JP4110235B2 - Petal-like porous substrate for sustained release body and sustained release body composition - Google Patents
Petal-like porous substrate for sustained release body and sustained release body composition Download PDFInfo
- Publication number
- JP4110235B2 JP4110235B2 JP35735796A JP35735796A JP4110235B2 JP 4110235 B2 JP4110235 B2 JP 4110235B2 JP 35735796 A JP35735796 A JP 35735796A JP 35735796 A JP35735796 A JP 35735796A JP 4110235 B2 JP4110235 B2 JP 4110235B2
- Authority
- JP
- Japan
- Prior art keywords
- sustained release
- petal
- porous substrate
- sustained
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Fats And Perfumes (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Medicinal Preparation (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、炭酸カルシウムを原料粒子とする花弁状多孔質構造を有するリン酸カルシウム系化合物である徐放体用花弁状多孔質基材及び、これに各種薬剤を担持してなる徐放体組成物に関し、詳しくは、農薬、抗菌剤、脱臭剤、香料、紫外線吸収剤等の各種薬剤に応じて徐放性のコントロールが可能で、プラスチック成型品、合成樹脂フィルム、合成樹脂繊維、塗料等の各種用途に優れた徐放効果を発揮する徐放体用花弁状多孔質基材及び、これに薬剤を担持してなる徐放体組成物に関する。
【0002】
【従来の技術】
従来より、薬剤を各種基材に担持させて基材表面より薬剤を放散させる方法は種々検討されている。基材を用いる利点としては、薬剤の放散を調節できること、液体の薬剤を固体状にできるのでハンドリング性が向上する等である。基材として広く用いられているものは、活性炭、フエルト、オガクズ、ゼオライト、合成シリカ、アルミナ、珪酸カルシウム、ヒドロキシアパタイト、でんぷん、酢酸セルロース等であり、これらに担持される薬剤としては、殺虫剤、防虫剤、除草剤等の農薬類や、抗菌剤、脱臭剤、香料、紫外線吸収剤等が一般的である。
【0003】
【発明が解決しようとする課題】
しかし乍ら、上記した如き従来の基材では、担持させた有効成分の溶出を十分にコントロールすることが困難であった。短時間で溶出してしまうと持続性が低下するのはもとより、一時的に多量の薬剤が作用するために薬害の問題が発生してしまい、また逆に有効成分の溶出が良好に行われないと殆ど効果が認められない。有効成分の溶出をコントロールする方法としては薬剤の担持量を増減するこにより行っているが、使用する薬剤の性質等によっては増減させるだけでは十分なコントロールは不可能である。従って、速効性、遅効性のコントロールを使用する用途や薬剤の種類によって自在に設定できる徐放体が望まれていた。
【0004】
【課題を解決するための手段】
本発明者らは、上記問題を解決するべく鋭意研究の結果、特定の粒子形状、特定の比表面積と細孔径、特定の粒子径と分散度を有する粒子及び該粒子に薬剤を担持してなる徐放体組成物が所期の目的の機能を有していることを見いだし、本発明を完成した。
以下、本発明を詳記する。
【0005】
本発明の第一は、炭酸カルシウムを原料粒子とする花弁状多孔質構造を有するリン酸カルシウム系化合物からなり、Ca/Pの原子比が5.56以下であり、且つ下記の式(a)〜(g)を満足することを特徴とする徐放体用花弁状多孔質基材である。
(a)0.2≦dx1≦20(μm)
(b)0.01≦dx2≦0.20(μm)
(c)50≦Sw1≦165(m2/g)
(d)95≦ω1≦99
(e)70≦ω2≦95
(f)1≦α≦2 但し、α=d50/dx1
(g)0≦β≦1.1 但し、β=(d90−d10)/d50
但し、
dx1:電子顕微鏡写真により測定した粒子の平均粒子径(μm)。
dx2:水銀圧入法により測定した細孔分布により求めた粒子の平均細孔径(μm)。
Sw1:窒素吸着法によるBET比表面積(m2/g)
ω1 :JISK5101−91 20.1 顔料試験方法の静置法による見掛け比容( ml/g)を測定し、下記の式(h)により計算した静置空隙率(%)
1
(h)ω1={1−─────────────}×100(%)
2.9×[見掛け比容]
ω2:試料0.5gを断面積2cm2 の円筒に充填、30kg/cm2 の圧力で30秒間加圧、 その厚みをノギスで測定し、下記の式(i)より計算した30kg/cm2 の加圧空隙 率(%)
0.5
(i)ω2={1−────────────}×100(%)
2.9×2×[厚さ]
α :分散係数
d50:マイクロトラックFRAレーザー式粒度分布計により測定した粒子の50%平 均粒子径(μm)。
β :シャープネス。
d90:マイクロトラックFRAレーザー式粒度分布計により測定した粒子のふるい通 過側累計90%粒子径(μm)。
d10:マイクロトラックFRAレーザー式粒度分布計により測定した粒子のふるい通 過側累計10%粒子径(μm)。
【0006】
【発明の実施の態様】
本発明の徐放体用花弁状多孔質基材の重要な特徴は粒子形状にあり、単なるリン酸カルシウム系化合物ではなく、花弁状構造を有する多孔質リン酸カルシウム系化合物で構成されていることにある。本発明の徐放体用花弁状多孔質基材は、花弁状構造であることから高比表面積であり、優れた担持性能があるのはもちろん、速効性、遅効性のコントロールを、使用する用途や薬剤の種類によって自在に設定することが可能である。
本発明の第2は、該徐放体用花弁状多孔質基材に各種薬剤を担持してなる徐放体組成物であり、該徐放体用花弁状多孔質基材を使用することにより、各種用途に適した薬剤の放出が可能である。また、本発明の徐放体組成物は、分散性と粒子の均一性に優れているため、あらゆる用途に配合可能である。例えば、分散性と粒子の均一性を要求される用途として、合成樹脂フィルムや合成樹脂繊維が挙げられるが、本発明の徐放体組成物は、これらの用途にも十分に使用可能な粉体物性を有している。
【0007】
徐放性をコントロールする要因としては、徐放体粒子の粒子形状と粒度内容にあり、その中でも特に多孔質形状における平均細孔径と比表面積のバランスで左右される。従来の徐放体も殆どのものが多孔質形状を有し、高比表面積であるが、平均細孔径や比表面積を自在に調整することは難しく、徐放性能をコントロールすることは困難である。本発明の徐放体用花弁状多孔質基材は、単に多孔質で、高比表面積であるのではなく、使用する有効成分や用途に合わせて調整された細孔と比表面積を持つものであり、従来にはない優れた徐放性能を有する。
以下に本発明を詳述する。
【0008】
本発明の徐放体用花弁状多孔質基材を構成する花弁状多孔質リン酸カルシウム系化合物としては特に制限はないが、非晶質リン酸カルシウム〔略号ACP、化学式Ca3 (PO4 )2 ・nH2 O〕、フッ素アパタイト〔略号FAP、化学式Ca10(PO4 )6 F2 〕、塩素アパタイト〔略号CAP、化学式Ca10(PO4 )6 Cl2 〕、ヒドロキシアパタイト〔略号HAP、化学式Ca10(PO4 )6 (OH)2 〕、リン酸八カルシウム〔略号OCP、化学式Ca8 H2 (PO4 )6 ・5H2 O〕、リン酸三カルシウム〔略号TCP、化学式Ca3 (PO4 )2 〕、リン酸水素カルシウム(略号DCP、化学式CaHPO4 )、リン酸水素カルシウム二水和物(略号DCPD、化学式CaHPO4 ・2H2 O)等が例示でき、一種又は二種以上でもよく、中でも組成の安定性が高いという観点からヒドロキシアパタイト、リン酸八カルシウム、リン酸三カルシウム、リン酸水素カルシウムが好ましく、ヒドロキシアパタイトが特に好ましい。また、安定性が最も高いヒドロキシアパタイトの含有率に関して言えば、全リン酸カルシウム系化合物に対して10重量%以上が好ましく、50重量%がより好ましく、90重量%が最も好ましい。
【0009】
本発明の徐放体用花弁状多孔質基材の粒子に占めるCa/Pの原子比は、5.56以下であり、効率よく薬剤を担持、及び放出を行うという観点から、3.33以下が好ましく、1.85以下がさらに好ましい。Ca/Pの原子比が5.56を越えると十分に薬剤が担持されない。また該原子比の下限は、粒子の安定性を維持するという観点から1.60程度が好ましい。また、原料粒子として用いた炭酸カルシウムがすべてリン酸カルシウム系化合物に変化して原料粒子としての炭酸カルシウムが粒子中に存在せず、粒子重量の100%(Ca/Pの原子比は1〜1.67)が花弁状多孔質リン酸カルシウム系化合物に変化しても何ら問題はない。
【0010】
本発明における徐放体花弁状多孔質基材の平均粒子径dx1は、0.2≦dx1≦20(μm)であり、好ましくは0.2≦dx1≦10(μm)、さらに好ましくは0.5≦dx1≦5(μm)である。。平均粒子径が0.2μm未満の場合、粒子の凝集が著しく徐放性能が低下する。また20μmを越えた場合、例えば、農薬を担持して田畑等に広範囲に散布する際に飛散性が低下し、また、粒子の空隙部分が薬剤で全て満たされた場合、平均粒子径を直径とする球体の面積となり、有効面積(薬剤が放散される面積)が小さくなり、徐放性能が低下する。
【0011】
本発明の徐放体用花弁状多孔質基材の平均細孔径dx2は、0.01≦dx2≦0.20(μm)である。平均細孔径が0.01μm未満の場合、細孔径が小さいため担持された薬剤の放散が良好に行われず、徐放効果が発揮されなくなる。また1μmを越えた場合、細孔径が大きいため担持された薬剤が短時間に放散され、徐放効果の持続性が低下する。
【0012】
本発明の徐放体用花弁状多孔質基材の比表面積Sw1は、50≦Sw1≦165(m2/g)であり、好ましくは100≦Sw1≦165(m2/g)である。Sw1が50m2/g未満の場合、良好な薬剤の担持、徐放性能が得られず、また165m2/gを越えた場合、担持性能は高いものの、担持物の良好な発散が行われず、良好な徐放性能が得られなくなる。
【0013】
本発明の徐放体用花弁状多孔質基材の静置空隙率ω1及び加圧空隙率ω2は、それぞれ95≦ω1≦99、70≦ω2≦95である。ω1が95未満、ω2が70未満の場合、空隙率が小さいため、担持量が不十分になる。またω1が99、ω2が95を越えた場合、担持量は十分あるものの、徐放性を有する粒子の有効面積が小さくなる。
【0014】
本発明の徐放体用花弁状多孔質基材の粒子の分散性α及び粒子の均一性βは、それぞれ1≦α≦2、0≦β≦1.1であり、好ましくは1≦α≦1.6、0≦β≦1である。αが2を越えた場合、粗大な凝集体の割合が多くなり、徐放性能を有する粒子の有効面積が小さくなる。αが1未満の場合、微細粒子の割合が大きくなり、粒子の凝集性が強まり、徐放性能を有する粒子の有効面積が小さくなる。また、βが1.1を越えた場合、粒子径が不均一であると同時に、徐放効果にもばらつきを生じる。
【0015】
本発明の徐放体組成物は本発明の徐放体用花弁状多孔質基材に薬剤を担持してなり、担持させる薬剤には特に限定はないが、高い徐放性能を必要とする農薬、抗菌剤、脱臭剤、香料、紫外線吸収剤等を使用すると優れた徐放性能を発揮するので好ましい。これらは単独で又は2種以上組み合わせて担持される。例えば、農薬、抗菌剤、脱臭剤、香料、紫外線吸収剤について次のものが例示される。
(農薬)
イソキサチオン、ダイアジノン、ピラクロホス、ジスルホトン、プロチオホス等の有機リン系殺虫剤、カルボスルファン、フラチオカルブ、カルボフラン等のカルボフラン系殺虫剤、アレスリン、フルシトリネート、テフルトリン、アルドリン等のピレスロイド系殺虫剤、DCIP、ヘプタクロール等の塩素系殺虫剤、プレチラクロール、メトラクロール、ベンチオカーブ等の除草剤成分
(抗菌剤)
塩化ベンザルコニウム、塩化セチルピリジニウム等の第4アンモニウム系、エタノール、イソプロパノール等のアルコール系、ホルマリン、グリオキザール等のアルデヒド系、クレゾール、キシレノール等のフェノール系、ソルビン酸、安息香酸等のカルボン酸系、クロルヘキシジン、n−ドデシルグアニジンアセテート等のグアニジン系、2−メルカプトベンゾチアゾール、2−メチル−4−イソチアゾリン−3−オン等のチアゾール系、(1、4)−2−アミノ−2−デオキシ−β−D−グルカン、N−カルボキシメチルキトサン、グリコールキトサン、リン酸化キトサン、キトサン−2、5−アンヒドロマンノース等のキトサン系
(脱臭剤)
タンニン酸、テレピン油、ショウ脳油、天然フルボ酸
(香料)
じゃ香、アビエス油、ベルガモット油、ボロアーズ油、ローズウッド油、ローズマリー油等の天然香料、アセト酢酸エチル、アネトール、アミルシナミックアルデヒド、イソ吉草酸エチル、イソアミルアセテート等の合成香料、ローズ油、ジャスミン系、リラ系等の調合香料
(紫外線吸収剤)
2−エチルヘキシル−2−シアノ−3,3−ジフェニルアクリレート、2,4−ジヒドロキシベンゾフェノン、フェニルサリシレート、2−(2’−ヒドロキシ−5’−メチル−フェニル)−ベンゾトリアゾール
【0016】
本発明の徐放体用花弁状多孔質基材の調製方法については、特に制限はないが、例えば、炭酸カルシウムを分散した水系中で、水可溶性リン酸又は水可溶性リン酸塩とを徐々に反応させて、原料粒子表面で花弁状多孔質リン酸カルシウム系化合物を生成させることにより調製される。具体的には、特定の原料粒子となる炭酸カルシウムの水懸濁液分散体と燐酸の希釈水溶液及び/又は特定の燐酸2水素カルシウムの水懸濁液分散体及び/又は特定の燐酸水素カルシウム2水塩の水懸濁液分散体を特定の割合で特定の混合条件において混合、特定の熟成条件で熟成後、乾燥する方法が例示される。
【0017】
以下に、本発明の徐放体用花弁状多孔質構造を有するリン酸カルシウム系化合物の内、特に好ましく用いることのできる花弁状多孔質ヒドロキシアパタイトを主成分とした場合の調製方法について、より具体的に例示する。
【0018】
粒度分布測定器(株式会社島津製作所製SA−CP3)により測定した平均粒子径が0.1〜5μmである炭酸カルシウムの水懸濁液分散体と燐酸の希釈水溶液及び/又は粒度分布測定器(株式会社島津製作所製SA−CP3)により測定した平均粒子径が2〜10μmであるリン酸二水素カルシウムの水懸濁液分散体及び/又は粒度分布測定器(株式会社島津製作所製SA−CP3)により測定した平均粒子径が2〜10μmであるリン酸水素カルシウム二水塩の水懸濁液分散体をCa/Pの原子比が1.60〜5.56なる割合で水中で下記の混合条件で混合後、更に下記の熟成条件で熟成を行い、脱水、水洗を行い、300度以下の乾燥雰囲気下で乾燥し、解砕仕上げを行う。
【0019】
混合条件
熟成条件
【0020】
本発明の徐放体用花弁状多孔質基材は、粒子の分散性,安定性等をさらに高めるために、シランカップリング剤やチタネートカップリング剤等のカップリング剤、有機酸、例えば脂肪酸,樹脂酸,アクリル酸等のα、βモノエチレン性不飽和カルボン酸及びそのエステル類,シュウ酸,クエン酸等の有機酸,酒石酸、フッ酸等の無機酸、それらの重合物及び共重合物,それらの塩,又はそれらのエステル類等の表面処理剤、界面活性剤やヘキサメタリン酸ソーダ、ピロリン酸、ピロリン酸ソーダ、トリポリリン酸、トリポリリン酸ソーダ、トリメタリン酸、ハイポリリン酸等の縮合リン酸及びその塩等を、常法に従い添加又は表面処理してもさしつかえない。
【0021】
各種薬剤を本発明の徐放体用花弁状多孔質基材に担持させる方法としては特に制限はなく、従来の方法でよい。例えば下記の方法が挙げられる。(a)生成した徐放体用花弁状多孔質基材の水懸濁液に薬剤を添加して粉末化する。(b)徐放体用花弁状多孔質基材の粉末に、薬剤を溶媒に溶解したものを噴霧添加する。(c)薬剤を溶媒に溶解したものに徐放体用花弁状多孔質基材を浸漬する。
【0022】
本発明の徐放体組成物に配合される他の成分としては、特に制限はないが、必要に応じて炭酸カルシウム、合成シリカ、珪酸カルシウム等の無機粒子を目的に応じて一種又は二種以上配合してもさしつかえなく、また、花弁状構造を有しない非晶質リン酸カルシウム〔略号ACP、化学式Ca3 (PO4 )2 ・nH2 O〕、フッ素アパタイト〔略号FAP、化学式Ca10(PO4 )6 F2 〕、塩素アパタイト〔略号CAP、化学式Ca10(PO4 )6 Cl2 〕、ヒドロキシアパタイト〔略号HAP、化学式Ca10(PO4 )6 (OH)2 〕、リン酸八カルシウム〔略号OCP、化学式Ca8 H2 (PO4 )6 ・5H2 O〕、リン酸三カルシウム〔略号TCP、化学式Ca3 (PO4 )2 〕、リン酸水素カルシウム(略号DCP、化学式CaHPO4 )、リン酸水素カルシウム二水和物(略号DCPD、化学式CaHPO4 ・2H2 O)等の本発明の徐放体用花弁状多孔質基材と異なる、花弁状構造を有しないリン酸カルシウム系化合物を目的に応じて一種又は二種以上配合してもさしつかえない。
【0023】
【実施例】
以下に本発明を実施例を挙げてさらに詳しく説明するが、本発明はこれら実施例のみに制限されるものではない。
【0024】
使用する炭酸カルシウムの水懸濁液分散体a、及びbの調製方法。
炭酸カルシウムの水懸濁液分散体aの調製:
比重1.055で温度が8℃の石灰乳(水酸化カルシウムの水懸濁液)7000リッターに、炭酸ガス濃度27重量%の炉ガスを24m3の流速で導通しpH9まで炭酸化反応を行い、その後40〜50℃で5時間撹拌熟成を行う事により粒子間のアルカリを溶出させpH10.8として分散させ、電子顕微鏡写真より測定した平均粒子径0.05μmで粒度分布測定器(株式会社島津製作所製SA−CP3)により測定した平均粒子径が0.48μmである炭酸カルシウムの水懸濁液分散体を調製した。
炭酸カルシウムの水懸濁液分散体bの調製:
丸尾カルシウム株式会社製重質炭酸カルシウム「スーパーSSS」(1.2m2/g)に水を添加混合後、TKホモミキサー(5000rpm,15分間)にて撹拌分散させて固形分濃度25%の電子顕微鏡写真より測定した平均粒子径3μmで粒度分布測定器(株式会社島津製作所製SA−CP3)により測定した平均粒子径が3.4μmである炭酸カルシウムの水懸濁液分散体bを調製した。
【0025】
実施例1〜6、比較例1〜3
表1、2に記載した原料及び混合条件に従い、邪魔板付きステンレスタンクに直径0.6mのタービン羽根1枚の撹拌機付きの0.4m3ステンレスタンクに希釈濃度調製及び温調した炭酸カルシウムの水懸濁液分散体を投入し、撹拌下において燐酸の希釈水溶液を滴下混合し、記載した熟成条件に従い撹拌を行いながら熟成した。熟成終了後、固形分濃度8%に調整し、スプレ−乾燥を行うことにより炭酸カルシウムを原料粒子とする花弁状多孔質構造を有するリン酸カルシウム系化合物である徐放体用花弁状多孔質基材D1〜D6及びE1〜E3を調製した。なお、原料及び水の合計重量は400kgとした。
スプレ−乾燥条件は噴霧時の粒径約0.1mm、入り口における熱風温度250℃、乾燥時間約10秒、乾燥直後の乾燥品の200℃,2時間での加熱減量が5〜8%であった。実施例1〜6で調製した徐放体用花弁状多孔質基材D1〜D6、及び比較例1〜3で調製したE1〜E3の粉体物性を表3、4に示す。
表3より、本発明の徐放体用花弁状多孔質基材は比表面積、細孔径、粒子径が自由に調整でき、優れた分散性と粒子径の均一性を有することが確認できる。
D1の粒子構造を示す電子顕微鏡写真を図1(1000倍)、図2(10000倍)に示す。図1、図2より、本発明の徐放体用花弁状多孔質基材は花弁状構造を有することが確認できる。また、D1、D3、D5について粉末X線回折図を図5、6、7に示す。図5、6の粉末X線回折の結果よりD1、D3についてはリン酸カルシウム系化合物と炭酸カルシウム(カルサイト)以外は認めなかった。リン酸カルシウム系化合物の主成分はヒドロキシアパタイト(HAP)であり、微量のリン酸八カルシウム(OCP)を含んでいることが確認できる。D5については、図7より炭酸カルシウムは認められず、リン酸カルシウム系化合物以外は認められなかった。リン酸カルシウム系化合物の主成分はヒドロキシアパタイト(HAP)であり、微量のリン酸八カルシウム(OCP)を含んでいることが確認できる。
尚、本発明の徐放体用花弁状多孔質基材と比較のために、後記する市販のヒドロキシアパタイトの粒子構造を示す電子顕微鏡写真を図3(1000倍)、図4(10000倍)に、粉末X線回折図を図8に示す。
図3、図4より、市販のヒドロキシアパタイトは微細な粒子と該粒子の凝集物であり、花弁状多孔質構造を有するものではないことが確認できる。また図8より、市販のヒドロキシアパタイトは、主成分であるヒドロキシアパタイト(HAP)以外に微量のリン酸水素カルシウム二水和物(DCPD)を含んでいることが確認できる。
【0026】
【表1】
【0027】
【表2】
【0028】
【表3】
【0029】
【表4】
*比較例1〜3に対応する粒子
【0030】
実施例7〜12 比較例4〜9
実施例1〜6で作成した本発明の徐放体用花弁状多孔質基材D1〜D6、比較例1〜3で作成したE1〜E3及び市販のヒドロキシアパタイト(商品名:リン酸三カルシウム、米山化学工業株式会社製)、合成シリカ(商品名:アエロジル#130、日本アエロジル株式会社製)及び、珪酸カルシウム(商品名:フローライトR、徳山曹達株式会社製)のそれぞれ5gを、ナフタリンの10%四塩化炭素溶液に浸漬した後、四塩化炭素を揮発させ、ナフタリン2gを担持させた徐放体組成物を得た。これらの徐放体組成物の徐放性を確認するために、温度30℃の恒温槽に入れ、一定期間経過後の重量変化より、ナフタリンの残存率を測定した。市販のヒドロキシアパタイト、合成シリカ及び、珪酸カルシウムの粉体物性を表5に示す。また、ナフタリン残存率の測定結果を表6に示す。
表6より、本発明の徐放体組成物は、本発明の徐放体用花弁状多孔質基材を用いることにより、徐放性のコントロールが可能であり、優れた持続性を有することが確認できる。
【0031】
【表5】
【0032】
【表6】
【0033】
本発明の徐放体組成物について、各種薬剤として農薬、抗菌剤、脱臭剤、香料、紫外線吸収剤を用いた場合を以下に例示する。
【0034】
実施例13〜18 比較例10〜15
実施例1〜6で作成した本発明の徐放体用花弁状多孔質基材D1〜D6、比較例1〜3で作成したE1〜E3、及び市販のヒドロキシアパタイト、合成シリカ及び、珪酸カルシウムのそれぞれを担体として、土壌殺虫成分であるピラクロホスをミキサー混合し、各担体に対してピラクロホスが5重量%の徐放体組成物を得た。以下の試験方法でこれら徐放体の効果を確認した。結果を表7に示す。
表7より、本発明の徐放対組成物は持続性の高い殺虫効果を有することが確認できる。(試験方法)
対象植物:トマト
対象害虫:サツマイモネコブセンチュウ
試験スケール:400cm2
添加量:3mg/cm2
測定方法:試料添加後30日後の根りゅう状態を確認
【0035】
【表7】
(評価基準)
A:根りゅうが多数確認できる
B:根りゅうが数カ所確認できる
C:根りゅうが殆ど確認出来ない
【0036】
実施例19〜30 比較例16〜27
実施例1〜6で作成した本発明の徐放体用花弁状多孔質基材D1〜D6、比較例1〜3で作成したE1〜E3、及び市販のヒドロキシアパタイト、合成シリカ及び、珪酸カルシウムのそれぞれ10gを担体として、2−メルカプトベンゾチアゾール及びキトサン−2、5−アンヒドロマンノースを噴霧添加し、各担体に対して2−メルカプトベンゾチアゾール及びキトサン−2、5−アンヒドロマンノースが5重量%の徐放体組成物を得た。これら徐放体の抗菌効果を下記の方法で確認した。結果を表8に示す。
表8より、本発明の徐放体組成物は優れた抗菌効果を有することが確認できる。
(試験方法)
日本製薬(株)製のSCDLP寒天培地(細菌用)を溶解し、45℃に保温しながら一般雑菌を含む汚水を溶解培地100ml当たり3ml添加した培地10mlに上記実施例及び比較例資料を所定量添加しよく攪拌する。これをシャーレに入れ、培地が固まった後、蓋をして裏返しにした状態で培養する。培養条件は30℃、5日間とする。
【0037】
【表8】
【0038】
実施例31〜36 比較例28〜33
実施例1〜6で作成した本発明の徐放体用花弁状多孔質基材D1〜D6、比較例1〜3で作成したE1〜E3、及び市販のヒドロキシアパタイト、合成シリカ及び、珪酸カルシウムのそれぞれ10gを担体として、脱臭剤(タンニン酸)の40%水溶液を5g噴霧添加し、タンニン酸2gを担持させた徐放体組成物を得た。これら徐放体の脱臭性能を確認するために、10%のアンモニア水150mlを入れた洗気瓶(容量3000ml)の一方から窒素ガスを500ml/分で流しながら、もう一方の流出口に該脱臭剤を詰めたカラムを取り付け、そのカラムを通過するアンモニアをpH4の塩酸水溶液中に導き、該徐放体組成物の脱臭能力が低下してアンモニアを脱臭しなくなるまでの時間をpHが10以上となるまで時間として求め、脱臭能力を調べた。結果を表9に示す。
表9より、本発明の徐放体組成物は持続性のある優れた脱臭性能を有することが確認できる。
【0039】
【表9】
【0040】
実施例37〜42 比較例34〜39
実施例1〜6で作成した本発明の徐放体用花弁状多孔質基材D1〜D6、比較例1〜3で作成したE1〜E3、及び市販のヒドロキシアパタイト、合成シリカ及び、珪酸カルシウムのそれぞれ6gを担体として、香料(アセト酢酸エチル)に2時間含浸させ、香料を担持させた徐放体組成物を得た。これら徐放体の芳香性能を確認するために、常温の室内に放置し、持続性を測定した。結果を表10に示す。
表10より、本発明の徐放体組成物は持続性のある優れた芳香性能を有することが確認できる。
【0041】
【表10】
(評価基準)
A:芳香性の低下が殆どない
B:芳香性が若干低下している
C:芳香性が半減している
D:芳香性が殆どない
【0042】
実施例43〜48 比較例40〜45
実施例1〜6で作成した本発明の徐放体用花弁状多孔質基材D1〜D6、比較例1〜3で作成したE1〜E3、及び市販のヒドロキシアパタイト、合成シリカ及び、珪酸カルシウムのそれぞれ25gを担体として、2−エチルヘキシル−2−シアノ−3,3−ジフェニルアクリレートを5g添加し、紫外線吸収剤を担持させた徐放体組成物を得た。これら徐放体の紫外線吸収性能を確認するために、該徐放体30gとポリプロピレン樹脂ペレット500gをブレンドしたものを混練押し出し機で混練し、該徐放体を配合したポリプロピレン樹脂ペレットを得た。このペレットを射出成形法にて、ポリプロピレン成型品を得た。この成型品を用いてASTM−D−1499の試験法により、カーボンアーク型ウェザーメーターにて600時間促進耐候性試験を行い、該成型品の表面状態を調べた。結果を表11に示す。
表11より、本発明の徐放対組成物は持続性の高い紫外線吸収効果を有することが確認できる。
【0043】
【表11】
(表面状態の評価基準)
A:変化なし
B:若干亀裂あり
C:多数亀裂あり
【0044】
【発明の効果】
叙上の通り、特定の粒子形状、特定の細孔径と比表面積、特定の粒子径と分散度を有する本発明の徐放体用花弁状多孔質基材は用途に応じて徐放性のコントロールが可能で、該基材に薬剤を担持してなる本発明の徐放体組成物は各種用途に優れた徐放効果を発揮する。
【図面の簡単な説明】
【図1】実施例1で得られた粒子D1の粒子構造を示す電子顕微鏡写真(1000倍)である。
【図2】実施例1で得られた粒子D1の粒子構造を示す電子顕微鏡写真(10000倍)である。
【図3】市販のヒドロキシアパタイトの粒子構造を示す電子顕微鏡写真(1000倍)である。
【図4】市販のヒドロキシアパタイトの粒子構造を示す電子顕微鏡写真(10000倍)である。
【図5】実施例1で得られた粒子D1の粉末X線回折図である。
【図6】実施例3で得られた粒子D3の粉末X線回折図である。
【図7】実施例5で得られた粒子D5の粉末X線回折図である。
【図8】市販のヒドロキシアパタイトの粉末X線回折図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to calcium carbonateRaw material particlesThe petal-like porous substrate for sustained release, which is a calcium phosphate-based compound having a petal-like porous structure, and a sustained-release composition comprising various drugs supported thereon, in detail, agricultural chemicals, antibacterial agents, Controlled release is possible according to various chemicals such as deodorizers, fragrances, and UV absorbers, and exhibits excellent sustained release effects for various applications such as plastic molded products, synthetic resin films, synthetic resin fibers, paints, etc. The present invention relates to a petal-like porous substrate for sustained release and a sustained release composition comprising a drug supported thereon.
[0002]
[Prior art]
Conventionally, various methods have been studied in which a drug is supported on various substrates and the drug is released from the substrate surface. Advantages of using the base material include that the diffusion of the drug can be adjusted, and that the liquid drug can be made into a solid state, so that the handling property is improved. Widely used as the base material is activated carbon, felt, sawdust, zeolite, synthetic silica, alumina, calcium silicate, hydroxyapatite, starch, cellulose acetate and the like. Commonly used are pesticides such as insect repellents and herbicides, antibacterial agents, deodorants, fragrances, ultraviolet absorbers and the like.
[0003]
[Problems to be solved by the invention]
However, it has been difficult to sufficiently control the elution of the supported active ingredient with the conventional base as described above. If it elutes in a short period of time, the sustainability will decrease, and a large amount of the drug will act temporarily, causing a problem of phytotoxicity. Conversely, the active ingredient will not be eluted well. Almost no effect is recognized. As a method for controlling the elution of the active ingredient, it is carried out by increasing / decreasing the amount of the drug carried, but depending on the nature of the drug used, etc., it is impossible to sufficiently control it. Therefore, there has been a demand for a sustained release body that can be freely set depending on the use of the fast-acting and slow-acting controls and the kind of the drug.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have a specific particle shape, a specific surface area and pore diameter, a particle having a specific particle diameter and dispersity, and a drug supported on the particle. It was found that the sustained-release composition had the intended function, and the present invention was completed.
Hereinafter, the present invention will be described in detail.
[0005]
In the first aspect of the present invention, calcium carbonateRaw material particlesA calcium phosphate compound having a petal-like porous structure, and the atomic ratio of Ca / P is5.56It is a petal-like porous substrate for sustained release, characterized in that it satisfies the following formulas (a) to (g).
(A) 0.2 ≦ dx1 ≦ 20 (μm)
(B) 0.01 ≦ dx2 ≦0.20(Μm)
(C) 50 ≦ Sw1 ≦165(M2/ G)
(D) 95 ≦ ω1 ≦ 99
(E) 70 ≦ ω2 ≦ 95
(F) 1 ≦ α ≦2 However, α = d50 / dx1
(G) 0 ≦ β ≦1.1 However, β = (d90−d10) / d50
However,
dx1: average particle diameter (μm) of particles measured by electron micrograph.
dx2: average pore diameter (μm) of particles determined by pore distribution measured by mercury porosimetry.
Sw1: BET specific surface area by nitrogen adsorption method (m2/ G)
ω1: JISK5101-91 20.1 The apparent specific volume (ml / g) of the pigment test method by the static method was measured, and the static void ratio (%) calculated by the following formula (h)
1
(H) ω1 = {1 ----------------------- x 100 (%)
2.9 × [apparent specific volume]
ω2: 0.5 g of sample 2 cm cross-sectional area2Filled in a cylinder of 30kg /
0.5
(I) ω2 = {1 ------------------------ x 100 (%)
2.9 x 2 x [thickness]
α: Dispersion coefficient
d50: 50% average particle diameter (μm) of particles measured by Microtrac FRA laser particle size distribution analyzer.
β: Sharpness.
d90: 90% of particle diameter (μm) on the sieving pass side of particles measured with a Microtrac FRA laser particle size distribution analyzer.
d10: 10% particle diameter (μm) on the sieving pass side of particles measured with a Microtrac FRA laser particle size distribution meter.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
An important feature of the petal-like porous substrate for sustained release of the present invention is in the shape of particles, and is that it is composed of a porous calcium phosphate-based compound having a petal-like structure, not a simple calcium phosphate-based compound. The petal-like porous substrate for sustained release of the present invention has a high specific surface area because of its petal-like structure, and has excellent carrying performance, as well as the use of quick-acting and slow-acting controls. It is possible to set freely according to the type of drug or drug.
A second aspect of the present invention is a sustained release composition comprising a variety of drugs supported on the petal-like porous substrate for sustained release. By using the petal-like porous substrate for sustained release, It is possible to release drugs suitable for various applications. Moreover, since the sustained release composition of the present invention is excellent in dispersibility and particle uniformity, it can be blended in any application. For example, synthetic resin films and synthetic resin fibers can be cited as applications requiring dispersibility and particle uniformity. The sustained-release composition of the present invention is a powder that can be used sufficiently for these applications. Has physical properties.
[0007]
Factors that control the sustained release include the particle shape and particle size content of the sustained release particles, and among these, it depends on the balance between the average pore diameter and the specific surface area in the porous shape. Most conventional sustained-release bodies have a porous shape and a high specific surface area, but it is difficult to freely adjust the average pore diameter and specific surface area, and it is difficult to control the sustained-release performance. . The petal-like porous substrate for sustained release of the present invention is not only porous and has a high specific surface area, but has pores and a specific surface area that are adjusted according to the active ingredient used and the application. Yes, it has an excellent sustained release performance that has never existed before.
The present invention is described in detail below.
[0008]
The petal-like porous calcium phosphate compound constituting the petal-like porous substrate for sustained release of the present invention is not particularly limited, but amorphous calcium phosphate [abbreviation ACP, chemical formula CaThree(POFour)2・ NH2O], fluorapatite [abbreviation FAP, chemical formula CaTen(POFour)6F2], Chloroapatite [abbreviation CAP, chemical formula CaTen(POFour)6Cl2], Hydroxyapatite [abbreviation HAP, chemical formula CaTen(POFour)6(OH)2], Octacalcium phosphate [abbreviation OCP, chemical formula Ca8H2(POFour)6・ 5H2O], tricalcium phosphate [abbreviation TCP, chemical formula CaThree(POFour)2], Calcium hydrogen phosphate (abbreviation DCP, chemical formula CaHPOFour), Calcium hydrogen phosphate dihydrate (abbreviation DCPD, chemical formula CaHPO)Four・ 2H2O) and the like can be exemplified, and may be one or two or more. Among them, hydroxyapatite, octacalcium phosphate, tricalcium phosphate, and calcium hydrogenphosphate are preferable, and hydroxyapatite is particularly preferable. . In terms of the content of hydroxyapatite having the highest stability, the content is preferably 10% by weight or more, more preferably 50% by weight, and most preferably 90% by weight based on the total calcium phosphate compound.
[0009]
The atomic ratio of Ca / P in the particles of the petal-like porous substrate for sustained release of the present invention is as follows:5.56From the viewpoint of efficiently carrying and releasing a drug,3.33The following is preferred:1.85More preferredNew. The atomic ratio of Ca / P is5.56If it exceeds, the drug is not sufficiently loaded. The lower limit of the atomic ratio is preferably about 1.60 from the viewpoint of maintaining the stability of the particles. Also,Raw material particlesAll of the calcium carbonate used as a calcium phosphate compoundRaw material particlesThere is no problem if 100% of the particle weight (Ca / P atomic ratio is 1-1.67) is changed to a petal-like porous calcium phosphate compound.
[0010]
The average particle diameter dx1 of the sustained-release petal-like porous substrate in the present invention is 0.2 ≦ dx1 ≦ 20 (μm), preferably 0.2 ≦ dx1 ≦ 10 (μm), more preferably 0.8. 5 ≦ dx1 ≦ 5 (μm). . When the average particle diameter is less than 0.2 μm, the aggregated particles are remarkably deteriorated and the sustained release performance is lowered. In addition, when the particle diameter exceeds 20 μm, for example, when the pesticide is supported and sprayed over a wide area on a field or the like, the scattering property is reduced. The effective area (area where the drug is diffused) is reduced, and the sustained release performance is reduced.
[0011]
The average pore diameter dx2 of the petal-like porous substrate for sustained release of the present invention is 0.01 ≦ dx2 ≦.0.20(Μm). When the average pore diameter is less than 0.01 μm, the supported drug is not diffused well because the pore diameter is small, and the sustained release effect is not exhibited. On the other hand, when the diameter exceeds 1 μm, the supported drug is released in a short time because the pore diameter is large, and the sustainability of the sustained release effect is lowered.
[0012]
The specific surface area Sw1 of the petal-like porous substrate for sustained release of the present invention is 50 ≦ Sw1 ≦.165(M2/ G), preferably 100 ≦ Sw1 ≦165(M2/ G). Sw1 is 50m2Less than / g, good drug loading and sustained release performance cannot be obtained, and165m2When the amount exceeds / g, the carrying performance is high, but the carrying material does not diverge well, and good sustained release performance cannot be obtained.
[0013]
The stationary porosity ω1 and the pressurized porosity ω2 of the petal-like porous substrate for sustained release of the present invention are 95 ≦ ω1 ≦ 99 and 70 ≦ ω2 ≦ 95, respectively. When ω1 is less than 95 and ω2 is less than 70, since the porosity is small, the carrying amount becomes insufficient. When ω1 exceeds 99 and ω2 exceeds 95, the carrying amount is sufficient, but the effective area of the particles having sustained release becomes small.
[0014]
The dispersibility α and particle uniformity β of the petal-like porous substrate for sustained release of the present invention are 1 ≦ α ≦, respectively.2, 0 ≦ β ≦1.1And preferably 1 ≦ α ≦1.60 ≦ β ≦ 1. α is2In the case of exceeding the ratio, the proportion of coarse aggregates increases, and the effective area of particles having sustained release performance decreases. When α is less than 1, the proportion of fine particles increases, the cohesiveness of the particles increases, and the effective area of the particles having sustained release performance decreases. Β is1.1When the particle size exceeds the range, the particle size is not uniform, and at the same time, the sustained release effect also varies.
[0015]
The sustained-release composition of the present invention is obtained by carrying a drug on the petal-like porous substrate for sustained-release of the present invention, and the drug to be carried is not particularly limited, but is an agrochemical that requires high sustained-release performance. It is preferable to use an antibacterial agent, a deodorizing agent, a fragrance, an ultraviolet absorber, etc., because excellent sustained release performance is exhibited. These are supported alone or in combination of two or more. For example, the following are illustrated about an agrochemical, an antibacterial agent, a deodorizing agent, a fragrance | flavor, and an ultraviolet absorber.
(Pesticide)
Organophosphorus insecticides such as isoxathione, diazinon, pyracrofos, disulfotone, prothiophos, carbofuran insecticides such as carbosulfan, furthiocarb, carbofuran, pyrethroid insecticides such as allethrin, flucitrinate, tefluthrin, aldrin, DCIP, hepta Chlorine-based insecticides such as chlor, herbicide ingredients such as pretilachlor, metolachlor, and bencho curve
(Antimicrobial agent)
Quaternary ammonium such as benzalkonium chloride and cetylpyridinium chloride, alcohol such as ethanol and isopropanol, aldehyde such as formalin and glyoxal, phenol such as cresol and xylenol, carboxylic acid such as sorbic acid and benzoic acid, Guanidines such as chlorhexidine and n-dodecylguanidine acetate, thiazoles such as 2-mercaptobenzothiazole and 2-methyl-4-isothiazolin-3-one, (1,4) -2-amino-2-deoxy-β- Chitosans such as D-glucan, N-carboxymethylchitosan, glycol chitosan, phosphorylated chitosan, chitosan-2, 5-anhydromannose
(Deodorant)
Tannic acid, turpentine oil, show brain oil, natural fulvic acid
(Fragrance)
Natural fragrances such as potato, abies oil, bergamot oil, boroaz oil, rosewood oil, rosemary oil, etc., synthetic fragrances such as ethyl acetoacetate, anethole, amylcinamic aldehyde, ethyl isovalerate, isoamyl acetate, rose oil, Blended fragrances such as jasmine and lira
(UV absorber)
2-ethylhexyl-2-cyano-3,3-diphenyl acrylate, 2,4-dihydroxybenzophenone, phenyl salicylate, 2- (2'-hydroxy-5'-methyl-phenyl) -benzotriazole
[0016]
The method for preparing the petal-like porous substrate for sustained release of the present invention is not particularly limited. For example, in a water system in which calcium carbonate is dispersed, water-soluble phosphoric acid or water-soluble phosphate is gradually added. ReactRaw material particlesIt is prepared by generating a petal-like porous calcium phosphate compound on the surface. Specifically, a specificRaw material particlesAn aqueous suspension dispersion of calcium carbonate and a dilute aqueous solution of phosphoric acid and / or an aqueous suspension dispersion of specific calcium dihydrogen phosphate and / or an aqueous suspension dispersion of specific calcium hydrogen phosphate dihydrate Examples of the method include mixing at a specific ratio under specific mixing conditions, aging under specific aging conditions, and then drying.
[0017]
The preparation method in the case where the main component is a petal-like porous hydroxyapatite that can be particularly preferably used among the calcium phosphate compounds having a petal-like porous structure for sustained-release bodies according to the present invention is more specifically described below. Illustrate.
[0018]
An aqueous suspension dispersion of calcium carbonate having a mean particle size of 0.1 to 5 μm and a diluted aqueous solution of phosphoric acid and / or a particle size distribution measuring device (SA-CP3 manufactured by Shimadzu Corporation) An aqueous suspension dispersion of calcium dihydrogen phosphate and / or a particle size distribution measuring instrument (SA-CP3 manufactured by Shimadzu Corporation) having an average particle diameter of 2 to 10 μm measured by SA-CP3 manufactured by Shimadzu Corporation. An aqueous suspension dispersion of calcium hydrogenphosphate dihydrate having an average particle diameter of 2 to 10 μm measured by the method described above is used.1.60~5.56After mixing in water at the following ratio under the following mixing conditions, aging is further performed under the following aging conditions, followed by dehydration and washing with water, drying in a dry atmosphere of 300 ° C. or less, and crushing finish.
[0019]
Mixing conditions
Aging conditions
[0020]
The petal-like porous substrate for sustained release of the present invention is a coupling agent such as a silane coupling agent or a titanate coupling agent, an organic acid such as a fatty acid, in order to further improve the dispersibility, stability, etc. of the particles. Α, β monoethylenically unsaturated carboxylic acids and their esters such as resin acids and acrylic acids, organic acids such as oxalic acid and citric acid, inorganic acids such as tartaric acid and hydrofluoric acid, polymers and copolymers thereof, Surface treatment agents such as salts thereof or esters thereof, surfactants, sodium hexametaphosphate, pyrophosphoric acid, sodium pyrophosphate, tripolyphosphoric acid, sodium tripolyphosphate, condensed metaphosphoric acid such as trimetaphosphoric acid, high polyphosphoric acid, and salts thereof Etc. may be added or surface-treated according to a conventional method.
[0021]
There are no particular limitations on the method for supporting various drugs on the petal-like porous substrate for sustained release of the present invention, and conventional methods may be used. For example, the following method is mentioned. (A) A drug is added to the aqueous suspension of the petal-like porous base material for sustained release, which is powdered. (B) A powder obtained by dissolving a drug in a solvent is sprayed and added to the powder of the petal-like porous substrate for sustained release. (C) The petal-like porous substrate for sustained release is immersed in a drug dissolved in a solvent.
[0022]
The other components to be blended in the sustained-release composition of the present invention are not particularly limited, but if necessary, inorganic particles such as calcium carbonate, synthetic silica, calcium silicate and the like may be used alone or in combination of two or more. Amorphous calcium phosphate that can be blended and does not have a petal-like structure [abbreviation ACP, chemical formula CaThree(POFour)2・ NH2O], fluorapatite [abbreviation FAP, chemical formula CaTen(POFour)6F2], Chloroapatite [abbreviation CAP, chemical formula CaTen(POFour)6Cl2], Hydroxyapatite [abbreviation HAP, chemical formula CaTen(POFour)6(OH)2], Octacalcium phosphate [abbreviation OCP, chemical formula Ca8H2(POFour)6・ 5H2O], tricalcium phosphate [abbreviation TCP, chemical formula CaThree(POFour)2], Calcium hydrogen phosphate (abbreviation DCP, chemical formula CaHPOFour), Calcium hydrogen phosphate dihydrate (abbreviation DCPD, chemical formula CaHPO)Four・ 2H2Depending on the purpose, one or more calcium phosphate compounds having no petal-like structure different from the petal-like porous substrate for sustained release of the present invention such as O) may be used.
[0023]
【Example】
Examples The present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[0024]
Preparation method of aqueous suspensions a and b of calcium carbonate to be used.
Preparation of an aqueous suspension dispersion a of calcium carbonate:
24 m of furnace gas with a carbon dioxide concentration of 27% by weight is applied to 7000 liters of lime milk (calcium hydroxide aqueous suspension) with a specific gravity of 1.055 and a temperature of 8 ° C.ThreeThe average particle size measured from an electron micrograph was obtained by conducting a carbonation reaction up to pH 9 and conducting a carbonation reaction until pH 9 followed by stirring and aging at 40 to 50 ° C. for 5 hours to elute alkali between particles and disperse them as pH 10.8. An aqueous suspension of calcium carbonate having an average particle size of 0.48 μm measured by a particle size distribution analyzer (SA-CP3 manufactured by Shimadzu Corporation) at 0.05 μm was prepared.
Preparation of aqueous dispersion b of calcium carbonate:
Heavy calcium carbonate "Super SSS" manufactured by Maruo Calcium Co., Ltd. (1.2m2/ G), after adding and mixing water, the mixture was stirred and dispersed with a TK homomixer (5000 rpm, 15 minutes) and measured with an average particle size of 3 μm measured by an electron micrograph having a solid concentration of 25% (Shimadzu Corporation) An aqueous suspension b of calcium carbonate having an average particle diameter of 3.4 μm measured by SA-CP3 manufactured by Seisakusho was prepared.
[0025]
Examples 1-6, Comparative Examples 1-3
In accordance with the raw materials and mixing conditions described in Tables 1 and 2, 0.4 m with a stirrer with one turbine blade having a diameter of 0.6 m in a stainless steel tank with baffle platesThreeAn aqueous suspension of calcium carbonate adjusted to a diluted concentration and adjusted in temperature was added to a stainless steel tank, and a dilute aqueous solution of phosphoric acid was added dropwise with stirring, and aged with stirring according to the described aging conditions. After ripening, adjust the solid content to 8% and spray-dry the calcium carbonate.Raw material particlesThe petal-like porous substrates D1 to D6 and E1 to E3 for sustained release, which are calcium phosphate compounds having a petal-like porous structure, were prepared. The total weight of the raw material and water was 400 kg.
The spray-drying conditions were such that the particle size at spraying was about 0.1 mm, the hot air temperature at the entrance was 250 ° C., the drying time was about 10 seconds, and the heat loss at 200 ° C. for 2 hours immediately after drying was 5-8%. It was. Tables 3 and 4 show the powder physical properties of the petal-like porous substrates D1 to D6 for sustained release prepared in Examples 1 to 6 and E1 to E3 prepared in Comparative Examples 1 to 3, respectively.
From Table 3, it can be confirmed that the petal-like porous base material for sustained release body of the present invention can freely adjust the specific surface area, pore diameter and particle diameter, and has excellent dispersibility and particle diameter uniformity.
Electron micrographs showing the particle structure of D1 are shown in FIG. 1 (1000 times) and FIG. 2 (10000 times). 1 and 2, it can be confirmed that the petal-like porous substrate for sustained release of the present invention has a petal-like structure. Further, powder X-ray diffraction diagrams of D1, D3, and D5 are shown in FIGS. From the powder X-ray diffraction results of FIGS.D3No other than calcium phosphate compounds and calcium carbonate (calcite) were observed. It can be confirmed that the main component of the calcium phosphate compound is hydroxyapatite (HAP) and contains a small amount of octacalcium phosphate (OCP).D5About FIG. 7, calcium carbonate was not recognized but other than the calcium phosphate type compound was not recognized. It can be confirmed that the main component of the calcium phosphate compound is hydroxyapatite (HAP) and contains a small amount of octacalcium phosphate (OCP).
For comparison with the petal-like porous substrate for sustained release of the present invention, electron micrographs showing the particle structure of commercially available hydroxyapatite described later are shown in FIG. 3 (1000 times) and FIG. 4 (10000 times). FIG. 8 shows a powder X-ray diffraction diagram.
3 and 4, it can be confirmed that commercially available hydroxyapatite is a fine particle and an aggregate of the particle and does not have a petal-like porous structure. Further, from FIG. 8, it can be confirmed that the commercially available hydroxyapatite contains a trace amount of calcium hydrogen phosphate dihydrate (DCPD) in addition to the main component hydroxyapatite (HAP).
[0026]
[Table 1]
[0027]
[Table 2]
[0028]
[Table 3]
[0029]
[Table 4]
* Particles corresponding to Comparative Examples 1 to 3
[0030]
Examples 7-12 Comparative Examples 4-9
Petal-like porous substrates D1 to D6 for sustained release bodies of the present invention prepared in Examples 1 to 6, E1 to E3 prepared in Comparative Examples 1 to 3 and commercially available hydroxyapatite (trade name: tricalcium phosphate, 5 g each of Yoneyama Chemical Co., Ltd., synthetic silica (trade name: Aerosil # 130, Nippon Aerosil Co., Ltd.) and calcium silicate (trade name: Florite R, Tokuyama Soda Co., Ltd.) After being immersed in a carbon tetrachloride solution, the carbon tetrachloride was volatilized to obtain a sustained release composition carrying 2 g of naphthalene. In order to confirm the sustained release properties of these sustained release compositions, they were placed in a thermostatic bath at a temperature of 30 ° C., and the residual rate of naphthalene was measured from the change in weight after the lapse of a certain period. Table 5 shows the powder physical properties of commercially available hydroxyapatite, synthetic silica, and calcium silicate. Table 6 shows the measurement results of the naphthalene residual ratio.
From Table 6, the sustained release composition of the present invention can be controlled for sustained release by using the petal-like porous substrate for sustained release of the present invention, and has excellent sustainability. I can confirm.
[0031]
[Table 5]
[0032]
[Table 6]
[0033]
Examples of the sustained-release composition of the present invention include cases where agricultural chemicals, antibacterial agents, deodorants, fragrances, and ultraviolet absorbers are used as various drugs.
[0034]
Examples 13-18 Comparative Examples 10-15
Petal-like porous base materials D1 to D6 for sustained release of the present invention prepared in Examples 1 to 6, E1 to E3 prepared in Comparative Examples 1 to 3, and commercially available hydroxyapatite, synthetic silica, and calcium silicate Using each as a carrier, pyracrofos, a soil insecticidal component, was mixed with a mixer to obtain a sustained-release composition having 5% by weight of pyracrofos for each carrier. The effects of these sustained release bodies were confirmed by the following test methods. The results are shown in Table 7.
From Table 7, it can be confirmed that the sustained release composition of the present invention has a highly durable insecticidal effect. (Test method)
Target plant: tomato
Target pest: Sweet potato root nematode
Test scale: 400cm2
Addition amount: 3mg / cm2
Measurement method: Confirm
[0035]
[Table 7]
(Evaluation criteria)
A: You can see many roots
B: You can check several roots
C: Almost no root can be confirmed
[0036]
Examples 19-30 Comparative Examples 16-27
Petal-like porous base materials D1 to D6 for sustained release of the present invention prepared in Examples 1 to 6, E1 to E3 prepared in Comparative Examples 1 to 3, and commercially available hydroxyapatite, synthetic silica, and calcium silicate 2-mercaptobenzothiazole and chitosan-2,5-anhydromannose were spray-added using 10 g each as a carrier, and 5-mercaptobenzothiazole, chitosan-2,5-anhydromannose was 5% by weight with respect to each carrier. A sustained-release composition was obtained. The antibacterial effect of these sustained release bodies was confirmed by the following method. The results are shown in Table 8.
From Table 8, it can confirm that the sustained release body composition of this invention has the outstanding antimicrobial effect.
(Test method)
Dissolve the SCDLP agar medium (for bacteria) manufactured by Nippon Pharmaceutical Co., Ltd., and keep the temperature at 45 ° C and add 3 ml of sewage containing general bacteria to 100 ml of the dissolution medium. Add and stir well. This is put into a petri dish, and after the medium has hardened, it is cultured with the lid turned upside down. The culture conditions are 30 ° C. and 5 days.
[0037]
[Table 8]
[0038]
Examples 31-36 Comparative Examples 28-33
Petal-like porous base materials D1 to D6 for sustained release of the present invention prepared in Examples 1 to 6, E1 to E3 prepared in Comparative Examples 1 to 3, and commercially available hydroxyapatite, synthetic silica, and calcium silicate Using 10 g each as a carrier, 5 g of a 40% aqueous solution of a deodorant (tannic acid) was added by spraying to obtain a sustained release composition carrying 2 g of tannic acid. In order to confirm the deodorizing performance of these sustained-release bodies, nitrogen gas was allowed to flow from one side of a washing bottle (capacity 3000 ml) containing 150 ml of 10% ammonia water to the other outlet while flowing nitrogen gas at 500 ml / min. A column packed with an agent is attached, the ammonia passing through the column is led into a hydrochloric acid aqueous solution of pH 4, and the time until the deodorizing ability of the sustained-release composition is reduced and ammonia is not deodorized is set to 10 or more. It was calculated as time until it was, and the deodorizing ability was examined. The results are shown in Table 9.
From Table 9, it can confirm that the sustained release body composition of this invention has the outstanding deodorizing performance with persistence.
[0039]
[Table 9]
[0040]
Examples 37-42 Comparative Examples 34-39
Petal-like porous substrates D1 to D6 for sustained release bodies of the present invention prepared in Examples 1 to 6, E1 to E3 prepared in Comparative Examples 1 to 3, and commercially available hydroxyapatite, synthetic silica, and calcium silicate Using 6 g of each as a carrier, a perfume (ethyl acetoacetate) was impregnated for 2 hours to obtain a sustained release composition carrying the perfume. In order to confirm the fragrance performance of these sustained-release bodies, they were left in a room temperature room to measure the sustainability. The results are shown in Table 10.
From Table 10, it can confirm that the sustained release body composition of this invention has the outstanding fragrance performance with persistence.
[0041]
[Table 10]
(Evaluation criteria)
A: Almost no decrease in fragrance
B: Aroma is slightly lowered
C: The aromaticity is halved
D: Almost no fragrance
[0042]
Examples 43-48 Comparative Examples 40-45
Petal-like porous substrates D1 to D6 for sustained release bodies of the present invention prepared in Examples 1 to 6, E1 to E3 prepared in Comparative Examples 1 to 3, and commercially available hydroxyapatite, synthetic silica, and calcium silicate Using each 25 g as a carrier, 5 g of 2-ethylhexyl-2-cyano-3,3-diphenyl acrylate was added to obtain a sustained-release composition carrying an ultraviolet absorber. In order to confirm the ultraviolet-absorbing performance of these sustained-release bodies, a blend of 30 g of the sustained-release body and 500 g of polypropylene resin pellets was kneaded with a kneading extruder to obtain polypropylene resin pellets containing the sustained-release body. A polypropylene molded product was obtained from this pellet by an injection molding method. This molded product was subjected to an accelerated weathering test for 600 hours with a carbon arc type weather meter according to ASTM-D-1499 test method, and the surface state of the molded product was examined. The results are shown in Table 11.
From Table 11, it can be confirmed that the sustained-release composition of the present invention has a highly durable UV absorption effect.
[0043]
[Table 11]
(Surface condition evaluation criteria)
A: No change
B: Some cracks
C: Many cracks
[0044]
【The invention's effect】
As mentioned above, the petal-like porous substrate for sustained release of the present invention having a specific particle shape, a specific pore size and specific surface area, a specific particle size and dispersity is controlled for controlled release according to the application. The sustained-release composition of the present invention having a drug supported on the substrate exhibits excellent sustained-release effects for various uses.
[Brief description of the drawings]
1 is an electron micrograph (magnification 1000 times) showing the particle structure of particles D1 obtained in Example 1. FIG.
2 is an electron micrograph (10,000 magnifications) showing the particle structure of particles D1 obtained in Example 1. FIG.
FIG. 3 is an electron micrograph (1000 ×) showing the particle structure of commercially available hydroxyapatite.
FIG. 4 is an electron micrograph (magnification 10,000 times) showing the particle structure of commercially available hydroxyapatite.
5 is a powder X-ray diffraction pattern of particles D1 obtained in Example 1. FIG.
6 is a powder X-ray diffraction pattern of particles D3 obtained in Example 3. FIG.
7 is a powder X-ray diffraction pattern of particles D5 obtained in Example 5. FIG.
FIG. 8 is a powder X-ray diffraction pattern of commercially available hydroxyapatite.
Claims (10)
(a)0.2≦dx1≦20(μm)
(b)0.01≦dx2≦0.20(μm)
(c)50≦Sw1≦165(m2/g)
(d)95≦ω1≦99
(e)70≦ω2≦95
(f)1≦α≦2 但し、α=d50/dx1
(g)0≦β≦1.1 但し、β=(d90−d10)/d50
但し、
dx1:電子顕微鏡写真により測定した粒子の平均粒子径(μm)。
dx2:水銀圧入法により測定した細孔分布により求めた粒子の平均細孔径(μm)。
Sw1:窒素吸着法によるBET比表面積(m2/g)
ω1 :JISK5101−91 20.1 顔料試験方法の静置法による見掛け比容( ml/g)を測定し、下記の式(h)により計算した静置空隙率(%)
1
(h)ω1={1−─────────────}×100(%)
2.9×[見掛け比容]
ω2:試料0.5gを断面積2cm2 の円筒に充填、30kg/cm2 の圧力で30秒間加圧、 その厚みをノギスで測定し、下記の式(i)より計算した30kg/cm2 の加圧空隙 率(%)
0.5
(i)ω2={1−─────────────}×100(%)
2.9×2×[厚さ]
α :分散係数
d50:マイクロトラックFRAレーザー式粒度分布計により測定した粒子の50%平 均粒子径(μm)。
β :シャープネス。
d90:マイクロトラックFRAレーザー式粒度分布計により測定した粒子のふるい通 過側累計90%粒子径(μm)。
d10:マイクロトラックFRAレーザー式粒度分布計により測定した粒子のふるい通 過側累計10%粒子径(μm)。It consists of a calcium phosphate compound having a petal-like porous structure using calcium carbonate as a raw material particle , the Ca / P atomic ratio is 5.56 or less, and the following formulas (a) to (g) are satisfied. A petal-like porous substrate for sustained release.
(A) 0.2 ≦ dx1 ≦ 20 (μm)
(B) 0.01 ≦ dx2 ≦ 0.20 (μm)
(C) 50 ≦ Sw1 ≦ 165 (m 2 / g)
(D) 95 ≦ ω1 ≦ 99
(E) 70 ≦ ω2 ≦ 95
(F) 1 ≦ α ≦ 2, where α = d50 / dx1
(G) 0 ≦ β ≦ 1.1 where β = (d90−d10) / d50
However,
dx1: average particle diameter (μm) of particles measured by electron micrograph.
dx2: average pore diameter (μm) of particles determined by pore distribution measured by mercury porosimetry.
Sw1: BET specific surface area by nitrogen adsorption method (m 2 / g)
ω1: JISK5101-91 20.1 The apparent specific volume (ml / g) of the pigment test method by the static method was measured, and the static void ratio (%) calculated by the following formula (h)
1
(H) ω1 = {1 ----------------------- x 100 (%)
2.9 × [apparent specific volume]
.omega.2: filling the sample 0.5g of cylindrical cross-sectional area 2 cm 2, the pressure for 30 seconds under pressure of 30kg / cm 2, the thickness was measured with calipers, the 30kg / cm 2 was calculated from the equation (i) below Pressurized porosity (%)
0.5
(I) ω2 = {1 ----------------------- x 100 (%)
2.9 x 2 x [thickness]
α: Dispersion coefficient d50: 50% average particle diameter (μm) of particles measured by Microtrac FRA laser particle size distribution meter.
β: Sharpness.
d90: 90% of particle diameter (μm) on the sieving pass side of particles measured with a Microtrac FRA laser particle size distribution analyzer.
d10: 10% particle diameter (μm) on the sieving pass side of particles measured with a Microtrac FRA laser particle size distribution meter.
(j)0.2≦dx1≦10(μm)The petal-like porous substrate for sustained release according to claim 1, wherein the average particle diameter dx1 satisfies the following formula (j).
(J) 0.2 ≦ dx1 ≦ 10 (μm)
(k)0.5≦dx1≦5(μm)The petal-like porous substrate for sustained release according to claim 2, wherein the average particle diameter dx1 satisfies the following formula (k).
(K) 0.5 ≦ dx1 ≦ 5 (μm)
(l)100≦Sw1≦165(m2/g)The petal-like porous substrate for sustained release according to any one of claims 1 to 3, wherein the BET specific surface area Sw1 satisfies the following formula (1).
(L) 100 ≦ Sw1 ≦ 165 (m 2 / g)
(m)1≦α≦1.6
(n)0≦β≦1.0The petal-like porous substrate for sustained release according to any one of claims 1 to 4, wherein the dispersion coefficient α and the sharpness β satisfy the following formulas (m) and (n) simultaneously.
(M) 1 ≦ α ≦ 1.6
(N) 0 ≦ β ≦ 1.0
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35735796A JP4110235B2 (en) | 1996-12-25 | 1996-12-25 | Petal-like porous substrate for sustained release body and sustained release body composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35735796A JP4110235B2 (en) | 1996-12-25 | 1996-12-25 | Petal-like porous substrate for sustained release body and sustained release body composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10182492A JPH10182492A (en) | 1998-07-07 |
JP4110235B2 true JP4110235B2 (en) | 2008-07-02 |
Family
ID=18453722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35735796A Expired - Fee Related JP4110235B2 (en) | 1996-12-25 | 1996-12-25 | Petal-like porous substrate for sustained release body and sustained release body composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4110235B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4230558B2 (en) * | 1998-03-11 | 2009-02-25 | 株式会社エルブ | Antibacterial ceramics and manufacturing method thereof |
JP4664571B2 (en) * | 2002-06-06 | 2011-04-06 | 丸尾カルシウム株式会社 | Foam stabilizer and foam-molded product comprising the same |
JP5488778B2 (en) * | 2007-07-02 | 2014-05-14 | 日産化学工業株式会社 | Controlled release particulates and solid agrochemical formulations containing the granules |
JP5732043B2 (en) * | 2009-04-24 | 2015-06-10 | オムヤ インターナショナル アーゲー | Particulate material for controlled release of active ingredients |
-
1996
- 1996-12-25 JP JP35735796A patent/JP4110235B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10182492A (en) | 1998-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5510109A (en) | Antibacterial and antifungal composition | |
JPH06508552A (en) | Stable double emulsion with finely ground particles | |
JP4110235B2 (en) | Petal-like porous substrate for sustained release body and sustained release body composition | |
JPH07315870A (en) | Porous body (fragrance diffusing body) for retaining volatile substance and diffusing same constantly | |
KR101605114B1 (en) | Method of manufacturing eco-friendly deodorant included Wasabia koreana for removing sick house syndrome | |
JP2007320977A (en) | Chitosan powder and water-based coating agent | |
CA2175664C (en) | Method and composition for disinfecting and solidifying liquid waste | |
US8568757B2 (en) | Formulations employing anhydrous disinfectant | |
JP2005307120A (en) | Sustained release agent and sustained release material using the same | |
JP4951785B2 (en) | Antibacterial fine particles, process for producing the same, and cosmetics or fungicides containing the antibacterial fine particles | |
JP2694926B2 (en) | Agro-horticultural granule wettable powder and method for producing the same | |
JPH0568442B2 (en) | ||
KR100550657B1 (en) | Method for intercepting noxious material in house utilizing glue containing silver-nano and phytoncide | |
CA2278204C (en) | Time-release control-type coated granular pesticide | |
WO2022059727A1 (en) | Functional component-impregnated hollow xonotlite body | |
WO1999034809A1 (en) | Solid iodophor preparations and process for producing the same | |
KR100645097B1 (en) | Method for intercepting noxious material in house utilizing phytoncide | |
JPS59193979A (en) | Volatile composition | |
KR20070072705A (en) | Composition of air freshener and method for producing air freshener using the same | |
WO2006068167A1 (en) | Porous fired material and method for production thereof | |
JPH01172302A (en) | Granular chloropicrin preparation for soil disinfection and production thereof | |
KR100656457B1 (en) | A coating manufacture method for absorber of Volatile organic compounds | |
JP5973150B2 (en) | Urine stone inhibitor | |
JPH04231063A (en) | Antimicrobial composition | |
JP4194665B2 (en) | Solid formulations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071019 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080312 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140418 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |