JP2003083272A - Screw compressor - Google Patents

Screw compressor

Info

Publication number
JP2003083272A
JP2003083272A JP2001274634A JP2001274634A JP2003083272A JP 2003083272 A JP2003083272 A JP 2003083272A JP 2001274634 A JP2001274634 A JP 2001274634A JP 2001274634 A JP2001274634 A JP 2001274634A JP 2003083272 A JP2003083272 A JP 2003083272A
Authority
JP
Japan
Prior art keywords
cyclone
oil
inner cylinder
screw
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001274634A
Other languages
Japanese (ja)
Inventor
Atsushi Watanabe
淳 渡邊
Eiji Ishii
英二 石井
Hirochika Kametani
裕敬 亀谷
Shigekazu Nozawa
重和 野澤
Masayuki Urashin
昌幸 浦新
Takeshi Hida
毅士 肥田
Hiromoto Osumimoto
博基 大住元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001274634A priority Critical patent/JP2003083272A/en
Publication of JP2003083272A publication Critical patent/JP2003083272A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Cyclones (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an efficient and compact screw compressor with built-in an oil separating mechanism. SOLUTION: This screw compressor has a cyclone separator as an oil separating means and a swirl strengthening plate is provided on an outer circumference part of a cyclone inner tube. The swirl strengthening plate is positioned below a lower end of a gas introducing passage and does not range a whole outer circumference. Gas and oil flowing into the cyclone separator turn down along a cyclone outer wall and oil adheres on the cyclone outer wall and is separated from gas by difference of centrifugal force due to difference of density. The swirl strengthening plate can prevent flow flowing in the cyclone separator from widely spreading in the vertical direction right after flowing in. Consequently, degradation of centrifugal separation effect due to reduction of swirl flow speed can be prevented to maintain high separating efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、スクリュー圧縮機
に係り、特に冷凍空調に用いる冷媒用スクリュー圧縮機
において、小型でスクリュー圧縮機外への油の持ち出し
を少なくするのに好適なスクリュー圧縮機に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw compressor, and more particularly to a screw compressor for a refrigerant used for refrigeration and air conditioning, which is small in size and suitable for reducing oil carry-out to the outside of the screw compressor. It is about.

【0002】[0002]

【従来の技術】冷媒用スクリュー圧縮機や空気用油冷式
スクリュー圧縮機では、潤滑、隙間のシールおよび冷却
を目的に、軸受、圧縮室に油を供給している。供給され
た油は、圧縮された気体と共に圧縮室から吐出ポートを
へて吐き出されるので、分離回収し、再度供給に備える
必要がある。
2. Description of the Related Art In a screw compressor for refrigerant and an oil-cooled screw compressor for air, oil is supplied to a bearing and a compression chamber for the purpose of lubrication, sealing of a gap and cooling. The supplied oil is discharged from the compression chamber through the discharge port together with the compressed gas, so it is necessary to separate and collect it and prepare for supply again.

【0003】冷媒用スクリュー圧縮機においては、特開
平10―159763号公報(第1従来例と称する。)
に記載されているように、吐出ポート下流に油分離チャ
ンバを設け、該チャンバの中に設けたワイヤメッシュデ
ミスタを通過させて冷媒ガスから油を分離する。分離さ
れた油は、油分離チャンバ内下部の油溜りに重力で落下
し、該油溜りと連通したメインケーシング内下部の油溜
りに戻され、再度軸受に供給される方法が示されてい
る。
In a screw compressor for a refrigerant, Japanese Patent Application Laid-Open No. 10-159763 (referred to as a first conventional example).
An oil separation chamber is provided downstream of the discharge port, and the oil is separated from the refrigerant gas by passing through a wire mesh demister provided in the chamber. It is shown that the separated oil drops by gravity into an oil sump in the lower part of the oil separation chamber, is returned to the oil sump in the lower part of the main casing communicating with the oil sump, and is supplied to the bearing again.

【0004】また、空気用圧縮機では、特開平7―24
3391号公報(第2従来例と称する。)に記載されて
いるように、空気に含まれる油を分離するために、吐出
ポート下流にサイクロン方式の分離機構を設ける方法が
一般的である。
Further, in the air compressor, Japanese Patent Laid-Open No. 7-24
As described in Japanese Patent No. 3391 (referred to as a second conventional example), in order to separate oil contained in air, a method of providing a cyclone type separation mechanism downstream of a discharge port is generally used.

【0005】[0005]

【発明が解決しようとする課題】冷媒用スクリュー圧縮
機に用いられる、第1従来例にあるワイヤメッシュデミ
スタ通過による冷媒ガスからの油分離の方法は、冷媒ガ
スの通過流速が速いと分離効率が低下する性質がある。
従って、通過断面積を大きくして、なるべく流速を遅く
しなければ十分な分離効率を得られず、必然的に油分離
チャンバが大きくなる。従って、本方式による小型化
は、困難な問題点を有していた。
The method of separating oil from the refrigerant gas by passing through the wire mesh demister in the first conventional example used in the refrigerant screw compressor has a high separation efficiency when the passage speed of the refrigerant gas is high. It has the property of decreasing.
Therefore, unless the passage cross-sectional area is made large and the flow velocity is made as slow as possible, sufficient separation efficiency cannot be obtained, and the oil separation chamber inevitably becomes large. Therefore, miniaturization by this method has a difficult problem.

【0006】また、第2従来例の空気用圧縮機に用いら
れるサイクロン方式は、サイクロン外壁内で気液の密度
差を利用して遠心力で油と冷媒ガスとを分離するもの
で、遠心力を発生させる旋回部分と、下方への旋回流か
らサイクロン内筒への折り返し上昇流となる部分から構
成され、下部には分離した油を溜める部分が設けられて
いる。下部に溜める油は、圧縮機の運転に必要な量を確
保しなければならず、その分、垂直方向には必然的に大
きくなる。従って、サイクロン方式は、径方向にはワイ
ヤメッシュデミスタ方式よりもコンパクトに出来るが、
垂直方向には大きくなってしまうという問題点があっ
た。
Further, the cyclone system used in the air compressor of the second conventional example separates oil and refrigerant gas by centrifugal force by utilizing the density difference of gas and liquid in the outer wall of the cyclone. It is composed of a swirling part for generating a flow and a part which becomes a returning rising flow from the downward swirling flow to the cyclone inner cylinder, and a part for storing the separated oil is provided in the lower part. The amount of oil stored in the lower part must be secured for the operation of the compressor, and accordingly, the amount of oil inevitably increases in the vertical direction. Therefore, the cyclone method can be made more compact in the radial direction than the wire mesh demister method,
There was a problem that it became large in the vertical direction.

【0007】本発明の目的は、上記従来技術の問題点を
解決し、コンパクトで、かつ高効率の油分離機構を実現
する小型化スクリュー圧縮機を提供することにある。
An object of the present invention is to solve the above problems of the prior art and to provide a compact screw compressor which realizes a compact and highly efficient oil separation mechanism.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明によるスクリュー圧縮機は、特許請求の範囲
の各請求項に記載されたところを特徴とする。
In order to achieve the above object, a screw compressor according to the present invention is characterized by what is stated in each of the claims.

【0009】すなわち、独立項としての請求項1に係る
発明によるスクリュー圧縮機は、互いに噛み合う雄スク
リューロータ及び雌スクリューロータからなる少なくと
も一対のスクリューロータと、該スクリューロータの駆
動用電動機と、前記スクリューロータを回転自在に軸支
する軸支手段と、それらを収納すると共に吐出ポートを
形成したケーシングと、前記吐出ポートからのガス導入
流路がその接線方向に設けられて下方への旋回流を発生
させるようにしたサイクロン外壁、前記旋回流から上方
への折返し上昇流を生じさせるようにしたサイクロン内
筒及び該サイクロン内筒の下方に形成した油溜り室から
なるサイクロン式油分離手段と、該サイクロン式油分離
手段によって分離回収した油を前記軸支手段及び前記ス
クリューロータへ供給する油供給流路と、を備えたスク
リュー圧縮機において、前記サイクロン内筒外周に、半
径方向には前記サイクロン外壁との間に隙間を有し、円
周方向には前記ガス導入流路下端より下方を起点とし
て、全周に至らない範囲において、板状の旋回流強化板
を設けたことを特徴とするものである。
That is, a screw compressor according to the invention as claimed in claim 1 as an independent claim is such that at least a pair of screw rotors, which are a male screw rotor and a female screw rotor meshing with each other, a motor for driving the screw rotor, and the screw. A shaft support means for rotatably supporting the rotor, a casing accommodating them and forming a discharge port, and a gas introduction flow path from the discharge port are provided tangentially to generate a downward swirling flow. Cyclone type oil separating means comprising an outer wall of the cyclone, a cyclone inner cylinder for generating an upward ascending flow from the swirling flow, and an oil reservoir formed below the cyclone inner cylinder, and the cyclone. Type oil separating means collects and collects the oil to the shaft supporting means and the screw rotor. In a screw compressor provided with an oil supply flow path for supplying, there is a gap between the cyclone inner cylinder outer circumference and the cyclone outer wall in the radial direction, and the gas introduction flow path lower end in the circumferential direction. It is characterized in that a plate-like swirl flow strengthening plate is provided in a range that does not reach the entire circumference, starting from the lower side.

【0010】また、独立項としての請求項2に係る発明
によるスクリュー圧縮機は、互いに噛み合う雄スクリュ
ーロータ及び雌スクリューロータからなる少なくとも一
対のスクリューロータと、該スクリューロータの駆動用
電動機と、前記スクリューロータを回転自在に軸支する
軸支手段と、それらを収納すると共に吐出ポートを形成
したケーシングと、前記吐出ポートからのガス導入流路
がその接線方向に設けられて下方への旋回流を発生させ
るようにしたサイクロン外壁、前記旋回流から上方への
折返し上昇流を生じさせるようにしたサイクロン内筒及
び該サイクロン内筒の下方に形成した油溜り室からなる
サイクロン式油分離手段と、該サイクロン式油分離手段
によって分離回収した油を前記軸支手段及び前記スクリ
ューロータへ供給する油供給流路と、を備えたスクリュ
ー圧縮機において、前記サイクロン内筒内に、該内筒内
部の空間を円周方向に垂直に仕切って、前記上昇流の円
周方向の流れを阻止するための整流板を設けたことを特
徴とするものである。
A screw compressor according to a second aspect of the present invention, which is an independent claim, includes at least a pair of screw rotors, which are a male screw rotor and a female screw rotor meshing with each other, a motor for driving the screw rotor, and the screw. A shaft support means for rotatably supporting the rotor, a casing accommodating them and forming a discharge port, and a gas introduction flow path from the discharge port are provided tangentially to generate a downward swirling flow. Cyclone type oil separating means comprising an outer wall of the cyclone, a cyclone inner cylinder for generating an upward ascending flow from the swirling flow, and an oil reservoir formed below the cyclone inner cylinder, and the cyclone. Supplying the oil separated and collected by the hydraulic oil separation means to the shaft support means and the screw rotor In the screw compressor provided with an oil supply passage, the space inside the cyclone inner cylinder is vertically partitioned in the circumferential direction to prevent the upward flow in the circumferential direction. It is characterized in that a rectifying plate for the purpose is provided.

【0011】[0011]

【作用】上記課題を解決するため、本発明は、油分離器
としてサイクロン方式を採用する。従来例と同様、油分
離器の下部に油溜りを形成するが、従来例より分離が良
くできるため油上り量が減るので、内筒下端と油溜り油
面との距離は、吸い上げる油上り量が多くなっても全体
としては余り変らないため、従来例に比して近くてかま
わない。内筒外周部分には、半径方向に伸びる板状の部
材を備えており、その範囲は外周全周には及ばない。こ
の板状の部材は、ガス導入流路の下端より下方に位置す
るほうが良い。
In order to solve the above problems, the present invention adopts a cyclone system as an oil separator. Similar to the conventional example, an oil sump is formed in the lower part of the oil separator, but because the separation is better than in the conventional example, the oil rise amount is reduced, so the distance between the lower end of the inner cylinder and the oil sump oil surface is Even if the number increases, it does not change much as a whole, so it may be closer than the conventional example. The outer peripheral portion of the inner cylinder is provided with a plate-shaped member extending in the radial direction, and the range thereof does not reach the entire outer periphery. The plate-shaped member is preferably located below the lower end of the gas introduction flow path.

【0012】また、別の手段として、サイクロン内筒内
部の空間を円周方向にかつ垂直に仕切るように整流板を
設ける。この整流板は複数枚から構成されても良く、内
筒中心部分を貫くように位置する方が良い。
Further, as another means, a current plate is provided so as to partition the space inside the cyclone inner cylinder in the circumferential direction and vertically. This straightening vane may be composed of a plurality of sheets, and it is better to be positioned so as to penetrate the central portion of the inner cylinder.

【0013】[0013]

【発明の実施の形態】本発明の第1の実施例を図1,
2,3及び4を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention is shown in FIG.
A description will be given with reference to 2, 3 and 4.

【0014】冷媒サイクルは、図1に示す様に圧縮機
1、凝縮器2、膨張弁3、蒸発器4の順に構成され、循
環サイクルを形成する。
As shown in FIG. 1, the refrigerant cycle is composed of a compressor 1, a condenser 2, an expansion valve 3 and an evaporator 4 in this order to form a circulation cycle.

【0015】圧縮機1内部の軸受やスクリューロータの
潤滑などのために供給する油は、冷媒サイクル中では無
用なばかりか害を及ぼす。油が、冷媒ガス中に多量に混
入すると、凝縮器2や蒸発器4において、熱交換を阻害
し、配管での圧損も増し、冷媒サイクル全体の性能が低
下する。また、圧縮機1から冷媒サイクルに多量の油が
出てしまうと、圧縮機1内部の油保有量が減少し、圧縮
機1自身の潤滑が困難となる。そこで、圧縮機1から出
る前に冷媒ガスから油を効率よく分離する必要がある。
The oil supplied to lubricate the bearings and the screw rotor inside the compressor 1 is not only useless in the refrigerant cycle, but also causes harm. When a large amount of oil is mixed in the refrigerant gas, it hinders heat exchange in the condenser 2 and the evaporator 4, increases pressure loss in the pipes, and deteriorates the performance of the entire refrigerant cycle. Further, if a large amount of oil comes out of the compressor 1 in the refrigerant cycle, the amount of oil held inside the compressor 1 decreases, and it becomes difficult to lubricate the compressor 1 itself. Therefore, it is necessary to efficiently separate the oil from the refrigerant gas before leaving the compressor 1.

【0016】図2,3及び4を用いて、本実施例の圧縮
機1の構造を説明する。圧縮機1は、全体をケーシング
で覆い、分解組立てや製造を容易にするため、ケーシン
グは、主ケーシング11、吐出ケーシング12及び吸入
ケーシング13のように3分割構造とする。
The structure of the compressor 1 of this embodiment will be described with reference to FIGS. The compressor 1 is entirely covered with a casing, and the casing has a three-part structure like the main casing 11, the discharge casing 12, and the suction casing 13 in order to facilitate disassembly and assembly and manufacturing.

【0017】吸入ケーシング13には、外部から圧縮機
1本体へ冷媒ガスを導くためのガス導入口31を設け
る。主ケーシング11には、駆動用電動機としてのモー
タ14と、雄スクリューロータ15と雌スクリューロー
タ16からなる一対のスクリューロータを内蔵する。
The suction casing 13 is provided with a gas inlet 31 for guiding the refrigerant gas from the outside to the main body of the compressor 1. The main casing 11 contains a motor 14 as a driving electric motor and a pair of screw rotors including a male screw rotor 15 and a female screw rotor 16.

【0018】圧縮室は、両スクリューロータ15,16
の歯溝は互いの噛み合いで、主ケーシング11に形成さ
れたボア壁、吸入側端面、及び吐出ケーシング12に形
成された吐出側端面、によって囲まれ、形成される。モ
ータ14のロータは、雄スクリューロータ15の軸を延
長した部分に固定する。両スクリューロータ15,16
は、主ケーシング11に保持された軸支手段としての吸
入側軸受17と、吐出ケーシング12に保持された軸支
手段としての吐出側軸受18によって軸支される。
The compression chamber is composed of both screw rotors 15 and 16
The tooth grooves of are meshed with each other and are surrounded and formed by the bore wall formed in the main casing 11, the suction side end surface, and the discharge side end surface formed in the discharge casing 12. The rotor of the motor 14 is fixed to the extended portion of the shaft of the male screw rotor 15. Both screw rotors 15 and 16
Is rotatably supported by a suction side bearing 17 as a shaft supporting means held in the main casing 11 and a discharge side bearing 18 as a shaft supporting means held in the discharge casing 12.

【0019】主ケーシング11内の両スクリューロータ
15,16上部には、スライド弁19を備え、スライド
弁19は、吐出ケーシング12内のピストン20に作用
する油圧で動かされ、冷媒ガス流量を容量制御する。ス
ライド弁19には、径方向吐出ポート21を、吐出ケー
シング12には、軸方向吐出ポート22を形成し、圧縮
完了した圧縮室の吐出流路への連通路とする。これら吐
出ポート21,22の下流にスライド弁19の動く領域
を確保し、複雑な形状の両吐出ポート21,22と単純
な形状の流路をつなぐため、吐出室23という空間を設
ける。
A slide valve 19 is provided above both screw rotors 15 and 16 in the main casing 11, and the slide valve 19 is moved by the hydraulic pressure acting on the piston 20 in the discharge casing 12 to control the flow rate of the refrigerant gas. To do. A radial discharge port 21 is formed in the slide valve 19 and an axial discharge port 22 is formed in the discharge casing 12 to serve as a communication passage to the discharge passage of the compression chamber that has completed compression. A space called a discharge chamber 23 is provided in order to secure a region where the slide valve 19 moves downstream of these discharge ports 21 and 22 and to connect both discharge ports 21 and 22 having a complicated shape and a flow path having a simple shape.

【0020】吐出ケーシング12には、サイクロン式油
分離手段としてのサイクロン分離器25と油溜り室32
とを一体化形成する。サイクロン分離器25は、サイク
ロン外壁26、サイクロン内筒27、上蓋28及び旋回
流強化板29から成り、吐出室23からサイクロン分離
器25へのガス導入流路24も同じ吐出ケーシング12
内部に形成する。サイクロン内筒27の外周部分に溶接
で固定された旋回流強化板29は、ガス導入流路24の
下端より下方に位置する。旋回流強化板29は外周全周
には及ばないが、少なくともガス導入流路24下部を起
点として上から見て時計方向にサイクロン内筒27外周
の4分の1以上の範囲に設ける。また、旋回流強化板2
9とサイクロン外壁26との間には、隙間36を設け
る。サイクロン内筒27と上蓋28は、一体部材で、サ
イクロン外壁26上部に締結し一体化する。サイクロン
内筒27の上部には、圧縮機1としての出口であるガス
導出口30を形成する。
The discharge casing 12 has a cyclone separator 25 as a cyclone type oil separating means and an oil sump chamber 32.
And are integrally formed. The cyclone separator 25 includes a cyclone outer wall 26, a cyclone inner cylinder 27, an upper lid 28, and a swirl flow strengthening plate 29, and the gas introduction flow path 24 from the discharge chamber 23 to the cyclone separator 25 has the same discharge casing 12 as well.
Form inside. The swirl flow strengthening plate 29, which is fixed to the outer peripheral portion of the cyclone inner cylinder 27 by welding, is located below the lower end of the gas introduction flow path 24. The swirl flow strengthening plate 29 does not extend over the entire outer circumference, but is provided at least in a range of a quarter or more of the outer circumference of the cyclone inner cylinder 27 as viewed from above starting from the lower part of the gas introduction flow path 24. Also, the swirl flow strengthening plate 2
A gap 36 is provided between the outer wall 9 and the outer wall 26 of the cyclone. The cyclone inner cylinder 27 and the upper lid 28 are an integral member and are fastened to and integrated with the upper portion of the cyclone outer wall 26. A gas outlet 30 which is an outlet of the compressor 1 is formed in the upper portion of the cyclone inner cylinder 27.

【0021】なお、ガス導入流路24は、必ずしも上記
の方向でなくても良く、旋回は、上から見て時計方向と
は限らない。
The gas introduction flow path 24 does not necessarily have to be in the above-mentioned direction, and the turning is not always clockwise when viewed from above.

【0022】以上構成を説明した第1の実施例によるス
クリュー圧縮機は、以下のように作用する。
The screw compressor according to the first embodiment having the above-described structure operates as follows.

【0023】外部から供給される電力によりモータ14
は、回転動力を生み出し、軸を共通する雄スクリューロ
ータ15を回転駆動すると、噛み合った雌スクリューロ
ータ16は、雄スクリューロータ15に回転伝達され、
両スクリューロータ15,16とボア等で形成した圧縮
室を軸方向に送りながら、圧縮室容積を拡大縮小し、吸
入して中に閉じ込めた冷媒ガスを圧縮、吐出する。
The motor 14 is driven by electric power supplied from the outside.
Generates rotational power, and when the male screw rotor 15 having a common axis is rotationally driven, the meshed female screw rotor 16 is rotationally transmitted to the male screw rotor 15.
While compressing the compression chamber formed by both screw rotors 15 and 16 and the bore and the like in the axial direction, the volume of the compression chamber is expanded and reduced, and the refrigerant gas sucked and confined therein is compressed and discharged.

【0024】冷媒ガスは、外部からガス導入口31を通
過してスクリュー圧縮機1内部に入り、モータ14の隙
間や外周を通過した後に、両スクリューロータ15,1
6の下部を中心に形成された吸入ポートから圧縮室に吸
い込まれる。冷媒ガスの流れに対して吸い込み前に吸入
側軸受17の排出油が混入し、圧縮過程において吸入側
軸受17と吐出側軸受18との排出油が供給される。
The refrigerant gas passes through the gas inlet 31 from the outside, enters the inside of the screw compressor 1, passes through the gap and the outer periphery of the motor 14, and then both screw rotors 15 and 1
It is sucked into the compression chamber from the suction port formed mainly in the lower part of 6. The discharge oil of the suction side bearing 17 is mixed with the flow of the refrigerant gas before being sucked, and the discharge oil of the suction side bearing 17 and the discharge side bearing 18 is supplied in the compression process.

【0025】圧縮完了後に冷媒ガスと該冷媒ガスに混入
した油は、圧縮室の開口部である吐出ポート21,22
から出て、吐出室23を経由しガス導入流路24を流
れ、サイクロン分離器25に入る。ガス導入流路24
は、サイクロン外壁26に対して接線方向に接続してい
るので、サイクロン分離器25に流入した冷媒ガスは、
サイクロン外壁26に沿って上から見て時計回りに旋回
しながら下降する。サイクロン外壁26に沿って旋回下
降した冷媒ガスは、サイクロン内筒27の下端と油溜り
油面35の間で折り返し、旋回しながらサイクロン内筒
27を上昇していき、ガス導出口30から外部に送り出
される。
After the compression is completed, the refrigerant gas and the oil mixed in the refrigerant gas are discharged into the discharge ports 21 and 22 which are the openings of the compression chamber.
Exits from the outlet, flows through the gas introduction flow path 24 through the discharge chamber 23, and enters the cyclone separator 25. Gas introduction channel 24
Is tangentially connected to the cyclone outer wall 26, the refrigerant gas flowing into the cyclone separator 25 is
It descends while turning clockwise along the cyclone outer wall 26 when viewed from above. The refrigerant gas that swirls and descends along the cyclone outer wall 26 folds back between the lower end of the cyclone inner cylinder 27 and the oil sump oil surface 35, and ascends the cyclone inner cylinder 27 while swirling, and exits from the gas outlet 30 to the outside. Sent out.

【0026】この過程で、油は、冷媒ガスとの密度差か
ら生じる遠心力の大きさの相違で次第に外周に近付き、
サイクロン外壁26内面に付着して分離される。サイク
ロン外壁26内面に付着した油は、重力で流下し、油溜
り室32に貯えられる。
In this process, the oil gradually approaches the outer circumference due to the difference in the centrifugal force caused by the difference in density with the refrigerant gas,
The cyclone is attached to the inner surface of the outer wall 26 and separated. The oil attached to the inner surface of the cyclone outer wall 26 flows down by gravity and is stored in the oil sump chamber 32.

【0027】旋回流強化板29が無いと、サイクロン分
離器25に流入する流れは流入直後に鉛直方向に広が
り、旋回流速は大幅に低下する。従って、遠心分離の効
果は弱くなり、高い分離効率を期待できない。しかし、
旋回流強化板29が有ると、サイクロン分離器25に流
入する流れは、旋回流強化板29に遮られて流入直後に
鉛直方向に大きく広がらず、旋回流速の低下を抑えるこ
とができる。従って、遠心分離の効果が低下するのを防
ぐことができ、高い分離効率を達成できる。
Without the swirl flow strengthening plate 29, the flow flowing into the cyclone separator 25 spreads in the vertical direction immediately after the inflow, and the swirling flow velocity decreases significantly. Therefore, the effect of centrifugation is weakened, and high separation efficiency cannot be expected. But,
If the swirl flow strengthening plate 29 is provided, the flow flowing into the cyclone separator 25 is blocked by the swirl flow strengthening plate 29 and does not greatly spread in the vertical direction immediately after the inflow, so that a decrease in swirl flow velocity can be suppressed. Therefore, it is possible to prevent the effect of centrifugation from being lowered, and it is possible to achieve high separation efficiency.

【0028】サイクロン分離器25で分離される油のう
ち、旋回流強化板29より上部で分離されてサイクロン
外壁26に付着した油は、旋回流強化板29と外壁26
との間に設けられた隙間36から流下し、油溜り室32
に貯えられる。従って、一度分離されてサイクロン外壁
26に付着した油が、サイクロン外壁26を流下する際
に旋回流強化板29に付着し、再び冷媒ガスの流れに乗
り外部へ持去られる現象は起こらない。
Of the oil separated by the cyclone separator 25, the oil separated above the swirl flow strengthening plate 29 and attached to the cyclone outer wall 26 is the swirl flow strengthening plate 29 and the outer wall 26.
Flowing down from a gap 36 provided between the oil collecting chamber 32 and
Stored in. Therefore, the oil once separated and adhered to the cyclone outer wall 26 does not adhere to the swirl flow strengthening plate 29 when flowing down the cyclone outer wall 26, and is again carried by the flow of the refrigerant gas to be carried outside.

【0029】油溜り室32に貯えられた油には、圧縮機
1の吐出圧力が、作用しており、一方、軸受17,18
付近はほぼ吸入圧力下にある。従って、両位置を繋ぐ油
供給流路33を通じて、油は、圧力差により軸受17,
18に供給される。油は、軸受17,18、両スクリュ
ーロータ15,16の潤滑冷却などに使用された後に圧
縮室に入り、両スクリューロータ15,16相互間の潤
滑や圧縮室相互間のシール、圧縮熱に対する冷却材とし
て作用する。この後、油は、再び冷媒ガスと一緒に吐出
されてサイクロン分離器25に入るので、圧縮機1内部
で循環することになる。
The discharge pressure of the compressor 1 acts on the oil stored in the oil sump chamber 32, while the bearings 17, 18
The neighborhood is almost under suction pressure. Therefore, the oil flows through the oil supply flow path 33 connecting the two positions to the bearing 17, due to the pressure difference.
18 are supplied. The oil enters the compression chamber after being used for lubrication and cooling of the bearings 17, 18 and both screw rotors 15, 16, and then lubricates the screw rotors 15 and 16 with each other, seals between the compression chambers, and cools against compression heat. Acts as a material. After this, the oil is again discharged together with the refrigerant gas and enters the cyclone separator 25, so that the oil circulates inside the compressor 1.

【0030】以上説明した実施例では、雄スクリューロ
ータ15の一端に設けたモータ14によって雄スクリュ
ーロータ15を駆動し、雄スクリューロータ15から雌
スクリューロータ16に回転伝達する構造としたが、逆
に、モータ14を雌スクリューロータ16の一端に設
け、雌スクリューロータ16から雄スクリューロータ1
5に回転伝達するようにしても良い。
In the embodiment described above, the structure is such that the male screw rotor 15 is driven by the motor 14 provided at one end of the male screw rotor 15 and the rotation is transmitted from the male screw rotor 15 to the female screw rotor 16. , The motor 14 is provided at one end of the female screw rotor 16 so that the female screw rotor 16 is connected to the male screw rotor 1.
The rotation may be transmitted to No. 5.

【0031】本発明の第2の実施例を、図5及び6を参
照して説明する。スクリュー圧縮機の全体構造は、第1
の実施例と同様であるので、サイクロン分離器25周辺
についてのみ説明する。
A second embodiment of the present invention will be described with reference to FIGS. The overall structure of the screw compressor is the first
Since it is the same as the embodiment described above, only the periphery of the cyclone separator 25 will be described.

【0032】吐出ケーシング12には、サイクロン分離
器25と油溜り室32とを一体化形成する。サイクロン
分離器25は、サイクロン外壁26、サイクロン内筒2
7、上蓋28及び整流板34から成り、吐出室23から
サイクロン分離器25へのガス導入流路24も同じ吐出
ケーシング12内部に形成する。整流板34は、サイク
ロン内筒27の内部に溶接され、サイクロン内筒27の
内部を垂直板で円周方向を仕切るように設ける。サイク
ロン内筒27と上蓋28は、一体部材で、サイクロン外
壁26上部に締結し一体化する。サイクロン内筒27の
上部には、圧縮機1としての出口であるガス導出口30
を形成する。
The cyclone separator 25 and the oil sump chamber 32 are integrally formed in the discharge casing 12. The cyclone separator 25 includes a cyclone outer wall 26 and a cyclone inner cylinder 2
7, the upper lid 28, and the current plate 34, and the gas introduction flow path 24 from the discharge chamber 23 to the cyclone separator 25 is also formed inside the same discharge casing 12. The current plate 34 is welded to the inside of the cyclone inner cylinder 27, and is provided so as to partition the inside of the cyclone inner cylinder 27 with a vertical plate in the circumferential direction. The cyclone inner cylinder 27 and the upper lid 28 are an integral member and are fastened to and integrated with the upper portion of the cyclone outer wall 26. At the upper part of the cyclone inner cylinder 27, a gas outlet 30 serving as an outlet of the compressor 1 is provided.
To form.

【0033】以上構成を説明した第2の実施例によるス
クリュー圧縮機は、以下のように作用する。
The screw compressor according to the second embodiment having the above-mentioned construction operates as follows.

【0034】圧縮完了後の冷媒ガスと該冷媒ガスに混入
した油は、圧縮室の開口部である吐出ポート21,22
から出て、吐出室23を経由しガス導入流路24を流
れ、サイクロン分離器25に入る。ガス導入流路24
は、サイクロン外壁26に対して接線方向に接続してい
るので、サイクロン分離器25に流入したガスは、サイ
クロン外壁26に沿って上から見て時計回りに旋回しな
がら下降する。
The refrigerant gas after the completion of compression and the oil mixed in the refrigerant gas are discharged into the discharge ports 21 and 22 which are the openings of the compression chamber.
Exits from the outlet, flows through the gas introduction flow path 24 through the discharge chamber 23, and enters the cyclone separator 25. Gas introduction channel 24
Is tangentially connected to the cyclone outer wall 26, so that the gas flowing into the cyclone separator 25 descends while swirling clockwise along the cyclone outer wall 26 when viewed from above.

【0035】なお、ガス導入流路24は、必ずしも上記
の方向でなくても良く、旋回は、上から見て時計方向と
は限らない。
The gas introduction flow path 24 does not necessarily have to be in the above direction, and the turning is not always clockwise when viewed from above.

【0036】この過程で、油は、冷媒ガスとの密度差か
ら生じる遠心力の大きさの相違で次第に外周に近付き、
サイクロン外壁26内面に付着して分離される。サイク
ロン外壁26内面に付着した油は、重力で流下し、油溜
り室32に貯えられる。
In this process, the oil gradually approaches the outer circumference due to the difference in the centrifugal force caused by the difference in density with the refrigerant gas,
The cyclone is attached to the inner surface of the outer wall 26 and separated. The oil attached to the inner surface of the cyclone outer wall 26 flows down by gravity and is stored in the oil sump chamber 32.

【0037】冷媒ガスは、サイクロン外壁26に沿って
旋回下降し、サイクロン内筒27の下端と油溜り油面3
5の間で折り返して上昇流となり、内部に整流板34が
設けられたサイクロン内筒27を経てガス導出口30か
ら圧縮機1外部に送り出される。例えば十字板形状の整
流板34は、上昇流が旋回するのを抑制するので、竜巻
流の発生や上昇流中心部分の圧力低下を防止できる。従
って、一度分離されて油溜り室32に貯えられた油が、
竜巻流の発生や上昇流中心部分の圧力低下により、油溜
り油面35から持去られて圧縮機1外部へ流出するのを
防ぐことができ、油溜り油面35をサイクロン内筒27
の下端に近づけても高い分離効率を維持できる。
The refrigerant gas swirls and descends along the cyclone outer wall 26, and the lower end of the cyclone inner cylinder 27 and the oil sump oil surface 3
It turns back between 5 and becomes an ascending flow, and is sent out of the compressor 1 from the gas outlet 30 through the cyclone inner cylinder 27 in which the current plate 34 is provided. For example, the rectifying plate 34 in the shape of a cross plate suppresses the upward flow from swirling, so that the generation of a tornado flow and the pressure drop in the central portion of the upward flow can be prevented. Therefore, the oil once separated and stored in the oil sump chamber 32 is
It is possible to prevent the oil from being taken away from the oil sump oil surface 35 and flowing out to the outside of the compressor 1 due to the generation of a tornado flow or the pressure drop in the central portion of the ascending flow.
High separation efficiency can be maintained even near the lower end of.

【0038】[0038]

【発明の効果】本発明によれば、コンパクトで分離効率
の高い油分離機構を備えたスクリュー圧縮機を実現でき
る。また、冷媒ガスに混入した油の圧縮機からの持ち出
し量を低減することにより、本圧縮機を搭載した冷凍サ
イクルの性能が向上する効果もある。さらに、圧縮機内
部の油保有量を十分に確保することで、圧縮機の信頼性
も高く維持できる。
According to the present invention, it is possible to realize a screw compressor equipped with a compact oil separation mechanism having high separation efficiency. Further, by reducing the carry-out amount of oil mixed in the refrigerant gas from the compressor, there is also an effect that the performance of the refrigeration cycle equipped with the present compressor is improved. Furthermore, by securing a sufficient amount of oil in the compressor, the reliability of the compressor can be maintained high.

【図面の簡単な説明】[Brief description of drawings]

【図1】冷凍サイクルの系統図。FIG. 1 is a system diagram of a refrigeration cycle.

【図2】本発明による第1の実施例におけるスクリュー
圧縮機の縦断面図。
FIG. 2 is a vertical cross-sectional view of the screw compressor according to the first embodiment of the present invention.

【図3】図2によるスクリュー圧縮機の図2に対して垂
直方向の縦断面図。
3 is a longitudinal sectional view of the screw compressor according to FIG. 2 in a direction perpendicular to FIG.

【図4】図2によるスクリュー圧縮機の横断面図。4 is a cross-sectional view of the screw compressor according to FIG.

【図5】本発明による第2の実施例におけるスクリュー
圧縮機の縦断面図。
FIG. 5 is a vertical sectional view of a screw compressor according to a second embodiment of the present invention.

【図6】図4によるスクリュー圧縮機の横断面図。6 is a cross-sectional view of the screw compressor according to FIG.

【符号の説明】[Explanation of symbols]

11…主ケーシング 12…吐出ケーシング 13…吸入ケーシング 14…モータ 15…雄スクリューロータ 16…雌スクリューロータ 17…吸入側軸受 18…吐出側軸受 21…径方向吐出ポート 22…軸方向吐出ポート 23…吐出室 24…ガス導入流路 25…サイクロン分離器 26…サイクロン外壁 27…サイクロン内筒 28…上蓋 29…旋回流強化板 30…ガス導出口 31…ガス導入口 32…油溜り室 33…油供給流路 34…整流板 35…油溜り油面 36…隙間 11 ... Main casing 12 ... Discharge casing 13 ... Inhalation casing 14 ... Motor 15 ... Male screw rotor 16 ... Female screw rotor 17 ... Bearing on intake side 18 ... Discharge side bearing 21 ... Radial discharge port 22 ... Axial discharge port 23 ... Discharge chamber 24 ... Gas introduction flow path 25 ... Cyclone separator 26 ... Cyclone outer wall 27 ... Cyclone inner cylinder 28 ... Top lid 29 ... Swirl flow strengthening plate 30 ... Gas outlet 31 ... Gas inlet 32 ... Oil sump chamber 33 ... Oil supply channel 34 ... Current plate 35 ... Oil sump oil level 36 ... Gap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 亀谷 裕敬 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 野澤 重和 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 浦新 昌幸 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 肥田 毅士 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 大住元 博基 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 Fターム(参考) 3H029 AA03 AA11 AA15 AB03 BB05 BB35 BB43 CC09 CC25 CC34 CC42 CC45 CC55 CC58 4D031 AC04 BA03 EA01 4D053 AA01 AB01 BA01 BB07 BC01 BD04 CB14 CD23 DA10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hirotaka Kamiya             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center (72) Inventor Shigekazu Nozawa             Hitachi, Ltd. 390 Muramatsu, Shimizu City, Shizuoka Prefecture             Air conditioning system Shimizu Production Headquarters (72) Inventor Masayuki Urashin             Hitachi, Ltd. 390 Muramatsu, Shimizu City, Shizuoka Prefecture             Air conditioning system Shimizu Production Headquarters (72) Inventor Takeshi Hida             Hitachi, Ltd. 390 Muramatsu, Shimizu City, Shizuoka Prefecture             Air conditioning system Shimizu Production Headquarters (72) Inventor Hiroki Osumi             Hitachi, Ltd. 390 Muramatsu, Shimizu City, Shizuoka Prefecture             Air conditioning system Shimizu Production Headquarters F term (reference) 3H029 AA03 AA11 AA15 AB03 BB05                       BB35 BB43 CC09 CC25 CC34                       CC42 CC45 CC55 CC58                 4D031 AC04 BA03 EA01                 4D053 AA01 AB01 BA01 BB07 BC01                       BD04 CB14 CD23 DA10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 互いに噛み合う雄スクリューロータ及び
雌スクリューロータからなる少なくとも一対のスクリュ
ーロータと、該スクリューロータの駆動用電動機と、前
記スクリューロータを回転自在に軸支する軸支手段と、
それらを収納すると共に吐出ポートを形成したケーシン
グと、前記吐出ポートからのガス導入流路がその接線方
向に設けられて下方への旋回流を発生させるようにした
サイクロン外壁、前記旋回流から上方への折返し上昇流
を生じさせるようにしたサイクロン内筒及び該サイクロ
ン内筒の下方に形成した油溜り室からなるサイクロン式
油分離手段と、該サイクロン式油分離手段によって分離
回収した油を前記軸支手段及び前記スクリューロータへ
供給する油供給流路と、を備えたスクリュー圧縮機にお
いて、 前記サイクロン内筒外周に、半径方向には前記サイクロ
ン外壁との間に隙間を有し、円周方向には前記ガス導入
流路下端より下方を起点として、全周に至らない範囲に
おいて、板状の旋回流強化板を設けたことを特徴とする
スクリュー圧縮機。
1. A pair of screw rotors comprising a male screw rotor and a female screw rotor meshing with each other, a driving motor for the screw rotors, and a shaft support means for rotatably supporting the screw rotors.
A casing that accommodates them and forms a discharge port, a cyclone outer wall in which a gas introduction flow path from the discharge port is provided tangentially to generate a downward swirl flow, and from the swirl flow upward And a cyclone type oil separation means composed of a cyclone inner cylinder and an oil sump chamber formed below the cyclone inner cylinder, and oil collected and separated by the cyclone type oil separation means is supported by the shaft support. Means and an oil supply flow path for supplying to the screw rotor, in the outer periphery of the cyclone inner cylinder, having a gap between the cyclone outer wall in the radial direction, in the circumferential direction A screw characterized in that a plate-like swirling flow reinforcing plate is provided in a range that does not reach the entire circumference, starting from below the lower end of the gas introduction channel. Compressor.
【請求項2】 互いに噛み合う雄スクリューロータ及び
雌スクリューロータからなる少なくとも一対のスクリュ
ーロータと、該スクリューロータの駆動用電動機と、前
記スクリューロータを回転自在に軸支する軸支手段と、
それらを収納すると共に吐出ポートを形成したケーシン
グと、前記吐出ポートからのガス導入流路がその接線方
向に設けられて下方への旋回流を発生させるようにした
サイクロン外壁、前記旋回流から上方への折返し上昇流
を生じさせるようにしたサイクロン内筒及び該サイクロ
ン内筒の下方に形成した油溜り室からなるサイクロン式
油分離手段と、該サイクロン式油分離手段によって分離
回収した油を前記軸支手段及び前記スクリューロータへ
供給する油供給流路と、を備えたスクリュー圧縮機にお
いて、 前記サイクロン内筒内に、該内筒内部の空間を円周方向
に垂直に仕切って、前記上昇流の円周方向の流れを阻止
するための整流板を設けたことを特徴とするスクリュー
圧縮機。
2. A pair of screw rotors comprising a male screw rotor and a female screw rotor that mesh with each other, a driving motor for the screw rotors, and a shaft support means for rotatably supporting the screw rotors.
A casing that accommodates them and forms a discharge port, a cyclone outer wall in which a gas introduction flow path from the discharge port is provided tangentially to generate a downward swirl flow, and from the swirl flow upward And a cyclone type oil separation means composed of a cyclone inner cylinder and an oil sump chamber formed below the cyclone inner cylinder, and oil collected and separated by the cyclone type oil separation means is supported by the shaft support. Means and an oil supply flow path for supplying to the screw rotor, in the cyclone inner cylinder, the space inside the inner cylinder is partitioned vertically in the circumferential direction, and a circle of the upward flow. A screw compressor provided with a straightening vane for preventing circumferential flow.
【請求項3】 前記サイクロン内筒内に、該内筒内部の
空間を円周方向に垂直に仕切って、前記上昇流の円周方
向の流れを阻止するための整流板を設けたことを特徴と
する請求項1に記載のスクリュー圧縮機。
3. A cyclone inner cylinder is provided with a straightening plate for partitioning a space inside the inner cylinder perpendicularly to the circumferential direction to prevent the upward flow in the circumferential direction. The screw compressor according to claim 1.
JP2001274634A 2001-09-11 2001-09-11 Screw compressor Withdrawn JP2003083272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001274634A JP2003083272A (en) 2001-09-11 2001-09-11 Screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001274634A JP2003083272A (en) 2001-09-11 2001-09-11 Screw compressor

Publications (1)

Publication Number Publication Date
JP2003083272A true JP2003083272A (en) 2003-03-19

Family

ID=19099637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001274634A Withdrawn JP2003083272A (en) 2001-09-11 2001-09-11 Screw compressor

Country Status (1)

Country Link
JP (1) JP2003083272A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061423A (en) * 2007-09-07 2009-03-26 Fulta Electric Machinery Co Ltd Suspension mist capturing machine
JP2011190777A (en) * 2010-03-16 2011-09-29 Mitsubishi Electric Corp Single screw compressor, and refrigeration cycle device loaded with the same
JP2012077974A (en) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd Oil separating means and refrigerating apparatus equipped with the same
JP2013160214A (en) * 2012-02-09 2013-08-19 Hitachi Appliances Inc Screw compressor
WO2014045684A1 (en) * 2012-09-24 2014-03-27 日立アプライアンス株式会社 Screw compressor and chiller unit provided with same
JP2014211101A (en) * 2013-04-18 2014-11-13 三菱電機株式会社 Compressor
JP2015148172A (en) * 2014-02-05 2015-08-20 株式会社日立産機システム Liquid supply type compressor and gas-liquid separator
JP2015152204A (en) * 2014-02-13 2015-08-24 日立アプライアンス株式会社 Refrigeration cycle device
JP2015163796A (en) * 2015-06-17 2015-09-10 日立アプライアンス株式会社 Screw compressor and chiller unit including the same
WO2016158854A1 (en) * 2015-03-31 2016-10-06 株式会社日立産機システム Liquid feeding-type screw compressor
JP2017008810A (en) * 2015-06-23 2017-01-12 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Compressor and refrigeration cycle device
US10288068B2 (en) 2014-04-29 2019-05-14 Carrier Corporation Screw compressor having oil separator and water chilling unit
WO2019146100A1 (en) * 2018-01-29 2019-08-01 三菱電機株式会社 Oil separator, compressor and refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664761U (en) * 1979-10-23 1981-05-30
JPS57127883U (en) * 1981-02-05 1982-08-09
JPH10159763A (en) * 1996-11-29 1998-06-16 Hitachi Ltd Oil separator of screw compressor
US20010005986A1 (en) * 1999-12-28 2001-07-05 Kazuki Matsubara Cyclone type gas-liquid separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664761U (en) * 1979-10-23 1981-05-30
JPS57127883U (en) * 1981-02-05 1982-08-09
JPH10159763A (en) * 1996-11-29 1998-06-16 Hitachi Ltd Oil separator of screw compressor
US20010005986A1 (en) * 1999-12-28 2001-07-05 Kazuki Matsubara Cyclone type gas-liquid separator

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061423A (en) * 2007-09-07 2009-03-26 Fulta Electric Machinery Co Ltd Suspension mist capturing machine
JP2011190777A (en) * 2010-03-16 2011-09-29 Mitsubishi Electric Corp Single screw compressor, and refrigeration cycle device loaded with the same
US9022230B2 (en) 2010-09-30 2015-05-05 Mitsubishi Heavy Industries, Ltd. Oil separation means and refrigeration device equipped with the same
JP2012077974A (en) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd Oil separating means and refrigerating apparatus equipped with the same
JP2013160214A (en) * 2012-02-09 2013-08-19 Hitachi Appliances Inc Screw compressor
CN106401972A (en) * 2012-09-24 2017-02-15 江森自控日立空调技术(香港)有限公司 Screw compressor and chiller unit provided with same
WO2014045684A1 (en) * 2012-09-24 2014-03-27 日立アプライアンス株式会社 Screw compressor and chiller unit provided with same
CN104583601A (en) * 2012-09-24 2015-04-29 日立空调·家用电器株式会社 Screw compressor and chiller unit provided with same
JP2014062519A (en) * 2012-09-24 2014-04-10 Hitachi Appliances Inc Screw compressor and chiller unit having the same
TWI615551B (en) * 2012-09-24 2018-02-21 Hitachi Johnson Controls Air Conditioning Inc Screw compressor and chiller unit having the same
US9803900B2 (en) 2012-09-24 2017-10-31 Johnson Controls-Hitachi Air Conditioning Technology (Hong Kong) Limited Screw compressor and chiller unit provided with same
EP3153709A1 (en) * 2012-09-24 2017-04-12 Johnson Controls-Hitachi Air Conditioning Technology (Hong Kong) Limited Screw compressor and chiller unit provided with same
US9568003B2 (en) 2012-09-24 2017-02-14 Johnson Controls-Hitachi Air Conditioning Technology (Hong Kong) Limited Screw compressor and chiller unit provided with same
JP2014211101A (en) * 2013-04-18 2014-11-13 三菱電機株式会社 Compressor
JP2015148172A (en) * 2014-02-05 2015-08-20 株式会社日立産機システム Liquid supply type compressor and gas-liquid separator
JP2015152204A (en) * 2014-02-13 2015-08-24 日立アプライアンス株式会社 Refrigeration cycle device
US10288068B2 (en) 2014-04-29 2019-05-14 Carrier Corporation Screw compressor having oil separator and water chilling unit
WO2016158854A1 (en) * 2015-03-31 2016-10-06 株式会社日立産機システム Liquid feeding-type screw compressor
JPWO2016158854A1 (en) * 2015-03-31 2017-11-24 株式会社日立産機システム Liquid feed type screw compressor
US10514037B2 (en) 2015-03-31 2019-12-24 Hitachi Industrial Equipment Systems Co., Ltd. Liquid feeding type screw compressor
JP2015163796A (en) * 2015-06-17 2015-09-10 日立アプライアンス株式会社 Screw compressor and chiller unit including the same
JP2017008810A (en) * 2015-06-23 2017-01-12 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Compressor and refrigeration cycle device
WO2019146100A1 (en) * 2018-01-29 2019-08-01 三菱電機株式会社 Oil separator, compressor and refrigeration cycle device

Similar Documents

Publication Publication Date Title
CN104937273B (en) Hermetic type compressor and the steam compression type refrigeration EGR with the hermetic type compressor
JP3760748B2 (en) Hermetic electric compressor
JP5516607B2 (en) Compressor and refrigeration equipment
WO2013157281A1 (en) Hermetically sealed compressor and vapor compression refrigeration cycle device with hermetically sealed compressor
TWI515369B (en) A screw compressor and a chiller unit having the screw compressor
EP2687726B1 (en) Compressor
JP2003083272A (en) Screw compressor
CN101358598B (en) Hermetic compressor and refrigeration cycle device having the same
KR102274758B1 (en) Scroll compressor
US20170089624A1 (en) Hermetic compressor and vapor compression-type refrigeration cycle device including the hermetic compressor
JP4007577B2 (en) Gas compressor
CN106523372A (en) Scroll compressor
JP2003042081A (en) Screw compressor
US7484945B2 (en) Compressor for refrigerator-freezer having a porous member
CN105201846B (en) Rotary compressor
JP3994220B2 (en) Screw compressor
JP4048751B2 (en) Gas compressor
JP2005171957A (en) Package type compressor
CN111810407A (en) Oil-gas separation structure of compressor, compressor and air conditioner
JP2019056322A (en) Compressor
JP2003227486A (en) Double cylinder rotary compressor
JP2013015069A (en) Oil separator and compressor having the same
JP2002242865A (en) Screw compressor
JP5764733B2 (en) Rotary compressor and method for manufacturing the same
CN206221268U (en) Rotor assembly, motor, compressor and refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090311