JP4106497B2 - Thermal connection structure of flat plate heat conductor - Google Patents

Thermal connection structure of flat plate heat conductor Download PDF

Info

Publication number
JP4106497B2
JP4106497B2 JP03948998A JP3948998A JP4106497B2 JP 4106497 B2 JP4106497 B2 JP 4106497B2 JP 03948998 A JP03948998 A JP 03948998A JP 3948998 A JP3948998 A JP 3948998A JP 4106497 B2 JP4106497 B2 JP 4106497B2
Authority
JP
Japan
Prior art keywords
heat
flat plate
heat pipe
connection structure
metal cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03948998A
Other languages
Japanese (ja)
Other versions
JPH11201668A (en
Inventor
久輝 赤地
Original Assignee
アクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクトロニクス株式会社 filed Critical アクトロニクス株式会社
Priority to JP03948998A priority Critical patent/JP4106497B2/en
Publication of JPH11201668A publication Critical patent/JPH11201668A/en
Application granted granted Critical
Publication of JP4106497B2 publication Critical patent/JP4106497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【0001】
【産業上の利用分野】
本発明はヒートパイプの熱接続構造に関するもので、特に二枚の薄形平板状ヒートパイプを介在熱接続体を介する事なく直接接続し、接続部をかなめとして開閉自在な熱接続を可能にする平板状熱伝導体の熱接続構造に関する。
【0002】
【従来の技術】
各種電子機器の発展につれて、それらの小型化、軽量化と共に、携帯用電子機器の普及が業界の目標となりつつある。そのような携帯用電子機器は、必然的に発熱素子の軽量小形な冷却手段を必要とし、またその為には冷却ファンの発生する騒音をも皆無にする事が要求される。発熱素子の無騒音冷却には自然対流冷却が必須条件となり、自然対流冷却には発熱素子の発熱をキャビネット表面の可能な限り広い面積に拡散せしめ、低温度での自然対流冷却及び放射冷却せしめることが必要となる。このことから電子機器の冷却には、放熱時に電子機器キャビネットを展開して放熱表面積を十分に拡大せしめ、その全表面に熱量を拡散せしめて発熱素子を冷却することが最も効果的である。このことから、開閉の可能な且つ軽量な電子機器キャビネットの開発とその両表面間の伝熱熱接続手段の開発が強く望まれている。
【0003】
このような熱接続としてヒートパイプの応用によるものが各種提案されているがそれらに共通する特徴は以下の如くであった。即ち二本の剛性を有する円筒形ヒートパイプの屈曲加工体、これらの相対的回転による変位の応力を吸収し、且つ受熱側ヒートパイプから供給される熱量を吸収し且つ放熱側ヒートパイプに熱量を供給する介在熱接続体、ヒートパイプに熱量を供給しまたはヒートパイプの熱量を平面上に拡散せしめるそれぞれ一枚の金属平板等を構成要素とするものであった。
【0004】
図5、図6は夫々その一例を示す。図における11は受熱側細管ヒートパイプ、12は放熱側細管ヒートパイプであり、11、12は相互に介在熱接続体により熱接続されて、11側が受けた熱量を12側から放熱するようになっている。11、12の夫々に伝熱的に接着されてある平板17、18は夫々発熱体搭載用金属平板及び放熱用金属平板であり、夫々に11及び12の受熱及び放熱を助ける。図5における介在熱伝導体13はグリス入りヒンジであって、受熱側ヒートパイプ11の熱量を放熱側細管ヒートパイプ12に伝導せしめる介在の役目をする。介在熱伝導体13は熱接続構造を形成すると同時にその接続部をかなめとして両ヒートパイプの開閉を可能にする役目もある。即ち受熱側ヒートパイプ11の放熱部11−1はヒンジ13の回転軸13−1の軸心からヒンジ内に気密に滑合挿入されて、ヒンジ13の回転によりヒートパイプとの間に発生する応力は熱伝導性グリス14により吸収されて、ヒンジ13の回転を自在ならしめている。放熱側ヒートパイプ12の先端はグリス内に挿入され、ヒートパイプ12とヒンジ13とは固定接着されてあり、ヒンジ13が回転してもヒートパイプ12には応力は加わらない。ヒートパイプ11と12の間の熱量の授受は熱伝導性グリス14を介して為される。ヒートパイプ11、12には夫々発熱体搭載用金属平板17及び放熱用金属平板18が接着されてそれらの受放熱機能を助けている。
【0005】
図6における介在熱接続体は介在熱伝導体(伝熱板)14、ペルチェ素子板15、介在熱伝導体(伝熱板)16の三枚の滑合組合わせ体になっている。放熱用金属平板18及び放熱側ヒートパイプ12の展開による伝熱板16のスピンドル19を中心とした回転により発生する応力は伝熱板14、16、及びペルチェ素子板15表面の相互スリップにより吸収される。この構成の場合には伝熱板14、16、及びペルチェ素子板15相互間の接触面には大きな接触熱抵抗が発生し、熱輸送性能は大幅に低下する。然しその性能低下は、ペルチェ素子板15の低温面と高温面の間に発生する制御自在な高い温度差により、接触熱抵抗が補われた上に逆に向上する利点がある。
【0006】
【発明が解決しようとする課題】
従来提案されている上述の如き円筒型ヒートパイプ応用の開閉可能な熱接続構造には次のような問題点があった。(1)曲げ加工が必要であり剛性の高い円筒型ヒートパイプの曲げ加工を容易にする為には円筒径を細径化する必要があった。このような屈曲細管ヒートパイプの熱輸送量は極めて小さいものであった。一例として内径4mm、外形6mmの細管円筒型ヒートパイプを挙げると、直管ボトムヒートモードの場合100W以上の熱輸送が可能であるが、図5の如き曲げ加工を施す事により40W程度まで低下し、図6のごとくスパイラル曲げ加工を施すことにより20W程度まで低下し、更に接続構造により更に半減し、開閉型熱接続構造の総合的熱輸送量は20W以下と極めて小さく、図6の如くペルチエ素子の助けを借りて初めて40W程度の熱輸送が可能になる事が推定されるように極めて小さいものに過ぎなかった。(2)作動液の相変化応用の、即ち蒸気による熱輸送型のヒートパイプに共通の欠点として屈曲に依る性能低下が大きく、作動液の蒸気流路の屈曲回数の多い熱接続構造においては、上記熱輸送能力は更に大幅に低下し、最大熱輸送量は10W〜20Wと更に小さいものとなる。(3)更に発熱体搭載用電熱板、放熱用金属平板等との接触面積が小さく、この部分の接触熱抵抗が大きい点も熱輸送能力を低下せしめる。(4)図5に類似の接続構造の場合は、熱伝導グリスの熱伝導率が1W/m℃前後と極めて悪いことに起因して、介在熱接続体としての熱抵抗値が極めて高く、熱接続構造全体としての機能は極めて悪く、最大熱輸送量は更に7W〜10W前後まで低下する場合もある。(5)図6に類似の熱接続構造を採用する場合は、ペルチエ素子の助けにより熱接続構造としての機能は比較的良好となるが、ペルチエ素子の両平面間のの温度差を大きくし、熱接続機能を大きくするためには、大きな電気エネルギーを消費するペルチエ素子固有の欠点により、エネルギー収支が悪化し、電子機器全体のエネルギー消費量が増加し、熱量輸送機能としては良好とは言えない。(6)通常型のヒートパイプを応用した接続構造であるから、その固有の欠点として熱輸送性能が重力(または姿勢)に大きく依存するから、機器使用時の保持姿勢により性能が大きく変化する。このことは使用姿勢の自由度の狭さを意味し、携帯用機器としては重大な欠点となる。(7)開閉型熱接続構造としては通常のヒートパイプ応用型では熱輸送性能においても、薄形軽量化の点においても、ほぼ限界に達しており、今後の携帯用電子機器の発展には追従出来る見込みが極めて少ない。
【0007】
【課題を解決する為の手段】
本発明は上述の如き平板状熱伝導体の熱接続構造に残された課題を解決する。課題を解決する為の手段の基本的な考え方は以下の通りである。
(1)介在熱接続体を介することの無い熱接続構造を構成する。(2)かなめとなる開閉軸心に円筒形ヒートパイプを挿入することにより曲げ応力の発生を防ぐと云う従来の開閉型接続構造の考え方を捨て去り、平板状ヒートパイプを直接連結する構造を採用する。(3)開閉のためには平板状熱伝導体には剛性が必要であると云う従来の熱接続構造の既成概念を捨て去り、柔軟可撓性に富む薄形平板状ヒートパイプを採用する。(4)適用する薄形平板状ヒートパイプとしては蛇行細管ヒートパイプが内蔵せしめられた構造のものとする。
【0008】
図1は課題を解決する為の手段の具体的な構造例の説明図である。二枚の平板状熱伝導体A、Bの熱接続構造において、相互間に熱量を良好に伝導せしめる可撓性と柔軟性に富む薄形の受熱側平板状熱伝導体Bと、放熱衝平板状熱伝導体Aと、回転軸1を有する中空金属円筒2と、中空金属円筒2を外周方向から受ける円弧状凹面形の支持面を有する円筒支持体2−1とを主たる構成要素とし、薄形の両平板状熱伝導体A、Bは夫々の一端が中空金属円筒2の外周上において、円弧状湾曲部A−1、B−1に形成せしめられて相互に重ね合わせられ伝熱的に接続されてあるとともに、A、Bの重ね合わせ部は相互間の滑動が自在であり、Aの一端は、端縁が中空金属円筒2の軸方向に平行に中空金属円筒2の外周上の所定の位置に保持されて、中空金属円筒の外周に沿って円弧形状に湾曲形成されて接着固定されてあり、Bの一端は、Bの一端の湾曲外周に倣って円弧形状に湾曲形成されてあるとともに、Bの湾曲外周に倣う円弧状凹面形の支持面を有する円筒支持体2−1の支持面に接着固定されてあり、円筒支持体2−1は機器筐体4に固定して設けられてあり、このような熱接続構造によりA、Bは中空金属円筒2をかなめとして開閉が自在になっており、更に夫々の平板状熱伝導体A、Bの放熱側Bは蛇行細管ヒートパイプを内蔵した薄形平板状ヒートパイプ若しくは熱伝導性の良好な薄形金属平板であり、受熱側Aは蛇行細管ヒートパイプを内蔵した薄形平板状ヒートパイプであり、更に中空金属円筒2の外表面、両薄形平板状熱伝導体A、Bの湾曲部表面、及び円筒支持体2−1の表面等の相互間における滑動部表面には熱伝導性良好な潤滑手段が施されてあることを特徴としている。
【0009】
図2は本発明に適用される蛇行細管ヒートパイプ内蔵の薄形平板状ヒートパイプの構造の一例をを示す一部断面斜視図である。A、又はBは薄形平板状ヒートパイプのコンテナであり、可撓性に富み且つ柔軟性に富む熱伝導性の良好な金属を押し出し成型して得られる多孔扁平管で構成されてある。この扁平管は押出し成型であるから、加工硬化が殆ど無く、完全焼鈍に近い可撓性と柔軟性に富んでいる。図において7は多孔扁平管A、又はBの断面であり、細径トンネル6の群が示されてある。蛇行細管ヒートパイプ内蔵の薄形平板状ヒートパイプの他の構造例には薄型平板の片面に蛇行細溝を切削、プレス成型、エッチング等により形成し、この面に他の薄型平板を接合した構造のものもある。この場合は細溝形成時に蛇行パターンとして形成できる点や、自由な形状のパターンとして形成できる利点があるが、本発明の実施の為には何らかの手段により焼鈍を実施して、加工硬化を除去する工程を必要とする。
【0010】
【作用】
このようにして得られる平板状熱伝導体の熱接続構造の構成には次のような作用がある。(1)介在熱伝導体を介することの無い熱接続構造を構成することは、伝導熱の介在熱伝導体の入り口側、及び出口側の2か所の接触熱抵抗が省略されることを意味する。更に熱量が介在熱伝導体を貫流する為の熱抵抗も省略されることになる。これらのことから熱接続による伝導熱量の損失を大幅に減少せしめることが出来る。(2)かなめとなる開閉軸心に円筒形ヒートパイプを挿入することにより曲げ応力の発生を防ぐと云う従来の開閉型接続構造の考え方を捨て去り、平板状ヒートパイプを直接熱接続する構造を採用することは、円筒形ヒートパイプの曲げによる熱抵抗増加を無くする事が出来る。また接続部は面接続であるから接触熱抵抗値が小さくなる利点がある。更に細径円筒形ヒートパイプの適用本数は一接続部当たり1本であるのに対し、薄形平板状ヒートパイプは一接続部当たり細径トンネル数十本が適用されるから、細径円筒形ヒートパイプの接続構造に比較して薄形平板状ヒートパイプは数倍の熱輸送能力を有する。従って本発明の熱接続構造は接続する輸送熱量を大幅に増大せしめる。(3)柔軟可撓性に富む薄形平板状ヒートパイプを採用することはその端縁の曲げ加工により、平板状ヒートパイプの端縁をヒンジとして構成することを可能にする。即ち柔軟性、可撓性であることが開閉の可能な平板状熱伝導体の熱接続構造構成の基本条件となる。(4)適用する薄形平板状ヒートパイプとして蛇行細管ヒートパイプが内蔵せしめられた構造のものとなっているから、本発明の接続構造は蛇行細管ヒートパイプの特性である重力(姿勢)無依存性を発揮する。またこの薄形平板状ヒートパイプは厚さ2mm以下、必要とあれば0.5mmの薄形にも構成することが出来る。
【0011】
(5)蛇行細管ヒートパイプ内蔵の平板状ヒートパイプには、[非熱接続の一体構造の場合より、二枚の熱接続構造体の場合の方が遥かに熱伝導性能が良い。]と云う極めて特異な優れた特長がある。これは蛇行細管ヒートパイプの熱輸送が作動液の軸方向の一斉振動により為され、この一斉振動は受熱部群における作動液の核沸騰により発生する圧力波群により引き起こされるものであり、一斉振動であるから細管ヒートパイプの受熱部からの一定の距離に至るまでは熱輸送損失が殆ど発生せず、細管内圧力損失が核沸騰圧力波の振動発生エネルギーを上回る距離に至った場合に急激に振動発生能力を失ない熱輸送能力も失われる。従って熱輸送能力が失われることのない長さの平板状ヒートパイプが相互に熱接続された場合は熱輸送損失が殆ど発生しないことによる。このことから本発明の熱接続構造は極めて優れた熱伝導性能を発揮する。(6)蛇行細管ヒートパイプは微小重力下でも正常に作動することが実験的に確認されている。即ち本発明の開閉の可能な平板状熱伝導体の熱接続構造は宇宙用電子機器の発熱体の放熱にも適用することが出来る。
【0012】
【実施例】
[第一実施例] 図1は本発明の平板状熱伝導体の熱接続構造の第一実施例を示す説明図をも兼ねており、開閉可能な接続構造の全開状態を示している。本実施例の熱接続構造は、熱接続構造が所定の開度以上の展開状態にあるときは、その円筒支持体2−1の円弧状凹面形の支持面と中空金属円筒2の外周壁面とにより、両平板状熱伝導体A、Bの円弧状湾曲部A−1、B−1の重なり部を、熱伝導性潤滑手段の薄膜5を介して加圧挟持して良好な熱接続状態を保持せしめ、熱接続構造が所定の開度以下の展開状態にあるときは、両平板状熱伝導体A、Bの円弧状湾曲部A−1、B−1の重なり部には加圧力は加わることがなく中空金属円筒2の回転による両平板状熱伝導体A、Bの円弧状湾曲部A−1、B−1の相互接触面間の相対的滑動が容易であるように構成されてあることを特徴としている。加圧挟持、加圧力解除の手段としては、中空金属円筒2の回転軸1の偏心、中空金属円筒2の外形の特殊形状化、カムによる中空金属円筒2の移動、等各種の手段がある。熱伝導性潤滑手段の薄膜5としては各種熱伝導性グリスがある。乾式の熱伝導性潤滑手段の薄膜としてはテフロン焼付け薄膜、二硫化モリブデン微粉末等がある。本発明の実施例は円弧状湾曲部A−1、B−1の重なり部における滑動接触面の摩耗が少ないので開閉頻度の高い熱接続構造に適している。
【0013】
[第二実施例] 図2は本発明の接続構造の第二実施例の一例をも示している。即ち平板状熱伝導体としての薄形平板状ヒートパイプは、可撓性と柔軟性に富む金属材料の押出し成型で得られた薄形多孔扁平管を素材とし、管内を貫通する細径トンネル群がその両端末に所定の加工を施すことにより、その薄形平板状管内で往復蛇行する密閉コンテナとして形成され、脱気の後に所定量の二相凝縮性作動液が封入されて、蛇行細管ヒートパイプとして構成されたヒートパイプが内蔵された薄形平板状ヒートパイプであることを特徴としている。
この薄形多孔扁平管は押出成型で作られるから、加工硬化が殆ど発生せず素材の優れた可撓性と柔軟性をそのままに維持しているから、円弧状湾曲部A−1、B−1の成型が極めて容易である。また加工工程が少ない。これらの点から、製造コストが大幅に低減される。
【0014】
本実施例の熱接続構造は、従来の熱接続構造の熱輸送性能が姿勢依存性(重力依存性)が大きく、保持姿勢に依る性能変化が大きく、トップヒートモードでは熱輸送が不可能であったのに対して、如何なる保持姿勢でも殆ど性能が変化しないという優れた特徴がある。これは内蔵されてある蛇行細管ヒートパイプが所定の長さ以内であれば如何なる保持姿勢でも性能が変化しないという、通常のヒートパイプには全く無い優れた特性を有することによる。
【0015】
また本実施例の熱接続構造は接続構造体であるにも拘らず、本実施例の熱接続構造の延長長さと同一長さの非熱接続の一体構造の平板状熱伝導体より、遥かに高性能の熱伝導性能を発揮すると云う、常識では考えられないような優れた機能を有する。これは蛇行細管ヒートパイプを内蔵した平板状ヒートパイプが一枚の長尺平板状ヒートパイプより、二枚接続の同等長さの平板状ヒートパイプの方が遥かに輸送可能な熱量が大きいと云う特異な機能によるものである。
【0016】
図3、図4及び表1、表2によりその特異な機能について説明する。図3は幅50mm、厚さ1.9mmの非ループ型蛇行細管ヒートパイプ内蔵のプレートヒートパイプの熱接続構造体を示し、Bは長さ1=200mmの受熱側プレートヒートパイプ、Aは長さ1=250mmの放熱側プレートヒートパイプであって、両者は長さ1=50mmの熱接続部6において半田付けによる重ね合わせ熱接続が施されてある。受熱側プレートヒートパイプBの端末には長さ50mmの加熱手段Hが配接されてあり熱量が入力される。放熱側プレートヒートパイプAの端末の両面には、長さ50mm放熱手段C、Cが配接されてあり熱量が排出される。この熱接続構造体の全長は1=1+1−1=400mmである。
【0017】
表1にはこの接続構造体の長さ方向を垂直に保持したボトムヒートモード及びトップヒートモード、及び長さ方向端縁、幅方向端縁を夫々垂直水平に保持した垂直水平モード及び何れも共に水平に保持した水平水平モードの場合について、加熱手段Hにより入力された熱量Q[W]の変化による放熱手段C、Cから排出される経路における温度降下Δt[℃]の変化、熱抵抗R[℃/W]の変化、が示されてある。

Figure 0004106497
Figure 0004106497
【0018】
表2には同プレートヒートパイプが非熱接続型の一体化構造であり、その長さが1=400mmである場合の同一入力Q[W]における温度降下Δt[℃]の変化、熱抵抗R[℃/W]の変化、が示されてある。
Figure 0004106497
Figure 0004106497
【0019】
これらの図及び表から200mm前後の長さの蛇行細管ヒートパイプ内蔵のプレートヒートパイプが接続された接続構造のプレートヒートパイプは姿勢依存性(重力依存性)が殆ど無く、如何なる姿勢でも良好に作動することが分かる。更に接続構造のプレートヒートパイプは非接続構造のプレートヒートパイプよりはるかに高性能であり、ほぼ2倍の熱輸送性能があることも分かる。この様な機能は従来構造の熱伝導体の接続構造においては想像もつかない特異な優れた機能である。このことから本発明に係る平板状熱伝導体の接続構造は開閉自在な構造であるにも拘らず、従来型の熱接続構造に比較してはるかに卓越した熱輸送性能を発揮することが推定される。
【0020】
図4は同様に幅50mm、厚さ1.9mmの非ループ型蛇行細管ヒートパイプ内蔵のプレートヒートパイプの各種長さのものにつき、プレートの長さ方向、幅方向を共に水平に保持したモード(水平水平モード)における最大熱輸送量を測定してグラフ化したものである。曲線は長さ200mm前後から急激に熱輸送性能が低下していることを示している。これは蛇行細管の管内圧力損失の影響によるもので、長さ200mm前後以上の圧力損失が、受熱部における核沸騰蒸気圧に打ち勝って、作動液の軸方向振動発生を妨げ、これに依る熱輸送を妨げていることを示している。このグラフからこのプレートヒートパイプは熱輸送性能が急激な低下を示す長さより短い長さのものを熱接続することに依り、極めて性能低下の少ない熱接続を実施することが可能なことが明らかで有る。
【0021】
[第三実施例] 第三実施例は図1における中空金属円筒2を温度均一化ヒートパイプとして構成する。即ち中空金属円筒2はヒートパイプコンテナとして高気密に形成されてあり、高真空に脱気の後所定量の二相凝縮性作動液が封入されてあり、作動液の相変化型の温度均一化用ヒートパイプとして構成されてあることを特徴としている。この様な作動液の相変化応用のヒートパイプは優れた温度均一化性能を発揮する。この中空金属円筒2のヒートパイプはこれに接着されてある平板上ヒートパイプたの作用を均等化させる。即ち受熱側平板状ヒートパイプAからその湾曲部A−1に不均一な熱量が伝導されてきた場合は、その熱量を均一化せしめて、放熱側平板状ヒートパイプBの湾曲部B−1に均一化された熱量を伝導せしめ、その温度を均一化せしめる。これは放熱側平板状ヒートパイプBの全表面の温度を均一化せしめる。全表面の温度が均一化された放熱側平板状ヒヒートパイプBは表面温度が不均一な場合の如く、部分的に臨界温度に到達して即ち部分的に放熱が悪化する如き現象を発生することが無いから、また部分的に低入力になり即ち部分的に作動不可能になったりすることが無いから、全体としての放熱能力が向上する。更に部分的な高温部が発生しないから、携帯用機器の携帯者に不快感や不安感を与えることが無い。これは携帯用電子機器としては極めて重要な条件である。さらにまた中空金属円筒2、両平板状ヒートパイプの湾曲部分、の温度が均一化され部分的に高温にならない点は、多数回の開閉摩擦による熱伝導性潤滑剤の劣化を発生させることも無い。
【0022】
【発明の効果】
平板状熱伝導体の熱接続構造は従来不可能であった様な大きな熱容量の開閉型熱接続を可能とする。このことは現用の開閉型携帯用電子機器に適用出来るだけで無く、将来予想されている開閉型携帯用電子機器の発熱量の増大にも対応することが可能となる効果がある。更に大容量の開閉型電子機器にも対応することが出来る上に微小重力下で作動することも実験的に確認されてあるから、宇宙空間で展開して使用される宇宙用機器の展開型熱接続にも適用することが出来る。
本発明の開閉型熱接続構造は姿勢依存性(重力依存性)が全く無いので如何なる保持姿勢でも良好な熱接続性能を発揮する効果を示す。特に第二実施例に説明の如き非接続構造の一体型の場合よりも遥かに大きな熱量を輸送することを可能とする熱接続構造は他の熱接続構造では全く得られない新規且つ独特の効果で有る。
【図面の簡単な説明】
【図1】 本発明の平板状熱伝導体の熱接続構造の基本構造及び第一実施例を示す断面図である。
【図2】 本発明の平板状熱伝導体の熱接続構造に適用される薄形平板状ヒートパイプの構造を説明する一部断面の斜視図である。
【図3】 平板状ヒートパイプの接続構造の一例を示す説明図である。
【図4】 非ループ型平板状ヒートパイプの性能を説明するグラフ
【図5】 従来提案されている、円筒形ヒートパイプを用いた熱接続構造の一例を示す説明図である。
【図6】 従来提案されている、円筒形ヒートパイプを用いた熱接続構造の他の一例を示す説明図である。
【符号の説明】
A 放熱側平板状熱伝導体
A−1 円弧状湾曲部
B 受熱側平板状熱伝導体
B−1 円弧状湾曲部
放熱側平板状ヒートパイプ
受熱側平板状ヒートパイプ
放熱手段
放熱手段
1 回転軸
2 中空金属円筒
2−1 円筒支持体
3 軸受け
4 機器筐体
5 潤滑手段薄膜
6 細径トンネル群
7 断面
11 受熱側細管ヒートパイプ
11−1 受熱側細管ヒートパイプ放熱部
12 放熱側細管ヒートパイプ
12−1 放熱側細管ヒートパイプ受熱部
13 介在熱伝導体(グリス入りヒンジ)
13−1 回転軸
14 熱伝導性グリス
15 介在熱伝導体(ペルチエ素子板)
16 介在熱伝導体(伝熱板)
17 発熱体搭載用金属平板
18 放熱用金属平板
19 スピンドル[0001]
[Industrial application fields]
The present invention relates to a heat connection structure of a heat pipe, and in particular, two thin flat plate heat pipes are directly connected without an intervening heat connection body, and a heat connection that can be opened and closed with a connection portion as a key is made possible. The present invention relates to a heat connection structure of a flat plate heat conductor.
[0002]
[Prior art]
With the development of various electronic devices, the spread of portable electronic devices is becoming an industry goal along with their miniaturization and weight reduction. Such a portable electronic device inevitably requires a light and small cooling means for the heating element, and for that purpose, it is required to eliminate the noise generated by the cooling fan. Natural convection cooling is indispensable for noise-free cooling of the heating element, and for natural convection cooling, the heat generated by the heating element should be spread over the widest possible area of the cabinet surface to allow natural convection cooling and radiative cooling at low temperatures. Is required. For this reason, it is most effective for cooling the electronic device to expand the electronic device cabinet during heat radiation to sufficiently expand the heat radiation surface area and to diffuse the amount of heat over the entire surface to cool the heating element. For this reason, development of a lightweight electronic equipment cabinet that can be opened and closed and development of heat transfer heat connection means between both surfaces are strongly desired.
[0003]
Various types of heat connection have been proposed by applying heat pipes. The features common to them are as follows. That is, the bent body of the cylindrical heat pipe having two stiffnesses, absorbs the stress of displacement due to their relative rotation, absorbs the amount of heat supplied from the heat receiving side heat pipe, and transfers the heat amount to the heat radiating side heat pipe. The intervening heat connection body to be supplied, a heat flat plate for supplying heat, or a single metal flat plate for diffusing the heat amount of the heat pipe on a plane are used as constituent elements.
[0004]
FIG. 5 and FIG. 6 each show an example. In the figure, 11 is a heat receiving side thin tube heat pipe, 12 is a heat radiating side thin tube heat pipe, and 11 and 12 are thermally connected to each other by an intervening heat connection body so that the amount of heat received by the 11 side is radiated from the 12 side. ing. The flat plates 17 and 18 thermally conductively bonded to 11 and 12, respectively, are a heat generating element mounting metal plate and a heat radiating metal flat plate, respectively, and assist the heat receiving and heat dissipation of 11 and 12, respectively. The intervening heat conductor 13 in FIG. 5 is a hinge containing grease, and serves as an intermediary for conducting the heat quantity of the heat receiving side heat pipe 11 to the heat radiating side thin tube heat pipe 12. The intervening heat conductor 13 forms a heat connection structure and at the same time has a role of enabling the opening and closing of both heat pipes by using the connection portion as a key. That is, the heat radiating portion 11-1 of the heat receiving side heat pipe 11 is airtightly inserted into the hinge from the axis of the rotating shaft 13-1 of the hinge 13, and the stress generated between the heat pipe and the heat pipe due to the rotation of the hinge 13. Is absorbed by the heat conductive grease 14 to allow the hinge 13 to rotate freely. The tip of the heat radiating side heat pipe 12 is inserted into the grease, the heat pipe 12 and the hinge 13 are fixedly bonded, and no stress is applied to the heat pipe 12 even if the hinge 13 rotates. Transfer of heat between the heat pipes 11 and 12 is performed via the heat conductive grease 14. The heat pipes 11 and 12 are bonded with a heat generating metal plate 17 and a heat radiating metal plate 18, respectively, to assist their heat receiving and radiating functions.
[0005]
The intervening thermal connection body in FIG. 6 is a three-piece sliding assembly of an interposing heat conductor (heat transfer plate) 14, a Peltier element plate 15, and an intervening heat conductor (heat transfer plate) 16. The stress generated by the rotation of the heat transfer plate 16 around the spindle 19 due to the expansion of the heat radiating metal flat plate 18 and the heat radiating side heat pipe 12 is absorbed by the mutual slip of the surfaces of the heat transfer plates 14 and 16 and the Peltier element plate 15. The In the case of this configuration, a large contact thermal resistance is generated on the contact surfaces between the heat transfer plates 14 and 16 and the Peltier element plate 15, and the heat transport performance is significantly reduced. However, the performance degradation has the advantage that the contact thermal resistance is compensated for by the high temperature difference that can be controlled between the low-temperature surface and the high-temperature surface of the Peltier element plate 15 and is improved.
[0006]
[Problems to be solved by the invention]
The conventionally proposed heat connection structure that can be opened and closed for cylindrical heat pipe application as described above has the following problems. (1) Bending is required, and in order to facilitate bending of a highly rigid cylindrical heat pipe, it is necessary to reduce the cylindrical diameter. The heat transport amount of such a bent thin tube heat pipe was extremely small. As an example, taking a thin tube cylindrical heat pipe with an inner diameter of 4 mm and an outer diameter of 6 mm, heat transport of 100 W or more is possible in the straight tube bottom heat mode, but it is reduced to about 40 W by bending as shown in FIG. As shown in FIG. 6, it is reduced to about 20 W by spiral bending, and is further halved by the connection structure, and the total heat transport amount of the open / close type heat connection structure is as small as 20 W or less, and the Peltier element as shown in FIG. As it is estimated that the heat transport of about 40W is possible only with the help of (2) In the heat connection structure of the phase change application of the hydraulic fluid, that is, the performance deterioration due to bending is a common defect in the heat transport type heat pipe by steam, and the hydraulic fluid steam flow path is bent many times. The heat transport capability is further greatly reduced, and the maximum heat transport amount is further reduced to 10W to 20W. (3) Further, the contact area with the heating element mounting electric heating plate, the heat radiating metal flat plate, etc. is small, and the contact heat resistance of this part is also large, which reduces the heat transport capability. (4) In the case of the connection structure similar to FIG. 5, the thermal conductivity of the thermal conductive grease is extremely poor, around 1 W / m ° C. The function of the entire connection structure is extremely poor, and the maximum heat transport amount may further decrease to around 7 W to 10 W. (5) When a thermal connection structure similar to FIG. 6 is adopted, the function as the thermal connection structure is relatively good with the help of the Peltier element, but the temperature difference between both planes of the Peltier element is increased, In order to increase the thermal connection function, the energy balance deteriorates due to the disadvantages inherent in Peltier elements that consume large amounts of electrical energy, the energy consumption of the entire electronic device increases, and it cannot be said that the heat transfer function is good. . (6) Since it is a connection structure using a normal heat pipe, the heat transport performance largely depends on gravity (or posture) as an inherent defect, and therefore the performance varies greatly depending on the holding posture when the device is used. This means a narrow degree of freedom in use posture, which is a serious drawback for portable devices. (7) As an open / close type heat connection structure, the conventional heat pipe application type has almost reached its limit in terms of heat transport performance and reduction in thickness and weight, and will follow the development of portable electronic devices in the future. There is very little chance of being able to do it.
[0007]
[Means for solving the problems]
The present invention solves the problems remaining in the thermal connection structure of the flat plate-like heat conductor as described above. The basic idea of the means for solving the problem is as follows.
(1) A thermal connection structure that does not involve an intervening thermal connection body is configured. (2) Abandoning the concept of the conventional open / close connection structure that prevents the generation of bending stress by inserting a cylindrical heat pipe into the opening / closing axis that becomes the key, adopts a structure that directly connects flat heat pipes . (3) The existing concept of the conventional heat connection structure that the flat heat conductor needs to be rigid for opening and closing is discarded, and a thin flat heat pipe rich in flexibility and flexibility is adopted. (4) The thin flat plate heat pipe to be applied has a structure in which a meandering thin tube heat pipe is incorporated.
[0008]
FIG. 1 is an explanatory diagram of a specific structure example of means for solving the problem. In the heat connection structure of two flat plate heat conductors A and B, a thin heat-receiving side flat plate heat conductor B that has good flexibility and flexibility to conduct heat between them, and a heat sink plate The main component is a cylindrical heat conductor A, a hollow metal cylinder 2 having a rotating shaft 1, and a cylindrical support body 2-1 having an arcuate concave support surface that receives the hollow metal cylinder 2 from the outer peripheral direction. The two flat plate-shaped heat conductors A and B are formed with arc-shaped curved portions A-1 and B-1 at one end on the outer periphery of the hollow metal cylinder 2, and are superposed on each other to conduct heat. In addition to being connected, the overlapping portions of A and B can freely slide between each other, and one end of A has a predetermined edge on the outer periphery of the hollow metal cylinder 2 with the edge parallel to the axial direction of the hollow metal cylinder 2. Is held in the position of, and is curved and formed into an arc shape along the outer periphery of the hollow metal cylinder. One end of B is curved in a circular arc shape following the curved outer periphery of one end of B, and the cylindrical support body 2-1 has an arcuate concave support surface that follows the curved outer periphery of B. The cylindrical support 2-1 is fixed to the equipment housing 4 by being bonded and fixed to the support surface. With such a heat connection structure, A and B can be freely opened and closed with the hollow metal cylinder 2 as a key. Further, the heat radiation side B of each of the flat plate heat conductors A and B is a thin flat plate heat pipe having a meandering capillary heat pipe or a thin metal flat plate having good heat conductivity. A is a thin flat plate heat pipe incorporating a meandering capillary heat pipe, and further the outer surface of the hollow metal cylinder 2, the curved surface of both thin flat plate heat conductors A and B, and the cylindrical support 2-1. Good thermal conductivity on the sliding surface between each other Is characterized in that lubricating means are subjected.
[0009]
FIG. 2 is a partial cross-sectional perspective view showing an example of the structure of a thin flat plate heat pipe with a meandering capillary heat pipe incorporated in the present invention. A or B is a container for a thin flat plate-like heat pipe, and is composed of a porous flat tube obtained by extruding a metal having high flexibility and good heat conductivity. Since this flat tube is extrusion molding, there is almost no work hardening, and it is rich in flexibility and flexibility close to complete annealing. In the figure, 7 is a cross section of the porous flat tube A or B, and a group of small diameter tunnels 6 is shown. Another structural example of a thin flat plate heat pipe with a meandering capillary heat pipe is a structure in which a meandering groove is formed on one side of a thin flat plate by cutting, press molding, etching, etc., and another thin flat plate is joined to this side There is also a thing. In this case, there is an advantage that it can be formed as a meandering pattern at the time of forming a narrow groove and can be formed as a pattern having a free shape. However, in order to implement the present invention, annealing is performed by some means to remove work hardening. Requires a process.
[0010]
[Action]
The structure of the thermal connection structure of the flat plate-like heat conductor thus obtained has the following action. (1) Constructing a thermal connection structure that does not involve an intervening heat conductor means that contact heat resistance at two locations on the entrance side and the exit side of the intervening heat conductor of conduction heat is omitted. To do. Furthermore, the thermal resistance for allowing the amount of heat to flow through the intervening heat conductor is also omitted. For these reasons, the loss of conduction heat due to heat connection can be greatly reduced. (2) The conventional open / close type connection structure, which prevents the generation of bending stress by inserting a cylindrical heat pipe into the opening / closing axis that becomes the key, is discarded, and a structure that directly connects the flat plate heat pipes is adopted. This can eliminate an increase in thermal resistance due to bending of the cylindrical heat pipe. Further, since the connection portion is a surface connection, there is an advantage that the contact thermal resistance value is reduced. Furthermore, the number of thin cylindrical heat pipes applied is one per connection, whereas thin flat plate heat pipes are applied with dozens of small diameter tunnels per connection. Compared to the heat pipe connection structure, the thin flat plate heat pipe has several times the heat transport capability. Therefore, the heat connection structure of the present invention greatly increases the amount of transport heat to be connected. (3) Adopting a thin flat plate heat pipe rich in flexibility and flexibility makes it possible to configure the end of the flat plate heat pipe as a hinge by bending the end. That is, flexibility and flexibility are the basic conditions for the heat connection structure of the flat plate heat conductor that can be opened and closed. (4) Since the thin plate-shaped heat pipe to be applied has a structure in which a meandering capillary heat pipe is built in, the connection structure of the present invention is independent of gravity (posture), which is a characteristic of the meandering capillary heat pipe. Demonstrate sex. Further, this thin flat plate heat pipe can be formed into a thin shape having a thickness of 2 mm or less and, if necessary, 0.5 mm.
[0011]
(5) For a flat plate heat pipe with a meandering capillary heat pipe, the heat conduction performance is much better in the case of two heat connection structures than in the case of a non-heat connection integrated structure. It has a very unique and excellent feature. This is because the heat transport of the meandering capillary heat pipe is caused by the simultaneous vibration of the working fluid in the axial direction, and this simultaneous vibration is caused by the pressure wave group generated by the nucleate boiling of the working fluid in the heat receiving part group. Therefore, almost no heat transport loss occurs until it reaches a certain distance from the heat receiving part of the narrow tube heat pipe, and suddenly when the pressure loss in the narrow tube exceeds the vibration generation energy of the nucleate boiling pressure wave. The heat transport capability without losing vibration generation capability is also lost. Therefore, when the flat heat pipes having a length that does not lose the heat transport capability are thermally connected to each other, there is almost no heat transport loss. For this reason, the heat connection structure of the present invention exhibits extremely excellent heat conduction performance. (6) It has been experimentally confirmed that the meandering capillary heat pipe operates normally even under microgravity. That is, the heat connection structure of the plate-shaped heat conductor that can be opened and closed according to the present invention can be applied to the heat radiation of the heating element of the space electronic device.
[0012]
【Example】
First Embodiment FIG. 1 also serves as an explanatory view showing a first embodiment of the thermal connection structure of the flat plate heat conductor of the present invention, and shows a fully opened state of the connection structure that can be opened and closed. When the thermal connection structure of the present embodiment is in a developed state with a predetermined opening or more, the arc-shaped concave support surface of the cylindrical support 2-1 and the outer peripheral wall surface of the hollow metal cylinder 2 Thus, the overlapping portions of the arc-shaped curved portions A-1 and B-1 of the two plate-like heat conductors A and B are pressed and sandwiched through the thin film 5 of the heat conductive lubricating means to obtain a good heat connection state. When the heat connection structure is in a developed state with a predetermined opening or less, pressure is applied to the overlapping portions of the arcuate curved portions A-1 and B-1 of the two plate-like heat conductors A and B. And the relative movement between the contact surfaces of the arcuate curved portions A-1 and B-1 of the two flat plate-like heat conductors A and B by the rotation of the hollow metal cylinder 2 is facilitated. It is characterized by that. As means for pressing and clamping and releasing the applied pressure, there are various means such as eccentricity of the rotating shaft 1 of the hollow metal cylinder 2, special shape of the outer shape of the hollow metal cylinder 2, movement of the hollow metal cylinder 2 by a cam, and the like. As the thin film 5 of the thermally conductive lubricating means, there are various thermally conductive greases. Examples of the thin film of the dry thermal conductive lubricating means include a Teflon-baked thin film and molybdenum disulfide fine powder. The embodiment of the present invention is suitable for a heat connection structure that is frequently opened and closed because there is little wear on the sliding contact surface at the overlapping portion of the arcuate curved portions A-1 and B-1.
[0013]
Second Embodiment FIG. 2 also shows an example of a second embodiment of the connection structure of the present invention. In other words, a thin flat plate heat pipe as a flat plate heat conductor is made of a thin porous flat tube obtained by extrusion molding of a flexible and flexible metal material, and a small-diameter tunnel group penetrating the tube. Is formed as a sealed container that oscillates and reciprocates in the thin flat tube by applying predetermined processing to both ends, and after the deaeration, a predetermined amount of two-phase condensable hydraulic fluid is enclosed, It is a thin flat plate heat pipe with a built-in heat pipe configured as a pipe.
Since this thin porous flat tube is made by extrusion molding, work hardening hardly occurs and the excellent flexibility and flexibility of the material are maintained as they are. Therefore, the arcuate curved portions A-1, B- 1 is very easy to mold. There are few processing steps. From these points, the manufacturing cost is greatly reduced.
[0014]
In the heat connection structure of this example, the heat transport performance of the conventional heat connection structure is largely posture-dependent (gravity dependency), and the performance changes depending on the holding posture, and heat transport is impossible in the top heat mode. On the other hand, there is an excellent feature that the performance hardly changes in any holding posture. This is because the built-in serpentine tubule heat pipe has an excellent characteristic that is not found in ordinary heat pipes, in that the performance does not change in any holding posture as long as it is within a predetermined length.
[0015]
In addition, although the thermal connection structure of the present embodiment is a connection structure, it is far more than a flat plate heat conductor of a single structure having the same length as the extension length of the thermal connection structure of the present embodiment. It has an excellent function that cannot be considered by common sense, that it exhibits high-performance heat conduction performance. This is because a flat plate heat pipe with a meandering capillary heat pipe has a larger amount of heat that can be transported by a flat plate heat pipe with the same length than two long plate heat pipes. This is due to its unique function.
[0016]
The specific functions will be described with reference to FIGS. FIG. 3 shows a heat connection structure of a plate heat pipe with a built-in non-loop type meandering capillary heat pipe having a width of 50 mm and a thickness of 1.9 mm, and B 2 is a heat receiving side plate heat pipe having a length of 1 1 = 200 mm, A 1 Is a heat-dissipating side plate heat pipe having a length of 1 2 = 250 mm, and both of them are subjected to superposition heat connection by soldering at a heat connection portion 6 having a length of 1 3 = 50 mm. Heating means H is Yes is Haise' heat of length 50mm in the heat receiving side plate heat pipe B 2 terminal is input. The heat radiation means C 1 and C 2 having a length of 50 mm are arranged on both surfaces of the end of the heat radiation side plate heat pipe A 1 , and the amount of heat is discharged. The total length of this thermal connection structure is 1 = 1 1 +1 2 −1 3 = 400 mm.
[0017]
Table 1 shows both the bottom heat mode and top heat mode in which the length direction of the connection structure is held vertically, and the vertical horizontal mode in which the length direction edge and the width direction edge are held vertically and horizontally. In the case of the horizontal horizontal mode held horizontally, the change in temperature drop Δt [° C.] in the path discharged from the heat radiating means C 1 and C 2 due to the change in the amount of heat Q [W] input by the heating means H, the thermal resistance The change in R [° C./W] is shown.
Figure 0004106497
Figure 0004106497
[0018]
Table 2 shows a change in temperature drop Δt [° C.] and thermal resistance R at the same input Q [W] when the plate heat pipe has a non-thermal connection type integrated structure and its length is 1 = 400 mm. The change in [° C / W] is shown.
Figure 0004106497
Figure 0004106497
[0019]
From these figures and tables, the plate heat pipe with a connection structure in which a plate heat pipe with a meandering capillary tube with a length of about 200 mm is connected has almost no posture dependency (gravity dependency) and works well in any posture. I understand that It can also be seen that the connected plate heat pipe is much higher performance than the non-connected plate heat pipe and has nearly twice the heat transport performance. Such a function is a unique excellent function that cannot be imagined in the connection structure of a heat conductor having a conventional structure. From this, it is estimated that although the connection structure of the flat plate-like heat conductor according to the present invention is a structure that can be opened and closed, it exhibits far superior heat transport performance compared to the conventional heat connection structure. Is done.
[0020]
Similarly, FIG. 4 shows a mode in which both the plate length direction and the width direction are held horizontally for various lengths of plate heat pipes with a built-in non-loop type meandering capillary heat pipe having a width of 50 mm and a thickness of 1.9 mm ( The maximum heat transport amount in the horizontal and horizontal modes) is measured and graphed. The curve shows that the heat transport performance is drastically reduced from about 200 mm in length. This is due to the influence of the pressure loss in the meandering capillary tube, and the pressure loss of about 200 mm or more overcomes the nucleate boiling vapor pressure in the heat receiving part, hinders the generation of axial vibration of the hydraulic fluid, and the heat transport by this It shows that it is preventing. From this graph, it is clear that this plate heat pipe can be connected with heat shorter than the length that shows a drastic decrease in heat transport performance, and it is possible to carry out heat connection with very little performance degradation. Yes.
[0021]
[Third Embodiment] In the third embodiment, the hollow metal cylinder 2 in FIG. 1 is configured as a temperature uniformized heat pipe. That is, the hollow metal cylinder 2 is formed as a heat pipe container with high airtightness, and after deaeration in a high vacuum, a predetermined amount of two-phase condensable hydraulic fluid is sealed, and the phase change type temperature uniformity of the hydraulic fluid is achieved. It is configured as a heat pipe for use. Such a heat pipe for application of phase change of hydraulic fluid exhibits excellent temperature uniformity performance. The heat pipe of the hollow metal cylinder 2 equalizes the action of the heat pipe on the flat plate bonded thereto. That is, when a non-uniform amount of heat is conducted from the heat receiving side flat plate heat pipe A to the curved portion A-1, the amount of heat is made uniform, and the heat amount is made uniform in the curved portion B-1 of the heat radiating side flat plate heat pipe B. Conducts the uniform amount of heat and makes the temperature uniform. This makes the temperature of the entire surface of the heat radiation side flat plate heat pipe B uniform. The heat-dissipating flat plate-shaped hheat pipe B with the uniform temperature on the entire surface may generate a phenomenon that partially reaches the critical temperature, that is, the heat dissipation partially deteriorates, as in the case where the surface temperature is not uniform. Since there is no part, the input power is partially low, i.e., it is not partially inoperable, so that the overall heat dissipation capability is improved. Furthermore, since a partial high-temperature part does not occur, there is no discomfort or anxiety for the portable user. This is a very important condition for portable electronic devices. Furthermore, the temperature of the hollow metal cylinder 2 and the curved portions of both flat plate heat pipes is made uniform and does not reach a high temperature. This does not cause deterioration of the thermally conductive lubricant due to many opening and closing frictions. .
[0022]
【The invention's effect】
The heat connection structure of the flat plate-like heat conductor enables open / close type heat connection with a large heat capacity, which has been impossible in the past. This is not only applicable to the current open / close portable electronic device, but also has an effect of being able to cope with an increase in the amount of heat generated by the open / close portable electronic device expected in the future. In addition, it can be applied to large-capacity switchable electronic devices and has been experimentally confirmed to operate under microgravity. It can also be applied to connections.
Since the open / close type heat connection structure of the present invention has no posture dependency (gravity dependency), it exhibits the effect of exhibiting good heat connection performance in any holding posture. In particular, the heat connection structure that can transport a much larger amount of heat than the case of the integral type of the non-connection structure as described in the second embodiment is a new and unique effect that cannot be obtained at all by other heat connection structures. It is.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a basic structure and a first embodiment of a thermal connection structure of a flat plate heat conductor of the present invention.
FIG. 2 is a partial cross-sectional perspective view illustrating the structure of a thin flat plate heat pipe applied to the flat plate heat conductor thermal connection structure of the present invention.
FIG. 3 is an explanatory view showing an example of a connection structure of flat plate heat pipes.
FIG. 4 is a graph illustrating the performance of a non-loop flat plate heat pipe. FIG. 5 is an explanatory diagram showing an example of a heat connection structure using a cylindrical heat pipe, which has been conventionally proposed.
FIG. 6 is an explanatory view showing another example of a heat connection structure using a cylindrical heat pipe, which has been conventionally proposed.
[Explanation of symbols]
A heat radiation side flat plate heat conductor A-1 arc-shaped curved portion B heat receiving side flat plate heat conductor B-1 arc shaped curved portion A 1 heat radiation side flat plate heat pipe B 2 heat receiving side flat plate heat pipe C 1 heat radiation means C 2 Heat radiation means 1 Rotating shaft 2 Hollow metal cylinder 2-1 Cylindrical support 3 Bearing 4 Equipment housing 5 Lubricating thin film 6 Thin diameter tunnel group 7 Cross section 11 Heat receiving side thin tube heat pipe 11-1 Heat receiving side thin tube heat pipe heat radiation part 12 Heat Dissipation Side Thin Tube Heat Pipe 12-1 Heat Dissipation Side Thin Tube Heat Pipe Heat Receiving Part 13 Intervening Thermal Conductor (Grease with Grease)
13-1 Rotating shaft 14 Thermally conductive grease 15 Intervening thermal conductor (Peltier element plate)
16 Intervening heat conductor (heat transfer plate)
17 Heating element mounting metal flat plate 18 Heat dissipation metal flat plate 19 Spindle

Claims (3)

二枚の平板状熱伝導体の熱接続構造において、相互間に熱量を良好に伝導せしめる、可撓性と柔軟性に富む薄形の受熱側平板状熱伝導体Bと、放熱側平板状熱伝導体Aと、回転軸を有する中空金属円筒と、中空金属円筒を外周方向から受ける円筒支持体とを主たる構成要素とし、薄形の両平板状熱伝導体A、Bは夫々の一端が中空金属円筒の外周上において相互に重ね合わせられ伝熱的に接続されてあるとともに、A、Bの重ね合わせ部はA、B相互間の滑動は自在であり、Aの一端は、端縁が中空金属円筒の軸方向に平行に中空金属円筒の外周上の所定の位置に保持されて、中空金属円筒の外周に沿って円弧形状に湾曲形成されて接着固定されてあり、Bの一端は、Aの一端の湾曲外周に倣って円弧形状に湾曲形成されてあるとともに、Bの湾曲外周に倣う円弧状凹面形の支持面を有する円筒支持体の支持面に接着固定されてあり、円筒支持体は機器筐体に固定して設けられてあり、このような熱接続構造によりA、Bは中空金属円筒をかなめとして開閉が自在になっており、更に夫々の平板状熱伝導体A、Bの放熱側Aは蛇行細管ヒートパイプを内蔵した薄形平板状ヒートパイプ若しくは熱伝導性の良好な薄形金属平板であり、受熱側Bは蛇行細管ヒートパイプを内蔵した薄形平板状ヒートパイプであり、更に中空金属円筒外表面、両薄形平板状熱伝導体A,Bの湾曲部表面、及び円筒支持体の支持面等の相互間における滑動部表面には熱伝導性の良好な潤滑手段が施されてあることを特徴とする平板状熱伝導体の熱接続構造。  In the heat connection structure of two flat plate-like heat conductors, a thin heat-receiving side plate-like heat conductor B having good flexibility and flexibility, which conducts heat well between each other, and a heat-dissipation side plate-like heat The main components are a conductor A, a hollow metal cylinder having a rotating shaft, and a cylindrical support that receives the hollow metal cylinder from the outer peripheral direction, and one end of each of the thin plate-like heat conductors A and B is hollow. They are superposed on each other on the outer periphery of the metal cylinder and are connected to each other in a heat transfer manner. The superposed portion of A and B can freely slide between A and B, and one end of A has a hollow end. It is held in a predetermined position on the outer periphery of the hollow metal cylinder in parallel with the axial direction of the metal cylinder, is curved and formed in an arc shape along the outer periphery of the hollow metal cylinder, and is bonded and fixed. Is curved in an arc shape following the curved outer periphery of one end of the The cylindrical support body is bonded and fixed to a support surface of a cylindrical support body having an arcuate concave support surface that follows the curved outer periphery, and the cylindrical support body is fixed to the equipment housing. , B can be freely opened and closed with a hollow metal cylinder as a key, and the heat radiation side A of each flat plate heat conductor A, B is a thin flat plate heat pipe with a meandering capillary heat pipe or heat conductivity. The heat-receiving side B is a thin flat plate heat pipe with a meandering capillary heat pipe built therein, and further, the outer surface of the hollow metal cylinder and the curvature of both thin flat plate heat conductors A and B A heat connection structure for a flat plate-like heat conductor, wherein the surface of the sliding portion between the surface of the member and the support surface of the cylindrical support is provided with a lubricating means having good heat conductivity. 平板状熱伝導体としての薄形平板状ヒートパイプは、可撓性と柔軟性に富む金属材料の押出し成型で得られた薄形多孔扁平管を素材とし、管内を貫通する細径トンネル群がその両端末に所定の加工を施すことにより、その薄形平板状管内で往復蛇行する密閉コンテナとして形成され、脱気の後に所定量の二相凝縮性作動液が封入されて、蛇行細管ヒートパイプとして構成されたヒートパイプが内蔵された平板状ヒートパイプであることを特徴とする請求項1に記載の平板状熱伝導体の熱接続構造。  A thin flat plate heat pipe as a flat plate heat conductor is made of a thin porous flat tube obtained by extrusion of a flexible and flexible metal material. By subjecting both ends to predetermined processing, it is formed as a hermetically sealed container that reciprocates in the thin flat tube, and after deaeration, a predetermined amount of two-phase condensable working fluid is enclosed, The heat connection structure for a flat plate heat conductor according to claim 1, wherein the heat pipe is a flat plate heat pipe having a built-in heat pipe. 中空金属円筒はヒートパイプコンテナとして形成されてあり、高真空に脱気の後所定量の二相凝縮性作動液が封入されて、作動液の相変化型の温度均一化用ヒートパイプとして構成されてあることを特徴とする請求項1に記載の平板状熱伝導体の熱接続構造。  The hollow metal cylinder is formed as a heat pipe container, and after deaeration in a high vacuum, a predetermined amount of a two-phase condensable hydraulic fluid is sealed to form a phase change type heat pipe for temperature uniformization of the hydraulic fluid. The heat connection structure for a flat plate-like heat conductor according to claim 1, wherein
JP03948998A 1998-01-16 1998-01-16 Thermal connection structure of flat plate heat conductor Expired - Lifetime JP4106497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03948998A JP4106497B2 (en) 1998-01-16 1998-01-16 Thermal connection structure of flat plate heat conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03948998A JP4106497B2 (en) 1998-01-16 1998-01-16 Thermal connection structure of flat plate heat conductor

Publications (2)

Publication Number Publication Date
JPH11201668A JPH11201668A (en) 1999-07-30
JP4106497B2 true JP4106497B2 (en) 2008-06-25

Family

ID=12554476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03948998A Expired - Lifetime JP4106497B2 (en) 1998-01-16 1998-01-16 Thermal connection structure of flat plate heat conductor

Country Status (1)

Country Link
JP (1) JP4106497B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3713706B2 (en) * 2001-09-28 2005-11-09 日本電気株式会社 Heat dissipation structure, package assembly, and heat dissipation sheet
CN1304807C (en) * 2001-12-13 2007-03-14 索尼公司 Cooling device, electronic device and method of manufacturing cooling device
JP2005340745A (en) * 2004-05-27 2005-12-08 Ts Heatronics Co Ltd Electric and electronic device power supply unit
JP2007259589A (en) * 2006-03-23 2007-10-04 Fujikura Ltd Electrical connection box and its manufacturing method
KR101158682B1 (en) 2010-12-30 2012-06-25 주식회사 케이에스비 Evacuated tube solar collector with multi channel plate type heat pipe

Also Published As

Publication number Publication date
JPH11201668A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
EP3133364B1 (en) Heat spreading module for portable electronic device
CN1329701C (en) Integrated thermoelectric module
JP6861790B2 (en) How to attach metal fins to ceramic heater elements
US11493280B2 (en) Heat pipe module and heat dissipating device using the same
JP3199384B2 (en) Liquid-cooled heat sink for cooling electronic components and method of forming the same
US7647961B2 (en) Heat pipe with axial and lateral flexibility
US20060181848A1 (en) Heat sink and heat sink assembly
US20210372661A1 (en) Heat transfer assembly
KR20090018970A (en) Heat exchanger assembly
WO1999034438A1 (en) Heat sink
JP2004198096A (en) Flat heat pipe having superior capillary force, and cooling device using it
US3406753A (en) Peg type heat exchangers for thermoelectric devices
JP4106497B2 (en) Thermal connection structure of flat plate heat conductor
US20210212236A1 (en) Phase-change mechanically deformable cooling device
JP4508939B2 (en) Electronic heating element cooling device
JP4494879B2 (en) Heat sink using carbon graphite
US11425842B2 (en) Thermal design of an access point
JP2014165596A (en) Portable information terminal
JP2005265205A (en) Heat pipe and its manufacturing method
Singh et al. Flat miniature heat pipe with composite fibre wick structure for cooling of mobile handheld devices
CN220173656U (en) Heat radiation structure and electronic equipment
JP7450125B2 (en) heat sink
CN211858626U (en) Cooling plate
JPH08236819A (en) Thermal electronic element
CN214046500U (en) Heat dissipation assembly, heat dissipation device and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term