JP4110493B2 - CVD equipment - Google Patents

CVD equipment Download PDF

Info

Publication number
JP4110493B2
JP4110493B2 JP14841098A JP14841098A JP4110493B2 JP 4110493 B2 JP4110493 B2 JP 4110493B2 JP 14841098 A JP14841098 A JP 14841098A JP 14841098 A JP14841098 A JP 14841098A JP 4110493 B2 JP4110493 B2 JP 4110493B2
Authority
JP
Japan
Prior art keywords
wafer
tray
movable
hawk
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14841098A
Other languages
Japanese (ja)
Other versions
JPH11329983A (en
Inventor
政充 小口
秀彦 奥田
徳仁 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP14841098A priority Critical patent/JP4110493B2/en
Publication of JPH11329983A publication Critical patent/JPH11329983A/en
Application granted granted Critical
Publication of JP4110493B2 publication Critical patent/JP4110493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、常圧CVD(Chemical Vapor Deposite)を使用し、表裏面に接触傷を発生させない成膜装置に係り、高平坦度を得るために両面研磨されたウェーハに酸化膜を設けて仕上げ研磨を施すウェーハの製造工程で、表面に傷類をつけることなく酸化膜を形成可能にし、傷類除去のための研磨を省略して仕上げ研磨を実施できるようにしたCVDによる成膜装置に関する。
【0002】
【従来の技術】
半導体ウェーハ、特にSi等のウェーハ表面に酸化膜を設ける際に多用されている成膜方法として常圧CVDがあり、この方法の利点は、熱励起の蒸着であり化学反応が関与するシンプルプロセスで高い膜形成速度が得られると同時に、移載ロボットを使用した搬送系を採用することによって、連続式となし生産性を高くすることができる点にある。
【0003】
従来、常圧CVD法では、SiH4−O2系が主反応系であったが、最近は膜密度、パーティクル対策でTEOS−O3系の反応も用いられている。
【0004】
図3に従来の連続式常圧CVD装置の基本構造の一例を示す。カセットステージ1を経てローダー2に入ったウェーハは、エレベーター3で所要速度で回転している上側の搬送路4に移載され、成膜するための反応部に移動する。
【0005】
図の中央に示す反応部は、搬送路4,4に近接配置されるヒーター5と原料ガスの供給と排気を行うガスノズル6を備えており、反応部でヒーター5によって例えば、400℃近傍に熱せられたウェーハ上にガスノズル6から供給される原料ガスの反応により所定の酸化膜が堆積、成膜される。
【0006】
所要の酸化膜を成膜され反応部から出たウェーハは、装入時とは逆にエレベーター7を経てアンローダー8によってカセットステージ9に戻されて搬出される。
【0007】
【発明が解決しようとする課題】
従来、前記常圧CVD装置においては、搬送路のコンベアーベルト上に直接シリコンウェーハを置くか、あるいはベルトに代えてSiC製のトレーを使用してその上にシリコンウェーハを配置する方法が採用されており、ローダーからの移載及びウェーハの反応部への搬送時に傷類やスクラッチが発生することがある。
【0008】
これはトレーへ移載する時や反応時にガス流れと温度上昇によりウェーハが微動して、ウェーハ外周面を支持しているトレー縁部で発生すると考えられる。この傷類は表面を研磨することによりなくすことができるが、10数μm研磨しなければならない。
【0009】
一方、高平坦度を得るために研磨されたウェーハに酸化膜を設けた後、仕上げ研磨を施すウェーハの製造工程において、従来の8インチ外径のウェーハの場合、高平坦度を得ることが比較的容易であるため、前記のCVD後の傷類があっても仕上げ研磨前に傷除去のための研磨を行うことができる。
【0010】
しかし、これから主流となる12インチ外径のウェーハの場合、特に高平坦度を得るためには両面研磨が不可欠であると考えられるが、両面研磨ウェーハの場合、CVD膜の成膜されていない表面側の研磨量を少なくしようとすると、この傷の深さが問題となる。
【0011】
この発明は、CVDによる成膜におけるウェーハ表面の傷類をなくすことにより、表面研磨量を最小限にでき、ウェーハの平坦度向上と生産性の向上を確保できるCVDによる成膜装置の提供を目的としている。
【0012】
【課題を解決するための手段】
発明者らは、前記目的を達成するために、CVDによる成膜方法について種々検討した結果、CVD装置の反応部へ移動するコンベアやトレーへウェーハを移載する装置において、ウェーハの面取り部分、すなわちウェーハエッジのみを支持してウェーハ表面には何ら接触しない状態で反応部へ移載あるいは搬出すれば、ウェーハ表面の傷類をなくすことが可能であることを知見した。
【0013】
さらに発明者らは、ウェーハと相似形の凹形状のSiCトレーにおいて、トレー内周面を傾斜面としてウェーハエッジのみを支持可能にすると、ウェーハと搬送部低部は1mm以内の隙間を保たれてウェーハエッジのみに接触し、ウェーハの表面には接触しない状態で搬送可能でウェーハ表面の傷類の発生をなくし、かつウェーハ面内はヒーターからの輻射熱を均等に受けて化学反応し、酸化膜を堆積、成膜できることを知見し、この発明を完成した。
【0014】
すなわち、この発明は、ホークにより保持されて反応領域内に搬入された被処理ウェーハを加熱して、この反応領域内に供給された原料ガスに応じた成分を被処理ウェーハ表面に堆積し、成膜するCVD装置において、上記ホークは、板状の本体と、この本体に設けられた固定つめと、この本体の固定つめと対向した位置に配置された可動つめと、この可動つめを固定つめに向かって動くよう付勢するスプリングと、この可動つめを固定つめに対して接近離隔動させる電磁石とを有し、これらの固定つめと可動つめはともに被処理ウェーハの面取りされたエッジが接触する凹部を有して、これらの固定つめと可動つめとで被処理ウェーハを挟持するCVD装置である。
【0015】
【発明の実施の形態】
この発明は、常圧CVD装置において、ローダー、アンローダーでの移載中にウェーハの表面状態は傷類などのない状態に保持されており、ウェーハとトレーの間隔を接触しない最小限の幅に設定してあり、酸化膜堆積の過程でも傷類のない均一な温度状態で堆積されるため、片方の表面は均一な酸化膜が形成され、他方の表面は傷類のない鏡面研磨面をもったシリコンウェーハを作製することができる。
【0016】
この発明による成膜方法と装置を図面に基づいて説明する。図1は移載ロボットのハンドリング部分であるホーク10を示す。ホーク10は本体11が板状であり、下面の一方端側にはウェーハ20の面取りされたエッジのみに接触可能な溝部を設けたSiC製の固定つめ12,13が固着配置され、これに対向するように同様のSiC製のつめが可動つめ14,15として配置される構成である。
【0017】
一対の可動つめ14,15は、本体11下面に設けたレール16に倣い移動するよう支持配置され、スプリング17を挟む連結棒18が接続されて、本体11下面の他方端に設けられた電磁石19によって、電磁石19側へ磁気吸引可能に構成されている。
【0018】
SiC製のつめ12,13、14,15は、それぞれウェーハ20エッジのみに接触可能かつウェーハ円周状に沿った形状の溝部を有し、その厚みは1mm程度であって、図1Bに示すようにウェーハ20を挟持する際は、一対の可動つめ14,15がスプリング17によって付勢されており、離脱させるには電磁石19の励磁によって、スプリング17を圧縮して行うもので、かかる開閉によって両面研磨ウェーハ20との接触挟持、離脱が可能となる。
【0019】
CVD装置の反応部である搬送路内では図2に示すSiC製のトレー30を使用する。トレー30はウェーハ20と相似形の凹部からなるさら状で、外周壁31内にウェーハ20を収納するが、内周面は所要の傾斜面32となっており、ウェーハ20の端面と同様な形状を有する。例えば、トレー30の傾斜面32はウェーハ20がラウンド形状のときは角度を20〜25度にすればよい。
【0020】
トレー30の傾斜面32は、ウェーハ20の端面と同様な形状を有すればよいが、ウェーハ20のズレを防ぐために傾斜面32におけるウェーハ20外周とトレー30内周との間隔をできるだけ小さく、例えば1mm以内に設定している。
【0021】
また、トレー30の底面34とウェーハ20との間隔はウェーハ面内の温度均一化のため1mm以内に設定している。ローダー、アンローダーからのウェーハ移載のために、前記のSiC製のつめ12,13、14,15がウェーハ20との接触挟持、離脱可能とするために、トレー30の外周壁31には4カ所の切欠部33が設けられ、ウェーハ20の裏面と同じ位置より下までくり抜かれているが、ウェーハ20の裏面に堆積しないように切欠部33の形状を決定している。
【0022】
上記構成からなるCVD装置を用いた成膜方法を説明すると、まず、ローダー2のロボットはカセットステージ1へウェーハを取り出しに行き、このときホーク10の電磁石19は励磁された状態で、可動つめ14,15はスプリング17は圧縮されてつめは開放状態である。
【0023】
ホーク10がカセットステージ1内に入ったあと、電磁石は非励磁でスプリング17が開放されてつめ12,13、14,15でウェーハを挟持状態にする。その後、ホーク10は手前に引かれウェーハがカセットステージ1から引き出される。
【0024】
ロボットはホーク10を上記エレベーター3側に移動させて待機し、トレー30が所定の場所に上がってきた時、ホーク10はウェーハをトレー30上面より移載する。この際、トレー30の4カ所の切欠部33内にホーク10の固定つめ12,13、可動つめ14,15が下降時に入り込むように両者の位置設定がされ、可動つめ14,15が電磁石の励磁で引かれて開放され、トレー30内にウェーハが収納され、その後、ホーク10は上昇移動して待機原点に戻る。
【0025】
ウェーハを載置したトレー30は搬送路4の反応部を通過すると、ウェーハ上面に酸化膜が堆積、成膜される。成膜完了後にトレー30はエレベーター7に移り、アンローダー8側からロボットにより移動してきたホーク10がウェーハをトレー30より取り出し、トレー30は下側の搬送路4へ返される。
【0026】
この発明によるCVDによる成膜方法おいて、被処理ウェーハのローダー、アンローダーでの移載に際して、表裏面に接触することなくウェーハエッジのみを支持し、反応部でもウェーハエッジのみを支持するトレーに載置して搬送することが可能であれば、具体的な構成はいずれの機械的構成をも採用できる。
【0027】
【実施例】
図1、図2に示すロボットのホーク10並びにトレー30を使用したCVDによる成膜を、TEOS−O3系原料ガスを用い、400℃にウェーハを加熱して行った。ウェーハには300mm外径の両面を鏡面研磨したものを用いた。
【0028】
従来のロボットの吸着式のホーク並びにウェーハの外周表面に接触する縁面を内周に設けたトレーを使用し、CVDによる成膜を同様条件で実施したところ、この発明による成膜方法では、傷類等の発生率が0〜5%であるのに対して、従来の場合は、100%であった。
【0029】
【発明の効果】
この発明によるシリコンウェーハ表面と接触しない搬送系を用いたCVD装置は、鏡面研磨された表面に傷類などをつけることなく均一な酸化膜を堆積することができる。すなわち、この発明による常圧CVD装置において、ローダー、アンローダーでの移載中にウェーハの表面状態は、キズのない状態に保持されており、かつウェーハとキャリアの間隔を接触しない最小限の幅に設定してあるため、酸化膜堆積の過程でも傷類などのない均一な温度状態で堆積される結果、一方表面は均一な酸化膜が形成され、他方の表面は傷類などのない鏡面研磨面をもったシリコンウェーハを作製することができる。
【図面の簡単な説明】
【図1】Aはこの発明によるホークを示す斜視説明図であり、BはAの上面説明図である。
【図2】Aはこの発明によるトレーを示す斜視説明図であり、BはAの縦断説明図である。
【図3】従来の常圧CVDの基本構成図であるが、一部キャリアステージをおいている。
【符号の説明】
1,9 カセットステージ
2 ローダー
3,7 エレベーター
4 搬送路
5 ヒーター
6 ガスノズル
8 アンローダー
10 ホーク
11 本体
12,13 固定つめ
14,15 可動つめ
16 レール
17 スプリング
18 連結棒
19 電磁石
20 ウェーハ
30 トレー
31 外周壁
32 傾斜面
33 切欠部
34 底面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a film forming apparatus that uses atmospheric pressure CVD (Chemical Vapor Deposition) and does not generate contact scratches on the front and back surfaces, and finish polishing by providing an oxide film on a wafer that has been polished on both sides to obtain high flatness. The present invention relates to a CVD film forming apparatus in which an oxide film can be formed without scratching the surface in the wafer manufacturing process, and finish polishing can be performed by omitting polishing for removing defects .
[0002]
[Prior art]
Atmospheric pressure CVD is a film deposition method that is often used when an oxide film is provided on the surface of a semiconductor wafer, particularly a wafer such as Si. The advantage of this method is thermal excitation deposition and a simple process involving chemical reactions. A high film formation speed can be obtained, and at the same time, by adopting a transfer system using a transfer robot, it is possible to increase the productivity of the continuous type.
[0003]
Conventionally, in the atmospheric pressure CVD method, the SiH 4 —O 2 system was the main reaction system, but recently, a TEOS-O 3 system reaction is also used for film density and particle countermeasures.
[0004]
FIG. 3 shows an example of the basic structure of a conventional continuous atmospheric pressure CVD apparatus. The wafer that has entered the loader 2 via the cassette stage 1 is transferred to the upper transfer path 4 rotating at a required speed by the elevator 3 and moved to the reaction section for film formation.
[0005]
The reaction section shown in the center of the figure is provided with a heater 5 disposed close to the transport paths 4 and 4 and a gas nozzle 6 for supplying and exhausting the source gas. A predetermined oxide film is deposited and formed on the wafer obtained by the reaction of the raw material gas supplied from the gas nozzle 6.
[0006]
The wafer that has been formed with the required oxide film and has exited from the reaction section is returned to the cassette stage 9 by the unloader 8 via the elevator 7 and unloaded.
[0007]
[Problems to be solved by the invention]
Conventionally, in the atmospheric pressure CVD apparatus, a method of placing a silicon wafer directly on a conveyor belt of a conveyance path or using a SiC tray instead of the belt and placing a silicon wafer thereon has been adopted. In some cases, scratches and scratches may occur during transfer from the loader and transfer of the wafer to the reaction unit.
[0008]
This is considered to occur at the edge of the tray supporting the outer peripheral surface of the wafer due to the fine movement of the wafer due to gas flow and temperature rise during transfer to the tray or during reaction. This flaw can be eliminated by polishing the surface, but it must be polished by several tens of micrometers.
[0009]
On the other hand, in the manufacturing process of a wafer where an oxide film is provided on a polished wafer in order to obtain high flatness and then final polishing is performed, in the case of a conventional 8-inch outer diameter wafer, high flatness is obtained. Therefore, even if there are scratches after the CVD, polishing for removing scratches can be performed before final polishing.
[0010]
However, in the case of wafers with an outer diameter of 12 inches, which will be the mainstream from now on, double-sided polishing is considered to be indispensable in order to obtain high flatness, but in the case of double-sided polished wafers, the surface on which no CVD film is formed When the amount of polishing on the side is reduced, the depth of this scratch becomes a problem.
[0011]
The present invention, by eliminating flaws such wafer surfaces in the deposition by CVD, can surface polishing amount to a minimum, it aims to provide a film forming apparatus by CVD that ensures improved productivity and flatness improvement of wafer It is said.
[0012]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventors have studied various film forming methods by CVD. As a result, in a device for transferring a wafer to a conveyor or a tray that moves to a reaction unit of the CVD device, a chamfered portion of the wafer, It has been found that it is possible to eliminate damages on the wafer surface by supporting only the wafer edge and transferring or carrying it out to the reaction part without contacting the wafer surface.
[0013]
Further, the inventors of the present invention have a concave SiC tray similar to the wafer, and if the inner peripheral surface of the tray is inclined and only the wafer edge can be supported, a gap of 1 mm or less is maintained between the wafer and the lower part of the transfer unit. It can be transported in contact with only the wafer edge, not in contact with the wafer surface, eliminating the generation of scratches on the wafer surface, and within the wafer surface, it receives the radiant heat from the heater evenly and chemically reacts to form an oxide film. The present invention was completed by knowing that deposition and film formation were possible.
[0014]
That is, according to the present invention, the wafer to be processed which is held by the hawk and carried into the reaction region is heated, and components corresponding to the source gas supplied into the reaction region are deposited on the surface of the wafer to be processed. In the film-forming CVD apparatus, the hawk includes a plate-shaped main body, a fixed nail provided on the main body, a movable nail disposed at a position opposite to the fixed nail of the main body, and the movable nail as a fixed nail. A spring that urges the movable pawl to move and an electromagnet that moves the movable pawl toward and away from the fixed pawl, both of which are in contact with the chamfered edge of the wafer to be processed. And a CVD apparatus for sandwiching a wafer to be processed between the fixed and movable claws.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the atmospheric pressure CVD apparatus, the surface state of the wafer is kept in a state free from scratches during transfer by the loader and unloader, and the distance between the wafer and the tray is kept to a minimum width without contact. Since it is deposited at a uniform temperature without any damage even during the oxide film deposition process, a uniform oxide film is formed on one surface, and the other surface has a mirror-polished surface without any defects. A silicon wafer can be produced.
[0016]
A film forming method and apparatus according to the present invention will be described with reference to the drawings. FIG. 1 shows a hawk 10 that is a handling part of a transfer robot. The hawk 10 has a main body 11 having a plate-like shape, and SiC fixed claws 12 and 13 each having a groove portion that can contact only the chamfered edge of the wafer 20 are fixedly arranged on one end side of the lower surface. In this manner, the same SiC pawl is arranged as the movable pawls 14 and 15.
[0017]
The pair of movable claws 14, 15 are supported and arranged so as to move following the rail 16 provided on the lower surface of the main body 11, and an electromagnet 19 provided on the other end of the lower surface of the main body 11 is connected to a connecting rod 18 sandwiching the spring 17. Thus, the magnetic attraction toward the electromagnet 19 is possible.
[0018]
Each of the SiC pawls 12, 13, 14, and 15 has a groove portion that can contact only the edge of the wafer 20 and has a shape along the circumference of the wafer, and has a thickness of about 1 mm, as shown in FIG. 1B. When sandwiching the wafer 20, the pair of movable claws 14 and 15 are urged by the spring 17, and the spring 17 is compressed by the excitation of the electromagnet 19 to be detached. It becomes possible to nipping and detaching from the polishing wafer 20.
[0019]
A SiC tray 30 shown in FIG. 2 is used in a transport path which is a reaction part of the CVD apparatus. The tray 30 has a concave shape similar to that of the wafer 20 and accommodates the wafer 20 in the outer peripheral wall 31. The inner peripheral surface is a required inclined surface 32 and has the same shape as the end surface of the wafer 20. Have For example, the inclined surface 32 of the tray 30 may have an angle of 20 to 25 degrees when the wafer 20 has a round shape.
[0020]
The inclined surface 32 of the tray 30 only needs to have the same shape as the end surface of the wafer 20, but in order to prevent the wafer 20 from shifting, the interval between the outer periphery of the wafer 20 and the inner periphery of the tray 30 is as small as possible. It is set within 1 mm.
[0021]
Further, the distance between the bottom surface 34 of the tray 30 and the wafer 20 is set within 1 mm in order to make the temperature uniform within the wafer surface. In order to transfer the wafer from the loader / unloader, the SiC pawls 12, 13, 14, 15 can be held in contact with the wafer 20 and detached from the outer wall 31 of the tray 30. Notch portions 33 are provided and are cut out below the same position as the back surface of the wafer 20, but the shape of the notch portion 33 is determined so as not to accumulate on the back surface of the wafer 20.
[0022]
The film forming method using the CVD apparatus having the above configuration will be described. First, the robot of the loader 2 goes to the cassette stage 1 to take out the wafer. At this time, the electromagnet 19 of the hawk 10 is excited and the movable pawl 14 is moved. , 15 indicates that the spring 17 is compressed and the pawl is in an open state.
[0023]
After the hawk 10 enters the cassette stage 1, the electromagnet is de-energized and the spring 17 is released to hold the wafer between the claws 12, 13, 14, and 15. Thereafter, the hawk 10 is pulled forward and the wafer is pulled out from the cassette stage 1.
[0024]
The robot moves the hawk 10 toward the elevator 3 and stands by, and when the tray 30 rises to a predetermined location, the hawk 10 transfers the wafer from the upper surface of the tray 30. At this time, the positions of the fixed pawls 12 and 13 and the movable pawls 14 and 15 of the hawk 10 are set in the notches 33 at the four positions of the tray 30 so that the movable pawls 14 and 15 are excited by the electromagnet. , The wafer is stored in the tray 30, and then the hawk 10 moves upward and returns to the standby origin.
[0025]
When the tray 30 on which the wafer is placed passes through the reaction portion of the transport path 4, an oxide film is deposited on the upper surface of the wafer and formed. After the film formation is completed, the tray 30 moves to the elevator 7, and the hawk 10 moved by the robot from the unloader 8 side takes out the wafer from the tray 30, and the tray 30 is returned to the lower conveyance path 4.
[0026]
In the film forming method by CVD according to the present invention, when transferring a wafer to be processed by a loader or unloader, a tray that supports only the wafer edge without contacting the front and back surfaces and also supports only the wafer edge in the reaction part. Any mechanical configuration can be adopted as the specific configuration as long as it can be placed and transported.
[0027]
【Example】
Film formation by CVD using the robot fork 10 and the tray 30 shown in FIGS. 1 and 2 was performed by heating the wafer to 400 ° C. using a TEOS-O 3 -based source gas. A wafer having a mirror polished surface on both sides with an outer diameter of 300 mm was used.
[0028]
Using a conventional robot's adsorption-type hawk and a tray having an inner peripheral surface that contacts the outer peripheral surface of the wafer, CVD film formation was performed under the same conditions. The occurrence rate of sucrose was 0 to 5%, whereas it was 100% in the conventional case.
[0029]
【The invention's effect】
The CVD apparatus using a transfer system that does not contact the silicon wafer surface according to the present invention can deposit a uniform oxide film without damaging the mirror-polished surface. That is, in the atmospheric pressure CVD apparatus according to the present invention, the surface state of the wafer is maintained in a scratch-free state during transfer by the loader and unloader, and the minimum width that does not contact the wafer and the carrier. As a result, it is deposited at a uniform temperature state without scratches even during the oxide film deposition process. As a result, a uniform oxide film is formed on one surface, and the other surface is mirror-polished without scratches. A silicon wafer having a surface can be produced.
[Brief description of the drawings]
FIG. 1A is a perspective explanatory view showing a hawk according to the present invention, and B is an upper surface explanatory view of A. FIG.
FIG. 2A is a perspective explanatory view showing a tray according to the present invention, and B is a longitudinal explanatory view of A. FIG.
FIG. 3 is a basic configuration diagram of conventional atmospheric pressure CVD, but a part of the carrier stage is provided.
[Explanation of symbols]
1, 9 Cassette stage 2 Loader 3, 7 Elevator 4 Transport path 5 Heater 6 Gas nozzle 8 Unloader 10 Hawk 11 Body 12, 13 Fixed pawl 14, 15 Movable pawl 16 Rail 17 Spring 18 Connecting rod 19 Electromagnet 20 Wafer 30 Tray 31 Wall 32 inclined surface
33 Notch
34 Bottom

Claims (1)

ホークにより保持されて反応領域内に搬入された被処理ウェーハを加熱して、この反応領域内に供給された原料ガスに応じた成分を被処理ウェーハ表面に堆積し、成膜するCVD装置において、  In a CVD apparatus for heating a wafer to be processed which is held by a hawk and carried into a reaction region, depositing a component according to the raw material gas supplied in the reaction region on the surface of the wafer to be processed,
上記ホークは、板状の本体と、この本体に設けられた固定つめと、この本体の固定つめと対向した位置に配置された可動つめと、この可動つめを固定つめに向かって動くよう付勢するスプリングと、この可動つめを固定つめに対して接近離隔動させる電磁石とを有し、  The hawk includes a plate-shaped main body, a fixed claw provided on the main body, a movable claw disposed at a position opposite to the fixed claw of the main body, and urged to move the movable claw toward the fixed claw. And an electromagnet for moving the movable pawl toward and away from the fixed pawl,
これらの固定つめと可動つめはともに被処理ウェーハの面取りされたエッジが接触する凹部を有して、これらの固定つめと可動つめとで被処理ウェーハを挟持するCVD装置。  A CVD apparatus in which both of these fixed claws and movable claws have a concave portion where the chamfered edge of the wafer to be processed comes into contact, and the wafer to be processed is sandwiched between these fixed claws and movable claws.
JP14841098A 1998-05-12 1998-05-12 CVD equipment Expired - Lifetime JP4110493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14841098A JP4110493B2 (en) 1998-05-12 1998-05-12 CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14841098A JP4110493B2 (en) 1998-05-12 1998-05-12 CVD equipment

Publications (2)

Publication Number Publication Date
JPH11329983A JPH11329983A (en) 1999-11-30
JP4110493B2 true JP4110493B2 (en) 2008-07-02

Family

ID=15452175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14841098A Expired - Lifetime JP4110493B2 (en) 1998-05-12 1998-05-12 CVD equipment

Country Status (1)

Country Link
JP (1) JP4110493B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220001960A (en) * 2020-06-30 2022-01-06 주식회사 에스티아이테크 A Debugging Tool for an Electric Element

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4745536B2 (en) * 2001-06-04 2011-08-10 株式会社日本マイクロニクス Display substrate transfer device
JP2003318245A (en) * 2002-04-24 2003-11-07 Tokyo Electron Ltd Substrate conveyance mechanism and method therefor
JP4665935B2 (en) * 2007-05-01 2011-04-06 信越半導体株式会社 Manufacturing method of semiconductor wafer
JP2010126797A (en) * 2008-11-28 2010-06-10 Tokyo Electron Ltd Film deposition system, semiconductor fabrication apparatus, susceptor for use in the same, program and computer readable storage medium
JP4796120B2 (en) * 2008-12-11 2011-10-19 三菱重工業株式会社 Room temperature bonding equipment
WO2011070741A1 (en) 2009-12-11 2011-06-16 株式会社Sumco Tray for cvd and film-forming method using same
JP6449074B2 (en) 2015-03-25 2019-01-09 住友化学株式会社 Substrate processing apparatus and substrate processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220001960A (en) * 2020-06-30 2022-01-06 주식회사 에스티아이테크 A Debugging Tool for an Electric Element
KR102377692B1 (en) 2020-06-30 2022-03-23 주식회사 에스티아이테크 A Debugging Tool for an Electric Element

Also Published As

Publication number Publication date
JPH11329983A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
US6290491B1 (en) Method for heating a semiconductor wafer in a process chamber by a shower head, and process chamber
JP4759073B2 (en) Substrate support, substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
JP5238263B2 (en) How to sequence a board
US20190096702A1 (en) Substrate processing apparatus, substrate processing method, and computer storage medium
JP4110493B2 (en) CVD equipment
US5330577A (en) Semiconductor fabrication equipment
US6561796B1 (en) Method of semiconductor wafer heating to prevent bowing
JPH11150073A (en) Thin-film forming equipment
TWI313893B (en)
JP2004193396A (en) Method for manufacturing semiconductor device
JPH0661331A (en) Substrate transfer system
JP2018181969A (en) Processing device
JPS59228932A (en) Vapor growth device
JP6434558B2 (en) Processing equipment
KR20090058931A (en) Atmospheric pressure deposition apparatus
JP4404666B2 (en) Substrate support, substrate processing apparatus, and semiconductor device manufacturing method
JP4700236B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JPH10275776A (en) Semiconductor wafer manufacturing equipment
JP2004221227A (en) Substrate treating apparatus
JP2999751B2 (en) Apparatus and method for producing silica film
JPH11102952A (en) Semiconductor manufacture and equipment therefor
JP2683673B2 (en) Vertical heat treatment equipment
JP2540690B2 (en) Method for manufacturing semiconductor wafer
CN110670049A (en) Vapor deposition method and device
JPH06120151A (en) Manufacturing apparatus for semiconductor device

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term