JP4106929B2 - Metal laminated film - Google Patents

Metal laminated film Download PDF

Info

Publication number
JP4106929B2
JP4106929B2 JP2002058906A JP2002058906A JP4106929B2 JP 4106929 B2 JP4106929 B2 JP 4106929B2 JP 2002058906 A JP2002058906 A JP 2002058906A JP 2002058906 A JP2002058906 A JP 2002058906A JP 4106929 B2 JP4106929 B2 JP 4106929B2
Authority
JP
Japan
Prior art keywords
thickness
laminated film
film
copper
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002058906A
Other languages
Japanese (ja)
Other versions
JP2003251773A (en
Inventor
周 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP2002058906A priority Critical patent/JP4106929B2/en
Publication of JP2003251773A publication Critical patent/JP2003251773A/en
Application granted granted Critical
Publication of JP4106929B2 publication Critical patent/JP4106929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はフレキシブルプリント配線板として使用でき、金属と絶縁層との密着性に優れた金属積層フィルムに関するものである。
【0002】
【従来の技術】
従来から接着剤としてエポキシ系、アクリル系、ポリアミド系、フェノール系等を使用した、ポリイミドフィルム/接着剤/金属箔の3層構造のフレキシブルプリント配線板がよく知られているが、耐熱性が接着剤の特性によって決まってしまい、接着強度に問題がある場合が多かった。また、耐熱性を向上させる接着剤として熱可塑性ポリイミドの前駆体を用い、金属箔を高温で熱圧着させる例として特開平4−146690号公報や特開2000−167980号公報等が知られているが、金属箔を高温で熱圧着しなければならないため加工後に残留歪みの問題が生じたり、圧着に用いる金属箔の厚さが通常10μm以上であるのでピッチの狭いパターニングが困難であるという欠点があった。
【0003】
また、非熱可塑性ポリイミドに直接金属をメタライジングしてなる2層構造のフレキシブルプリント配線板も知られているが、密着性が低く特に熱負荷後の密着性の低下が大きいという欠点がある。
【0004】
【発明が解決しようとする課題】
本発明の目的は上記の従来技術の欠点を解消し、ポリイミドフィルムと金属を積層した積層フィルムにおいて、金属層とフイルム絶縁層の密着性を向上させた積層フィルムを提供することにある。
【0005】
【課題を解決するための手段】
前記課題を解決すべく、本発明者らは検討を行った結果、非熱可塑性ポリイミドフィルムの片面または両面に熱可塑性ポリイミドワニスをコーティングした後、乾燥させてなり、乾燥後の熱可塑性ポリイミドの厚みが0.4〜5μmであり、かつ熱可塑性ポリイミドのガラス転移温度が150℃〜280℃であるフィルムの片面または両面に金属層をメタライジングしてなる金属積層フィルムが密着性向上に効果があり、また前記金属積層フィルムに銅メッキしてなる金属積層フィルムが密着性向上に効果があることを見出し、本発明に至った。
【0006】
【発明の実施の形態】
本発明において、非熱可塑性ポリイミドとは、熱をかけることにより、さらに硬化が進むものではないが、熱で軟化する性質も有していないポリイミドのことを称し、例えば、ピロメリット酸二無水物、4,4’−ジアミノジフェニルエーテルから得られるポリアミド酸を脱水硬化させたポリイミド等が挙げられる。
【0007】
非熱可塑性ポリイミドの具体例としては、商品名「カプトン」(東レ・デュポン社製、デュポン社製)の非熱可塑性ポリイミドシリーズ、商品名「ユーピレックス」(宇部興産社製)の非熱可塑性ポリイミドシリーズ、商品名「アピカル」(鐘淵化学社製)の 非熱可塑性ポリイミドシリーズなどがあげられる。
【0008】
熱可塑性ポリイミドとは、熱をかけることで可塑性を生じるポリイミドのことを称し、生成イミド基の繰り返し単位中での濃度を低下させる事で分子間の凝集力を低減させたものなどがあげられる。
【0009】
熱可塑性ポリイミドワニスの具体例としては、商品名「ユピタイトUPA−N111」(宇部興産社製)、商品名「ユピタイトUPA−N221」(宇部興産社製)などがあげられる。熱可塑性ポリイミドワニスの塗布量は乾燥後のコーティング厚が0.4μm〜μmとなるように塗布するのが好ましい。乾燥温度は100℃〜300℃の範囲が好ましく、乾燥時間は1分〜20分の範囲が好ましい。コーティングした熱可塑性ポリイミドのガラス転移点は150℃〜280℃の範囲が好ましい。
【0010】
本発明で言うメタライジングとは、金属の蒸気をフィルムの表面に付着させることやスパッタリングを言い、金属メッキ、金属箔の積層などとは区別されるものである。メタライジングの具体的方法にはスパッタリング、真空蒸着、イオンビーム蒸着、電子線蒸着などがあるが、加工の安定性、プロセスの簡素化、カールの発生が少ないこと、膜の均一性などを考えるとスパッタリング法が好ましい。メタライジングに用いられる金属は銅、ニッケル、クロム、マンガン、アルミニウム、鉄、モリブデン、コバルト、タングステン、バナジウム、チタン、タンタル等から1種類以上が選ばれる。メタライジングにより形成される金属薄膜の厚さは1〜500nmが好ましく、5nm〜200nmの範囲がより好ましい。
【0011】
メタライジングを行った後には、電解メッキまたは無電解メッキにより銅メッキ層が形成される。銅メッキ層の膜厚は1μm〜40μmの範囲が好ましい。銅メッキ層の膜厚が1μm未満では配線が形成された場合の配線抵抗が大きくなる等の問題が生じ好ましくなく、40μmを越えると高密度配線のピッチ幅の精度が低下する等の問題が生じ好ましくない。
【0012】
【実施例】
以下に本発明の実施例を示す。ただし、本発明は以下の実施例に何ら限定されるものではない。
【0013】
本実施例における測定は次の方法にしたがった。
<フィルムの厚み測定>
SEMの断面写真より測定した。
<金属層の接着性測定:ピール試験>
金属積層フィルムを10mm幅、100mm長に切り出して引っ張り速度50mm/minの条件で90度ピール試験を行った。
[実施例1]
非熱可塑性ポリイミドフィルムである厚さ25μmの「カプトン100EN」(商品名、東レ・デュポン製)の片面に、熱可塑性ポリイミドワニスである「ユピタイトUPA−N111C」(商品名、宇部興産社製)をテトラヒドロフランで固形分15%になるように希釈した溶液を塗布し、120℃で1分、続いて180℃で10分乾燥を行った。コーティング部分の厚さは0.7μmであった。このようにして得たフィルムをスパッタリング装置(SAMCO社製PD−10型)に入れ、液体窒素を用いて拡散ポンプを冷却しながら圧力を1.3×10−3Paまで減圧して不純ガスを脱気し、その後アルゴンガスを導入して0.27Paで銅をスパッタリングしてフィルム表面に銅薄膜を形成した。銅薄膜の厚みは150nmであった。この後硫酸銅水溶液による電解めっきを電流密度3A/dm2の条件で行い金属積層フィルムを得た。電解めっきによる銅層の厚みは8μmであった。この金属積層フィルムを10mm幅、100mm長に切り出して引っ張り速度50mm/minの条件で90度ピール試験を行った。室温での測定結果は9.1N/cm、150℃×240hrの熱負荷後の測定結果は6.1N/cmであった。
【0014】
[実施例2]
厚さ25μmの「カプトン100EN」(商品名:東レ・デュポン製)フィルムの片面に、熱可塑性ポリイミドワニスである「ユピタイトUPA−N221C」(商品名:宇部興産社製)をテトラヒドロフランで固形分15%になるように希釈した溶液を塗布し、120℃で1分、続いて180℃で10分乾燥を行った。コーティング部分の厚さは0.9μmであった。このようにして得たフィルムをスパッタリング装置(SAMCO社製PD−10型)に入れ、液体窒素を用いて拡散ポンプを冷却しながら圧力を1.3×10−3Paまで減圧して不純ガスを脱気し、その後アルゴンガスを導入して0.27Paで銅をスパッタリングしてフィルム表面に銅薄膜を形成した。銅薄膜の厚みは80nmであった。この後硫酸銅水溶液による電解めっきを電流密度3A/dm2の条件で行い金属積層フィルムを得た。電解めっきによる銅層の厚みは10μmであった。この金属積層フィルムを10mm幅、100mm長に切り出して引っ張り速度50mm/minの条件で90度ピール試験を行った。室温での測定結果は9.8N/cm、150℃×240hrの熱負荷後の測定結果は6.8N/cmであった。
【0015】
[実施例3]
厚さ25μmの「カプトン100EN」(商品名:東レ・デュポン製)に、「ユピタイトUPA−N111C」(商品名:宇部興産社製)をテトラヒドロフランで固形分15%になるように希釈した溶液を塗布し、120℃で1分、続いて180℃で10分乾燥を行った。コーティング部分の厚さは0.7μmであった。このようにして得たフィルムをスパッタリング装置(SAMCO社製PD−10型)に入れ、液体窒素を用いて拡散ポンプを冷却しながら圧力を1.3×10−3Paまで減圧して不純ガスを脱気し、その後アルゴンガスを導入して0.27Paで銅をスパッタリングしてフィルム表面に銅薄膜を形成した。銅薄膜の厚みは150nmであった。この後硫酸銅水溶液による電解めっきを電流密度3A/dm2の条件で行い金属積層フィルムを得た。電解めっきによる銅層の厚みは25μmであった。この金属積層フィルムを10mm幅、100mm長に切り出して引っ張り速度50mm/minの条件で90度ピール試験を行った。室温での測定結果は11.0N/cm、150℃×240hrの熱負荷後の測定結果は7.1N/cmであった。
【0016】
[実施例4]
厚さ25μmの「カプトン100EN」(商品名:東レ・デュポン製)に、「ユピタイトUPA−N111C」(商品名:宇部興産社製)を塗布し、120℃で1分、続いて180℃で10分乾燥を行った。コーティング部分の厚さは2.0μmであった。このようにして得たフィルムをスパッタリング装置(SAMCO社製PD−10型)に入れ、液体窒素を用いて拡散ポンプを冷却しながら圧力を1.3×10−3Paまで減圧して不純ガスを脱気し、その後アルゴンガスを導入して0.27Paで銅をスパッタリングしてフィルム表面に銅薄膜を形成した。銅薄膜の厚みは100nmであった。この後硫酸銅水溶液による電解めっきを電流密度3A/dm2の条件で行い金属積層フィルムを得た。電解めっきによる銅層の厚みは35μmであった。この金属積層フィルムを10mm幅、100mm長に切り出して引っ張り速度50mm/minの条件で90度ピール試験を行った。室温での測定結果は8.0N/cm、150℃×240hrの熱負荷後の測定結果は6.1N/cmであった。
【0017】
[比較例1]
厚さ25μmの「カプトン100EN」(商品名:東レ・デュポン製)をスパッタリング装置(SAMCO社製PD−10型)に入れ、液体窒素を用いて拡散ポンプを冷却しながら圧力を1.3×10−3Paまで減圧して不純ガスを脱気し、その後アルゴンガスを導入して0.27Paで銅をスパッタリングしてフィルム表面に銅薄膜を形成した。銅薄膜の厚みは150nmであった。この後硫酸銅水溶液による電解めっきを電流密度3A/dm2の条件で行い金属積層フィルムを得た。電解めっきによる銅層の厚みは8μmであった。この金属積層フィルムを10mm幅、100mm長に切り出して引っ張り速度50mm/minの条件で90度ピール試験を行った。室温での測定結果は4.8N/cm、150℃×240hrの熱負荷後の測定結果は2.0N/cmであった。
【0018】
[比較例2]
厚さ25μmの「カプトン100EN」(商品名:東レ・デュポン製)をスパッタリング装置(SAMCO社製PD−10型)に入れ、液体窒素を用いて拡散ポンプを冷却しながら圧力を1.33×10−3Paまで減圧して不純ガスを脱気し、その後アルゴンガスを導入して0.266Paで銅をスパッタリングしてフィルム表面に銅薄膜を形成した。銅薄膜の厚みは80nmであった。この後硫酸銅水溶液による電解めっきを電流密度3A/dm2の条件で行い金属積層フィルムを得た。電解めっきによる銅層の厚みは10μmであった。この金属積層フィルムを10mm幅、100mm長に切り出して引っ張り速度50mm/minの条件で90度ピール試験を行った。室温での測定結果は4.8N/cm、150℃×240hrの熱負荷後の測定結果は1.5N/cmであった。
【0019】
【発明の効果】
以上に述べた通り、本発明によれば、金属層と絶縁層との密着性に優れた金属積層フィルムを得ることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal laminated film that can be used as a flexible printed wiring board and has excellent adhesion between a metal and an insulating layer.
[0002]
[Prior art]
Conventionally, a flexible printed wiring board having a three-layer structure of polyimide film / adhesive / metal foil using epoxy, acrylic, polyamide, phenol, or the like as an adhesive is well known. There were many cases where there was a problem in the adhesive strength because it was determined by the properties of the agent. Also, JP-A-4-146690 and JP-A-2000-167980 are known as examples of using a thermoplastic polyimide precursor as an adhesive for improving heat resistance and thermocompression bonding of a metal foil at a high temperature. However, since the metal foil must be thermocompression bonded at a high temperature, there is a problem of residual distortion after processing, or the thickness of the metal foil used for pressure bonding is usually 10 μm or more, and patterning with a narrow pitch is difficult. there were.
[0003]
In addition, a flexible printed wiring board having a two-layer structure in which a metal is directly metalized on a non-thermoplastic polyimide is also known, but has a drawback that adhesion is low and particularly a decrease in adhesion after thermal load is large.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned disadvantages of the prior art and provide a laminated film in which the adhesion between a metal layer and a film insulating layer is improved in a laminated film in which a polyimide film and a metal are laminated.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have studied, and after coating a thermoplastic polyimide varnish on one side or both sides of a non-thermoplastic polyimide film, it is dried, and the thickness of the thermoplastic polyimide after drying There Ri 0.4 to 5 [mu] m der, and a metal laminated film improves adhesion of the metal layer formed by metallization on one or both sides of the glass transition temperature of Ru 0.99 ° C. to 280 ° C. der film of the thermoplastic polyimide The present inventors have found that there is an effect, and that a metal laminated film obtained by copper plating on the metal laminated film is effective in improving the adhesion, and has led to the present invention.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the non-thermoplastic polyimide means a polyimide that does not further cure by applying heat, but does not have a property of being softened by heat. For example, pyromellitic dianhydride Examples thereof include polyimide obtained by dehydrating and curing polyamic acid obtained from 4,4′-diaminodiphenyl ether.
[0007]
Specific examples of non-thermoplastic polyimides include non-thermoplastic polyimide series under the trade name “Kapton” (manufactured by Toray DuPont and DuPont), and non-thermoplastic polyimide series under the trade name “UPILEX” (manufactured by Ube Industries). And non-thermoplastic polyimide series under the trade name “Apical” (manufactured by Kaneka Chemical Co., Ltd.).
[0008]
The thermoplastic polyimide refers to a polyimide that generates plasticity when heated, and examples thereof include those that reduce the cohesion between molecules by reducing the concentration of the generated imide group in the repeating unit.
[0009]
Specific examples of the thermoplastic polyimide varnish include trade name “Iupite UPA-N111” (manufactured by Ube Industries), trade name “Iupite UPA-N221” (manufactured by Ube Industries), and the like. It is preferable to apply the thermoplastic polyimide varnish so that the coating thickness after drying is 0.4 μm to 5 μm. The drying temperature is preferably in the range of 100 ° C to 300 ° C, and the drying time is preferably in the range of 1 minute to 20 minutes. The glass transition point of the coated thermoplastic polyimide is preferably in the range of 150 ° C to 280 ° C.
[0010]
The term “metalizing” as used in the present invention refers to deposition of metal vapor on the surface of a film or sputtering, and is distinguished from metal plating, metal foil lamination, and the like. Specific methods of metallizing include sputtering, vacuum deposition, ion beam deposition, electron beam deposition, etc., but considering the stability of processing, the simplification of the process, less curling, film uniformity, etc. A sputtering method is preferred. The metal used for metalizing is at least one selected from copper, nickel, chromium, manganese, aluminum, iron, molybdenum, cobalt, tungsten, vanadium, titanium, tantalum and the like. 1-500 nm is preferable and, as for the thickness of the metal thin film formed by metalizing, the range of 5 nm-200 nm is more preferable.
[0011]
After metallizing, a copper plating layer is formed by electrolytic plating or electroless plating. The thickness of the copper plating layer is preferably in the range of 1 μm to 40 μm. If the thickness of the copper plating layer is less than 1 μm, problems such as an increase in wiring resistance when wiring is formed are undesirable. If the thickness exceeds 40 μm, the accuracy of the pitch width of high-density wiring decreases. It is not preferable.
[0012]
【Example】
Examples of the present invention are shown below. However, the present invention is not limited to the following examples.
[0013]
The measurement in this example was performed according to the following method.
<Measurement of film thickness>
It measured from the cross-sectional photograph of SEM.
<Measurement of adhesion of metal layer: Peel test>
The metal laminated film was cut into a width of 10 mm and a length of 100 mm, and a 90-degree peel test was performed under the condition of a pulling speed of 50 mm / min.
[Example 1]
On one side of 25 μm thick “Kapton 100EN” (trade name, manufactured by Toray DuPont) which is a non-thermoplastic polyimide film, “Iupitite UPA-N111C” (trade name, manufactured by Ube Industries) is a thermoplastic polyimide varnish. A solution diluted with tetrahydrofuran to a solid content of 15% was applied and dried at 120 ° C. for 1 minute and then at 180 ° C. for 10 minutes. The thickness of the coating part was 0.7 μm. The film thus obtained is put into a sputtering apparatus (SAMCO PD-10 type), and the pressure is reduced to 1.3 × 10 −3 Pa while cooling the diffusion pump using liquid nitrogen to remove the impure gas. After that, argon gas was introduced and copper was sputtered at 0.27 Pa to form a copper thin film on the film surface. The thickness of the copper thin film was 150 nm. Thereafter, electroplating with an aqueous copper sulfate solution was performed under a current density of 3 A / dm 2 to obtain a metal laminated film. The thickness of the copper layer by electrolytic plating was 8 μm. This metal laminated film was cut into a width of 10 mm and a length of 100 mm, and a 90-degree peel test was performed under the condition of a pulling speed of 50 mm / min. The measurement result at room temperature was 9.1 N / cm, and the measurement result after thermal load at 150 ° C. × 240 hr was 6.1 N / cm.
[0014]
[Example 2]
A 25 μm thick “Kapton 100EN” (trade name: manufactured by Toray DuPont) film is coated with “Iupite UPA-N221C” (trade name: manufactured by Ube Industries), which is a thermoplastic polyimide varnish, in tetrahydrofuran with a solid content of 15%. The diluted solution was applied and dried at 120 ° C. for 1 minute and then at 180 ° C. for 10 minutes. The thickness of the coating part was 0.9 μm. The film thus obtained is put into a sputtering apparatus (SAMCO PD-10 type), and the pressure is reduced to 1.3 × 10 −3 Pa while cooling the diffusion pump using liquid nitrogen to remove the impure gas. After that, argon gas was introduced and copper was sputtered at 0.27 Pa to form a copper thin film on the film surface. The thickness of the copper thin film was 80 nm. Thereafter, electroplating with an aqueous copper sulfate solution was performed under a current density of 3 A / dm 2 to obtain a metal laminated film. The thickness of the copper layer by electrolytic plating was 10 μm. This metal laminated film was cut into a width of 10 mm and a length of 100 mm, and a 90-degree peel test was performed under the condition of a pulling speed of 50 mm / min. The measurement result at room temperature was 9.8 N / cm, and the measurement result after a thermal load of 150 ° C. × 240 hr was 6.8 N / cm.
[0015]
[Example 3]
Apply a solution of "Iupitite UPA-N111C" (trade name: manufactured by Ube Industries Co., Ltd.) diluted with tetrahydrofuran to a solid content of 15% to "Kapton 100EN" (trade name: manufactured by Toray DuPont) with a thickness of 25 µm. And then dried at 120 ° C. for 1 minute and then at 180 ° C. for 10 minutes. The thickness of the coating part was 0.7 μm. The film thus obtained is put into a sputtering apparatus (SAMCO PD-10 type), and the pressure is reduced to 1.3 × 10 −3 Pa while cooling the diffusion pump using liquid nitrogen to remove the impure gas. After that, argon gas was introduced and copper was sputtered at 0.27 Pa to form a copper thin film on the film surface. The thickness of the copper thin film was 150 nm. Thereafter, electroplating with an aqueous copper sulfate solution was performed under a current density of 3 A / dm 2 to obtain a metal laminated film. The thickness of the copper layer by electrolytic plating was 25 μm. This metal laminated film was cut into a width of 10 mm and a length of 100 mm, and a 90-degree peel test was performed under the condition of a pulling speed of 50 mm / min. The measurement result at room temperature was 11.0 N / cm, and the measurement result after thermal load at 150 ° C. × 240 hr was 7.1 N / cm.
[0016]
[Example 4]
“Iupitite UPA-N111C” (trade name: manufactured by Ube Industries) is applied to “Kapton 100EN” (trade name: manufactured by Toray DuPont) having a thickness of 25 μm, followed by 1 minute at 120 ° C., followed by 10 at 180 ° C. Minute drying was performed. The thickness of the coating part was 2.0 μm. The film thus obtained is put into a sputtering apparatus (SAMCO PD-10 type), and the pressure is reduced to 1.3 × 10 −3 Pa while cooling the diffusion pump using liquid nitrogen to remove the impure gas. After that, argon gas was introduced and copper was sputtered at 0.27 Pa to form a copper thin film on the film surface. The thickness of the copper thin film was 100 nm. Thereafter, electroplating with an aqueous copper sulfate solution was performed under a current density of 3 A / dm 2 to obtain a metal laminated film. The thickness of the copper layer by electrolytic plating was 35 μm. This metal laminated film was cut into a width of 10 mm and a length of 100 mm, and a 90-degree peel test was performed under the condition of a pulling speed of 50 mm / min. The measurement result at room temperature was 8.0 N / cm, and the measurement result after heat load at 150 ° C. × 240 hr was 6.1 N / cm.
[0017]
[Comparative Example 1]
“Kapton 100EN” (trade name: manufactured by Toray DuPont) with a thickness of 25 μm is placed in a sputtering apparatus (PD-10 model manufactured by SAMCO), and the pressure is 1.3 × 10 while cooling the diffusion pump using liquid nitrogen. The impure gas was degassed by reducing the pressure to -3 Pa, and then argon gas was introduced and copper was sputtered at 0.27 Pa to form a copper thin film on the film surface. The thickness of the copper thin film was 150 nm. Thereafter, electroplating with an aqueous copper sulfate solution was performed under a current density of 3 A / dm 2 to obtain a metal laminated film. The thickness of the copper layer by electrolytic plating was 8 μm. This metal laminated film was cut into a width of 10 mm and a length of 100 mm, and a 90-degree peel test was performed under the condition of a pulling speed of 50 mm / min. The measurement result at room temperature was 4.8 N / cm, and the measurement result after thermal load of 150 ° C. × 240 hr was 2.0 N / cm.
[0018]
[Comparative Example 2]
“Kapton 100EN” (trade name: manufactured by Toray DuPont) with a thickness of 25 μm is placed in a sputtering apparatus (PD-10 model manufactured by SAMCO), and the pressure is 1.33 × 10 while cooling the diffusion pump using liquid nitrogen. The impure gas was degassed by reducing the pressure to −3 Pa, and then argon gas was introduced and copper was sputtered at 0.266 Pa to form a copper thin film on the film surface. The thickness of the copper thin film was 80 nm. Thereafter, electroplating with an aqueous copper sulfate solution was performed under a current density of 3 A / dm 2 to obtain a metal laminated film. The thickness of the copper layer by electrolytic plating was 10 μm. This metal laminated film was cut into a width of 10 mm and a length of 100 mm, and a 90-degree peel test was performed under the condition of a pulling speed of 50 mm / min. The measurement result at room temperature was 4.8 N / cm, and the measurement result after thermal load at 150 ° C. × 240 hr was 1.5 N / cm.
[0019]
【The invention's effect】
As described above, according to the present invention, a metal laminated film having excellent adhesion between the metal layer and the insulating layer can be obtained.

Claims (4)

非熱可塑性ポリイミドフィルムの片面または両面に熱可塑性ポリイミドワニスをコーティングした後、乾燥させてなり、乾燥後の熱可塑性ポリイミドの厚みが0.4〜5μmであり、かつ熱可塑性ポリイミドのガラス転移温度が150℃〜280℃であるフィルムの片面または両面に金属層をメタライジングしてなる金属積層フィルム。After coating the thermoplastic polyimide varnish on one or both sides of the non-thermoplastic polyimide film, it is dried, the thickness of the thermoplastic polyimide after drying Ri 0.4 to 5 [mu] m der, and the glass transition of the thermoplastic polyimide metal laminated film temperature is by metallizing a metal layer on one or both sides of 0.99 ° C. to 280 ° C. der Ru film. メタライジングによる金属層の厚みが1〜500nmである請求項1記載の金属積層フィルム。The metal laminated film according to claim 1, wherein the metal layer by metalizing has a thickness of 1 to 500 nm . 請求項1または2記載の金属積層フィルム表面に銅メッキしてなる金属積層フィルム。 The metal laminated film formed by copper-plating the metal laminated film surface of Claim 1 or 2 . 銅メッキ層の厚みが1〜40μmである請求項3記載の金属積層フィルム。 The metal laminated film according to claim 3, wherein the copper plating layer has a thickness of 1 to 40 μm .
JP2002058906A 2002-03-05 2002-03-05 Metal laminated film Expired - Fee Related JP4106929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002058906A JP4106929B2 (en) 2002-03-05 2002-03-05 Metal laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002058906A JP4106929B2 (en) 2002-03-05 2002-03-05 Metal laminated film

Publications (2)

Publication Number Publication Date
JP2003251773A JP2003251773A (en) 2003-09-09
JP4106929B2 true JP4106929B2 (en) 2008-06-25

Family

ID=28668748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002058906A Expired - Fee Related JP4106929B2 (en) 2002-03-05 2002-03-05 Metal laminated film

Country Status (1)

Country Link
JP (1) JP4106929B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130748A (en) * 2002-10-15 2004-04-30 Mitsui Chemicals Inc Laminated body
JP4734837B2 (en) 2004-03-23 2011-07-27 宇部興産株式会社 Polyimide film with improved adhesiveness, method for producing the same, and laminate
JP2006103304A (en) * 2004-06-08 2006-04-20 Mitsui Chemicals Inc Polyimide-metal laminated plate and its manufacturing method
JP4798986B2 (en) * 2004-11-19 2011-10-19 旭化成イーマテリアルズ株式会社 Laminated body and method for producing the same
JP4759249B2 (en) * 2004-11-12 2011-08-31 株式会社カネカ Method for producing polyimide laminate having excellent surface properties
JP2006305914A (en) * 2005-04-28 2006-11-09 Asahi Kasei Corp Method for producing laminated substrate
JP2007152835A (en) * 2005-12-07 2007-06-21 Kaneka Corp Highly bendable and flexible metal-clad laminate
US8771496B2 (en) 2006-05-17 2014-07-08 Pi R&D Co., Ltd. Process for producing metal composite film
KR101962986B1 (en) 2014-11-18 2019-03-27 셍기 테크놀로지 코. 엘티디. Flexible metal laminate
CN116847980A (en) * 2021-02-18 2023-10-03 Tdk株式会社 Laminated resin film, current collector, and secondary battery

Also Published As

Publication number Publication date
JP2003251773A (en) 2003-09-09

Similar Documents

Publication Publication Date Title
TWI422484B (en) Printed wiring board with copper foil
CN103402757A (en) Liquid crystal polymer film based copper-clad laminate, and method for producing same
JP4106929B2 (en) Metal laminated film
TW200905014A (en) Method for production of metal-coated polyimide resin substrate having excellent thermal aging resistance property
KR20070033005A (en) Composite Copper Foil and its Manufacturing Method
TW201230913A (en) Copper-clad laminate and method for manufacturing same
JP5081831B2 (en) Wiring member and manufacturing method thereof
TW201247046A (en) Method of manufacturing multi-layer printed wiring board and multi-layer printed wiring board obtained by the manufacturing method
US7416763B2 (en) Process for forming metal layers
JP2021035755A (en) Carrier-layer-included metal laminate base material and method for manufacturing the same, metal laminate base material and method for manufacturing the same, and printed wiring board
TW200934657A (en) Adhesive-free flexible laminate
JPH07197239A (en) Production of metal-laminated polyimide film
JP2000340911A (en) Copper foil for printed wiring board
TW200300726A (en) Method for manufacturing a polyimide and metal compound sheet
JP4892834B2 (en) Polyimide film with improved adhesion, process for producing the same, and laminate
JP2003011273A (en) Metallized polyimide film
JPH08281866A (en) Production of flexible metal foil laminated sheet
JP2007208251A (en) Substrate for flexible board, flexible board using it, and manufacturing method thereof
TWI282759B (en) Electro-conductive metal plated polyimide substrate
JP4762533B2 (en) Copper metallized laminate and method for producing the same
JP2946416B2 (en) Thermal pressure bondable multilayered polyimide film and its lamination
JP2003283123A (en) Laminated substrate and method of manufacturing the same
JP2006175634A (en) Metal-polyimide substrate
JP4776217B2 (en) Copper metallized laminate and method for producing the same
JP4370926B2 (en) Thin-leaf wiring board material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees