the plasma conditions in the range surrounded by A in FIG. 7 is μc-Si: H. In order to form microcrystalline silicon, it is only necessary to increase the hydrogen dilution rate, lower the high-frequency power density, or increase the film formation temperature than the film formation conditions for amorphous silicon.
[0030]
In each of the above embodiments form state and the reference example, a thin film thermistor device has been described infrared image sensor, is not limited to the infrared image sensor, it is sufficient that comprises a plurality of temperature sensing portion, for example, The infrared detection element provided with two temperature sensing parts, such as an infrared detection part and a temperature compensation part as described in the conventional example, may be used.
[0031]
【The invention's effect】
The invention according to claim 1, a thin film thermistor equipment manufacturing method using the semiconductive thin film of polycrystalline silicon in the temperature sensitive portion comprises a plurality of temperature sensing portion, 600 deposition temperature semiconductor thin film The film is formed by a low pressure CVD method at a temperature of 650 ° C. to 650 ° C., and doping is performed at the time of film formation, and each temperature-sensitive portion is made of polycrystalline silicon having a crystal grain size smaller than the film thickness. can be formed of a semiconductor thin film, moreover, by performing doping during deposition, as in the prior art ion implantation steps and ion implantation after the annealing step is not required, the conventional semiconductor thin film as a semiconductor thin film large particle size as compared grains in the thin film thermistor device using the polycrystalline silicon, such as including a plurality of sensitivity between the temperature sensing portion Baratsu outs small, low-cost thin film thermistor than the thickness of the It is possible to provide a location.
[0034]
The invention of claim 2 is a thin film thermistor device having a plurality of temperature sensing parts and using a semiconductor thin film for each temperature sensing part, and each semiconductor thin film is made of amorphous silicon or amorphous SiC. Compared to the case of using polycrystalline silicon, it is possible to reduce the variation in sensitivity between the temperature sensing parts, and it is not necessary to separately provide a correction means as in the prior art, so that the cost can be reduced. There is. Further, there is an effect that the temperature sensitive part can be formed at a film forming temperature lower than the film forming temperature of the polycrystalline silicon .
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a main part of a first embodiment.
FIG. 2 is a cross-sectional view of the thin film thermistor of the above.
FIG. 3 is a schematic configuration diagram of the above.
4 is an explanatory diagram of a main part of FIG. 3;
FIG. 5 is an explanatory diagram of a main part of the above.
FIG. 6 is a diagram illustrating the relationship between sensitivity variation and temperature resolution.
FIG. 7 is an explanatory diagram of film formation conditions for microcrystalline silicon.
FIG. 8 is an explanatory diagram of a main part of a conventional example.
[Explanation of symbols]
8 Temperature Sensitive Section 8a Crystal Grain 8b Grain Boundary

Claims (2)

複数の感温部を備え各感温部に多結晶シリコンよりなる半導体薄膜を用いた薄膜サーミスタ装置の製造方法であって、半導体薄膜は成膜温度を600℃ないし650℃とした減圧CVD法により成膜し、且つ、当該成膜時にドーピングを行うことを特徴とする薄膜サーミスタ装置の製造方法 A plurality of temperature sensing portion comprises manufacturing method of a thin film thermistor equipment using semiconductive thin film of polycrystalline silicon in the temperature sensing portion, the semiconductor thin film was to not 600 ° C. The deposition temperature 650 ° C. under reduced pressure was deposited by a CVD method, and a thin film thermistor equipment manufacturing method which is characterized in that the doping during the deposition. 複数の感温部を備え各感温部にそれぞれ半導体薄膜を用いた薄膜サーミスタ装置であって、各半導体薄膜は、アモルファスシリコンもしくはアモルファスSiCよりなることを特徴とする薄膜サーミスタ装置 To each temperature sensing unit comprises a plurality of temperature sensing portion A thin film thermistor device using a semiconductor thin film, the semiconductor thin film, the thin film thermistor device you characterized by consisting of amorphous silicon or amorphous SiC.
JP21241798A 1998-07-28 1998-07-28 Thin film thermistor device and manufacturing method thereof Expired - Fee Related JP4110623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21241798A JP4110623B2 (en) 1998-07-28 1998-07-28 Thin film thermistor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21241798A JP4110623B2 (en) 1998-07-28 1998-07-28 Thin film thermistor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000049004A JP2000049004A (en) 2000-02-18
JP4110623B2 true JP4110623B2 (en) 2008-07-02

Family

ID=16622250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21241798A Expired - Fee Related JP4110623B2 (en) 1998-07-28 1998-07-28 Thin film thermistor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4110623B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3857024B2 (en) * 2000-07-17 2006-12-13 株式会社神戸製鋼所 Method for forming microcrystalline silicon thin film
EP3104376A4 (en) * 2014-02-06 2017-09-06 Japan Science and Technology Agency Resin composition for temperature sensor, element for temperature sensor, temperature sensor, and method for producing element for temperature sensor
JP7074209B2 (en) * 2018-12-28 2022-05-24 株式会社村田製作所 Complex and structures and thermistors using it

Also Published As

Publication number Publication date
JP2000049004A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
US7309621B2 (en) Method to fabricate a nanowire CHEMFET sensor device using selective nanowire deposition
US6927392B2 (en) Active or self-biasing micro-bolometer infrared detector
US5977603A (en) Infrared detector and fabrication method thereof
KR20000048156A (en) Semiconductor device and method of making thereof
JP3949789B2 (en) Sensor device, sensor array, and product including substrate and array circuit
CN1272223A (en) Reduction of gate-induced drain leakage in semiconductor devices
JP4110623B2 (en) Thin film thermistor device and manufacturing method thereof
US5814530A (en) Producing a sensor with doped microcrystalline silicon channel leads
JPH10335607A (en) Manufacture of semiconductor device
US5470780A (en) Method of fabricating poly-silicon resistor
JP3006396B2 (en) Method of forming semiconductor thin film
JP2889718B2 (en) Method for manufacturing photovoltaic device
JP3977878B2 (en) Thin film thermistor and manufacturing method thereof
JP2603285B2 (en) Method for manufacturing photoconductive image sensor
WO2022133631A1 (en) Thin film transistor, display apparatus, and method of fabricating thin film transistor
JPH0513803A (en) Photoelectric transfer device
JP3826555B2 (en) Thin film thermistor and manufacturing method thereof
US8269311B2 (en) Multilayer oxide on nitride on oxide structure and method for the manufacture of semiconductor devices
JPH09139408A (en) Method of sorting semiconductor substrate, having epitaxial growth semiconductor layer and manufacture of semiconductor device
JP3711740B2 (en) Thin film thermistor and manufacturing method thereof
US20080296705A1 (en) Gate and manufacturing method of gate material
JPH03229456A (en) Manufacture of semiconductor device
JPH0488642A (en) Manufacture of thin film transistor
JPH04307977A (en) Manufacture of thermal type infrared sensor
JPH10223842A (en) Semiconductor integrated circuit and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees