JP4106280B2 - Gas-liquid separator for liquid-cooled compressor - Google Patents

Gas-liquid separator for liquid-cooled compressor Download PDF

Info

Publication number
JP4106280B2
JP4106280B2 JP2003010027A JP2003010027A JP4106280B2 JP 4106280 B2 JP4106280 B2 JP 4106280B2 JP 2003010027 A JP2003010027 A JP 2003010027A JP 2003010027 A JP2003010027 A JP 2003010027A JP 4106280 B2 JP4106280 B2 JP 4106280B2
Authority
JP
Japan
Prior art keywords
gas
liquid
receiver tank
discharge pipe
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003010027A
Other languages
Japanese (ja)
Other versions
JP2004176701A (en
Inventor
雅佳 根本
靖典 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2003010027A priority Critical patent/JP4106280B2/en
Publication of JP2004176701A publication Critical patent/JP2004176701A/en
Application granted granted Critical
Publication of JP4106280B2 publication Critical patent/JP4106280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被圧縮気体を圧縮する過程において圧縮機本体の作用空間内に冷却媒体を供給する液冷式圧縮機に関し、特に圧縮機本体から吐出した圧縮気体と冷却媒体との気液混合流体を圧縮気体と冷却媒体とに分離して圧縮気体を消費側に供給する気液分離装置に関する。
【0002】
【従来の技術】
従来の液冷式圧縮機の一例として、油を冷却媒体として使用する油冷式スクリュ圧縮機の例を、図8及び図9を参照して説明する。
【0003】
図8及び図9において、61はスクリュ圧縮機本体(以下「圧縮機本体」と称す)で、この圧縮機本体のシリンダ63に形成するロータ室内64には雌雄一対のスクリュロータ(以下「ロータ」と称す)65,66が収容され、前記ロータ室64の軸方向一側には吸入口68及び吸入通路69が形成された吸入側ケーシング67を接続し、前記ロータ室64の軸方向他側には吐出口72及び吐出通路(図示しない)が形成された吐出側ケーシング71を接続している。そして、前記ロータ各々の端部に延設された軸部76,77,78,79は前記吸入側ケーシング67と吐出側ケーシング71とに収容された軸受81,82,83,84で支承されている。
【0004】
前記圧縮機本体61の吸入口68は吸入管85を介して吸入フィルタ86及び被圧縮気体の供給路87と接続し、吐出口72は吐出管88を介して油分離タンク62及び消費側の消費側配管89に接続する。前記油分離タンク62は下部に潤滑油Oを貯留し、この油分離タンクの下部と圧縮機本体61のロータ室64内とをオイルクーラ90及びオイルフィルタ91を介して油配管92により接続している。
【0005】
前記圧縮機本体61はモータ95などの原動機により駆動され、前記ロータ65,66の噛み合い回転により、圧縮機本体61の吸入口68から被圧縮気体を吸入してロータ室64内で圧縮すると共に、この圧縮の過程で圧縮気体の冷却,ロータ同志の潤滑及び密封のために油分離タンク62に貯留する潤滑油Oをロータ室64内に供給し、吐出口72から圧縮気体と潤滑油の気液混合状態の気体を油分離タンク62内に吐出する。前記油分離タンク62では該タンク内の側壁に気液混合状態の気体を衝突させることで、圧縮気体と潤滑油とに一次分離し、圧縮気体は油分離タンク62の上部に接続する油分離フィルタ93によって圧縮気体中に含まれる霧状の微細な状態で混入する潤滑油を除去して、消費側に圧縮気体だけを供給し、一方潤滑油は油分離タンク62内の下部に貯留するようになっている。
【0006】
このように、従来の圧縮機は圧縮機本体と気液分離装置とが配管で接続され、それぞれが別々に構成されていることから、圧縮機の外形が大きくなっている。また、圧縮機本体と気液分離装置とを配管で接続されていることから接続箇所から圧縮気体や冷却媒体が外部に漏れ出すという問題が内在する。
【0007】
このような問題を解消するために、図10及び図11に示すように気液分離装置のレシーバタンク99を横長円筒状、いわば「横置き」とし、このレシーバタンク99内に圧縮機本体97を水平方向に挿入し、圧縮機本体97と気液分離装置とを一体に構成した圧縮機が提案されている(特許文献1参照)。
【0008】
また、圧縮機本体の吐出口に連通する吐出管を設け、この吐出管の先端に設けられた開口部を同様に横置きされたレシーバタンクの平面視で長手方向を左右にして手前側又は奥側のいずれか一方(幅方向のいずれか一方)に寄せて配置すると共に、吐出管の開口部をレシーバタンクの長手方向一側の斜め上方に向け、レシーバタンクの出口をレシーバタンクの長手方向他側における上部に配置した圧縮機がある(特許文献2参照)。
【0009】
この発明の先行技術文献情報としては次のものがある。
【特許文献1】
実開昭55−172689号公報(第1頁、第2a図,第2b図)。
【特許文献2】
特開2002−98058号公報(第3−6頁、図1,図2)。
【0010】
【発明が解決しようとする課題】
前述の従来技術に示す圧縮機は、圧縮機本体97の吐出口100より吐出された気液混合流体の流れが横長円筒状のレシーバタンク99の胴部内周壁面に沿って流れるようにその開口方向を設定しているが、吐出口100から排出された気液混合流体を図11に示すようにレシーバタンク99の内周壁面で縦方向に旋回させて遠心分離しようとしても、気液混合流体の旋回流Sがレシーバタンク99内の下部に貯留する冷却媒体に衝突して油煙を生じさせることから冷却媒体の分離性能が思うほど改善されない。
【0011】
また、レシーバタンク99内に貯留する冷却媒体の油面Lは、圧縮機の運転により冷却媒体が消費側に持ち出されることで油面Lが下がったり、被圧縮気体の圧縮によりドレンが生じてレシーバタンク99内に冷却媒体と共にこのドレンが貯留されることで油面Lが上昇することがあり、これにより旋回流Sの旋回長さが変わって冷却媒体の分離性能が安定しないという問題がある。
【0012】
さらに、吐出口100より吐出された気液混合流体は、必ずしもその全てがレシーバタンク99の内壁面に沿った旋回流Sを生じるとは限らず、意図した経路の旋回流を生じる前に直接レシーバタンク99の出口に導入される場合もあり、この場合にはレシーバタンク99内における旋回距離が短くなるために冷却媒体の充分な分離性能が発揮されないという問題がある。
【0013】
なお、前述の従来技術のうち、特許文献2に記載の気液分離装置にあっては、レシーバタンク内において気液混合流体が比較的長距離の旋回流を発生し得る構成を備えているが、吐出管より吐出された気液混合流体をレシーバタンクの胴部内周壁面に沿って縦方向の旋回流を生じさせるものである以上、油面Lの変化による分離性能の不安定化という問題を解消し得るものではない。
【0014】
そこで、本発明は、液冷式圧縮機の気液分離装置において冷却媒体の分離性能を改善し、また、レシーバタンク内に貯留する冷却媒体の液面が変動しても安定した分離性能を確保することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために本発明の液冷式圧縮機の気液分離装置は、空気、その他のガスから成る被圧縮気体を作用空間9内で圧縮する過程で該作用空間9内に潤滑油や冷却水等の冷却媒体を注入し吐出口22から圧縮気体と冷却媒体との気液混合流体を吐出する液冷式圧縮機本体2と、前記圧縮機本体2の吐出口22から吐出した気液混合流体を吐出管48を介して導入し、圧縮気体と冷却媒体とに分離して圧縮気体を消費側に供給する気液分離装置3とを備えた圧縮機において、
前記気液分離装置3は、前記吐出管48の一端が内部において開口し前記気液混合流体を一次分離するためのレシーバタンク41と、前記レシーバタンク41内で一次分離された気液混合流体を導入すると共に該気液混合流体中に残留する冷却媒体を更に分離して圧縮気体を消費側に供給するセパレータ42とを備え、
前記レシーバタンク41は、軸線方向を水平方向と成す筒状の胴部45と、前記胴部45の少なくとも一端開口を閉塞し、外方に膨出する半球状の鏡板46を備えると共に、前記胴部45の上部に前記セパレータ42を接続する接続口43が形成されており、
前記吐出管48の軸線方向を、平面視(図2参照)において前記レシーバタンクの軸線に対して例えば平行に偏心して、図示の例で言い換えれば前記軸線方向に対して直交方向を成す前記胴部45の幅方向(図2中における紙面上下方向)のいずれか一端側(図示の例では下方)に寄せて、配置すると共に前記吐出管48の開口部49を該レシーバタンク41に貯留される冷却媒体の液面Lの上限位置よりも高い位置において前記鏡板46に向けて開口したことを特徴とする(請求項1)。
【0016】
前述の構成の気液分離装置3において、前記レシーバタンク41内には、冷却媒体の液面Lの上限位置と前記吐出管48の開口部49との間に、前記鏡板46側より前記胴部45の他端側(開口44側)に向かって突出する仕切板33を設けることが好ましい(請求項2)。
【0017】
さらに、好ましくは、前記吐出管48の開口部49と前記接続口43との間に、前記鏡板46より前記胴部45の他端側(開口44側)に向かって突出する遮蔽板35を設ける(請求項3)。
【0018】
なお、前述の仕切板33や遮蔽板35を設けた場合には、潤滑油等の冷却媒体の通過を可能と成す開孔34,36を、前記仕切板33及び/又は前記遮蔽板35の肉厚を貫通して形成すれば好適である(請求項4)。
【0019】
さらに、前記吐出管48の開口部49を、前記接続口43に対して前記レシーバタンク41の鏡板46寄りに設けると共に、平面視において前記接続口43を、前記吐出管48の偏心側における前記レシーバタンク41の幅方向の一端(図6中において下方)側、乃至前記吐出管48の開口部49側に向けて開放するものとして良い(請求項5)。
【0020】
【発明の実施の形態】
第1の実施の形態について図1乃至図2に基づき説明する。
【0021】
図1及び図2に示す実施形態においては、本発明の気液分離装置を一例として油冷式スクリュ圧縮機用として構成したものであり、この油冷式スクリュ圧縮機1は、雌雄一対のスクリュロータ6,7をシリンダ8のロータ室9内に噛合回転可能に収納し、前記一対のスクリュロータ6,7を噛合回転して被圧縮気体を圧縮する過程で前記ロータ室9内に潤滑油を注入する油冷式の圧縮機本体2と、前記圧縮機本体2のロータ室9内で圧縮され吐出された圧縮気体と冷却媒体との気液混合流体を導入し、圧縮気体と冷却媒体とに分離して圧縮気体を消費側に供給する気液分離装置3と、圧縮機本体2を回転駆動するモータ4とを一体に結合している。
【0022】
前記圧縮機本体2は、前記スクリュロータ6,7の軸線方向に対して前記シリンダ8の一側に被圧縮気体を吸入する吸入口12及び吸入通路13を形成し、前記スクリュロータ6,7の一側ロータ軸14,15を支承する軸受16,17を収納する吸入側ケーシング11と、前記スクリュロータ6,7の軸線方向に対して前記シリンダ8の他側に圧縮気体を吐出する吐出口22及び吐出通路23とを形成し、前記スクリュロータ6,7の他側ロータ軸24,25を支承する軸受26,27を収納する吐出側ケーシング21とを備え、前記吸入側ケーシング部11と前記シリンダ8とは一体に形成され、オスロータ6の吸入側(一側)ロータ軸14は前記吸入側ケーシング部11を貫通して圧縮機本体2の外部に突出して該圧縮機本体の駆動軸となり、前記吸入側ケーシング部11の外周から圧縮機本体2の外部に突出するオスロータ6の吸入側ロータ軸14の周囲にモータ4と一体に連結するためのパワーサイドハウジング31を延出する。前記シリンダ8は吐出側ケーシング部21との接続部においてその周縁部を外周から直径方向外方に、レシーバタンク41の開口44外周に至り延出するフランジ部47を形成している。
【0023】
前記気液分離装置3は、圧縮機本体2から吐出された前記気液混合流体を一次分離するレシーバタンク41と、前記レシーバタンク41内で一次分離された気液混合流体を導入し、この導入された気液混合流体中にミストの状態で混入する微細な冷却媒体を分離して得られた圧縮気体を消費側に供給するセパレータ42とを備える。
【0024】
このレシーバタンク41は、円筒状の胴部45の一端開口を、外方に向かって膨出する半球状の鏡板46で被蓋することにより形成されており、このレシーバタンク41の胴部45他端における開口44をシリンダ8側に向け、水平方向としていわば横置きに設置し、該レシーバタンク41の前記開口44とは反対側を成す端部に、前述の半球状を成す鏡板46が配置されている。そして、このレシーバタンク41の胴部45における上部には、円筒形の筒体であるセパレータ42の軸線方向を垂直方向にして、前記セパレータ42の底部開口を直接接続する接続口43が設けられている。また、シリンダ8側における前記レシーバタンク41の端部には、レシーバタンク41内を点検・掃除等するための点検口となる前記開口44が設けられている。
【0025】
そして、図示の実施形態にあっては前記モータ4及び前記一側ロータ軸14,15を支承する軸受16,17が収納されている吸入側ケーシング部11並びにシリンダ8のロータ室9を除く、吐出側ケーシング部21のみを前記レシーバタンク41の開口から内部に挿入固定する。すなわち、前述のように吐出側ケーシング部21には、吐出口22及び吐出通路23とが形成され、前記スクリュロータ6,7の他側ロータ軸24,25を支承する軸受26,27が収容されている部分であり、前記シリンダ8のフランジ部47をレシーバタンク41の圧力容器として肉厚に形成されている前記開口44の外周部に固設して前記フランジ部47とレシーバタンク41とを連結することにより、前記開口44を被蓋すると共に、前記吐出側ケーシング部21のみを前記レシーバタンク41内部に挿入固定し、且つ前記モータ4及び前記吸入側ケーシング部11並びにシリンダ8のロータ室9をレシーバタンク41外に配置構成している。
【0026】
前記モータ4は前記オスロータ6の吸入側ロータ軸14の軸上に回転子51を固定して前記吸入側ロータ軸14とモータ4の回転軸、前記ロータ軸14を支承する前記軸受16とモータ4の回転軸を支承する軸受とを兼用し、モータ4の固定子52を固定するモータケーシング53と前記圧縮機本体2から延出するパワーサイドハウジング31とを締結してモータ4を構成している。かようにして、モータケーシング53、吸入側ケーシング11、吐出側ケーシング部21がモータ4の回転軸と一体又は直結あるいはカップリングにより接合した雄ロータ軸(14,24)及びレシーバタンク41の軸線方向を水平にして一体に構成されている。
【0027】
前記圧縮機本体2の吐出口22には該圧縮機本体から吐出される気液混合流体を導く吐出管48が接続され、前記吐出管48の軸線方向を、レシーバタンク41内に貯留される冷却媒体の液面(本実施形態にあっては潤滑油Oの油面L)Lよりも高い位置であって、前記レシーバタンクの軸線に対して平面視で平行に偏心して、すなわち図示の形態で、前記レシーバタンクの軸線方向に直交方向を成す、前記胴部45の幅方向のいずれか一方側(図2の紙面中では下方)に寄せて配置すると共に、前記吐出管48の開口部49を前記鏡板46に向けて配置し、この吐出管48の開口部49より吐出された気液混合流体が、レシーバタンク41の内壁に沿った旋回流Sを生じるように構成されている。
【0028】
図2に示す実施形態にあってはこの吐出管48をレシーバタンク41の軸線に対して図中下方に配置し、レシーバタンク41の内壁に沿って、図2にあっては時計回りの旋回流が生じるように構成しているが、この吐出管48は、例えばレシーバタンク41の軸線に対して図2の紙面中上方に配置し、レシーバタンク41の内壁に沿って反時計回りの旋回流が生じるように構成しても良く、その構成は図2に示す例に限定されない。
【0029】
前述の吐出管48の開口部49と油面Lとの間には、好ましくは図1及び図2に示すように、前述の鏡板46から開口44側に向かって突出した仕切板33が設けられており、この仕切板33によって前述の吐出管48の開口部49より吐出された気液混合流体が油面Lと衝突することが防止され、従って、この衝突によって生じる油煙の発生が防止されている。
【0030】
この仕切板33には、好ましくはその肉厚を貫通する複数の開孔34が形成されており、吐出管48の開口部49を介して吐出された気液混合流体中に含まれる冷却媒体が、レシーバタンク41の鏡板46や仕切板33に衝突した際に分離して仕切板33上に落下した場合であっても、この分離された冷却媒体が仕切板33上に溜まることなく、レシーバタンク41の底部に落下して回収されるように構成されている。
【0031】
以上のように構成したスクリュ圧縮機は、図1及び図2の矢印で示すように圧縮機本体2から吐出された気液混合流体が吐出口22から吐出管48を介して前記レシーバタンク41の鏡板46に向かって吐出され、この吐出された気液混合流体は半球状に形成された端壁46の内周面に導かれて反転すると共にレシーバタンク41の胴部45内壁に沿った開口44側に向かう流れと成ると共に、前記胴部45の上部に開口する接続口43からセパレータ42に導入される。
【0032】
このように吐出管48を介して気液混合流体の吐出方向を所定の方向に誘導することにより、この吐出管48を介して吐出された気液混合流体はレシーバタンク41内でスムーズに旋回し、遠心力により圧縮気体より重い冷却媒体は旋回流Sの外側に位置するレシーバタンク41の内壁面にぶつかって分離され、圧縮気体は旋回流Sの内側に位置する前記接続口43からセパレータ42へ導入されるので、レシーバタンク41内における冷却媒体の分離性能が向上し、消費側へ供給される圧縮気体中に含まれる冷却媒体の量を少なくすることができる。
【0033】
また、前述の吐出管48の開口部49を、冷却媒体の液面Lよりも高い位置に配置し、この開口部49より吐出された気液混合流体の旋回流Sは冷却媒体の液面Lよりも高い位置で旋回し、この旋回流Sがレシーバタンク41内の下部に貯留する冷却媒体に衝突して油煙を生じさせることがないので、レシーバタンク41内における冷却媒体の分離性能が向上し、冷却媒体の油面変動によって旋回流Sの長さが変わることなく分離性能を確保することができる。
【0034】
特に、吐出管48の開口部49と液面L間に仕切板33を設けた気液分離装置3にあっては、吐出管48より吐出された気液混合流体が液面Lと衝突することを確実に防止することができ、前述のような油煙の発生が確実に防止されると共に、この仕切板33に開孔34を形成する場合には、気液混合流体より分離された冷却媒体が例え仕切板33上に落下した場合であっても、この冷却媒体は仕切板33上に溜まることなくレシーバタンク41の底部に落下・回収されるために、仕切板33上に溜まった冷却媒体に吐出管48より吐出された気液混合流体が衝突することにより生じる油煙の発生をも防止し得る。
【0035】
次に、本発明の第2の実施形態を図3及び図4を参照して説明する。
【0036】
この図3及び図4に示す第2実施形態にあっては、図1及び図2を参照して説明した第1実施形態の構成に加え、吐出管48の上方に位置して、レシーバタンク41の鏡板46から開口44側に向かって略水平方向に突出する遮蔽板35が設けられている。
【0037】
この遮蔽板35は、前述のセパレータ42に通じる接続口43を、所定の間隔を介してその下方において覆うもので、この遮蔽板35を設けることにより、吐出管48の開口部49より吐出された気液混合流体がレシーバタンク41内を旋回せずに直接接続口43に導入されることを防止している。なお、この遮蔽板35を設けた点を除き、他の構成については図1及び図2を参照して説明した前述の第1実施形態における油冷式スクリュ圧縮機1と同様の構成である。
【0038】
この遮蔽板35は、前述のように鏡板46から開口44側に向かって、前述の接続口43を下方において遮蔽する位置迄突出されており、従って吐出管38より吐出された気液混合流体は、レシーバタンク41内を流動して接続口43に至るためには必ずこの遮蔽板35を迂回して流動するものとなる。
【0039】
そのため、レシーバタンク41内の鏡板46に向かって吐出された気液混合流体は、鏡板46の曲面に誘導されて反転し、胴部45内壁に沿って開口44側に流動し、その後、この開口44側において遮蔽板45の端部と接続口43間に形成された隙間から接続口43に導入される。
【0040】
このような遮蔽板35が存在しない場合には、吐出管48より吐出された気液混合流体が、レシーバタンク41内を循環することなく直接接続口43に導入される場合があるが、このように遮蔽板35を設ける場合には吐出管38より吐出された気液混合流体が確実にレシーバタンク41内を比較的長距離流動することとなり、その後、接続口43に導入することができることから、この遮蔽板35を備えた冷却媒体の分離装置にあってはその分離性能がより一層向上したものとなる。
【0041】
なお、この遮蔽板35には、好ましくは前述の仕切板33と同様にその肉厚を貫通する開孔36を多数形成し、この遮蔽板35上に気液混合流体より分離した冷却媒体が落下した場合であっても、この遮蔽板35上に冷却媒体が溜まることなく、タンクの下方に落下して回収されるものとなっている。
【0042】
さらに、本発明の第3の実施形態を図5〜図7を参照して説明する。
【0043】
この図5及び図6に示す第3実施形態にあっては、図1及び図2を参照して説明した第1実施形態の構成に加え、前記吐出管48の開口部49を前述のセパレータ42に通じる接続口43の形成位置に対して鏡板46側に配置すると共に、平面視においてこの接続口43を、前記吐出管48の偏心側におけるレシーバタンク41の幅方向の一端(図6中の下方)乃至前記吐出管48の開口部49側(図6中左下方)に向けて開放している。
【0044】
この接続口43の開放方向は、例えば接続口43自体の形状を前述の方向に向けて開放する形状としても良く、又は接続口43のサイズによっては、例えば既存のL字管等を取り付けてこれを延長して、その開放方向を前述の方向に向けるように構成しても良い。
【0045】
本実施形態にあっては、下向きに開放する接続口43に、図7に示すように円周方向の一部に切欠53が形成された断面C字状を成す円筒部51と、この円筒部51の一端を被蓋する底板52とにより形成された蓋体50を設け、底板52により被蓋されていない円筒部51の他端を上向きにして接続口43に取り付けると共に、円筒部51に形成された切欠53の向きを、図6に示す平面視において吐出管48の偏向側におけるレシーバタンクの幅方向の一端側(図6中の下方)、乃至吐出管48の開口部49側(図6中の左下方向)に向けてることにより、接続口43が前述した方向に開放されている。
【0046】
このように、吐出管48の開口部49を、接続口43に対してレシーバタンク41の鏡板46側に設けることで、吐出管48より吐出された気液混合流体がレシーバタンク41内を旋回する旋回流を生じさせる前に直接接続口43に導入されることを防止できると共に、その開放方向を前述の方向に向けることにより、図6中に矢印で示す旋回流Sのようにレシーバタンク41内における気液混合流体の旋回距離を可及的に長く取ることができる。その結果、レシーバタンク41内における気液分離性能が向上する。
【0047】
なお、前述の蓋体50は、接続口43を前述の方向に向けて開放することができるものであれば図示の構造に限定されず、他の構造を備えるものであっても良い。例えば前述の円筒体51に設けた切欠53に代え、例えばこの切欠53に対応する位置に多数の小孔を形成する等して、気液混合流体を導入する流路を形成しても良い。
【0048】
また、蓋体50の底板52に、気液混合流体の導入は殆ど行わないが、底板52上に冷却媒体が溜まった場合にはこれを落下させることができる程度の開孔を形成する等しても良く、その他各種の変形が可能である。
【0049】
【発明の効果】
以上説明したように、本発明によれば、被圧縮気体を作用空間内で圧縮する過程で該作用空間内に冷却媒体を注入し吐出口から圧縮気体と冷却媒体との気液混合流体を吐出する液冷式圧縮機本体と、前記圧縮機本体の吐出口から吐出した気液混合流体を吐出管を介して導入し、圧縮気体と冷却媒体とに分離して圧縮気体を消費側に供給する気液分離装置とを備えた圧縮機において、
前記気液分離装置は、前記吐出管の一端が内部において開口し前記気液混合流体を一次分離するレシーバタンクと、前記レシーバタンク内で一次分離された気液混合流体を導入すると共に該気液混合流体中に残留する冷却媒体を更に分離して得られた圧縮気体を消費側に供給するセパレータとを備え、
前記レシーバタンクは、軸線方向を水平方向と成す筒状の胴部と、前記胴部の少なくとも一端開口を閉塞し、外方に膨出する半球状の鏡板を備えると共に、前記胴部の上部に前記セパレータを接続する接続口が形成され、
前記吐出管の軸線方向を、平面視において前記レシーバタンクの軸線に対して偏心して、例えば前記レシーバタンクの軸線に対して直交方向を成す前記胴部の幅方向のいずれか一端側に寄せて配置すると共に、前記吐出管の一端に形成する開口部を該レシーバタンクに貯留される冷却媒体の液面上限位置よりも高い位置において前記鏡板に向けて開口したことから、気液混合流体の旋回流は冷却媒体の油面よりも高い位置で旋回し、この旋回流がレシーバタンク内の下部に貯留する冷却媒体に衝突して油煙を生じさせることがないので、レシーバタンク内における冷却媒体の分離性能が向上し、冷却媒体の油面変動によって旋回流の長さが変わることなく分離性能を確保することができる。
【0050】
特に、吐出管の先端部と冷却媒体の液面間に、鏡板側より突出する仕切板を設けた冷却媒体の分離装置にあっては、前述の吐出管を介して吐出された圧縮流体が冷却媒体の液面に衝突することを確実に防止することができ、冷却媒体の分離性能をより一層向上させることができた。
【0051】
さらに、吐出管の先端開口部とレシーバタンクの出口であるセパレータの接続口間に鏡板より突出する遮蔽板を設け、前記レシーバタンクの出口を下方において遮蔽するこりとにより、吐出管より吐出された圧縮流体はこの遮蔽板を迂回してレシーバタンクの出口に向かう流れを生じるために、吐出管より吐出された圧縮流体は常に鏡板側から開口側に向かう流れを生じた後、開口側に形成された遮蔽板の端部側よりレシーバタンクの出口に導入される。その結果、レシーバタンク内を流動する圧縮流体の循環距離をタンク内において長距離確保することができ、その結果、冷却媒体の分離性能を向上させることができた。
【0052】
なお、前述の仕切板及び/又は遮蔽板に開孔を形成した構成にあっては、この仕切板及び/又は遮蔽板上に冷却媒体が溜まることを防止することができ、仕切板及び/又は遮蔽板上に溜まった冷却媒体が、タンク内を流動する圧縮流体と衝突して巻き上げられることが好適に防止される。その結果、このようにして巻き上げられた冷却媒体が圧縮流体中に混入して冷却媒体の分離性能が低下されることが防止される。
【0053】
さらに、前記吐出管の開口部を接続口の形成位置に対して鏡板側に配置すると共に、接続口に蓋体を取り付ける等することにより、平面視においてこの接続口を前記吐出管の偏心側におけるレシーバタンク41の幅方向の一端(図6中の下方)乃至前記吐出管48の開口部49側(図6中左下方)に向けて開放する場合には、吐出管から吐出された気液混合流体が旋回流を生じることなく直接接続口に導入されることを防止できると共に、旋回流の旋回距離を可及的に長距離とすることができ、レシーバタンク内における冷却媒体の分離性能を格段に向上させることができた。
【図面の簡単な説明】
【図1】 本発明の一実施形態を示す油冷式スクリュ圧縮機の横断面図
【図2】 本発明の一実施形態を示す油冷式スクリュ圧縮機の平面断面図
【図3】 本発明の別の実施形態を示す油冷式スクリュ圧縮機の横断面図。
【図4】 本発明の別の実施形態を示す油冷式スクリュ圧縮機の平面断面図。
【図5】 本発明の更に別の実施形態を示す油冷式スクリュ圧縮機の横断面図。
【図6】 本発明の更に別の実施形態を示す油冷式スクリュ圧縮機の平面断面図。
【図7】 本発明に適用可能な蓋体の斜視図
【図8】 従来の油冷式スクリュ圧縮機の系統図
【図9】 従来のスクリュ圧縮機本体の断面図
【図10】 従来のスクリュ圧縮機(実開昭55−172689号)の断面図
【図11】 従来のスクリュ圧縮機(実開昭55−172689号)の断面図
【符号の説明】
1 油冷式スクリュ圧縮機
2 圧縮機本体
3 気液分離装置
4 モータ
21 吐出側ケーシング
33 仕切板
35 遮蔽板
34,36 開孔
41 レシーバタンク
42 セパレータ
43 接続口
44 開口(点検口)
45 胴部
46 鏡板
47 フランジ部
48 吐出管
49 開口部
50 蓋体
51 円筒部
52 底板
53 切欠
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid-cooled compressor that supplies a cooling medium into a working space of a compressor body in the process of compressing a gas to be compressed, and in particular, a gas-liquid mixed fluid of compressed gas and cooling medium discharged from the compressor body. The present invention relates to a gas-liquid separation device that separates the gas into a compressed gas and a cooling medium and supplies the compressed gas to the consumption side.
[0002]
[Prior art]
As an example of a conventional liquid-cooled compressor, an example of an oil-cooled screw compressor that uses oil as a cooling medium will be described with reference to FIGS.
[0003]
8 and 9, reference numeral 61 denotes a screw compressor main body (hereinafter referred to as “compressor main body”). A rotor chamber 64 formed in the cylinder 63 of the compressor main body includes a pair of male and female screw rotors (hereinafter referred to as “rotor”). 65 and 66 are accommodated, and a suction side casing 67 in which a suction port 68 and a suction passage 69 are formed is connected to one side of the rotor chamber 64 in the axial direction, and is connected to the other side of the rotor chamber 64 in the axial direction. Is connected to a discharge-side casing 71 in which a discharge port 72 and a discharge passage (not shown) are formed. The shaft portions 76, 77, 78, 79 extending at the end portions of the rotors are supported by bearings 81, 82, 83, 84 accommodated in the suction side casing 67 and the discharge side casing 71. Yes.
[0004]
A suction port 68 of the compressor body 61 is connected to a suction filter 86 and a compressed gas supply path 87 via a suction pipe 85, and a discharge port 72 is connected to the oil separation tank 62 and consumption side via a discharge pipe 88. Connect to side piping 89. The oil separation tank 62 stores lubricating oil O in the lower part, and the lower part of the oil separation tank and the inside of the rotor chamber 64 of the compressor body 61 are connected by an oil pipe 92 via an oil cooler 90 and an oil filter 91. Yes.
[0005]
The compressor main body 61 is driven by a prime mover such as a motor 95, and the rotor 65, 66 engages and rotates to suck compressed gas from the suction port 68 of the compressor main body 61 and compress it in the rotor chamber 64. In this compression process, the lubricating oil O stored in the oil separation tank 62 is supplied into the rotor chamber 64 for cooling of the compressed gas, lubrication and sealing between the rotors, and the compressed gas and the gas-liquid of the lubricating oil are supplied from the discharge port 72. The mixed gas is discharged into the oil separation tank 62. In the oil separation tank 62, gas in a gas-liquid mixed state collides with the side wall in the tank to primarily separate into compressed gas and lubricating oil, and the compressed gas is connected to the upper portion of the oil separation tank 62. 93, the lubricating oil mixed in the mist-like fine state contained in the compressed gas is removed, and only the compressed gas is supplied to the consumption side, while the lubricating oil is stored in the lower part in the oil separation tank 62. It has become.
[0006]
Thus, in the conventional compressor, the compressor main body and the gas-liquid separation device are connected by the pipes, and each is configured separately, so that the outer shape of the compressor is large. Further, since the compressor main body and the gas-liquid separator are connected by piping, there is a problem that the compressed gas and the cooling medium leak to the outside from the connection location.
[0007]
In order to solve such a problem, as shown in FIGS. 10 and 11, the receiver tank 99 of the gas-liquid separation device is formed in a horizontally long cylindrical shape, that is, “horizontal placement”, and the compressor main body 97 is placed in the receiver tank 99. There has been proposed a compressor that is inserted in a horizontal direction and integrally configured with a compressor body 97 and a gas-liquid separator (see Patent Document 1).
[0008]
In addition, a discharge pipe that communicates with the discharge port of the compressor body is provided, and an opening provided at the tip of the discharge pipe is similarly placed on the front side or the back side in the plan view of the horizontally placed receiver tank. The discharge pipe opening is directed diagonally upward on one side in the longitudinal direction of the receiver tank, and the outlet of the receiver tank is placed in the longitudinal direction of the receiver tank, etc. There is a compressor arranged in the upper part on the side (see Patent Document 2).
[0009]
Prior art document information of the present invention includes the following.
[Patent Document 1]
Japanese Utility Model Laid-Open No. 55-17289 (first page, FIGS. 2a and 2b).
[Patent Document 2]
JP-A-2002-98058 (page 3-6, FIGS. 1 and 2).
[0010]
[Problems to be solved by the invention]
The compressor shown in the above-described prior art has an opening direction so that the flow of the gas-liquid mixed fluid discharged from the discharge port 100 of the compressor body 97 flows along the inner peripheral wall surface of the body portion of the horizontally long cylindrical receiver tank 99. However, even if the gas-liquid mixed fluid discharged from the discharge port 100 is swung in the vertical direction on the inner peripheral wall surface of the receiver tank 99 as shown in FIG. Since the swirl flow S collides with the cooling medium stored in the lower part of the receiver tank 99 and produces oil smoke, the separation performance of the cooling medium is not improved as much as expected.
[0011]
Further, the oil level L of the cooling medium stored in the receiver tank 99 is lowered when the cooling medium is taken out to the consumption side by the operation of the compressor, or drainage is generated due to compression of the compressed gas. When this drain is stored in the tank 99 together with the cooling medium, the oil level L may rise. As a result, the swirling length of the swirling flow S is changed and the separation performance of the cooling medium is not stable.
[0012]
Further, the gas-liquid mixed fluid discharged from the discharge port 100 does not necessarily all generate the swirl flow S along the inner wall surface of the receiver tank 99, but directly before receiving the swirl flow of the intended path. In some cases, it is introduced at the outlet of the tank 99. In this case, the turning distance in the receiver tank 99 is shortened, so that there is a problem that sufficient separation performance of the cooling medium cannot be exhibited.
[0013]
Among the above-described conventional techniques, the gas-liquid separation device described in Patent Document 2 has a configuration in which the gas-liquid mixed fluid can generate a swirling flow over a relatively long distance in the receiver tank. Since the gas-liquid mixed fluid discharged from the discharge pipe generates a swirling flow in the vertical direction along the inner peripheral wall surface of the receiver tank, the problem of destabilization of the separation performance due to the change in the oil level L It cannot be solved.
[0014]
Accordingly, the present invention improves the separation performance of the cooling medium in the gas-liquid separation device of the liquid-cooled compressor, and ensures stable separation performance even if the liquid level of the cooling medium stored in the receiver tank fluctuates. The purpose is to do.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the gas-liquid separator of the liquid-cooled compressor according to the present invention includes a lubricating oil in the working space 9 in the process of compressing the compressed gas comprising air and other gases in the working space 9. Or a cooling medium such as cooling water, and a liquid-cooled compressor body 2 that discharges a gas-liquid mixed fluid of compressed gas and cooling medium from the discharge port 22, and gas discharged from the discharge port 22 of the compressor body 2. In the compressor including the gas-liquid separator 3 that introduces the liquid mixed fluid through the discharge pipe 48, separates the compressed gas and the cooling medium, and supplies the compressed gas to the consumption side
The gas-liquid separation device 3 includes a receiver tank 41 for primarily separating the gas-liquid mixed fluid with one end of the discharge pipe 48 opened therein, and a gas-liquid mixed fluid primarily separated in the receiver tank 41. A separator 42 that introduces and further separates the cooling medium remaining in the gas-liquid mixed fluid and supplies compressed gas to the consumption side, and
The receiver tank 41 includes a cylindrical body 45 having an axial direction that is horizontal, and a hemispherical end plate 46 that closes at least one end opening of the body 45 and bulges outward. A connection port 43 for connecting the separator 42 is formed at the top of the portion 45,
The trunk portion that is eccentric in the axial direction of the discharge pipe 48 in parallel with the axis of the receiver tank in a plan view (see FIG. 2), in other words, in the illustrated example, is perpendicular to the axial direction. Cooling in which the opening portion 49 of the discharge pipe 48 is stored in the receiver tank 41 while being arranged close to one end side (downward in the illustrated example) of the width direction 45 (the vertical direction in the drawing in FIG. 2). An opening is made toward the end plate 46 at a position higher than the upper limit position of the liquid level L of the medium (Claim 1).
[0016]
In the gas-liquid separator 3 having the above-described configuration, the barrel portion is provided in the receiver tank 41 between the upper end position of the liquid level L of the cooling medium and the opening 49 of the discharge pipe 48 from the end plate 46 side. It is preferable to provide a partition plate 33 protruding toward the other end side of 45 (opening 44 side) (Claim 2).
[0017]
More preferably, a shielding plate 35 that protrudes from the end plate 46 toward the other end side (opening 44 side) of the body 45 is provided between the opening 49 of the discharge pipe 48 and the connection port 43. (Claim 3).
[0018]
When the partition plate 33 and the shielding plate 35 described above are provided, the openings 34 and 36 that allow a cooling medium such as lubricating oil to pass therethrough are formed on the partition plate 33 and / or the shielding plate 35. It is preferable to form through the thickness.
[0019]
Further, an opening 49 of the discharge pipe 48 is provided near the end plate 46 of the receiver tank 41 with respect to the connection port 43, and the connection port 43 is arranged on the eccentric side of the discharge pipe 48 in a plan view. The tank 41 may be open toward one end (downward in FIG. 6) in the width direction, or toward the opening 49 of the discharge pipe 48 (Claim 5).
[0020]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment will be described with reference to FIGS.
[0021]
In the embodiment shown in FIGS. 1 and 2, the gas-liquid separation device of the present invention is configured as an oil-cooled screw compressor as an example, and this oil-cooled screw compressor 1 includes a pair of male and female screws. The rotors 6 and 7 are accommodated in the rotor chamber 9 of the cylinder 8 so as to be able to mesh and rotate, and the pair of screw rotors 6 and 7 are meshed and rotated so as to compress the compressed gas. An oil-cooled compressor main body 2 to be injected, and a gas-liquid mixed fluid of compressed gas and cooling medium compressed and discharged in the rotor chamber 9 of the compressor main body 2 are introduced into the compressed gas and cooling medium. A gas-liquid separation device 3 that separates and supplies compressed gas to the consumption side and a motor 4 that rotationally drives the compressor body 2 are integrally coupled.
[0022]
The compressor body 2 has a suction port 12 and a suction passage 13 for sucking compressed gas on one side of the cylinder 8 with respect to the axial direction of the screw rotors 6, 7. A suction-side casing 11 that houses bearings 16 and 17 that support the one-side rotor shafts 14 and 15, and a discharge port 22 that discharges compressed gas to the other side of the cylinder 8 with respect to the axial direction of the screw rotors 6 and 7. And a discharge-side casing 21 that accommodates bearings 26, 27 that form the discharge passages 23 and support the other rotor shafts 24, 25 of the screw rotors 6, 7. The suction-side casing portion 11 and the cylinder 8, the suction side (one side) rotor shaft 14 of the male rotor 6 passes through the suction side casing portion 11 and protrudes to the outside of the compressor body 2 to drive the drive shaft of the compressor body. Becomes, extending the power side housing 31 for coupling to the motor 4 integrally around the suction side rotor shaft 14 of the male rotor 6 projecting to the outside of the compressor body 2 from the outer periphery of said suction-side casing portion 11. The cylinder 8 has a flange 47 that extends from the outer periphery to the outer periphery of the opening 44 of the receiver tank 41 at the periphery of the cylinder 8 at the connecting portion with the discharge-side casing portion 21.
[0023]
The gas-liquid separator 3 introduces a receiver tank 41 that primarily separates the gas-liquid mixed fluid discharged from the compressor body 2, and a gas-liquid mixed fluid that is primarily separated in the receiver tank 41. And a separator 42 for supplying a compressed gas obtained by separating a fine cooling medium mixed in the mist state in the gas-liquid mixed fluid to the consumption side.
[0024]
The receiver tank 41 is formed by covering one end opening of a cylindrical body 45 with a hemispherical end plate 46 that bulges outward. The opening 44 at the end is directed to the cylinder 8 side, so that it is horizontally placed in the horizontal direction. At the end of the receiver tank 41 opposite to the opening 44, the above-described hemispherical end plate 46 is disposed. ing. A connection port 43 that directly connects the bottom opening of the separator 42 is provided on the upper portion of the body 45 of the receiver tank 41 so that the axial direction of the separator 42 that is a cylindrical tube is vertical. Yes. In addition, the opening 44 serving as an inspection port for inspecting / cleaning the inside of the receiver tank 41 is provided at the end of the receiver tank 41 on the cylinder 8 side.
[0025]
In the illustrated embodiment, the discharge is performed except for the suction side casing portion 11 in which the bearings 16 and 17 for supporting the motor 4 and the one-side rotor shafts 14 and 15 are housed, and the rotor chamber 9 of the cylinder 8. Only the side casing portion 21 is inserted and fixed from the opening of the receiver tank 41 into the inside. That is, as described above, the discharge-side casing portion 21 is formed with the discharge port 22 and the discharge passage 23, and the bearings 26 and 27 for supporting the other rotor shafts 24 and 25 of the screw rotors 6 and 7 are accommodated. The flange portion 47 of the cylinder 8 is fixed to the outer peripheral portion of the opening 44 formed thick as a pressure vessel of the receiver tank 41, and the flange portion 47 and the receiver tank 41 are connected to each other. As a result, the opening 44 is covered, only the discharge-side casing portion 21 is inserted and fixed in the receiver tank 41, and the motor 4, the suction-side casing portion 11 and the rotor chamber 9 of the cylinder 8 are disposed. It is arranged and configured outside the receiver tank 41.
[0026]
The motor 4 has a rotor 51 fixed on the suction side rotor shaft 14 of the male rotor 6, the suction side rotor shaft 14, the rotation shaft of the motor 4, and the bearing 16 and the motor 4 that support the rotor shaft 14. The motor 4 is configured by fastening a motor casing 53 for fixing the stator 52 of the motor 4 and a power side housing 31 extending from the compressor body 2. . Thus, the axial direction of the male rotor shafts (14, 24) and the receiver tank 41 in which the motor casing 53, the suction side casing 11, and the discharge side casing portion 21 are integrally or directly coupled with the rotating shaft of the motor 4 or coupled by coupling. It is configured as a single unit with the horizontal.
[0027]
A discharge pipe 48 for guiding a gas-liquid mixed fluid discharged from the compressor body is connected to the discharge port 22 of the compressor body 2, and the axial direction of the discharge pipe 48 is stored in the receiver tank 41. It is a position higher than the liquid level of the medium (oil level L of the lubricating oil O in this embodiment) L, and is eccentric in parallel with the axis of the receiver tank in a plan view. And arranged close to one side (downward in the plane of FIG. 2) of the body 45, which is perpendicular to the axial direction of the receiver tank, and the opening 49 of the discharge pipe 48 The gas-liquid mixed fluid disposed toward the end plate 46 and discharged from the opening 49 of the discharge pipe 48 is configured to generate a swirl flow S along the inner wall of the receiver tank 41.
[0028]
In the embodiment shown in FIG. 2, the discharge pipe 48 is arranged below the axis of the receiver tank 41 in the figure, and along the inner wall of the receiver tank 41, a clockwise swirl flow in FIG. 2. The discharge pipe 48 is disposed, for example, in the upper part of the paper surface of FIG. 2 with respect to the axis of the receiver tank 41, and a counterclockwise swirling flow is generated along the inner wall of the receiver tank 41. It may be configured to occur, and the configuration is not limited to the example shown in FIG.
[0029]
Between the opening 49 of the discharge pipe 48 and the oil surface L, a partition plate 33 protruding from the end plate 46 toward the opening 44 is preferably provided as shown in FIGS. The partition plate 33 prevents the gas-liquid mixed fluid discharged from the opening 49 of the discharge pipe 48 from colliding with the oil surface L, and therefore, generation of oil smoke caused by the collision is prevented. Yes.
[0030]
The partition plate 33 is preferably formed with a plurality of apertures 34 penetrating its thickness, and the cooling medium contained in the gas-liquid mixed fluid discharged through the opening 49 of the discharge pipe 48 is provided. Even if it is separated when it collides with the end plate 46 or the partition plate 33 of the receiver tank 41 and falls on the partition plate 33, the separated cooling medium does not accumulate on the partition plate 33, and the receiver tank It is comprised so that it may fall to the bottom part of 41 and may be collect | recovered.
[0031]
In the screw compressor configured as described above, the gas-liquid mixed fluid discharged from the compressor main body 2 is discharged from the discharge port 22 through the discharge pipe 48 as shown by the arrows in FIGS. 1 and 2. The discharged gas-liquid mixed fluid is discharged toward the end plate 46 and guided to the inner peripheral surface of the end wall 46 formed in a hemispherical shape so as to be reversed and the opening 44 along the inner wall of the body 45 of the receiver tank 41. The flow is directed to the side, and is introduced into the separator 42 through a connection port 43 opened at the top of the body 45.
[0032]
Thus, by guiding the discharge direction of the gas-liquid mixed fluid through the discharge pipe 48 in a predetermined direction, the gas-liquid mixed fluid discharged through the discharge pipe 48 smoothly rotates in the receiver tank 41. The cooling medium heavier than the compressed gas is separated by colliding with the inner wall surface of the receiver tank 41 located outside the swirling flow S due to the centrifugal force, and the compressed gas passes from the connection port 43 located inside the swirling flow S to the separator 42. Since it is introduced, the separation performance of the cooling medium in the receiver tank 41 is improved, and the amount of the cooling medium contained in the compressed gas supplied to the consumption side can be reduced.
[0033]
Further, the opening 49 of the discharge pipe 48 is arranged at a position higher than the liquid level L of the cooling medium, and the swirl flow S of the gas-liquid mixed fluid discharged from the opening 49 is the liquid level L of the cooling medium. Since the swirling flow S does not collide with the cooling medium stored in the lower part of the receiver tank 41 to produce oily smoke, the separation performance of the cooling medium in the receiver tank 41 is improved. The separation performance can be secured without changing the length of the swirling flow S due to the oil level fluctuation of the cooling medium.
[0034]
In particular, in the gas-liquid separation device 3 in which the partition plate 33 is provided between the opening 49 of the discharge pipe 48 and the liquid level L, the gas-liquid mixed fluid discharged from the discharge pipe 48 collides with the liquid level L. In the case of forming the opening 34 in the partition plate 33, the cooling medium separated from the gas-liquid mixed fluid is prevented. Even if the cooling medium falls on the partition plate 33, the cooling medium does not collect on the partition plate 33 and is dropped and collected at the bottom of the receiver tank 41. It is possible to prevent the generation of oily smoke caused by the collision of the gas-liquid mixed fluid discharged from the discharge pipe 48.
[0035]
Next, a second embodiment of the present invention will be described with reference to FIGS.
[0036]
In the second embodiment shown in FIGS. 3 and 4, in addition to the configuration of the first embodiment described with reference to FIGS. 1 and 2, the receiver tank 41 is positioned above the discharge pipe 48. A shielding plate 35 that protrudes in a substantially horizontal direction from the end plate 46 toward the opening 44 is provided.
[0037]
The shielding plate 35 covers the connection port 43 communicating with the separator 42 described above at a predetermined interval below, and is discharged from the opening 49 of the discharge pipe 48 by providing the shielding plate 35. The gas-liquid mixed fluid is prevented from being directly introduced into the connection port 43 without turning in the receiver tank 41. Except for the point that this shielding plate 35 is provided, the other configuration is the same as that of the oil-cooled screw compressor 1 in the first embodiment described above with reference to FIGS. 1 and 2.
[0038]
As described above, the shielding plate 35 protrudes from the end plate 46 toward the opening 44 to a position where the connection port 43 is shielded downward, so that the gas-liquid mixed fluid discharged from the discharge pipe 38 is discharged. In order to flow in the receiver tank 41 and reach the connection port 43, the flow always flows around the shielding plate 35.
[0039]
Therefore, the gas-liquid mixed fluid discharged toward the end plate 46 in the receiver tank 41 is guided and reversed by the curved surface of the end plate 46, and flows toward the opening 44 along the inner wall of the body 45. It is introduced into the connection port 43 from a gap formed between the end of the shielding plate 45 and the connection port 43 on the 44 side.
[0040]
When such a shielding plate 35 does not exist, the gas-liquid mixed fluid discharged from the discharge pipe 48 may be directly introduced into the connection port 43 without circulating in the receiver tank 41. When the shielding plate 35 is provided, the gas-liquid mixed fluid discharged from the discharge pipe 38 surely flows in the receiver tank 41 for a relatively long distance, and can be introduced into the connection port 43 thereafter. In the cooling medium separation device provided with the shielding plate 35, the separation performance is further improved.
[0041]
The shielding plate 35 is preferably formed with a large number of apertures 36 penetrating its wall thickness as in the case of the partition plate 33 described above, and the cooling medium separated from the gas-liquid mixed fluid falls on the shielding plate 35. Even in this case, the cooling medium does not collect on the shielding plate 35, but falls and is recovered below the tank.
[0042]
Furthermore, a third embodiment of the present invention will be described with reference to FIGS.
[0043]
In the third embodiment shown in FIGS. 5 and 6, in addition to the configuration of the first embodiment described with reference to FIGS. 1 and 2, the opening 49 of the discharge pipe 48 is provided with the separator 42 described above. The connection port 43 is disposed on the side of the end plate 46 with respect to the formation position of the connection port 43 leading to the end, and the connection port 43 is arranged at one end in the width direction of the receiver tank 41 on the eccentric side of the discharge pipe 48 (downward in FIG. ) To the opening 49 side of the discharge pipe 48 (lower left in FIG. 6).
[0044]
The opening direction of the connection port 43 may be, for example, a shape in which the shape of the connection port 43 itself is opened in the above-described direction, or depending on the size of the connection port 43, for example, an existing L-shaped tube may be attached. May be configured so that the opening direction is directed in the above-described direction.
[0045]
In the present embodiment, a cylindrical portion 51 having a C-shaped cross section in which a notch 53 is formed in a part of the circumferential direction as shown in FIG. 51. A lid 50 formed by a bottom plate 52 that covers one end of 51 is provided, and the other end of the cylindrical portion 51 that is not covered by the bottom plate 52 is attached to the connection port 43 with the other end facing upward, and formed on the cylindrical portion 51. The orientation of the cut-out 53 is defined as one end side in the width direction of the receiver tank on the deflection side of the discharge pipe 48 in the plan view shown in FIG. 6 (downward in FIG. 6) or the opening 49 side of the discharge pipe 48 (FIG. 6). The connection port 43 is opened in the above-described direction.
[0046]
In this way, by providing the opening 49 of the discharge pipe 48 on the end plate 46 side of the receiver tank 41 with respect to the connection port 43, the gas-liquid mixed fluid discharged from the discharge pipe 48 rotates in the receiver tank 41. It can be prevented from being directly introduced into the connection port 43 before the swirling flow is generated, and the opening direction thereof is directed to the above-described direction, so that the inside of the receiver tank 41 as in the swirling flow S indicated by an arrow in FIG. The swirling distance of the gas-liquid mixed fluid in can be made as long as possible. As a result, the gas-liquid separation performance in the receiver tank 41 is improved.
[0047]
The lid 50 is not limited to the illustrated structure as long as it can open the connection port 43 in the above-described direction, and may have another structure. For example, instead of the above-described cutout 53 provided in the cylindrical body 51, a flow path for introducing the gas-liquid mixed fluid may be formed by, for example, forming a large number of small holes at positions corresponding to the cutout 53.
[0048]
Further, the gas-liquid mixed fluid is hardly introduced into the bottom plate 52 of the lid 50, but when the cooling medium is accumulated on the bottom plate 52, an opening that can be dropped is formed. Various other modifications are possible.
[0049]
【The invention's effect】
As described above, according to the present invention, in the process of compressing the compressed gas in the working space, the cooling medium is injected into the working space, and the gas-liquid mixed fluid of the compressed gas and the cooling medium is discharged from the discharge port. The liquid-cooled compressor main body and the gas-liquid mixed fluid discharged from the discharge port of the compressor main body are introduced through the discharge pipe, separated into the compressed gas and the cooling medium, and the compressed gas is supplied to the consumption side. In a compressor equipped with a gas-liquid separator,
The gas-liquid separation device introduces the gas-liquid mixed fluid that is primarily separated in the receiver tank, a receiver tank in which one end of the discharge pipe is opened inside, and primarily separates the gas-liquid mixed fluid. A separator that supplies compressed gas obtained by further separating the cooling medium remaining in the mixed fluid to the consumption side,
The receiver tank includes a cylindrical barrel portion whose axial direction is the horizontal direction, a hemispherical end plate that closes at least one end opening of the barrel portion, and bulges outward, and at the top of the barrel portion. A connection port for connecting the separator is formed,
The axial direction of the discharge pipe is decentered with respect to the axis of the receiver tank in a plan view, for example, arranged close to one end side in the width direction of the trunk portion perpendicular to the axis of the receiver tank Since the opening formed at one end of the discharge pipe opens toward the end plate at a position higher than the liquid surface upper limit position of the cooling medium stored in the receiver tank, the swirling flow of the gas-liquid mixed fluid Is swirling at a position higher than the oil level of the cooling medium, and this swirling flow does not collide with the cooling medium stored in the lower part of the receiver tank and produce oil smoke, so the cooling medium separation performance in the receiver tank The separation performance can be secured without changing the length of the swirling flow due to the oil level fluctuation of the cooling medium.
[0050]
In particular, in a cooling medium separation device in which a partition plate protruding from the end plate side is provided between the tip of the discharge pipe and the liquid level of the cooling medium, the compressed fluid discharged through the discharge pipe is cooled. It was possible to reliably prevent collision with the liquid level of the medium, and to further improve the cooling medium separation performance.
[0051]
Furthermore, a shielding plate that protrudes from the end plate is provided between the opening at the front end of the discharge pipe and the separator outlet that is the outlet of the receiver tank, and the outlet of the receiver tank is shielded at the lower side to discharge from the discharge pipe. Since the compressed fluid bypasses the shielding plate and generates a flow toward the outlet of the receiver tank, the compressed fluid discharged from the discharge pipe always forms a flow from the end plate side to the opening side and is then formed on the opening side. It is introduced into the outlet of the receiver tank from the end side of the shield plate. As a result, the circulation distance of the compressed fluid flowing in the receiver tank can be ensured in the tank for a long distance, and as a result, the cooling medium separation performance can be improved.
[0052]
In the configuration in which the aperture is formed in the above-described partition plate and / or shielding plate, the cooling medium can be prevented from accumulating on the partition plate and / or shielding plate. The cooling medium collected on the shielding plate is preferably prevented from colliding with the compressed fluid flowing in the tank and being wound up. As a result, the cooling medium wound up in this way is prevented from being mixed into the compressed fluid and the cooling medium separation performance being deteriorated.
[0053]
Further, the opening of the discharge pipe is disposed on the end plate side with respect to the formation position of the connection opening, and a lid is attached to the connection opening, so that the connection opening is arranged on the eccentric side of the discharge pipe in a plan view. When opening from one end of the receiver tank 41 in the width direction (downward in FIG. 6) to the opening 49 side (lower left in FIG. 6) of the discharge pipe 48, the gas-liquid mixture discharged from the discharge pipe It is possible to prevent the fluid from being directly introduced into the connection port without generating a swirling flow, and the swirling distance of the swirling flow can be made as long as possible, and the separation performance of the cooling medium in the receiver tank is remarkably improved. Could be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an oil-cooled screw compressor showing an embodiment of the present invention.
FIG. 2 is a cross-sectional plan view of an oil-cooled screw compressor showing an embodiment of the present invention.
FIG. 3 is a cross-sectional view of an oil-cooled screw compressor showing another embodiment of the present invention.
FIG. 4 is a cross-sectional plan view of an oil-cooled screw compressor showing another embodiment of the present invention.
FIG. 5 is a cross-sectional view of an oil-cooled screw compressor showing still another embodiment of the present invention.
FIG. 6 is a cross-sectional plan view of an oil-cooled screw compressor showing still another embodiment of the present invention.
FIG. 7 is a perspective view of a lid applicable to the present invention.
Fig. 8 System diagram of conventional oil-cooled screw compressor
FIG. 9 is a sectional view of a conventional screw compressor body.
FIG. 10 is a cross-sectional view of a conventional screw compressor (Japanese Utility Model Publication No. 55-17289)
FIG. 11 is a cross-sectional view of a conventional screw compressor (Japanese Utility Model Publication No. 55-17289)
[Explanation of symbols]
1 Oil-cooled screw compressor
2 Compressor body
3 Gas-liquid separator
4 Motor
21 Discharge side casing
33 Partition plate
35 Shielding plate
34, 36 opening
41 Receiver tank
42 Separator
43 connection port
44 opening (inspection port)
45 Torso
46 End plate
47 Flange
48 Discharge pipe
49 opening
50 lid
51 Cylindrical part
52 Bottom plate
53 Notch

Claims (5)

被圧縮気体を作用空間内で圧縮する過程で該作用空間内に冷却媒体を注入し吐出口から圧縮気体と冷却媒体との気液混合流体を吐出する液冷式圧縮機本体と、前記圧縮機本体の吐出口から吐出した気液混合流体を吐出管を介して導入し、圧縮気体と冷却媒体とに分離して圧縮気体を消費側に供給する気液分離装置とを備えた圧縮機において、
前記気液分離装置は、前記吐出管の一端が内部において開口し前記気液混合流体を一次分離するためのレシーバタンクと、前記レシーバタンク内で一次分離された気液混合流体を導入すると共に該気液混合流体中に残留する冷却媒体を更に分離して圧縮気体を消費側に供給するセパレータとを備え、
前記レシーバタンクは、軸線方向を水平方向と成す筒状の胴部と、前記胴部の少なくとも一端開口を閉塞し外方に膨出する半球状の鏡板を備えると共に、前記胴部の上部に前記セパレータを接続する接続口が形成され、
前記吐出管の軸線方向を、平面視において前記レシーバタンクの軸線に対して偏心して配置すると共に、前記吐出管の開口部を該レシーバタンクに貯留される冷却媒体の液面上限位置よりも高い位置において前記鏡板に向けて開口したことを特徴とする液冷式圧縮機の気液分離装置。
A liquid-cooled compressor main body that injects a cooling medium into the working space in a process of compressing the gas to be compressed and discharges a gas-liquid mixed fluid of the compressed gas and the cooling medium from a discharge port, and the compressor In a compressor including a gas-liquid separation device that introduces a gas-liquid mixed fluid discharged from a discharge port of a main body through a discharge pipe, separates the compressed gas and a cooling medium, and supplies the compressed gas to the consumption side.
The gas-liquid separator is configured to introduce a receiver tank for primary separation of the gas-liquid mixed fluid with one end of the discharge pipe being opened inside, and the gas-liquid mixed fluid primarily separated in the receiver tank. A separator that further separates the cooling medium remaining in the gas-liquid mixed fluid and supplies compressed gas to the consumption side,
The receiver tank includes a cylindrical barrel portion that has a horizontal axis direction, a hemispherical end plate that closes at least one end opening of the barrel portion and bulges outward, and the upper portion of the barrel portion includes the A connection port for connecting the separator is formed,
The axial direction of the discharge pipe is arranged eccentrically with respect to the axis of the receiver tank in plan view, and the opening of the discharge pipe is positioned higher than the liquid surface upper limit position of the cooling medium stored in the receiver tank The gas-liquid separation device for a liquid-cooled compressor, wherein the gas-liquid separator is opened toward the end plate.
前記レシーバタンク内における冷却媒体の液面上限位置と前記吐出管の開口部との間に、前記鏡板側より前記胴部の他端側に向かって突出する仕切板を設けたことを特徴とする請求項1記載の液油冷式圧縮機の気液分離装置。A partition plate that protrudes from the end plate side toward the other end side of the body portion is provided between the liquid surface upper limit position of the cooling medium in the receiver tank and the opening of the discharge pipe. The gas-liquid separator of the liquid oil cooling compressor according to claim 1. 前記吐出管の開口部と前記接続口との間に、前記鏡板より前記胴部の他端側に向かって突出する遮蔽板を設けたことを特徴とする請求項1又は2記載の液油冷式圧縮機の気液分離装置。The liquid oil cooling according to claim 1 or 2, wherein a shielding plate is provided between the opening of the discharge pipe and the connection port so as to protrude from the end plate toward the other end of the barrel. Gas-liquid separation device of the compressor. 冷却媒体の通過を可能と成す開孔を、前記仕切板及び/又は前記遮蔽板の肉厚を貫通して形成したことを特徴とする請求項2又は3記載の液冷式圧縮機の気液分離装置。The gas-liquid of the liquid-cooled compressor according to claim 2 or 3, wherein an opening that allows passage of the cooling medium is formed through a thickness of the partition plate and / or the shielding plate. Separation device. 前記吐出管の開口部を前記接続口に対して前記レシーバタンクの鏡板寄りに設けると共に、平面視において前記接続口を、前記吐出管の偏心側における前記レシーバタンクの幅方向の一端側乃至前記吐出管の開口部側に向けて開放したことを特徴とする請求項1〜4いずれか1項記載の液冷式圧縮機の気液分離装置。The opening of the discharge pipe is provided near the end plate of the receiver tank with respect to the connection port, and the connection port is arranged at one end side in the width direction of the receiver tank on the eccentric side of the discharge pipe in the plan view. The gas-liquid separation device for a liquid-cooled compressor according to any one of claims 1 to 4, wherein the gas-liquid separator is opened toward the opening side of the pipe.
JP2003010027A 2002-09-30 2003-01-17 Gas-liquid separator for liquid-cooled compressor Expired - Lifetime JP4106280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003010027A JP4106280B2 (en) 2002-09-30 2003-01-17 Gas-liquid separator for liquid-cooled compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002323175 2002-09-30
JP2003010027A JP4106280B2 (en) 2002-09-30 2003-01-17 Gas-liquid separator for liquid-cooled compressor

Publications (2)

Publication Number Publication Date
JP2004176701A JP2004176701A (en) 2004-06-24
JP4106280B2 true JP4106280B2 (en) 2008-06-25

Family

ID=32716010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010027A Expired - Lifetime JP4106280B2 (en) 2002-09-30 2003-01-17 Gas-liquid separator for liquid-cooled compressor

Country Status (1)

Country Link
JP (1) JP4106280B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661276A (en) * 2012-04-16 2012-09-12 无锡市制冷设备厂有限责任公司 Screw compressor
CN109139460A (en) * 2018-07-25 2019-01-04 南京奥特佳新能源科技有限公司 A kind of screw compressor with gas oil separation structure
CN109937301A (en) * 2016-09-21 2019-06-25 克诺尔商用车制动系统有限公司 Screw compressor for commercial vehicle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010015147A1 (en) * 2010-04-16 2011-10-20 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Oil-dampening device for a screw compressor
US10173660B2 (en) 2013-02-26 2019-01-08 Nabtesco Automotive Corporation Oil separator
CN105275805B (en) * 2014-06-27 2018-08-07 江南大学 A kind of oil injection type double-screw compressor
DE102016011444A1 (en) * 2016-09-21 2018-03-22 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Arrangement for a screw compressor of a commercial vehicle
DE102016011393A1 (en) * 2016-09-21 2018-03-22 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Screw compressor for a commercial vehicle
CN107269541B (en) * 2017-08-17 2020-06-16 陆亚明 Air compressor exhaust pipe mounting structure and screw air compressor
CN107269539B (en) * 2017-08-17 2020-06-19 宁波天风汽车科技有限公司 Oil gas filtering structure of air compressor and screw air compressor with oil gas filtering structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661276A (en) * 2012-04-16 2012-09-12 无锡市制冷设备厂有限责任公司 Screw compressor
CN109937301A (en) * 2016-09-21 2019-06-25 克诺尔商用车制动系统有限公司 Screw compressor for commercial vehicle
US11994129B2 (en) 2016-09-21 2024-05-28 Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh Screw compressor for a utility vehicle
CN109139460A (en) * 2018-07-25 2019-01-04 南京奥特佳新能源科技有限公司 A kind of screw compressor with gas oil separation structure

Also Published As

Publication number Publication date
JP2004176701A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
US5345785A (en) Scroll compressor and air conditioner using the same
CN105090041B (en) Helical-lobe compressor and water cooler with oil eliminator
JP4106280B2 (en) Gas-liquid separator for liquid-cooled compressor
KR970006518B1 (en) Horizontal rotary compressor and method of oil circulation in motor
JP4102891B2 (en) Screw compressor
US8945265B2 (en) Compressor
JP2008088945A (en) Scroll type compressor
CN107975475B (en) Fluid machinery and heat exchange equipment with same
WO2014168085A1 (en) Compressor
JP2003083272A (en) Screw compressor
JP2003042082A (en) Oil cooled screw compressor
JP2005171957A (en) Package type compressor
JP2004324564A (en) Compressor and its method of manufacture
JP2004530836A (en) Two-stage screw compressor
CN218188369U (en) Oil absorption filter and compressor
JP3499162B2 (en) Oil-cooled screw compressor
JP6694094B2 (en) Package type compressor
CN208579548U (en) A kind of fluid machinery and the heat exchange equipment with it
CN113202754A (en) Full-sealed horizontal scroll compressor with exhaust oil filtering structure
JP2000009074A (en) Screw compressor
CN110454395A (en) A kind of flange arrangement, compressor and air-conditioning
JP2005171958A (en) Package type compressor
CN108826768A (en) A kind of fluid machinery and the heat exchange equipment with it
JP3691359B2 (en) Horizontal scroll compressor
JP2004198101A (en) Oil separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Ref document number: 4106280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term