JP4108243B2 - Photosensitive resin laminate - Google Patents

Photosensitive resin laminate Download PDF

Info

Publication number
JP4108243B2
JP4108243B2 JP2000019857A JP2000019857A JP4108243B2 JP 4108243 B2 JP4108243 B2 JP 4108243B2 JP 2000019857 A JP2000019857 A JP 2000019857A JP 2000019857 A JP2000019857 A JP 2000019857A JP 4108243 B2 JP4108243 B2 JP 4108243B2
Authority
JP
Japan
Prior art keywords
photosensitive resin
acrylate
resin layer
meth
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000019857A
Other languages
Japanese (ja)
Other versions
JP2000356852A5 (en
JP2000356852A (en
Inventor
徹 森
輝彦 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Microdevices Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2000019857A priority Critical patent/JP4108243B2/en
Publication of JP2000356852A publication Critical patent/JP2000356852A/en
Publication of JP2000356852A5 publication Critical patent/JP2000356852A5/ja
Application granted granted Critical
Publication of JP4108243B2 publication Critical patent/JP4108243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Materials For Photolithography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は感光性樹脂積層体に関し、特にCSP(Chip Size Package)製造に好適な感光性樹脂積層体に関するものである。
【0002】
【従来の技術】
CSPとは、LSIチップをパッケージ化された部品で、一般にLSIチップサイズと同等あるいはわずかに大きいパッケージのことであり、最近の電子機器の小型化に伴い急速に普及している。CSPには、パッケージのタイプにより、BGA(Ball Grid Array)タイプ、LGA(Land Grid Array)タイプ、SON(Small Outline Non-leaded)タイプ等がある。
【0003】
従来、LSIチップをCSPにパッケージ化する方法は、ウエーハ上で作ったLSIを個々のチップに裁断した後、外部端子を有する配線板にワイヤーボンディング、ソルダリング、超音波接合等の方法で接合してから、必要であれば有機樹脂で封止あるいはアンダーフィルする方法が用いられていた。
近年、シリコンウエーハ上に形成された複数個のLSIに対して、裁断される前に一括して配線および外部端子を作り、必要であれば有機樹脂で封止することによりCSPあるいはBGA等の部品にしてから、個々の部品として裁断する方法が採られ始めた。この方法により作られた部品は一般にウエーハ・レベルCSPと呼ばれている。
【0004】
ウエーハ・レベルCSPを作る工程においては、LSIチップ端子と外部端子を接続するための配線が必要で、多くは導体をめっきによりつけることで形成されている。さらに詳しく述べると、金属層を施したウエーハ上に液状レジストを塗布・乾燥後、化学線を配線パターンマスクを介して露光し、レジストを現像除去することにより、導体配線を形成させたい部分のみ開口させ、これに電解金属めっきを行い、必要な配線を形成させる。
【0005】
配線には、線状のものやビアホールを銅で充填した柱状のもの等がある。特に柱状の配線に関しては、めっき厚みが50μm〜200μmと厚くすることが求められている。
上記配線を形成させる際に、レジストとして液状のものが使用されているが、液状レジストは1回の塗布で所望の厚みが得られない場合、複数回の塗布が必要になり工程数が増える問題があった。また、複数回の塗布・乾燥の繰り返しにより最終的なレジスト厚みの均一性が悪化したり、均一にするための塗布方法が操作上複雑となった。
【0006】
また、めっき厚みが100〜200μmと厚い場合に、電気導体めっきの時間が長くなるため、めっき液に浸漬している間にレジストが基材から一部はがれ、その結果としてめっきのもぐりが発生し不良となりやすかった。
【0007】
【発明が解決しようとする課題】
本発明は、上記したCSPの製造上の問題点を解決できる感光性樹脂積層体を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、めっきによる配線形成のためのレジストとして、特定の重合性モノマーと光開始剤としてp−アミノフェニルケトンを含有する感光性樹脂組成物の層を有する感光性樹脂積層体を用いることにより、ウエーハ上へのレジストの密着性が向上し、さらに導体めっき工程での耐めっき性が著しく改善されることを見出した。また、特定の重合性モノマーの組合わせにより、前記性能向上に加えて、硬化レジストの剥離性も改善されることを見出した。
【0009】
即ち、本発明は以下の通りのものである。
1.支持体と感光性樹脂層からなり、該感光性樹脂層が、(1)カルボキシル基含有量が酸当量で100〜600、かつ重量平均分子量が2万〜50万の重合体:20〜90重量%、(2)下記式(1)で示される化合物、グリセリンプロピレンオキサイド付加トリ(メタ)アクリレート及びグリセリンエチレンオキサイド付加トリ(メタ)アクリレートからなる群から選ばれる1種または2種以上の重合性モノマー:10〜60重量%。
【0010】
【化3】

Figure 0004108243
(ここで、Xは水素原子、メチル基または水酸基を表す。AはCH 2 CH(CH 3 )OおよびCH 2 CH 2 Oの共重合体残基を表し、nは0〜5の整数を表す。Rは水素原子またはメチル基を表す。)、及び(3)少なくとも1種のp−アミノフェニルケトン:0.001〜0.1重量%を含み、該感光性樹脂層の膜厚が80〜200μmであることを特徴とするCSP製造用感光性樹脂積層体。
2.支持体と感光性樹脂層からなり、該感光性樹脂層が、(1)カルボキシル基含有量が
酸等量で100〜600,重量平均分子量が2万〜50万の重合体:20〜90重量%、(2)少なくともi)下記式(1)で示される化合物、グリセリンプロピレンオキサイド付加トリ(メタ)アクリレートおよびグリセリンエチレンオキサイド付加トリ(メタ)アクリレートからなる群から選ばれる少なくとも一つの化合物。
【0011】
【化4】
Figure 0004108243
(ここで、Xは水素原子、メチル基または水酸基を表す。AはCH 2 CH(CH 3 )OおよびCH 2 CH 2 Oの共重合体残基を表し、nは0〜5の整数を表す。Rは水素原子またはメチル基を表す。)及びii)アクリル酸エステル基を1個有する化合物を含む、2種以上の重合性モノマー:10〜60重量%、並びに(3)少なくとも1種のp−アミノフェニルケトン:0.001〜0.1重量%を含み、該感光性樹脂層の膜厚が80〜200μmであることを特徴とするCSP製造用感光性樹脂積層体。
3.p−アミノフェニルケトンの含有量が0.01〜0.08重量%であることを特徴とする上記1または2に記載のCSP製造用感光性樹脂積層体。
本発明の感光性樹脂積層体は、支持層と感光性樹脂組成物からなるもので、一般に支持フィルム上に感光性樹脂組成物を積層し、多くの場合、さらに該組成物上に保護用のフィルムが積層される。
【0012】
本発明において、感光性樹脂層の成分である(1)の重合体に含まれるカルボキシル基の量は、酸当量で100〜600である必要があり、300〜400が好ましい。ここで酸当量とは、その中に1等量のカルボキシル基を有するポリマーの重量をいう。酸当量の測定は、0.1N水酸化ナトリウムで電位差滴定法により行われる。酸当量が100以下では、塗工溶媒またはモノマーとの相溶性が低下し、600以上では現像性や剥離性が低下する。
【0013】
重合体の重量平均分子量は、2万〜50万である必要があり、より好ましくは4万〜20万である。分子量の測定はゲル パーミエーション クロマトグラフィー(GPC)により標準ポリスチレンの検量線を用いて行われる。50万以上であると現像性が低下し、2万以下では感光性樹脂積層体に用いた場合に感光性樹脂層の厚みを均一に維持することが困難になる。
重合体は、下記の2種類の単量体の中より各々1種またはそれ以上の単量体を用い、共重合させることにより得られる。第1の単量体は分子中に炭素−炭素二重結合等の重合性不飽和基を1個有するカルボン酸である。例えば(メタ)アクリル酸、フマル酸、ケイ皮酸、クロトン酸、イタコン酸、マレイン酸半エステル等である。第2の単量体は分子中に炭素−炭素二重結合等の重合性不飽和基を有する非酸性単量体であり、感光性樹脂層の現像性、エッチング工程での耐性、硬化膜の可とう性等の種々の特性を保持するように選ばれる。例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸2-ヒドロキシエチル等の(メタ)アクリル酸アルキル類、(メタ)アクリル酸ベンジル、酢酸ビニル等のビニルアルコールのエステル類、スチレンまたは重合可能なスチレン誘導体および(メタ)アクリロニトリル等がある。
【0014】
本発明の感光性樹脂層の成分である(2)の重合性モノマーについては、下記一般式(1)で示される化合物を少なくとも含む必要がある。
【0015】
【化5】
Figure 0004108243
【0016】
(ここで、Xは水素原子、メチル基または水酸基を表す。AはCH2CH(CH3)OおよびCH2CH2Oの共重合体残基を表し、nは0〜5の整数を表す。Rは水素原子またはメチル基を表す。)
このような化合物の具体例としては、グリセリンプロピレンオキサイド付加トリ(メタ)アクリレート、グリセリンエチレンオキサイド付加トリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキサイド付加トリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド付加トリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキサイドエチレンオキサイド付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。
【0017】
第二の発明によれば、感光性樹脂層の成分である(2)の重合性モノマーとしては、下記一般式(1)で示される化合物、
【0018】
【化6】
Figure 0004108243
【0019】
(ここで、Xは水素原子、メチル基または水酸基を表す。AはCH2CH(CH3)OおよびCH2CH2Oの共重合体残基を表し、nは0〜5の整数を表す。Rは水素原子またはメチル基を表す。)
及び(メタ)アクリル酸エステル基を1個有する化合物とを少なくとも含む必要がある。
このような(メタ)アクリル酸エステル基を1個有する化合物の具体例としては、2−ヒドロキシ−3−フェノキシプロピルアクリレート(下記化合物)、
【0020】
【化7】
Figure 0004108243
【0021】
フェノキシヘキサエチレングリコールアクリレート(下記化合物)、
【0022】
【化8】
Figure 0004108243
【0023】
β−ヒドロキシプロピル−β’−(アクロイルオキシ)プロピルフタレート(下記化合物)、
【0024】
【化9】
Figure 0004108243
【0025】
4−ノルマルオクチルフェノキシペンタエチレングリコールトリプロピレングリコールアクリレート(下記化合物)
【0026】
【化10】
Figure 0004108243
【0027】
等が挙げられる。
本発明に用いられる重合性モノマーとしては、上記以外の末端エチレン性不飽和基を1個以上有する不飽和化合物を含んでもよい。このような化合物の例として、1,4−テトラメチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,4−シクロヘキサンジオールジ(メタ)アクリレート、オクタプロピレングリコールジ(メタ)アクリレート、2−ジ(p−ヒドロキシフェニル)プロパンジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、イソシアヌル酸のエチレンオキサイド変性(メタ)アクリレート、ジアリルフタレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ビス(ポリエチレングリコール(メタ)アクリレート)ポリプロピレングリコール、等がある。また、ヘキサメチレンジイソシアナート、トリレンジイソシアナートなどの多価イソシアナート化合物と、2−ヒドロキシプロピル(メタ)アクリレートなどのヒドロキシアクリレート化合物とのウレタン化反応物などの例をあげることができる。
【0028】
感光性樹脂層中に含有される重合性モノマーの量は、10〜60重量%の範囲であり、好ましくは20〜50重量%である。
本発明の感光性樹脂層には、少なくとも1種のp−アミノフェニルケトンを光開始剤として含むことが必要である。感光性樹脂層中に含有されるp−アミノフェニルケトンの量は、0.001〜0.1重量%の範囲であり、好ましくは0,01〜0.08重量%である。具体的な例として、p−アミノフェニルケトンについては、好ましいものとして例えばp−アミノベンゾフェノン、p−ブチルアミノフェノン、p−ジメチルアミノアセトフェノン、p−ジメチルアミノベンゾフェノン、p,p’−ビス(エチルアミノ)ベンゾフェノン、p,p’−ビス(ジメチルアミノ)ベンゾフェノン[ミヒラーズケトン]、p,p’−ビス(ジエチルアミノ)ベンゾフェノン、p,p’−ビス(ジブチルアミノ)ベンゾフェノン等が用いられる。
【0029】
p−アミノフェニルケトンの構造としてさらに好ましくは、p,p’−ビス(ジメチルアミノ)ベンゾフェノンあるいはp,p’−ビス(ジエチルアミノ)ベンゾフェノンが良い。
本発明の感光性樹脂層に含まれる他の開始剤としては、特に制限は無く、公知のあらゆる化合物を用いることができる。具体例としては、ベンジルジメチルケタール、ベンジルジエチルケタール、ベンジルジプロピルケタール、ベンジルジフェニルケタール、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインピロピルエーテル、ベンゾインフェニルエーテル、2、4、5−トリアリールイミダゾリル二量体、ベンゾフェノン、9−フェニルアクリジン等のアクリジン類、α、α−ジメトキシ−α−モルホリノ−メチルチオフェニルアセトフェノン、2,4,6−トリメチルベンゾイルホスフォンオキシド、フェニルグリシン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ーブタノン−1、チオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2−イソプロピルチオキサントン、4−イソプロピルチオキサントン、2,4ージイソプロピルチオキサントン、2−フルオロチオキサントン、4−フルオロチオキサントン、2−クロロチオキサントン、4−クロロチオキサントン、1−クロロ−4−プロポキシチオキサントン、p−ジメチル安息香酸、p−ジエチル安息香酸及びp−ジイソプロピル安息香酸及びこれらと下記のアルコールのエステル化物が使用することができる。アルコールとしては、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、イソブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、n−アミルアルコール、イソアミルアルコール、ヘキシルアルコール、オクチルアルコール等がある。さらに1−フェニル−1、2−プロパンジオン−2−O−ベンゾイルオキシム、2,3−ジオキソ−3−フェニルプロピオン酸エチル−2−(O−ベンゾイルカルボニル)−オキシム等のオキシムエステル類がある。
【0030】
本発明に用いられる感光性樹脂の熱安定性、保存安定性を向上させるために、感光性樹脂層にラジカル重合禁止剤を含有させることは好ましいことである。例えば、p−メトキシフェノール、ハイドロキノン、ピロガロール、ナフチルアミン、tert−ブチルカテコール、塩化第一銅、2,6−ジ−tert−ブチル−p−クレゾール、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)等がある。
【0031】
本発明の感光性樹脂層には染料、顔料等の着色物質を含有してもよい。例えばフクシン、フタロシアニングリーン、オーラミン塩基、カルコキシドグリーンS、パラマジエンタ、クリスタルバイオレット、メチルオレンジ、ナイルブルー2B、ビクトリアブルー、マラカイトグリーン、ベイシックブルー20、ダイヤモンドグリーン等がある。
また、光照射により発色する発色系染料を含有しても良い。発色系染料としては、ロイコ染料とハロゲン化合物の組み合わせが良く知られている。ロイコ染料としては、例えばトリス(4−ジメチルアミノ−2−メチルフェニル)メタン[ロイコクリスタルバイオレット]、トリス(4−ジメチルアミノ−2−メチルフェニル)メタン[ロイコマラカイトグリーン]等が挙げられる。一方ハロゲン化合物としては臭化アミル、臭化イソアミル、臭化イソブチレン、臭化エチレン、臭化ジフェニルメチル、臭化ベンザル、臭化メチレン、トリブロモメチルフェニルスルホン、四臭化炭素、トリス(2,3−ジブロモプロピル)ホスフェート、トリクロロアセトアミド、ヨウ化アミル、ヨウ化イソブチル、1,1,1−トリクロロ−2,2−ビス(p−クロロフェニル)エタン、ヘキサクロロエタン等がある。
【0032】
さらに本発明の感光性樹脂層には、必要に応じて可塑剤等の添加剤を含有しても良い。例えばジエチルフタレート等のフタル酸エステル類、o−トルエンスルホン酸アミド、p−トルエンスルホン酸アミド、クエン酸トリブチル、クエン酸トリエチル、アセチルクエン酸トリエチル、アセチルクエン酸トリ−n−プロピル、アセチルクエン酸トリ−n−ブチル、ポリプロピレングリコール等が例示できる。
【0033】
本発明の感光性樹脂層の厚みは、必要な配線の厚みに対応して調整する。50〜250μmであり、好ましくは80〜200μmであり、さらに好ましくは100〜150μmである。
本発明に用いられる支持体としては、紫外線に対して透明性の高いポリマーフィルムを用いる。例えばポリエチレンテレフテレートフィルム、ポリエチレンナフタレートフィルム、ポリビニルアルコールフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリ塩化ビニリデンフィルム、塩化ビニリデン共重合体フィルム、ポリメタクリル酸メチル共重合体フィルム、ポリスチレンフィルム、ポリアクリロニトリルフィルム、スチレン共重合体フィルム、ポリアミドフィルム、セルロース誘導体フィルム等が挙げられる。これらのフィルムは必要に応じ延伸されたものも使用可能である。
【0034】
保護フィルムを設ける場合、該保護フィルムと感光性樹脂層の密着力が支持体と感光性樹脂層の密着力より小さい特性を有するフィルムが選ばれる。例えばポリエリレンフィルム、ポリプロピレンフィルム等が挙げられる。
本発明の感光性樹脂積層体は、CSP製造において、以下のように用いられる。
まず、保護フィルムがある場合には、感光性樹脂積層体から保護フィルムを剥離した後、加熱された1対のロールにより基材と感光性樹脂積層体とを熱圧着(ラミネート)することで基材表面にレジスト膜を形成させる。ここで用いられる熱圧着装置(以下、ラミネーターという)としては、加熱ロールが2対以上ある多段式ラミネーターやロール部雰囲気を減圧にしたいわゆる真空ラミネーターが挙げられる。この際の加熱ロールの温度は40〜160℃、好ましくは60℃〜120℃である。
【0035】
基材としては、個々のLSIチップに対しても適応できるが、シリコンウエーハがより好ましい。シリコンウエーハ表面は一般にチップ端子以外を有機樹脂により保護されており、さらにめっきをかけるためにスパッタリング等の方法で全面に下地金属層が設けられている場合が多い。
ラミネート後の感光性樹脂積層体は、支持体のついたままかあるいは支持体を剥離した後に、所望の配線が得られるように作られたマスクを介して化学線により露光する。化学線としては、X線、電子線、紫外線、可視光線等が使用できるが、200〜500nmの波長のものが好ましい。また、化学線によって露光された部分(感光性樹脂)は硬化する。
【0036】
露光装置としては、超高圧水銀灯を光源とした散乱露光機、平行露光機等が使用される。また、LSIの製造で一般的なマスクアライナ、ステッパーも使用できる。フィルターにより単色化された紫外線による露光も可能である。
また、露光した後速やかにウエーハを加熱する工程(PEB;Post Exposure Bake)を行っても良い。PEB工程により硬化レジストのウエーハとの密着性が向上する。加熱温度は50〜100℃、加熱時間は30秒〜10分が好ましい。
【0037】
露光後のレジストは無機または有機アルカリ液により現像する。その結果未露光部分が溶解除去され、露光部分のみに硬化レジストが残される。ここで用いられる現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n−プロピルアミン等の第1アミン類、ジエチルアミン、ジ−n−プロピルアミン等の第2アミン類、トリエチルアミン、メチルジエチルアミン等の第3アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第4級アンモニウム塩等のアルカリ類の水溶液等が使用できる。ウエーハに残る微量の無機アルカリイオン(ナトリウムイオン、カリウムイオン)がCSPの性能に影響を及ぼす場合は、有機アルカリ液の使用が好ましい。現像方法としては、スプレー、パドル、浸漬、超音波等の方式が可能である。
【0038】
これに電解金属めっきを行うことによって、硬化レジストが無い部分に所望の厚みの金属を形成させる。金属としては、銅、ニッケル、クロム、金、はんだ等が挙げられるが、特に、銅めっきが多用される。所望のめっき厚みに対して同等またはより厚い硬化レジストが必要となる。感光性樹脂層の厚みは露光、現像後の硬化レジストの厚みとほぼ等しいため、めっき厚みに対して同等またはより厚い感光性樹脂積層を有する感光性樹脂積層体を使用する。
【0039】
上述のようにして導体配線を形成した後、硬化レジストを無機または有機アルカリ液により剥離除去する。一般に現像液に比べてアルカリ性が強く、液温度を高い条件で剥離する。ここで用いられる剥離液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n−プロピルアミン等の第1アミン類、ジエチルアミン、ジ−n−プロピルアミン等の第2アミン類、トリエチルアミン、メチルジエチルアミン等の第3アミン類、2−アミノエタノール、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第4級アンモニウム塩等のアルカリ類の水溶液およびこれにメタノール、エタノール、ジメチルスルホキシド、N−メチルピロリドン、ジメチルホルムアミド等の有機溶剤を適量含んだ水溶液が使用できる。ウエーハに残る微量の無機アルカリイオン(ナトリウムイオン、カリウムイオン)がCSPの性能に影響を及ぼす場合は、有機アルカリ液の使用が好ましい。剥離方法としては、スプレー、パドル、浸漬、超音波等の方式が可能である。
【0040】
硬化レジストの剥離後、フラッシュエッチング、プラズマエッチング、リアクティブイオンエッチング等の方法でウエーハ上の下地金属層を除去し、必要な配線のみを残す。
さらに、必要に応じて有機樹脂で封止することによりCSPを作製する。ウエーハ上でCSPの集合体を作製した場合、ダイシングにより1個1個のCSPに切り離す。
【0041】
【発明の実施の形態】
以下、実施例により本発明をさらに詳しく説明する。
実施例中の特性評価は、次の方法で測定した。
1)解像度評価A
80μm幅のライン部と80μm幅のスペース部が交互に5本ずつ並んだマスクを、感光性樹脂積層体がラミネートされたウエーハ上に置き、オーク社製平行光露光機HMW−801で200mJ/cm2露光した。支持体を剥がした後、30℃の1%炭酸ナトリウム水溶液を120秒間スプレーし、未露光部分の感光性樹脂層を現像除去し、5本並んでいるレジストパターンを形成させた。5本のレジストラインが独立して形成されている場合を○、5本のレジストラインの一部がつながっているかあるいはウエーハ表面から剥がれている場合を×とした。
2)解像度評価B
80μm幅のライン部と80μm幅のスペース部が交互に5本ずつ並んだマスクを、感光性樹脂積層体がラミネートされたウエーハ上に置き、キャノン社製マスクアライナPLA−501Fで11秒間露光した。露光機の照度を測定したところ、6.3mW/cm2であり、計算すると70mJ/cm2の露光量となった。露光後すぐに80℃のオーブンにウエーハを入れ、2分間露光後ベークを行った。支持体を剥がした後、室温で2.38%テトラメチルアンモニウムヒドロキシド水溶液を用いてパドル現像した。パドル現像の現像時間の合計は240秒間だった。未露光部分の感光性樹脂層を現像除去し、5本並んでいるレジストパターンを形成させた。5本のレジストラインが独立して形成されている場合を○、5本のレジストラインの一部がつながっているかあるいはウエーハ表面から剥がれている場合を×とした。
【0042】
3)めっきもぐり評価
剥離後のウエーハを光学顕微鏡およびSEM(走査型電子顕微鏡)で観察し、めっきもぐりの状態を調べた。次のようなランクで判定した。
○・・・めっきもぐりが全く無し
△・・・めっきもぐりが5μm未満
×・・・めっきもぐりが5μm以上
4)硬化レジストの剥離性評価
直径150μmの(光を通さない)ドットが300μmピッチで縦100列、横100列(ドット総数:10000個)並んだパターンのマスクを、感光性樹脂積層体がラミネートされたウエーハ上に置き、キャノン社製マスクアライナPLA−501Fで11秒間露光した。支持体を剥がした後、室温で2.38%テトラメチルアンモニウムヒドロキシド水溶液を用いてパドル現像し、約150μmφの円孔を作った。パドル現像の現像時間の合計は240秒間だった。このウエーハを硫酸銅めっき液中で90分間電解銅めっきし、円柱状の銅配線を作った。電流密度は5A/dm2になるように調整した。銅めっきの高さは100μmだった。めっき後のウエーハを50℃のアルカリ剥離液に浸漬10分間してレジストを剥離した。アルカリ剥離液は、メルテックス社製フィルムストリップ500の10%水溶液を用いた。剥離後のウエーハを観察し、次のようなランクで判定した。
○・・・ウエーハ上に剥離残渣が全くなし。
△・・・円柱状の銅配線周辺に剥離残渣がある割合が、面積として10%未満。
×・・・円柱状の銅配線周辺に剥離残渣がある割合が、面積として10%以上。
【0043】
【実施例1】
メチルメタクリレート/メタクリル酸/エチルアクリレート=55/25/20wt%で重量平均分子量が20万の重合体を60重量部、重合性モノマーとしてトリメチロールプロパントリアクリレートを30重量部、光開始剤として2、4、5−トリアリールイミダゾリル二量体を5重量部とp,p’−ビス(ジメチルアミノ)ベンゾフェノン0.05重量部および溶剤としてメチルエチルケトンを100重量部を混合溶解した液を、支持体(16μm厚みのポリエチレンテレフタレートフィルム)にバーコーターを用いて塗布、乾燥し、保護フィルム(23μm厚みのポリエチレンフィルム)をかぶせることにより感光性樹脂積層体(感光性樹脂層の厚み:100μm)を調製した。
<評価1>
5インチのシリコンウエーハ上にアネルバ製スパッタリング装置により2000オングストローム厚みのクロム層を形成し、さらに2000オングストロームの銅層を形成させた。
【0044】
これに上記で調製した感光性樹脂積層体を旭化成製ラミネーターAL−70により、保護フィルムを剥がしながら、感光性樹脂層の面がシリコンウエーハに密着するようにラミネートした。ラミネートはロール温度を100℃、圧力はエアー圧で3kg/cm2、速度は1.5m/分で行った。
感光性樹脂積層体がラミネートされたウエーハにマスクを置き、オーク社製平行光露光機HMW−801で200mJ/cm2露光した。
【0045】
支持体を剥がした後、30℃の1%炭酸ナトリウム水溶液を120秒間スプレーし、未露光部分の感光性樹脂層を現像除去し、レジストパターンを形成させた。
解像度評価Aの結果は○であった。
レジストが形成されたウエーハを、30℃の酸性クリーナー(アトテックジャパン製FRX)に3分間浸漬することで脱脂を行った後、硫酸銅めっき液(メルテックス社製カパーグリーム125)中で6時間電解銅めっきした。電流密度は2A/dm2になるように調整した。銅めっきの高さは、90μmだった。
めっき後のウエーハを50℃の3%水酸化ナトリウム水溶液に10分間浸漬してレジストを剥離した。
めっきもぐりの評価は○であった。
【0046】
【実施例2〜6、比較例1〜5】
表1、表2に示した感光性樹脂積層を有する感光性樹脂積層体を調製し、実施例1と同様の方法により、ウエーハ上の電気銅めっきの配線を形成させた。解像度評価およびめっきもぐり評価の結果も表1、表2に示す。
表1、表2中の感光性樹脂原料の略号の意味は下記の通りである。
A−1:メチルメタクリレート/メタクリル酸/エチルアクリレート=55/25/20wt%で重量平均分子量が20万の重合体
A−2:メチルメタクリレート/メタクリル酸/スチレン/ブチルメタクリレート=45/25/20/10wt%で重量平均分子量が10万の重合体
A−3:メチルメタクリレート/メタクリル酸/スチレン/ブチルメタクリレート/アクリロニトリル=37/22/9/19/13wt%で重量平均分子量が12万の重合体
B−1:トリメチロールプロパントリアクリレート
B−2:トリメチロールプロパンエチレンオキサイド6モル付加トリアクリレート
CH3−CH2−C[CH2−O−(CH2CH2O)2−CO−CH=CH23
B−3:トリメチロールプロパントリメタクリレート
B−4:ビス(トリエチレングリコールメタクリレート)ポリプロピレングリコール
CH2=C(CH3)−CO−O−(CH2CH2O)3
−(CH(CH3)CH2O)12−(CH2CH2O)3
−CO−C(CH3)=CH2
B−5:ノナエチレングリコールジアクリレート
CH2=CH−CO−O−(CH2CH2O)9−CO−CH=CH2
B−6:ビスフェノールAのエチレンオキサイド付加ジメタクリレート
CH2=C(CH3)−CO−O−(CH2CH2O)5
−φ−C(CH32−φ−O−(CH2CH2O)5
−CO−C(CH3)=CH2
(ここで、φはベンゼン環)
C−1:p,p’−ビス(ジメチルアミノ)ベンゾフェノン
C−2:p,p’−ビス(ジエチルアミノ)ベンゾフェノン
C−3:2−(o−クロロフェニル)−4・5−ジフェニルイミダゾリル二量体
C−4:ベンゾフェノン
C−5:2ーベンジル−2−ジメチルアミノ−1−(4ーモルフォリノフェニル)ーブタノンー1(チバガイギー社製、商標名:イルガキュアー369)
【0047】
<評価2>
5インチのシリコンウエーハ上にアネルバ製スパッタリング装置により2000オングストローム厚みのクロム層を形成し、さらに2000オングストロームの銅層を形成させた。
これに実施例1と同じ方法で実施例1の感光性樹脂積層体をラミネートした。
感光性樹脂積層体がラミネートされたウエーハにマスクを置き、オーク社製平行光露光機HMW−801で200mJ/cm2露光した。
支持体を剥がした後、30℃の1%炭酸ナトリウム水溶液を120秒間スプレーし、未露光部分の感光性樹脂層を現像除去し、レジストパターンを形成させた。
【0048】
解像度評価Aの結果は○であった。
レジストが形成されたウエーハを、30℃の酸性クリーナー(アトテックジャパン製FRX)に3分間浸漬することで脱脂を行った後、はんだめっき液(メルテックス社製プルティンLAホウフッ化はんだ浴)中で4時間電解はんだめっきした。電流密度は1.5A/dm2になるように調整した。はんだめっきの高さは、90μmだった。
めっき後のウエーハを50℃の3%水酸化ナトリウム水溶液に10分間浸漬してレジストを剥離した。
めっきもぐりの評価は○であった。
【0049】
【実施例7】
メチルメタクリレート/メタクリル酸/エチルアクリレート=55/25/20wt%で重量平均分子量が20万の重合体を60重量部、重合性モノマーとしてトリメチロールプロパントリアクリレートを30重量部、2−ヒドロキシ−3−フェノキシプロピルアクリレート10重量部、光開始剤として2、4、5−トリアリールイミダゾリル二量体を5重量部とp,p’−ビス(ジメチルアミノ)ベンゾフェノン0.05重量部および溶剤としてメチルエチルケトンを100重量部を混合溶解した液を、支持体(19μm厚みのポリエチレンテレフタレートフィルム)にバーコーターを用いて塗布、乾燥し、保護フィルム(30μm厚みのポリエチレンフィルム)をかぶせることにより感光性樹脂積層体(感光性樹脂層の厚み:120μm)を調製した。
【0050】
5インチのシリコンウエーハ上に日本真空製スパッターにより2000オングストローム厚みのクロム層を形成し、さらに2000オングストロームの銅層を形成させた。
これに上記で調製した感光性樹脂積層体を旭化成製ラミネーターAL−70により、保護フィルムを剥がしながら、感光性樹脂層の面がシリコンウエーハに密着するようにラミネートした。ラミネートはロール温度を100℃、圧力はエアー圧で3.5kg/cm2、速度は1.0m/分で行った。
【0051】
感光性樹脂積層体がラミネートされたウエーハにマスクを置き、キャノン社製マスクアライナPLA−501Fで11秒露光した。露光機の照度を測定したところ、6.3mW/cm2であり、計算すると70mJ/cm2の露光量となった。露光後すぐに80℃のオーブンにウエーハを入れ、2分間露光後ベークを行った。
支持体を剥がした後、室温で2.38%テトラメチルアンモニウムヒドロキシド水溶液を用いてパドル現像した。パドル現像の現像時間の合計は240秒間だった。未露光部分の感光性樹脂層を現像除去し、レジストパターンを形成させた。
【0052】
解像度評価Bの結果は○であった。
レジストが形成されたウエーハを、30℃の酸性クリーナー(アトテックジャパン製FRX)に3分間浸漬することで脱脂を行った後、硫酸銅めっき液(メルテックス社製カパーグリーム125)中で6時間電解銅めっきした。電流密度は2A/dm2になるように調整した。銅めっきの高さは、90μmだった。
めっき後のウエーハを50℃の3%水酸化ナトリウム水溶液に浸漬10分間してレジストを剥離した。
【0053】
めっきもぐりの評価は○であった。
直径150μmのドットが並んだパターンのマスクを、感光性樹脂積層体がラミネートされたウエーハ上に置き、キャノン社製マスクアライナPLA−501Fで11秒間露光した。支持体を剥がした後、室温で2.38%テトラメチルアンモニウムヒドロキシド水溶液を用いてパドル現像た。このウエーハを硫酸銅めっき液中で電解銅めっきし、円柱状の銅配線を作った。めっき後のウエーハを50℃のアルカリ剥離液に浸漬10分間してレジストを剥離した。
硬化レジストの剥離性評価は○であった。
【0054】
【実施例8〜10、実施例1〜2、6
表3に示した感光性樹脂積層を有する感光性樹脂積層体を調製し、実施例7と同様の方法により、ウエーハ上の電気銅めっきの配線を形成させた。解像度評価、めっきもぐり評価および硬化レジストの剥離性評価の結果も表3に示す。前述した原料以外の感光性樹脂原料の略号の意味は下記の通りである。
B−7:2−ヒドロキシ−3−フェノキシプロピルアクリレート
B−8:フェノキシヘキサエチレングリコールアクリレート
B−9:β−ヒドロキシプロピル−β’−(アクロイルオキシ)プロピルフタレート
B−10:4−ノルマルオクチルフェノキシペンタエチレングリコールトリプロピレングリコールアクリレート
【0055】
【表1】
Figure 0004108243
【0056】
【表2】
Figure 0004108243
【0057】
【表3】
Figure 0004108243
【0058】
【発明の効果】
以上説明したように、本願の第一の発明の感光性樹脂積層体を用いると、CSPの製造において、チップ端子と外部端子を接続する配線を形成させる際に、解像度が優れているため微細な配線を作ることができ、さらに導体めっき工程においてめっきもぐりの無い高品質な導体配線が得られ、CSPの製造に極めて好適である。
また、本願の第二の発明によれば、さらに、めっき後のレジスト剥離が容易かつ良好で剥離残渣の無い高信頼性の回路を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photosensitive resin laminate, and more particularly to a photosensitive resin laminate suitable for CSP (Chip Size Package) manufacture.
[0002]
[Prior art]
The CSP is a component in which an LSI chip is packaged, and is generally a package that is equal to or slightly larger than the LSI chip size, and is rapidly spreading with the recent miniaturization of electronic devices. CSP includes BGA (Ball Grid Array) type, LGA (Land Grid Array) type, SON (Small Outline Non-leaded) type, etc., depending on the package type.
[0003]
Conventionally, an LSI chip is packaged in a CSP by cutting an LSI made on a wafer into individual chips and then bonding them to a wiring board having external terminals by a method such as wire bonding, soldering, or ultrasonic bonding. Then, if necessary, a method of sealing or underfilling with an organic resin has been used.
In recent years, for a plurality of LSIs formed on a silicon wafer, parts such as CSP or BGA are formed by collectively forming wiring and external terminals before cutting and sealing with an organic resin if necessary. After that, the method of cutting as individual parts began to be adopted. A part made by this method is generally called a wafer level CSP.
[0004]
In the process of making the wafer level CSP, wiring for connecting the LSI chip terminal and the external terminal is necessary, and many are formed by attaching a conductor by plating. More specifically, after applying and drying a liquid resist on a wafer provided with a metal layer, actinic radiation is exposed through a wiring pattern mask, and the resist is developed and removed, so that only portions where conductor wiring is to be formed are opened. This is subjected to electrolytic metal plating to form necessary wiring.
[0005]
The wiring includes a linear one and a columnar one in which a via hole is filled with copper. In particular, regarding columnar wiring, it is required to increase the plating thickness to 50 μm to 200 μm.
When the wiring is formed, a liquid resist is used. However, if the liquid resist does not have a desired thickness by a single application, a plurality of processes are required and the number of processes increases. was there. In addition, the uniformity of the final resist thickness is deteriorated by repeating the coating and drying a plurality of times, and the coating method for making it uniform is complicated in operation.
[0006]
In addition, when the plating thickness is as thick as 100 to 200 μm, the electric conductor plating time becomes long, so that the resist is partially peeled off from the base material while being immersed in the plating solution, and as a result, plating is peeled off. It was easy to become defective.
[0007]
[Problems to be solved by the invention]
An object of this invention is to provide the photosensitive resin laminated body which can solve the problem on manufacture of above-mentioned CSP.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor has developed a photosensitive resin containing a specific polymerizable monomer and p-aminophenyl ketone as a photoinitiator as a resist for wiring formation by plating. It has been found that by using a photosensitive resin laminate having a composition layer, the adhesion of the resist to the wafer is improved and the plating resistance in the conductor plating step is remarkably improved. Moreover, it discovered that the peeling property of the cured resist was improved in addition to the said performance improvement by the combination of a specific polymerizable monomer.
[0009]
  That is,The present invention is as follows.
1. The photosensitive resin layer comprises a support and a photosensitive resin layer. (1) A polymer having a carboxyl group content of 100 to 600 in terms of acid equivalent and a weight average molecular weight of 20,000 to 500,000: 20 to 90 weights %, (2) one or more polymerizable monomers selected from the group consisting of a compound represented by the following formula (1), glycerin propylene oxide-added tri (meth) acrylate and glycerin ethylene oxide-added tri (meth) acrylate : 10 to 60% by weight.
[0010]
[Chemical Formula 3]
Figure 0004108243
(Here, X represents a hydrogen atom, a methyl group or a hydroxyl group. A represents CH. 2 CH (CH Three ) O and CH 2 CH 2 O represents a copolymer residue, and n represents an integer of 0 to 5. R represents a hydrogen atom or a methyl group. ), And (3) at least one p-aminophenyl ketone: 0.001 to 0.1% by weight, and the photosensitive resin layer has a thickness of 80 to 200 μm. Photosensitive resin laminate.
2. It consists of a support and a photosensitive resin layer, and the photosensitive resin layer has (1) carboxyl group content.
Polymer having an acid equivalent of 100 to 600 and a weight average molecular weight of 20,000 to 500,000: 20 to 90% by weight, (2) at least i) a compound represented by the following formula (1), glycerin propylene oxide addition tri (meta ) At least one compound selected from the group consisting of acrylate and glycerin ethylene oxide-added tri (meth) acrylate.
[0011]
[Formula 4]
Figure 0004108243
(Here, X represents a hydrogen atom, a methyl group or a hydroxyl group. A represents CH. 2 CH (CH Three ) O and CH 2 CH 2 O represents a copolymer residue, and n represents an integer of 0 to 5. R represents a hydrogen atom or a methyl group. ) And ii) two or more polymerizable monomers including a compound having one acrylate group: 10 to 60% by weight, and (3) at least one p-aminophenyl ketone: 0.001 to 0.001. A photosensitive resin laminate for CSP production, comprising 1% by weight, wherein the photosensitive resin layer has a thickness of 80 to 200 μm.
3. 3. The photosensitive resin laminate for CSP production according to 1 or 2 above, wherein the content of p-aminophenyl ketone is 0.01 to 0.08% by weight.
  The photosensitive resin laminate of the present invention is composed of a support layer and a photosensitive resin composition. In general, a photosensitive resin composition is laminated on a support film, and in many cases, a protective layer is further formed on the composition. Films are laminated.
[0012]
In this invention, the quantity of the carboxyl group contained in the polymer of (1) which is a component of the photosensitive resin layer needs to be 100-600 by an acid equivalent, and 300-400 are preferable. Here, the acid equivalent means the weight of a polymer having 1 equivalent of a carboxyl group therein. The acid equivalent is measured by potentiometric titration with 0.1N sodium hydroxide. When the acid equivalent is 100 or less, the compatibility with the coating solvent or the monomer is lowered, and when it is 600 or more, the developability and the peelability are lowered.
[0013]
The weight average molecular weight of the polymer needs to be 20,000 to 500,000, more preferably 40,000 to 200,000. The molecular weight is measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve. When it is 500,000 or more, developability is lowered, and when it is 20,000 or less, it is difficult to maintain a uniform thickness of the photosensitive resin layer when used in the photosensitive resin laminate.
The polymer can be obtained by copolymerization using one or more of the following two types of monomers. The first monomer is a carboxylic acid having one polymerizable unsaturated group such as a carbon-carbon double bond in the molecule. For example, (meth) acrylic acid, fumaric acid, cinnamic acid, crotonic acid, itaconic acid, maleic acid half ester and the like. The second monomer is a non-acidic monomer having a polymerizable unsaturated group such as a carbon-carbon double bond in the molecule, the developability of the photosensitive resin layer, the resistance in the etching process, and the cured film. It is selected so as to retain various characteristics such as flexibility. For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, etc. There are alkyl (meth) acrylates, benzyl (meth) acrylate, esters of vinyl alcohol such as vinyl acetate, styrene or polymerizable styrene derivatives and (meth) acrylonitrile.
[0014]
About the polymerizable monomer of (2) which is a component of the photosensitive resin layer of this invention, it is necessary to contain at least the compound shown by following General formula (1).
[0015]
[Chemical formula 5]
Figure 0004108243
[0016]
(Here, X represents a hydrogen atom, a methyl group or a hydroxyl group. A represents CH.2CH (CHThree) O and CH2CH2O represents a copolymer residue, and n represents an integer of 0 to 5. R represents a hydrogen atom or a methyl group. )
Specific examples of such compounds include glycerin propylene oxide-added tri (meth) acrylate, glycerin ethylene oxide-added tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, and trimethylolpropane propylene oxide-added tri (meth) acrylate. , Trimethylolpropane ethylene oxide addition tri (meth) acrylate, trimethylolpropane propylene oxide ethylene oxide addition tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and the like.
[0017]
According to 2nd invention, as a polymerizable monomer of (2) which is a component of the photosensitive resin layer, the compound shown by following General formula (1),
[0018]
[Chemical 6]
Figure 0004108243
[0019]
(Here, X represents a hydrogen atom, a methyl group or a hydroxyl group. A represents CH.2CH (CHThree) O and CH2CH2O represents a copolymer residue, and n represents an integer of 0 to 5. R represents a hydrogen atom or a methyl group. )
And a compound having one (meth) acrylic acid ester group.
Specific examples of the compound having one (meth) acrylic acid ester group include 2-hydroxy-3-phenoxypropyl acrylate (the following compound),
[0020]
[Chemical 7]
Figure 0004108243
[0021]
Phenoxyhexaethylene glycol acrylate (the following compound),
[0022]
[Chemical 8]
Figure 0004108243
[0023]
β-hydroxypropyl-β '-(acryloyloxy) propyl phthalate (the following compound),
[0024]
[Chemical 9]
Figure 0004108243
[0025]
4-normal octylphenoxypentaethylene glycol tripropylene glycol acrylate (the following compounds)
[0026]
Embedded image
Figure 0004108243
[0027]
Etc.
The polymerizable monomer used in the present invention may include an unsaturated compound having one or more terminal ethylenically unsaturated groups other than those described above. Examples of such compounds include 1,4-tetramethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, octapropylene glycol di ( (Meth) acrylate, 2-di (p-hydroxyphenyl) propane di (meth) acrylate, glycerol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, bisphenol A diglycidyl ether di (Meth) acrylate, ethylene oxide modified (meth) acrylate of isocyanuric acid, diallyl phthalate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate , Bis (polyethylene glycol (meth) acrylate) polypropylene glycol, and the like. In addition, examples include urethanation reaction products of polyvalent isocyanate compounds such as hexamethylene diisocyanate and tolylene diisocyanate and hydroxyacrylate compounds such as 2-hydroxypropyl (meth) acrylate.
[0028]
The amount of the polymerizable monomer contained in the photosensitive resin layer is in the range of 10 to 60% by weight, preferably 20 to 50% by weight.
The photosensitive resin layer of the present invention needs to contain at least one p-aminophenyl ketone as a photoinitiator. The amount of p-aminophenyl ketone contained in the photosensitive resin layer is in the range of 0.001 to 0.1% by weight, preferably 0.01 to 0.08% by weight. As specific examples, for p-aminophenyl ketone, preferred examples include p-aminobenzophenone, p-butylaminophenone, p-dimethylaminoacetophenone, p-dimethylaminobenzophenone, p, p′-bis (ethylamino). ) Benzophenone, p, p′-bis (dimethylamino) benzophenone [Michler's ketone], p, p′-bis (diethylamino) benzophenone, p, p′-bis (dibutylamino) benzophenone, and the like are used.
[0029]
The structure of p-aminophenyl ketone is more preferably p, p'-bis (dimethylamino) benzophenone or p, p'-bis (diethylamino) benzophenone.
There is no restriction | limiting in particular as another initiator contained in the photosensitive resin layer of this invention, All the well-known compounds can be used. Specific examples include benzyl dimethyl ketal, benzyl diethyl ketal, benzyl dipropyl ketal, benzyl diphenyl ketal, benzoin methyl ether, benzoin ethyl ether, benzoin pyropyr ether, benzoin phenyl ether, 2,4,5-triarylimidazolyl dimer. Acridines such as benzophenone and 9-phenylacridine, α, α-dimethoxy-α-morpholino-methylthiophenylacetophenone, 2,4,6-trimethylbenzoyl phosphine oxide, phenylglycine, 2-benzyl-2-dimethylamino- 1- (4-morpholinophenyl) -butanone-1, thioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 4 Isopropylthioxanthone, 2,4-diisopropylthioxanthone, 2-fluorothioxanthone, 4-fluorothioxanthone, 2-chlorothioxanthone, 4-chlorothioxanthone, 1-chloro-4-propoxythioxanthone, p-dimethylbenzoic acid, p-diethylbenzoic acid And p-diisopropylbenzoic acid and esterified products of these with the following alcohols can be used. Examples of the alcohol include methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, sec-butyl alcohol, tert-butyl alcohol, n-amyl alcohol, isoamyl alcohol, hexyl alcohol, octyl alcohol and the like. Furthermore, there are oxime esters such as 1-phenyl-1,2-propanedione-2-O-benzoyloxime and 2,3-dioxo-3-phenylpropionic acid ethyl-2- (O-benzoylcarbonyl) -oxime.
[0030]
In order to improve the thermal stability and storage stability of the photosensitive resin used in the present invention, it is preferable that the photosensitive resin layer contains a radical polymerization inhibitor. For example, p-methoxyphenol, hydroquinone, pyrogallol, naphthylamine, tert-butylcatechol, cuprous chloride, 2,6-di-tert-butyl-p-cresol, 2,2′-methylenebis (4-ethyl-6- tert-butylphenol), 2,2'-methylenebis (4-methyl-6-tert-butylphenol) and the like.
[0031]
The photosensitive resin layer of the present invention may contain coloring substances such as dyes and pigments. Examples include fuchsin, phthalocyanine green, auramin base, chalcoxide green S, paramadienta, crystal violet, methyl orange, nile blue 2B, Victoria blue, malachite green, basic blue 20, diamond green and the like.
Further, it may contain a coloring dye that develops color by light irradiation. A combination of a leuco dye and a halogen compound is well known as a coloring dye. Examples of the leuco dye include tris (4-dimethylamino-2-methylphenyl) methane [leuco crystal violet], tris (4-dimethylamino-2-methylphenyl) methane [leucomalachite green], and the like. On the other hand, halogen compounds such as amyl bromide, isoamyl bromide, isobutylene bromide, ethylene bromide, diphenylmethyl bromide, benzal bromide, methylene bromide, tribromomethylphenyl sulfone, carbon tetrabromide, tris (2,3 -Dibromopropyl) phosphate, trichloroacetamide, amyl iodide, isobutyl iodide, 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane, hexachloroethane and the like.
[0032]
Furthermore, you may contain additives, such as a plasticizer, in the photosensitive resin layer of this invention as needed. For example, phthalic acid esters such as diethyl phthalate, o-toluenesulfonic acid amide, p-toluenesulfonic acid amide, tributyl citrate, triethyl citrate, acetyl triethyl citrate, acetyl tri-n-propyl citrate, acetyl tricitrate tri -N-butyl, polypropylene glycol, etc. can be illustrated.
[0033]
The thickness of the photosensitive resin layer of the present invention is adjusted according to the required wiring thickness. It is 50-250 micrometers, Preferably it is 80-200 micrometers, More preferably, it is 100-150 micrometers.
As the support used in the present invention, a polymer film having high transparency to ultraviolet rays is used. For example, polyethylene terephthalate film, polyethylene naphthalate film, polyvinyl alcohol film, polyvinyl chloride film, vinyl chloride copolymer film, polyvinylidene chloride film, vinylidene chloride copolymer film, polymethyl methacrylate copolymer film, polystyrene Examples include films, polyacrylonitrile films, styrene copolymer films, polyamide films, and cellulose derivative films. These films can be stretched if necessary.
[0034]
When providing a protective film, the film which has the characteristic that the adhesive force of this protective film and the photosensitive resin layer is smaller than the adhesive force of a support body and the photosensitive resin layer is selected. For example, a polyerylene film, a polypropylene film, etc. are mentioned.
The photosensitive resin laminate of the present invention is used as follows in CSP production.
First, when there is a protective film, after peeling the protective film from the photosensitive resin laminate, the substrate and the photosensitive resin laminate are thermocompression bonded (laminated) with a pair of heated rolls. A resist film is formed on the material surface. Examples of the thermocompression bonding apparatus (hereinafter referred to as a laminator) used here include a multistage laminator having two or more pairs of heating rolls and a so-called vacuum laminator in which the roll portion atmosphere is reduced in pressure. The temperature of the heating roll at this time is 40 to 160 ° C, preferably 60 to 120 ° C.
[0035]
The substrate can be applied to individual LSI chips, but a silicon wafer is more preferable. In general, the surface of the silicon wafer is protected by an organic resin except for the chip terminals, and a base metal layer is often provided on the entire surface by a method such as sputtering for plating.
The photosensitive resin laminate after lamination is exposed to actinic radiation through a mask formed so as to obtain a desired wiring after the support is attached or after the support is peeled off. As the actinic radiation, X-rays, electron beams, ultraviolet rays, visible rays and the like can be used, but those having a wavelength of 200 to 500 nm are preferable. Further, the portion exposed to actinic radiation (photosensitive resin) is cured.
[0036]
As the exposure apparatus, a scattering exposure machine, a parallel exposure machine or the like using an ultrahigh pressure mercury lamp as a light source is used. Further, a mask aligner and a stepper which are common in LSI manufacturing can also be used. Exposure with ultraviolet light monochromatized by a filter is also possible.
Moreover, you may perform the process (PEB; Post Exposure Bake) of heating a wafer immediately after exposure. The PEB process improves the adhesion of the cured resist to the wafer. The heating temperature is preferably 50 to 100 ° C., and the heating time is preferably 30 seconds to 10 minutes.
[0037]
The exposed resist is developed with an inorganic or organic alkaline solution. As a result, the unexposed part is dissolved and removed, and the cured resist is left only in the exposed part. Examples of the developer used here include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia, primary amines such as ethylamine and n-propylamine, and diethylamine. Secondary amines such as di-n-propylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, etc. An aqueous solution of an alkali such as a quaternary ammonium salt can be used. When a trace amount of inorganic alkali ions (sodium ion, potassium ion) remaining on the wafer affects the performance of CSP, it is preferable to use an organic alkali solution. As a developing method, methods such as spraying, paddle, dipping, and ultrasonic waves are possible.
[0038]
By performing electrolytic metal plating on this, a metal having a desired thickness is formed in a portion where there is no cured resist. Examples of the metal include copper, nickel, chromium, gold, and solder, and copper plating is particularly frequently used. A cured resist equivalent or thicker to the desired plating thickness is required. Since the thickness of the photosensitive resin layer is substantially equal to the thickness of the cured resist after exposure and development, a photosensitive resin laminate having a photosensitive resin laminate equal to or thicker than the plating thickness is used.
[0039]
After the conductor wiring is formed as described above, the cured resist is peeled off with an inorganic or organic alkaline solution. In general, the alkalinity is stronger than that of the developer, and the film is peeled off at a high temperature. Examples of stripping solutions used here include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia, primary amines such as ethylamine and n-propylamine, diethylamine, and the like. Secondary amines such as di-n-propylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as 2-aminoethanol, dimethylethanolamine and triethanolamine, tetramethylammonium hydroxide, tetraethyl An aqueous solution of an alkali such as a quaternary ammonium salt such as ammonium hydroxide or an aqueous solution containing an appropriate amount of an organic solvent such as methanol, ethanol, dimethyl sulfoxide, N-methylpyrrolidone or dimethylformamide can be used. That. When a trace amount of inorganic alkali ions (sodium ion, potassium ion) remaining on the wafer affects the performance of CSP, it is preferable to use an organic alkali solution. As a peeling method, methods such as spraying, paddle, dipping, and ultrasonic waves are possible.
[0040]
After the cured resist is peeled off, the underlying metal layer on the wafer is removed by a method such as flash etching, plasma etching, reactive ion etching, or the like, leaving only necessary wiring.
Furthermore, CSP is produced by sealing with an organic resin as necessary. When an assembly of CSPs is produced on a wafer, it is cut into one CSP by dicing.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to examples.
The characteristic evaluation in the examples was measured by the following method.
1) Resolution evaluation A
A mask in which five line portions each having 80 μm width and five space portions having 80 μm width are alternately arranged is placed on a wafer on which a photosensitive resin laminate is laminated, and 200 mJ / cm with a parallel light exposure machine HMW-801 manufactured by Oak Co., Ltd.2Exposed. After the support was peeled off, a 1% sodium carbonate aqueous solution at 30 ° C. was sprayed for 120 seconds to develop and remove the photosensitive resin layer in the unexposed portion, thereby forming a resist pattern in which five were aligned. The case where five resist lines were formed independently was marked with ○, and the case where a part of the five resist lines were connected or peeled off from the wafer surface was marked with x.
2) Resolution evaluation B
A mask in which five line portions each having 80 μm width and five space portions having 80 μm width were alternately arranged was placed on the wafer on which the photosensitive resin laminate was laminated, and exposed for 11 seconds with a mask aligner PLA-501F manufactured by Canon. When the illuminance of the exposure device was measured, it was 6.3 mW / cm.2And is calculated to be 70 mJ / cm2Exposure amount. Immediately after exposure, the wafer was placed in an oven at 80 ° C. and baked after exposure for 2 minutes. After peeling off the support, paddle development was performed using a 2.38% aqueous tetramethylammonium hydroxide solution at room temperature. The total development time for paddle development was 240 seconds. The unexposed portion of the photosensitive resin layer was developed and removed to form a resist pattern in which five were aligned. The case where five resist lines were formed independently was marked with ○, and the case where a part of the five resist lines were connected or peeled off from the wafer surface was marked with x.
[0042]
3) Plating drill evaluation
The peeled wafer was observed with an optical microscope and an SEM (scanning electron microscope), and the state of plating peeling was examined. Judgment was made according to the following rank.
○ ... No plating removal
△ ・ ・ ・ Plating is less than 5μm
× ・ ・ ・ Plating hole is 5μm or more
4) Evaluation of peelability of cured resist
A mask having a pattern in which dots having a diameter of 150 μm (impervious to light) are arranged in 100 rows and 100 rows in a row with a pitch of 300 μm (total number of dots: 10,000) is placed on a wafer laminated with a photosensitive resin laminate. It was exposed for 11 seconds with a mask aligner PLA-501F manufactured by the company. After peeling off the support, paddle development was performed using a 2.38% tetramethylammonium hydroxide aqueous solution at room temperature to form a circular hole of about 150 μmφ. The total development time for paddle development was 240 seconds. This wafer was subjected to electrolytic copper plating for 90 minutes in a copper sulfate plating solution to form a cylindrical copper wiring. The current density was adjusted to 5 A / dm2. The height of the copper plating was 100 μm. The plated wafer was immersed in an alkali stripping solution at 50 ° C. for 10 minutes to strip the resist. As the alkaline stripping solution, a 10% aqueous solution of Meltex Film Strip 500 was used. The wafer after peeling was observed and judged according to the following rank.
○: No peeling residue on the wafer.
Δ: Ratio of peeling residue around the cylindrical copper wiring is less than 10% in area.
X: The ratio of the peeling residue around the cylindrical copper wiring is 10% or more.
[0043]
[Example 1]
60 parts by weight of a polymer having a methyl methacrylate / methacrylic acid / ethyl acrylate = 55/25/20 wt% and a weight average molecular weight of 200,000, 30 parts by weight of trimethylolpropane triacrylate as a polymerizable monomer, 2, as a photoinitiator, A solution in which 5 parts by weight of 4,5-triarylimidazolyl dimer, 0.05 parts by weight of p, p′-bis (dimethylamino) benzophenone and 100 parts by weight of methyl ethyl ketone as a solvent were mixed and dissolved in a support (16 μm The photosensitive resin laminate (thickness of the photosensitive resin layer: 100 μm) was prepared by applying the film to a polyethylene terephthalate film (thickness) using a bar coater, drying, and covering with a protective film (23 μm thick polyethylene film).
<Evaluation 1>
A chromium layer having a thickness of 2000 angstroms was formed on a 5-inch silicon wafer by an Anelva sputtering apparatus, and a copper layer having a thickness of 2000 angstroms was further formed.
[0044]
The photosensitive resin laminate prepared above was laminated with the laminator AL-70 manufactured by Asahi Kasei while peeling the protective film so that the surface of the photosensitive resin layer was in close contact with the silicon wafer. Laminate roll temperature is 100 ° C, pressure is air pressure 3kg / cm2The speed was 1.5 m / min.
A mask is placed on the wafer laminated with the photosensitive resin laminate, and 200 mJ / cm with a parallel light exposure machine HMW-801 manufactured by Oak Co., Ltd.2Exposed.
[0045]
After peeling off the support, a 1% aqueous sodium carbonate solution at 30 ° C. was sprayed for 120 seconds to develop and remove the photosensitive resin layer in the unexposed portion, thereby forming a resist pattern.
The result of the resolution evaluation A was ◯.
The wafer on which the resist is formed is degreased by immersing it in an acidic cleaner (FRX manufactured by Atotech Japan) at 30 ° C. for 3 minutes, and then electrolyzed in a copper sulfate plating solution (Capper Grease 125 manufactured by Meltex Co., Ltd.) for 6 hours. Copper plated. Current density is 2 A / dm2It was adjusted to become. The height of the copper plating was 90 μm.
The plated wafer was immersed in a 3% aqueous sodium hydroxide solution at 50 ° C. for 10 minutes to remove the resist.
The evaluation of the plating hole was ○.
[0046]
Examples 2-6, Comparative Examples 1-5
A photosensitive resin laminate having the photosensitive resin laminate shown in Tables 1 and 2 was prepared, and an electrolytic copper-plated wiring on the wafer was formed in the same manner as in Example 1. Tables 1 and 2 also show the results of resolution evaluation and plating drilling evaluation.
The meanings of the abbreviations of the photosensitive resin raw materials in Tables 1 and 2 are as follows.
A-1: Polymer having methyl methacrylate / methacrylic acid / ethyl acrylate = 55/25/20 wt% and a weight average molecular weight of 200,000
A-2: Methyl methacrylate / methacrylic acid / styrene / butyl methacrylate = 45/25/20/10 wt% polymer having a weight average molecular weight of 100,000
A-3: Methyl methacrylate / methacrylic acid / styrene / butyl methacrylate / acrylonitrile = 37/22/9/19/13 wt% polymer having a weight average molecular weight of 120,000
B-1: Trimethylolpropane triacrylate
B-2: Trimethylolpropane ethylene oxide 6 mol addition triacrylate
CHThree-CH2-C [CH2-O- (CH2CH2O)2-CO-CH = CH2]Three
B-3: Trimethylolpropane trimethacrylate
B-4: Bis (triethylene glycol methacrylate) polypropylene glycol
CH2= C (CHThree) -CO-O- (CH2CH2O)Three
-(CH (CHThree) CH2O)12-(CH2CH2O)Three
-CO-C (CHThree) = CH2
B-5: Nonaethylene glycol diacrylate
CH2= CH-CO-O- (CH2CH2O)9-CO-CH = CH2
B-6: Ethylene oxide addition dimethacrylate of bisphenol A
CH2= C (CHThree) -CO-O- (CH2CH2O)Five
-Φ-C (CHThree)2-Φ-O- (CH2CH2O)Five
-CO-C (CHThree) = CH2
(Where φ is the benzene ring)
C-1: p, p'-bis (dimethylamino) benzophenone
C-2: p, p'-bis (diethylamino) benzophenone
C-3: 2- (o-chlorophenyl) -4 · 5-diphenylimidazolyl dimer
C-4: Benzophenone
C-5: 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (trade name: Irgacure 369, manufactured by Ciba Geigy)
[0047]
<Evaluation 2>
A chromium layer having a thickness of 2000 angstroms was formed on a 5-inch silicon wafer by an Anelva sputtering apparatus, and a copper layer having a thickness of 2000 angstroms was further formed.
The photosensitive resin laminate of Example 1 was laminated thereon by the same method as Example 1.
A mask is placed on the wafer laminated with the photosensitive resin laminate, and 200 mJ / cm with a parallel light exposure machine HMW-801 manufactured by Oak Co., Ltd.2Exposed.
After peeling off the support, a 1% aqueous sodium carbonate solution at 30 ° C. was sprayed for 120 seconds to develop and remove the photosensitive resin layer in the unexposed portion, thereby forming a resist pattern.
[0048]
The result of the resolution evaluation A was ◯.
The wafer on which the resist was formed was degreased by immersing it in an acidic cleaner (FRX manufactured by Atotech Japan) at 30 ° C. for 3 minutes, and then in a solder plating solution (Plutin LA borofluoride solder bath manufactured by Meltex) 4 Time electrolytic solder plating. Current density is 1.5 A / dm2It was adjusted to become. The height of the solder plating was 90 μm.
The plated wafer was immersed in a 3% aqueous sodium hydroxide solution at 50 ° C. for 10 minutes to remove the resist.
The evaluation of the plating hole was ○.
[0049]
[Example 7]
60 parts by weight of a polymer having methyl methacrylate / methacrylic acid / ethyl acrylate = 55/25/20 wt% and a weight average molecular weight of 200,000, 30 parts by weight of trimethylolpropane triacrylate as a polymerizable monomer, 2-hydroxy-3- 10 parts by weight of phenoxypropyl acrylate, 5 parts by weight of 2,4,5-triarylimidazolyl dimer as a photoinitiator, 0.05 part by weight of p, p'-bis (dimethylamino) benzophenone and 100 parts of methyl ethyl ketone as a solvent A solution obtained by mixing and dissolving parts by weight is applied to a support (19 μm thick polyethylene terephthalate film) using a bar coater, dried, and covered with a protective film (30 μm thick polyethylene film) to form a photosensitive resin laminate (photosensitive). The thickness of the conductive resin layer: 120 μm) It was prepared.
[0050]
A chromium layer having a thickness of 2000 angstroms was formed on a 5-inch silicon wafer by sputtering made by Nippon Vacuum, and a copper layer having a thickness of 2000 angstroms was further formed.
The photosensitive resin laminate prepared above was laminated with the laminator AL-70 manufactured by Asahi Kasei while peeling the protective film so that the surface of the photosensitive resin layer was in close contact with the silicon wafer. Laminate roll temperature is 100 ° C, pressure is 3.5kg / cm at air pressure2The speed was 1.0 m / min.
[0051]
A mask was placed on the wafer laminated with the photosensitive resin laminate, and exposed for 11 seconds with Canon Mask Aligner PLA-501F. When the illuminance of the exposure device was measured, it was 6.3 mW / cm.2And is calculated to be 70 mJ / cm2Exposure amount. Immediately after exposure, the wafer was placed in an oven at 80 ° C. and baked after exposure for 2 minutes.
After peeling off the support, paddle development was performed using a 2.38% aqueous tetramethylammonium hydroxide solution at room temperature. The total development time for paddle development was 240 seconds. The unexposed portion of the photosensitive resin layer was developed and removed to form a resist pattern.
[0052]
The result of the resolution evaluation B was “good”.
The wafer on which the resist is formed is degreased by immersing it in an acidic cleaner (FRX manufactured by Atotech Japan) at 30 ° C. for 3 minutes, and then electrolyzed in a copper sulfate plating solution (Capper Grease 125 manufactured by Meltex Co., Ltd.) for 6 hours. Copper plated. Current density is 2 A / dm2It was adjusted to become. The height of the copper plating was 90 μm.
The plated wafer was immersed in a 3% aqueous sodium hydroxide solution at 50 ° C. for 10 minutes to remove the resist.
[0053]
The evaluation of the plating hole was ○.
A mask having a pattern in which dots having a diameter of 150 μm were arranged was placed on a wafer laminated with a photosensitive resin laminate, and exposed for 11 seconds with a mask aligner PLA-501F manufactured by Canon. After peeling off the support, paddle development was performed using a 2.38% aqueous tetramethylammonium hydroxide solution at room temperature. This wafer was subjected to electrolytic copper plating in a copper sulfate plating solution to form a cylindrical copper wiring. The plated wafer was immersed in an alkali stripping solution at 50 ° C. for 10 minutes to strip the resist.
The peelability evaluation of the cured resist was ○.
[0054]
Examples 8 to 10,Examples 1-2, 6]
A photosensitive resin laminate having the photosensitive resin laminate shown in Table 3 was prepared, and an electrolytic copper plating wiring on the wafer was formed in the same manner as in Example 7. Table 3 also shows the results of resolution evaluation, plating peeling evaluation and cured resist peelability evaluation. The meanings of the abbreviations of the photosensitive resin raw materials other than the raw materials described above are as follows.
B-7: 2-hydroxy-3-phenoxypropyl acrylate
B-8: Phenoxyhexaethylene glycol acrylate
B-9: β-hydroxypropyl-β '-(acryloyloxy) propyl phthalate
B-10: 4-Normal octylphenoxypentaethylene glycol tripropylene glycol acrylate
[0055]
[Table 1]
Figure 0004108243
[0056]
[Table 2]
Figure 0004108243
[0057]
[Table 3]
Figure 0004108243
[0058]
【The invention's effect】
As described above, when the photosensitive resin laminate of the first invention of the present application is used, the fine resolution because the resolution is excellent when forming the wiring connecting the chip terminal and the external terminal in the manufacture of the CSP. Wiring can be made, and furthermore, high-quality conductor wiring without plating is obtained in the conductor plating step, which is extremely suitable for manufacturing CSP.
In addition, according to the second invention of the present application, it is possible to obtain a highly reliable circuit that is easy and good in resist stripping after plating and has no stripping residue.

Claims (3)

支持体と感光性樹脂層からなり、該感光性樹脂層が、(1)カルボキシル基含有量が酸当量で100〜600、かつ重量平均分子量が2万〜50万の重合体:20〜90重量%、(2)下記式(1)で示される化合物、グリセリンプロピレンオキサイド付加トリ(メタ)アクリレート及びグリセリンエチレンオキサイド付加トリ(メタ)アクリレートからなる群から選ばれる1種または2種以上の重合性モノマー:10〜60重量%、
Figure 0004108243
(ここで、Xは水素原子、メチル基または水酸基を表す。AはCH2 CH(CH3 )OおよびCH2 CH2 Oの共重合体残基を表し、nは0〜5の整数を表す。Rは水素原子またはメチル基を表す。)、及び(3)少なくとも1種のp−アミノフェニルケトン:0.001〜0.1重量%を含み、該感光性樹脂層の膜厚が80〜200μmであることを特徴とするCSP製造用感光性樹脂積層体。
The photosensitive resin layer comprises a support and a photosensitive resin layer. (1) A polymer having a carboxyl group content of 100 to 600 in terms of acid equivalent and a weight average molecular weight of 20,000 to 500,000: 20 to 90 weights %, (2) one or more polymerizable monomers selected from the group consisting of a compound represented by the following formula (1), glycerin propylene oxide-added tri (meth) acrylate and glycerin ethylene oxide-added tri (meth) acrylate : 10 to 60% by weight,
Figure 0004108243
(Here, X represents a hydrogen atom, a methyl group or a hydroxyl group. A represents a copolymer residue of CH 2 CH (CH 3 ) O and CH 2 CH 2 O, and n represents an integer of 0 to 5). .R is a hydrogen atom or a methyl group), and (3) at least one p- aminophenyl ketone. 0.001 wt% only contains the film thickness of the photosensitive resin layer 80 A photosensitive resin laminate for CSP production , characterized by having a thickness of ˜200 μm .
支持体と感光性樹脂層からなり、該感光性樹脂層が、(1)カルボキシル基含有量が酸等量で100〜600,重量平均分子量が2万〜50万の重合体:20〜90重量%、(2)少なくともi)下記式(1)で示される化合物、グリセリンプロピレンオキサイド付加トリ(メタ)アクリレートおよびグリセリンエチレンオキサイド付加トリ(メタ)アクリレートからなる群から選ばれる少なくとも一つの化合物、
Figure 0004108243
(ここで、Xは水素原子、メチル基または水酸基を表す。AはCH2 CH(CH3 )OおよびCH2 CH2 Oの共重合体残基を表し、nは0〜5の整数を表す。Rは水素原子またはメチル基を表す。)及びii)アクリル酸エステル基を1個有する化合物を含む、2種以上の重合性モノマー:10〜60重量%、並びに(3)少なくとも1種のp−アミノフェニルケトン:0.001〜0.1重量%を含み、該感光性樹脂層の膜厚が80〜200μmであることを特徴とするCSP製造用感光性樹脂積層体。
The photosensitive resin layer comprises a support and a photosensitive resin layer. The photosensitive resin layer is (1) a polymer having a carboxyl group content of 100 to 600 in terms of acid equivalent and a weight average molecular weight of 20,000 to 500,000: 20 to 90 weights. %, (2) at least i) at least one compound selected from the group consisting of a compound represented by the following formula (1), glycerin propylene oxide-added tri (meth) acrylate and glycerin ethylene oxide-added tri (meth) acrylate,
Figure 0004108243
(Here, X represents a hydrogen atom, a methyl group or a hydroxyl group. A represents a copolymer residue of CH 2 CH (CH 3 ) O and CH 2 CH 2 O, and n represents an integer of 0 to 5). R represents a hydrogen atom or a methyl group) and ii) two or more polymerizable monomers including a compound having one acrylate group: 10 to 60% by weight, and (3) at least one p - aminophenyl ketone: 0.001 wt% only containing, CSP producing a photosensitive resin laminate wherein the thickness of the photosensitive resin layer is 80 to 200 .mu.m.
p−アミノフェニルケトンの含有量が0.01〜0.08重量%であることを特徴とする請求項1または2に記載のCSP製造用感光性樹脂積層体。Content of p-aminophenyl ketone is 0.01 to 0.08 weight%, The photosensitive resin laminated body for CSP manufacture of Claim 1 or 2 characterized by the above-mentioned.
JP2000019857A 1999-04-14 2000-01-28 Photosensitive resin laminate Expired - Lifetime JP4108243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000019857A JP4108243B2 (en) 1999-04-14 2000-01-28 Photosensitive resin laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-107200 1999-04-14
JP10720099 1999-04-14
JP2000019857A JP4108243B2 (en) 1999-04-14 2000-01-28 Photosensitive resin laminate

Publications (3)

Publication Number Publication Date
JP2000356852A JP2000356852A (en) 2000-12-26
JP2000356852A5 JP2000356852A5 (en) 2007-02-08
JP4108243B2 true JP4108243B2 (en) 2008-06-25

Family

ID=26447250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000019857A Expired - Lifetime JP4108243B2 (en) 1999-04-14 2000-01-28 Photosensitive resin laminate

Country Status (1)

Country Link
JP (1) JP4108243B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057821A (en) * 2001-08-13 2003-02-28 Showa Highpolymer Co Ltd Photosensitive resin and photosensitive resin composition
CN1273867C (en) * 2001-11-12 2006-09-06 旭化成电子材料元件株式会社 Photosensitive resin composition and applications thereof
KR100521999B1 (en) * 2002-09-03 2005-10-18 주식회사 코오롱 Photopolymerizable Resin Composition For Sandblast Resist
JP2005031639A (en) * 2003-06-16 2005-02-03 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive element using the same, method for fabricating resist pattern, method for manufacturing printed wiring board, printed wiring board and electronic component using the same
JP4632117B2 (en) * 2004-07-27 2011-02-16 日立化成工業株式会社 Photosensitive resin composition, photosensitive element using the same, resist pattern manufacturing method, and printed wiring board manufacturing method
CN114585974A (en) 2019-10-16 2022-06-03 昭和电工材料株式会社 Photosensitive resin film, method for forming resist pattern, and method for forming wiring pattern
WO2022201432A1 (en) 2021-03-25 2022-09-29 昭和電工マテリアルズ株式会社 Photosensitive resin film, resist pattern forming method, and method for forming wiring pattern
WO2023238202A1 (en) 2022-06-06 2023-12-14 株式会社レゾナック Photosensitive element and formation method for resist pattern

Also Published As

Publication number Publication date
JP2000356852A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
US20100159691A1 (en) Photosensitive resin composition and laminate
JP5215473B2 (en) Photosensitive resin composition for resist material and photosensitive resin laminate
KR101207242B1 (en) Layered photosensitive-resin product
JPH11167203A (en) Photosensitive resin composition and photosensitive element using same
JP4749270B2 (en) Photosensitive resin composition and laminate
JP5221543B2 (en) Photosensitive resin composition and laminate thereof
JP5167347B2 (en) Photosensitive resin composition and laminate thereof
JP4108243B2 (en) Photosensitive resin laminate
JPWO2015174468A1 (en) Photosensitive resin composition, photosensitive element, resist pattern forming method and printed wiring board manufacturing method
JP2006234995A (en) Photopolymerizable resin composition
JP2006234995A5 (en)
KR101328840B1 (en) Photosensitive resin composite and laminate thereof
JP4885243B2 (en) Photosensitive resin composition and laminate
JP5646873B2 (en) Photosensitive resin composition and laminate thereof
JP4535851B2 (en) Photopolymerizable resin composition
JP4257106B2 (en) Photosensitive resin composition and use thereof
JPH07281437A (en) Photosetting resin laminated body
JP4338819B2 (en) Photosensitive resin laminate
JP3916605B2 (en) Photosensitive resin composition and use thereof
JP3782134B2 (en) Method for manufacturing printed wiring board
JP3267703B2 (en) New photopolymerizable resin laminate
JP3644731B2 (en) Novel photocurable resin composition
JP3883540B2 (en) Photosensitive resin composition and use thereof
JP2690494B2 (en) Photoresist composition
JP4488601B2 (en) Photosensitive resin laminate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4108243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term