JPH04231063A - Antimicrobial composition - Google Patents

Antimicrobial composition

Info

Publication number
JPH04231063A
JPH04231063A JP3133723A JP13372391A JPH04231063A JP H04231063 A JPH04231063 A JP H04231063A JP 3133723 A JP3133723 A JP 3133723A JP 13372391 A JP13372391 A JP 13372391A JP H04231063 A JPH04231063 A JP H04231063A
Authority
JP
Japan
Prior art keywords
antibacterial
silver
component
dispersion medium
titania
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3133723A
Other languages
Japanese (ja)
Inventor
Tetsuya Kikuchi
哲也 菊地
Toru Shiba
徹 斯波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Create Medic Co Ltd
Original Assignee
Create Medic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Create Medic Co Ltd filed Critical Create Medic Co Ltd
Priority to JP3133723A priority Critical patent/JPH04231063A/en
Publication of JPH04231063A publication Critical patent/JPH04231063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a compsn. which comprises of an antimicrobial substance, a polymer, etc., for providing excellent antimicrobial characteristics to various structural body. CONSTITUTION:The title antimicrobial compsn. is prepd. by dispersing in a dispersing medium an antimicrobial substance wherein an antimicrobial metal e.g. silver, copper and/or zinc is adsorbed by using a porous titanium as a supporting body and the surface area of the porous titanium is 100cm<2>/g or larger; when the adsorbed antimicrobial metal is silver single component, the wt. ration of silver component to titanium component (Ag/Ti) is about 0.6X10<-2> or larger; when the adsorbed antimicrobial metals are composite components wherein silver component and copper and/or zinc components are main components, in the region where the amt. of silver component (Ag/Ti) is about 0.6X10<-2> or larger, the amt. of copper component and/or the amt. of zinc component are about 1X10<-2> or larger.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は抗菌性及びそのスペクト
ルに幅広さが望まれる各種構造物、例えば、壁、壁紙な
どの建材、食品包装材料、工業用品、さらに各種日用品
、医療用機器用具等を構成する基材等に広く適用可能な
抗菌性組成物に関するものである。
[Industrial Application Field] The present invention is applicable to various structures in which antibacterial properties and a wide range of antibacterial properties are desired, such as building materials such as walls and wallpaper, food packaging materials, industrial goods, various daily necessities, medical equipment, etc. The present invention relates to an antibacterial composition that can be widely applied to base materials, etc. constituting.

【0002】0002

【従来の技術】抗菌性を付与する方法の多くは有機系抗
菌剤によるものであり、有機銅や錫化合物、有機砒素化
合物、有機塩素化合物などが広く用いられてきた。しか
し、一般にこれらの化合物が有効であればあるほど有毒
性が強まることが最大の課題であった。一方、金属イオ
ンの微量溶出法なども広く検討されている。この例とし
ては、各種形状の銀や銅などのいわゆる抗菌性金属、あ
るいはその酸化物を構造物に添付する手段、粉末状物の
糊料や塗料への混和、繊維状物の繊維への混紡などが用
いられている。これらの代表的例として、医療用分野を
例にとれば、カテーテル表面への銀粒子の固定(米国特
許第4,054,139号)、医療用高分子材料表面へ
の銀、亜鉛、セリウムなどの金属塩のコーティング法(
米国特許第4,612,337号、特開昭62−114
57)、あるいはバルーンカテーテルのバルーン部表面
等への金属層の形成(特開平1−135358)などを
あげることが出来る。しかし、いずれの分野でも、使用
する金属粉末等の分散性及びその結果によるであろう効
果の程度やその持続性に劣る傾向にあるため、殆ど実用
化されていなかった。これらの欠点を改良する試みとし
て、銀等の金属イオンを交換した天然・合成ゼオライト
を抗菌剤とし、工業用品、日用品あるいは医療用品への
適用などが試みられている(特公昭63−54013な
ど)。ここでも、当然のことながら金属の微粒子化が抗
菌力を向上させる鍵であり、ゼオライト自体の粒経の制
約による金属粒子の微粒子化が必ずしも十分でなく、ま
た銀等を吸着したゼオライト自体の分散性の向上が十分
に得られなく、とくに安定性の良い表面コーティング用
原液や噴霧用原液を得ることがかなり困難であり、また
決して安価なものではない。
BACKGROUND OF THE INVENTION Most methods for imparting antibacterial properties are based on organic antibacterial agents, and organic copper, tin compounds, organic arsenic compounds, organic chlorine compounds, etc. have been widely used. However, the biggest problem was that the more effective these compounds were, the more toxic they became. On the other hand, methods for elution of small amounts of metal ions are also being widely studied. Examples of this include methods for attaching so-called antibacterial metals such as silver and copper in various forms or their oxides to structures, mixing powders into pastes and paints, and blending fibrous materials into fibers. etc. are used. Typical examples of these in the medical field include fixation of silver particles on the surface of catheters (US Pat. No. 4,054,139), and fixation of silver, zinc, cerium, etc. on the surface of medical polymer materials. Metal salt coating method (
U.S. Patent No. 4,612,337, JP-A-62-114
57), or the formation of a metal layer on the surface of the balloon portion of a balloon catheter (Japanese Patent Laid-Open No. 1-135358). However, in either field, they have hardly been put into practical use because they tend to be inferior in the dispersibility of the metal powder, etc. used, and in the degree and sustainability of the resulting effects. In an attempt to improve these drawbacks, attempts have been made to use natural and synthetic zeolites with exchanged metal ions such as silver as antibacterial agents, and to apply them to industrial, daily necessities, and medical supplies (Japanese Patent Publication No. 63-54013, etc.) . Here too, of course, the key to improving antibacterial activity is to make the metal particles fine, but due to restrictions on the particle size of the zeolite itself, the metal particles are not necessarily made into fine particles enough, and the zeolite itself, which has adsorbed silver, etc. It is difficult to obtain a surface coating stock solution or a spray stock solution with good stability, and it is not cheap.

【0003】0003

【発明が解決しようとする課題】従って、本発明の目的
は抗菌性金属の分散性が良好で、かつ低コストの抗菌性
物質が配合された組成物であり、さらに各種分野へのそ
の応用であるる。
[Problems to be Solved by the Invention] Therefore, the object of the present invention is to provide a composition containing an antibacterial substance that has good dispersibility of antibacterial metals and is low in cost, and which can be applied to various fields. There is.

【0004】0004

【課題を解決するための手段】さて、チタニア(酸化チ
タン)は耐食性が優れ、各種添加剤として広く知られて
いる。しかも、特にゲル状に形成したチタニアは極めて
多孔質であり、各種の金属イオンを吸着させることによ
り金属の超微粒子状態の実現が期待できる。本発明者ら
はこれらの特性に着目し、鋭意検討した結果、いわゆる
抗菌性金属の代表例である銀を中心に、銅及び亜鉛金属
などから選ばれた少なくとも1種の金属を多孔性チタニ
アに吸着させることによって優れた抗菌性を示すことを
見いだした。
[Means for Solving the Problems] Titania (titanium oxide) has excellent corrosion resistance and is widely known as a variety of additives. Furthermore, especially titania formed in a gel state is extremely porous, and by adsorbing various metal ions, it can be expected to realize ultrafine metal particles. The present inventors focused on these characteristics and, as a result of intensive study, found that at least one metal selected from silver, which is a typical example of so-called antibacterial metal, copper, zinc metal, etc., was added to porous titania. It was discovered that adsorption shows excellent antibacterial properties.

【0005】多孔性チタニアを作成する方法は種々考え
られるが、例えば、酸素の作用下に、三塩化チタン水溶
液にアンモニア水を加えることによってチタニアの白色
ゲルを収率よく得ることが出来る。該多孔性チタニアを
所望の各種金属塩水溶液(あるいは混合溶液)中に浸漬
して金属イオンを吸着した多孔性チタニアがえられる。 この場合でも製造時の条件、溶液のpH、イオン吸着前
のゲルの乾燥条件、イオン吸着条件・吸着量、また複数
イオン吸着の例では、その金属イオンの吸着比率など、
さらにこれら粒子の焼成条件によっても抗菌性の違いが
みられる。また例えば、加水分解法などの他の方法によ
る場合でも同様な傾向があることは云うまでもない。本
発明による好適な多孔性チタニアの平均粒経は50μm
以下であり、分散媒へのより均一に分散させるために、
好ましくは10μm以下であり、より好ましくは5μm
以下である。また、抗菌性金属として知られている銀、
銅、亜鉛或いはその他金属の多孔性チタニアへの吸着は
、抗菌性金属に対応する金属塩水溶液中に浸せきするこ
とによる。例えば銀では硝酸銀、銅であれば硫酸銅の水
溶液、また金属混合系では銀と銅を段階的に吸着させて
も、或いは対応する混合塩水溶液でもよい。
Various methods can be considered for producing porous titania, but for example, a white gel of titania can be obtained in good yield by adding aqueous ammonia to an aqueous titanium trichloride solution under the action of oxygen. The porous titania is immersed in various desired metal salt aqueous solutions (or mixed solutions) to obtain porous titania that has adsorbed metal ions. In this case, the manufacturing conditions, the pH of the solution, the drying conditions of the gel before ion adsorption, the ion adsorption conditions and adsorption amount, and in the case of multiple ion adsorption, the adsorption ratio of the metal ions, etc.
Furthermore, differences in antibacterial properties can also be seen depending on the firing conditions of these particles. It goes without saying that the same tendency exists even when other methods such as hydrolysis are used. The average grain size of the preferred porous titania according to the present invention is 50 μm.
In order to more uniformly disperse the dispersion medium,
Preferably 10 μm or less, more preferably 5 μm
It is as follows. Silver, which is also known as an antibacterial metal,
Adsorption of copper, zinc or other metals onto porous titania is achieved by immersion in an aqueous solution of a metal salt corresponding to the antibacterial metal. For example, for silver, an aqueous solution of silver nitrate, for copper, an aqueous solution of copper sulfate; for a mixed metal system, silver and copper may be adsorbed in stages, or a corresponding aqueous mixed salt solution may be used.

【0006】さて、ここで本発明で実施した抗菌性評価
に関する事項は次のようであった。 (1)抗菌性チタニアゲル粒子の抗菌力は「最小発育阻
止濃度(MIC)」の測定によった。MICの測定は、
日本化学療法学会制定の方法に準じたが、該方法の対象
は水溶性抗菌薬が一般であるため、本発明の不溶性抗菌
剤に適用するために大幅な変更を余儀なくされた。測定
法の要点は下記のようである。各種量の抗菌性チタニア
(検体)をいれたフラスコを高圧蒸気滅菌を行う。滅菌
済みMH培地を検体入りのフラスコに加え撹拌し、10
6/mlに調整した接種菌液を注加する。フラスコを3
7℃恒温振とう機で20時間振とう後の菌液について、
顕微鏡下で菌増殖の有無を判定する。陰性の最小濃度を
MIC値とする。 (2)抗菌性材料に対する抗菌力の評価は、多くの場合
に繊維製品加工協議会による「衛生加工製品の加工効果
評価試験方法」に準じ、いわゆるシェーク・フラスコ法
によった。三角フラスコにリン酸緩衝液と検体を投入し
、高圧蒸気滅菌した後、37℃に冷却する。これに37
℃に保持した菌液を加え、100回/分の条件で所定時
間振盪する。振盪前後の生菌数を混釈法で測定する。 減菌率は3時間振盪前後の生菌数(対数)の差を、振盪
前の生菌数(対数)に対する百分率(対数減菌率)で表
す。本発明では、形状を異にする種々の検体や抗菌剤濃
度の異なる検体を同一尺度で取り扱えるように、単位表
面積当たりの対数減菌率をもって実質的な抗菌力の指標
とした。ちなみに、生菌数で1×102程度の減少が、
抗菌性を示す実用的レベルと言える。
[0006] Now, the matters related to the antibacterial evaluation carried out in the present invention were as follows. (1) Antibacterial activity of titania gel particles was measured by "minimum inhibitory concentration (MIC)". The measurement of MIC is
Although the method was based on the method established by the Japanese Society of Chemotherapy, since this method generally targets water-soluble antibacterial agents, significant changes had to be made in order to apply it to the insoluble antibacterial agent of the present invention. The main points of the measurement method are as follows. Flasks containing various amounts of antibacterial titania (specimen) are sterilized using high-pressure steam. Add sterilized MH medium to the flask containing the sample and stir.
Add the inoculum solution adjusted to 6/ml. 3 flasks
Regarding the bacterial solution after shaking for 20 hours in a constant temperature shaker at 7℃,
Determine the presence or absence of bacterial growth under a microscope. The minimum negative concentration is taken as the MIC value. (2) The antibacterial activity of antibacterial materials was evaluated in many cases by the so-called shake flask method, in accordance with the "Test method for evaluating the processing effect of sanitary processed products" by the Textile Products Processing Council. A phosphate buffer solution and a specimen are placed in an Erlenmeyer flask, sterilized with high-pressure steam, and then cooled to 37°C. 37 to this
Add the bacterial solution maintained at ℃ and shake at 100 times/min for a predetermined period of time. Measure the number of viable bacteria before and after shaking using the pour-in method. The sterilization rate is the difference in the number of viable bacteria (logarithm) before and after shaking for 3 hours, expressed as a percentage (logarithmic sterilization rate) with respect to the number of viable bacteria (logarithm) before shaking. In the present invention, the logarithmic sterilization rate per unit surface area is used as an index of substantial antibacterial activity so that various specimens with different shapes and specimens with different antibacterial agent concentrations can be handled on the same scale. By the way, a decrease of about 1 x 102 in the number of viable bacteria is
This can be said to be at a practical level showing antibacterial properties.

【0007】抗菌性金属の多孔性チタニアへの吸着量は
、吸着条件にもよるが、概ね多孔性チタニアの比表面積
(m2/g)に左右される。比表面積が小さく約100
m2/g以下であると、抗菌性金属の吸着量が少なく、
実用的な抗菌力をえることができない。より十分な抗菌
力は表面積が140m2/g以上の多孔性であることが
望ましいので、多孔性チタニアの特性をこの面からも管
理する必要がある。なお、比表面積は、BET法により
窒素ガスの吸着挙動の解析から求めたものである。 さて、抗菌性チタニアゲルの抗菌力(MIC値で表示)
は、大略は吸着した抗菌性金属成分量に依存する。ここ
で抗菌性金属成分量はプラズマ発光分光分析法により定
量した値で、多孔性チタニアのチタン成分(Ti)と銀
(或いは銅、亜鉛)成分(Ag、(或いはCu、Zn)
)の重量比で表示する。これらの系に於ける銀は重要な
役割を持ち、実施例で具体的に述べるように、銀成分を
単独で用いる場合の有効な抗菌力をえるためには、銀成
分量のチタン成分量に対する重量比(Ag/Ti)が、
少なくとも約0.9×10−2を必要とする。より有効
な抗菌性は約3×10−2、さらに高度な効果は約9×
10−2である。この銀成分量に加え、銅成分及び/或
いは亜鉛成分の吸着量の効果は次のようである。即ち、
Ag/Tiが3×10−2前後までの低銀成分量領域で
は銅成分量の影響を大きく受けるが、銀成分量の増大と
ともに銅成分量の効果は次第に薄れのである。従って、
抗菌力を有効に発揮させるための銀成分及び、銅及び/
或いは亜鉛成分組成の設定例は次のようになる。銀成分
量(Ag/Ti)が約0.6×10−2の例では、銅成
分量(Cu/Ti)は約1×10−2以上、好ましくは
約2×10−2以上である。より望ましくは銀成分量(
Ag/Ti)を約3×10−2とし、銅成分量(Cu/
Ti)を約2×10−2以上、更に最適には約8×10
−2以上と設定することである。抗菌性金属として銀成
分と亜鉛成分を選択した例でも同様であった。
The amount of antibacterial metal adsorbed onto porous titania depends on the adsorption conditions, but generally depends on the specific surface area (m2/g) of the porous titania. Specific surface area is small, about 100
m2/g or less, the amount of antibacterial metal adsorbed is small;
It is not possible to obtain practical antibacterial activity. Since it is desirable that porous titania has a surface area of 140 m2/g or more for more sufficient antibacterial activity, it is necessary to manage the characteristics of porous titania from this aspect as well. Note that the specific surface area was determined from analysis of nitrogen gas adsorption behavior using the BET method. Now, the antibacterial power of antibacterial titania gel (expressed as MIC value)
roughly depends on the amount of antibacterial metal component adsorbed. Here, the amount of antibacterial metal components is a value determined by plasma emission spectroscopy, and the amount of titanium component (Ti) and silver (or copper, zinc) component (Ag, (or Cu, Zn)) of porous titania.
) is expressed as a weight ratio. Silver in these systems plays an important role, and as specifically described in the examples, in order to obtain effective antibacterial activity when silver component is used alone, the amount of silver component relative to the amount of titanium component must be The weight ratio (Ag/Ti) is
Requires at least about 0.9 x 10-2. More effective antibacterial properties are approximately 3×10-2, and even more advanced effects are approximately 9×
It is 10-2. In addition to the amount of silver component, the effect of the adsorption amount of copper component and/or zinc component is as follows. That is,
In the low silver content region where Ag/Ti is around 3 x 10-2, the effect of the copper content is large, but as the silver content increases, the effect of the copper content gradually fades. Therefore,
Silver components, copper and/or silver components to effectively demonstrate antibacterial power
Alternatively, an example of setting the zinc component composition is as follows. In an example where the silver component amount (Ag/Ti) is about 0.6×10 −2 , the copper component amount (Cu/Ti) is about 1×10 −2 or more, preferably about 2×10 −2 or more. More preferably, the amount of silver component (
Ag/Ti) is approximately 3 x 10-2, and the copper content (Cu/Ti) is approximately 3 x 10-2.
Ti) of about 2 x 10-2 or more, more optimally about 8 x 10
-2 or more. The same result was obtained in an example in which a silver component and a zinc component were selected as antibacterial metals.

【0008】本発明の抗菌性チタニアを用いた組成物を
用い、構造物を構成する基材に抗菌性を与える手段は次
のようである。所要量の抗菌性金属を吸着した多孔性チ
タニアを、例えば分散媒を液体、オリゴマ溶液、液状ポ
リマ、またポリマ溶液、或いはポリマ融体などとし、こ
れらに混練し、分散させた組成物を得ることが出来る。 また、これらで被覆して、微粒子状、あるいは粒状の抗
菌性組成物を得、該抗菌性組成物を原料とし構造物の基
材あるいはその部材とする。勿論、この組成物を成形原
料として、直接賦形できることは云うまでもない。或い
は、分散媒として水や有機系、無機系液体も採用可能で
ある。さらに、抗菌性金属を吸着したチタニア粉末を、
その他の粉末を分散媒として混合し、構造物あるいはそ
の基材等の表層に散布するなどの形態をとることも可能
である。抗菌性組成物としての構造物の基材あるいは部
材の材質としてはポリアクリル系、ポリスチレン系、ポ
リサルフォン系、シリコーン系、ポリウレタン系、ポリ
塩化ビニール系、各種ナイロン、ポリエステル系、ポリ
フッ素系、ポリエチレン、ポリプロピレン、ポリカーボ
ネートなど、およびこれらの共重合ポリマやブレンド物
など、またセルロース系を含めていずれのポリマ、およ
びこれらを粘結する各種材料に適用可能である。適用で
きる構造物としてはその用途、形態にとくに制約はない
。本発明による抗菌性チタニアゲルおよび組成物は繊維
の抗菌防臭、塗料の抗菌、防藻、パルプの抗菌、ゴム・
プラスチックの抗菌、包装材料の抗菌や各種接着材料、
油剤等の抗菌を目的に広く応用可能である。
The method of imparting antibacterial properties to a base material constituting a structure using the composition using antibacterial titania of the present invention is as follows. To obtain a composition in which porous titania adsorbing a required amount of antibacterial metal is kneaded and dispersed in, for example, a dispersion medium such as a liquid, an oligomer solution, a liquid polymer, a polymer solution, or a polymer melt. I can do it. Further, by coating with these, a particulate or granular antibacterial composition is obtained, and the antibacterial composition is used as a base material of a structure or a member thereof. Of course, it goes without saying that this composition can be directly shaped using it as a molding raw material. Alternatively, water, organic liquid, or inorganic liquid can be used as the dispersion medium. Furthermore, titania powder adsorbed with antibacterial metals,
It is also possible to mix other powders as a dispersion medium and spray the mixture onto the surface of a structure or its base material. Materials for the base material or member of the structure used as the antibacterial composition include polyacrylic, polystyrene, polysulfone, silicone, polyurethane, polyvinyl chloride, various nylons, polyester, polyfluorine, polyethylene, It can be applied to any polymer including polypropylene, polycarbonate, copolymers and blends thereof, cellulose-based polymers, and various materials for binding these. There are no particular restrictions on the use or form of structures to which this method can be applied. The antibacterial titania gel and composition according to the present invention can be used for antibacterial and deodorizing textiles, antibacterial and algae prevention for paints, antibacterial use for pulp, and antibacterial and deodorizing properties for textiles.
Antibacterial of plastics, antibacterial of packaging materials, various adhesive materials,
It can be widely applied for antibacterial purposes such as oil agents.

【0009】[0009]

【作用】いわゆる抗菌性金属が強い抗菌効果を示す機構
は十分には明かにされていない。微量の金属イオンが抗
菌作用を持つことは古くから知られていたが、近年生体
防御機構の一つである消毒機構への活性酸素系の関与と
類似し、ここでも活性酸素の寄与が論じられるようにな
った。この種のゲルに金属を吸着させ、微粒子状にする
ことにより、この機能を十分に発揮させることが出来る
ものと考えることができる。
[Action] The mechanism by which so-called antibacterial metals exhibit their strong antibacterial effects has not been fully clarified. It has been known for a long time that small amounts of metal ions have antibacterial effects, but in recent years, the contribution of active oxygen has been discussed here as well, similar to the involvement of active oxygen systems in the disinfection mechanism, which is one of the biological defense mechanisms. It became so. It is thought that this function can be fully exerted by adsorbing metal to this type of gel and forming it into fine particles.

【0010】0010

【実施例】以下本発明を抗菌性金属として銀、銅及び亜
鉛を中心とした実施例をもちいて説明するが、本発明は
実施例の内容に限定されるものではない。
EXAMPLES The present invention will be explained below using examples mainly using silver, copper and zinc as antibacterial metals, but the present invention is not limited to the contents of the examples.

【実施例1】多孔性チタニアを各種濃度の硝酸銀水溶液
中に投入し、1時間放置後、吸引ろ過し、残さを水洗す
ることによって銀を吸着させた抗菌性チタニアを得た。 これを引き続き所定濃度の硫酸銅水溶液、或いは硫酸亜
鉛水溶液に投入し、それぞれ1時間放置後、吸引ろ過し
、残さを水洗することによって、銀成分及び銅或いは亜
鉛成分を吸着した抗菌性チタニアを得た。この試料の銅
成分量Cu/Ti(成分重量比)および亜鉛成分量Zn
/Ti(成分重量比)と緑膿菌に対するMIC値(μg
/ml)の関係を表1に示した。
Example 1 Porous titania was put into silver nitrate aqueous solutions of various concentrations, left for one hour, filtered under suction, and the residue was washed with water to obtain antibacterial titania adsorbed with silver. This was subsequently poured into a copper sulfate aqueous solution or a zinc sulfate aqueous solution of a predetermined concentration, left for one hour, filtered under suction, and the residue was washed with water to obtain antibacterial titania that had adsorbed silver components and copper or zinc components. Ta. The copper component amount Cu/Ti (component weight ratio) and the zinc component amount Zn of this sample
/Ti (component weight ratio) and MIC value for Pseudomonas aeruginosa (μg
/ml) is shown in Table 1.

【0011】[0011]

【表1】 表1に於ける「番号4」の抗菌性チタニアをシリコーン
ゴムベースと等重量混和し、いわゆるマスターバッチを
作製した
[Table 1] The antibacterial titania numbered 4 in Table 1 was mixed with the silicone rubber base in equal weight to create a so-called masterbatch.

【実施例2】成形用シリコーンゴムが所定量のチタニア
ゲル濃度になるように、実施例1で作製したマスターバ
ッチを混練し、抗菌性組成物をえた。抗菌性チタニアの
濃度は3.2%および5.1%とした。このゴムを用い
て通常の工程に準じてチューブを押出した。この医療用
チューブ(試料の表面積:10cm2に調整)の大腸菌
、緑膿菌、および黄色ブドウ球菌に対する滅菌率(%)
及び抗菌力をシェークフラスコ法により測定した。振盪
前後の生菌数の対数の滅菌率及びそれを検体の全表面積
で規格化して得られた結果は表2のようであった。
Example 2 The masterbatch prepared in Example 1 was kneaded so that the silicone rubber for molding had a predetermined concentration of titania gel to obtain an antibacterial composition. The concentrations of antibacterial titania were 3.2% and 5.1%. A tube was extruded using this rubber according to a normal process. Sterilization rate (%) of this medical tube (sample surface area: adjusted to 10 cm2) against E. coli, Pseudomonas aeruginosa, and Staphylococcus aureus
and antibacterial activity was measured by shake flask method. Table 2 shows the sterilization rate of the logarithm of the number of viable bacteria before and after shaking, and the results obtained by normalizing it by the total surface area of the specimen.

【0012】0012

【表2】[Table 2]

【実施例3】市販の塩化ビニール/酢酸ビニール共重合
体からなる塩化ビニール塗料に、実施例1に於ける「番
号3」の抗菌性チタニアを1重量%量を少量づつ十分に
撹拌しつつ添加し、均一に分散させた。この様にして作
製した抗菌性塗料を木材ブロックの表面に塗布し、十分
に乾燥させた。塗布面を大腸菌及び緑膿菌を含む培養液
で覆い、密閉下で培養し、8時間後に菌の有無を観察し
たが、これらの生菌を見いだせなかった。
[Example 3] 1% by weight of the antibacterial titania number 3 in Example 1 was added in small portions with thorough stirring to a commercially available vinyl chloride paint made of vinyl chloride/vinyl acetate copolymer. and uniformly dispersed. The antibacterial paint thus prepared was applied to the surface of the wood block and thoroughly dried. The coated surface was covered with a culture solution containing Escherichia coli and Pseudomonas aeruginosa, cultured under closed conditions, and the presence or absence of bacteria was observed after 8 hours, but no viable bacteria could be found.

【実施例4】ポリエステル・チップに実施例1に於ける
「番号4」の銀及び銅を吸着させた多孔性チタニア0.
5重量%を混合し、溶融紡糸によってステープル糸を製
造したこのトウをスタッフイングボックス巻縮加工を施
した。この巻縮糸のシェークフラスコ法を用いた大腸菌
に対する抗菌力(単位表面積当たりの対数減少率)は3
.5であった。
[Example 4] Porous titania 0.000.000000000000000, in which silver and copper of "No. 4" in Example 1 were adsorbed onto a polyester chip.
The tow was mixed with 5% by weight and produced into staple yarn by melt spinning, and subjected to stuffing box crimping. The antibacterial activity (logarithmic reduction rate per unit surface area) of this crimped yarn against E. coli using the shake flask method was 3
.. It was 5.

【実施例5】高圧法ポリエチレンに、実施例1に於ける
「番号6」の抗菌性チタニアを1重量%量添加し、イン
フレーション法により包装用フィルムを製造した。この
フィルム(30cm2)  の大腸菌に対する抗菌性を
シェークフラスコ法により評価した。大腸菌の振盪前生
菌数は2×104であったが、振盪3時間後には1×1
01に減少していた。
[Example 5] Antibacterial titania "No. 6" in Example 1 was added in an amount of 1% by weight to high-pressure polyethylene, and a packaging film was produced by the inflation method. The antibacterial properties of this film (30 cm2) against E. coli were evaluated by the shake flask method. The number of viable E. coli bacteria before shaking was 2 x 104, but after 3 hours of shaking it was 1 x 1.
It had decreased to 01.

【0013】[0013]

【発明の効果】本発明による抗菌性組成物は抗菌性に優
れ、コーティング技術にも適応するなど加工性にも優れ
、広範囲の分野で容易に抗菌性構造物を提供する事がで
きる。
[Effects of the Invention] The antibacterial composition according to the present invention has excellent antibacterial properties and is also excellent in processability, such as being applicable to coating techniques, and can easily provide antibacterial structures in a wide range of fields.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  抗菌性金属が担体に吸着されてなる抗
菌性物質が分散媒で被覆され、或いは分散媒に分散され
ている抗菌性組成物において、担体が比表面積100m
2/g以上の多孔性チタニアであり、多孔性チタニアに
吸着された抗菌性金属成分の1種が少なくとも銀である
抗菌性チタニアを形成しており、銀成分のチタン成分に
対する重量比として0.9×10−2以上の銀成分量で
ある抗菌性チタニアが分散媒で被覆され、或いは分散媒
中に分散していることを特徴とする抗菌性組成物。
Claim 1: An antibacterial composition in which an antibacterial substance obtained by adsorbing an antibacterial metal on a carrier is coated with a dispersion medium or is dispersed in a dispersion medium, wherein the carrier has a specific surface area of 100 m
2/g or more, forming antibacterial titania in which one of the antibacterial metal components adsorbed on the porous titania is at least silver, and the weight ratio of the silver component to the titanium component is 0.2/g or more. An antibacterial composition characterized in that antibacterial titania having a silver content of 9 x 10-2 or more is coated with a dispersion medium or dispersed in a dispersion medium.
【請求項2】  抗菌性金属が担体に吸着されてなる抗
菌性物質が分散媒で被覆され、或いは分散媒に分散され
ている抗菌性組成物において、担体が比表面積100m
2/g以上の多孔性チタニアであり多孔性チタニアに吸
着された抗菌性金属成分が銀及び銅成分及び/或いは亜
鉛成分が主体であり、銀成分量がチタン成分に対する重
量比が約0.6×10−2以上の領域において、銅成分
量及び/或いは亜鉛成分が約1×10−2以上である抗
菌性チタニアがが分散媒で被覆され、或いは分散媒中に
分散していることを特徴とする抗菌性組成物。
2. An antibacterial composition in which an antibacterial substance formed by adsorbing an antibacterial metal on a carrier is coated with a dispersion medium or is dispersed in a dispersion medium, wherein the carrier has a specific surface area of 100 m
2/g or more, the antibacterial metal components adsorbed on the porous titania are mainly silver and copper components and/or zinc components, and the weight ratio of the silver component to the titanium component is approximately 0.6. x10-2 or more, antibacterial titania having a copper content and/or zinc content of about 1x10-2 or more is coated with a dispersion medium or is dispersed in a dispersion medium. Antibacterial composition.
【請求項3】  抗菌性金属が担体に吸着されてなる抗
菌性物質が分散媒で被覆され、或いは分散媒に分散され
ている抗菌性組成物において、分散媒がポリマ及び/或
いはオリゴマであることを特徴とする請求項1及び2に
記載の抗菌性組成物。
[Claim 3] In an antibacterial composition in which an antibacterial substance formed by adsorbing an antibacterial metal on a carrier is coated with a dispersion medium or dispersed in a dispersion medium, the dispersion medium is a polymer and/or an oligomer. The antibacterial composition according to claims 1 and 2, characterized in that:
JP3133723A 1990-09-18 1991-03-29 Antimicrobial composition Pending JPH04231063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3133723A JPH04231063A (en) 1990-09-18 1991-03-29 Antimicrobial composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-246262 1990-09-18
JP24626290 1990-09-18
JP3133723A JPH04231063A (en) 1990-09-18 1991-03-29 Antimicrobial composition

Publications (1)

Publication Number Publication Date
JPH04231063A true JPH04231063A (en) 1992-08-19

Family

ID=26467999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3133723A Pending JPH04231063A (en) 1990-09-18 1991-03-29 Antimicrobial composition

Country Status (1)

Country Link
JP (1) JPH04231063A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310992A (en) * 1992-05-08 1993-11-22 Matsushita Electric Ind Co Ltd Antimicrobial transparent resin, antimicrobial adhesive and antimicrobial resin molded product
US5429819A (en) * 1992-10-14 1995-07-04 Matsushita Electric Industrial Co., Ltd. Antiviral composition
JP2014040416A (en) * 2012-08-10 2014-03-06 Tsukasa Sakurada Sterilization and deodorization agent, production method of the same, and application method of the agent

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190536A (en) * 1984-12-28 1986-08-25 ジヨンソン マツセイ パブリツク リミテイド カンパニ− Antibacterial composition
JPS6354013A (en) * 1986-08-22 1988-03-08 Matsushita Electric Ind Co Ltd Power supply device for electronic tuner
JPS6388109A (en) * 1986-07-03 1988-04-19 ジヨンソン マツセイ パブリツク リミテイド カンパニ− Antibacterial composition
JPH026333A (en) * 1988-03-17 1990-01-10 Ishihara Sangyo Kaisha Ltd Antibacterial powder and production thereof
JPH02225402A (en) * 1989-02-28 1990-09-07 Kanebo Ltd Antibacterial composition
JPH02268103A (en) * 1989-04-07 1990-11-01 Kanebo Ltd Antimicrobial composition
JPH0352804A (en) * 1989-07-19 1991-03-07 Tomita Seiyaku Kk Antibacterial titanium oxide and preparation thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190536A (en) * 1984-12-28 1986-08-25 ジヨンソン マツセイ パブリツク リミテイド カンパニ− Antibacterial composition
JPS6388109A (en) * 1986-07-03 1988-04-19 ジヨンソン マツセイ パブリツク リミテイド カンパニ− Antibacterial composition
JPS6354013A (en) * 1986-08-22 1988-03-08 Matsushita Electric Ind Co Ltd Power supply device for electronic tuner
JPH026333A (en) * 1988-03-17 1990-01-10 Ishihara Sangyo Kaisha Ltd Antibacterial powder and production thereof
JPH02225402A (en) * 1989-02-28 1990-09-07 Kanebo Ltd Antibacterial composition
JPH02268103A (en) * 1989-04-07 1990-11-01 Kanebo Ltd Antimicrobial composition
JPH0352804A (en) * 1989-07-19 1991-03-07 Tomita Seiyaku Kk Antibacterial titanium oxide and preparation thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310992A (en) * 1992-05-08 1993-11-22 Matsushita Electric Ind Co Ltd Antimicrobial transparent resin, antimicrobial adhesive and antimicrobial resin molded product
US5429819A (en) * 1992-10-14 1995-07-04 Matsushita Electric Industrial Co., Ltd. Antiviral composition
US5516519A (en) * 1992-10-14 1996-05-14 Matsushita Electric Industrial Co., Ltd. Antiviral composition
US5645846A (en) * 1992-10-14 1997-07-08 Matsushita Electric Industrial Co., Ltd. Method of disinfecting an object and antiviral disinfection liquid therefor
JP2014040416A (en) * 2012-08-10 2014-03-06 Tsukasa Sakurada Sterilization and deodorization agent, production method of the same, and application method of the agent

Similar Documents

Publication Publication Date Title
DE69935677T2 (en) ANTIBIOTIC HYDROPHILIC COATING
CA2037314C (en) Antimicrobial composition
CN101677530B (en) Antimicrobial material
US8318698B2 (en) Process for synthesizing silver-silica particles and applications
US20180055975A1 (en) Method for Producing a Dispersion Containing Silver Nanoparticles and Use of a Mixture Containing Silver Nanoparticles as a Coating Agent
EP0253663B1 (en) Polymer containing amorphous aluminosilicate particles and process for producing the same
CA2171379C (en) Antimicrobial polymer composition
JP5599470B2 (en) Antifungal material
US20160227785A1 (en) Bacteriostatic and fungistatic additive in masterbatch for application in plastics, and method for producing same
CA2761866A1 (en) Nanostructural composition of biocide
KR100587465B1 (en) Inorganic antibiotic agent with silver and thermal plastic resin master batch containing its
JPH04231062A (en) Antimicrobial medical product
JPH04231063A (en) Antimicrobial composition
JPH054816A (en) Antibacterial titania
JPH04126152A (en) Antimicrobial composition
CN1421133A (en) Superfine antibactericide powder for polymer and its prepn
JP2559126B2 (en) Weather resistant antibacterial zeolite composition
JPH0578218A (en) Germicidal and rust proof composition and mixture containing the same composition
CN103651569A (en) Technology for preparing surface-coated modified Ag/ZnO nano composite antibacterial agent
JPH0687710A (en) Improved antimicrobial substance
JP3659700B2 (en) Antibacterial composition
JP3085682B2 (en) Antimicrobial composition
RU2757849C1 (en) Method for obtaining biocidal suspension for coating wallpaper and wall coverings
KR20220156005A (en) Improved tungsten-containing antimicrobial composite material
JPH0751039A (en) Production of antimicrobial spherical resin particle