JP2014211101A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2014211101A
JP2014211101A JP2013087016A JP2013087016A JP2014211101A JP 2014211101 A JP2014211101 A JP 2014211101A JP 2013087016 A JP2013087016 A JP 2013087016A JP 2013087016 A JP2013087016 A JP 2013087016A JP 2014211101 A JP2014211101 A JP 2014211101A
Authority
JP
Japan
Prior art keywords
inner cylinder
cylinder part
oil
compressor
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013087016A
Other languages
Japanese (ja)
Other versions
JP6136513B2 (en
Inventor
雅章 上川
Masaaki Kamikawa
雅章 上川
下地 美保子
Mihoko Shimoji
美保子 下地
啓介 新宮
Keisuke Shingu
啓介 新宮
和幸 塚本
Kazuyuki Tsukamoto
和幸 塚本
利秀 幸田
Toshihide Koda
利秀 幸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013087016A priority Critical patent/JP6136513B2/en
Publication of JP2014211101A publication Critical patent/JP2014211101A/en
Application granted granted Critical
Publication of JP6136513B2 publication Critical patent/JP6136513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Abstract

PROBLEM TO BE SOLVED: To easily obtain an inexpensive screw compressor having high performance and high oil separating efficiency, capable of suppressing the movement in a swirling direction of an upward flow moving inside an inner cylinder part while maintaining the flow velocity of a swirl flow moving outside the inner cylinder part without performing welding work for a swirl intensifying plate and a straightening plate requiring much time and effort when manufactured.SOLUTION: The surface roughness of the outer peripheral face of an inner cylinder part 14 of a cyclone oil separator 4 is different from that of the inner peripheral face thereof. The outer peripheral face has reduced surface roughness to reduce the resistance of the swirl flow, and the inner peripheral face has increased surface roughness to increase the resistance of the swirl flow.

Description

本発明は、圧縮機に設置される油分離器の構造に関するものである。   The present invention relates to the structure of an oil separator installed in a compressor.

圧縮機において、軸受の潤滑や圧縮熱の冷却、隙間のシールを目的として、軸受や圧縮室に多量の油が供給されているが、この供給された油は圧縮された気体と共に圧縮室から吐出部に吐き出されるため、油分離機構にて油と気体を分離して、再度軸受や圧縮室に供給する必要がある。また、吐出部に吐き出された油が圧縮機外のサイクル側へ吐き出された場合、凝縮器や蒸発器での熱交換に悪影響を及ぼし、性能低下の要因となるため、サイクル側へ吐き出される前に油分離機構にて気体を分離して回収する必要がある。   In a compressor, a large amount of oil is supplied to the bearing and the compression chamber for the purpose of lubricating the bearing, cooling the compression heat, and sealing the gap. The supplied oil is discharged from the compression chamber together with the compressed gas. Therefore, oil and gas must be separated by an oil separation mechanism and supplied to the bearing and the compression chamber again. In addition, if the oil discharged to the discharge section is discharged to the cycle side outside the compressor, it will adversely affect the heat exchange in the condenser and evaporator, leading to performance degradation, so before it is discharged to the cycle side In addition, it is necessary to separate and recover the gas with an oil separation mechanism.

油と気体を分離する油分離器を備えた圧縮機が知られている。油と気体を分離する方式としてはサイクロン方式と呼ばれる気液の密度差を利用して遠心力で油と気体を分離させる方式があり、その構成は二重の円筒部で形成され、油分離を行うための遠心力を発生させる遠心分離部分と、遠心力によって油と分離され旋回しながら下降する気体を内筒部分の内側へ旋回上昇させてサイクル側へ吐き出す通路部分とで構成されている。   A compressor having an oil separator for separating oil and gas is known. As a method of separating oil and gas, there is a method called cyclone method that separates oil and gas by centrifugal force using a gas-liquid density difference, and its structure is formed by a double cylindrical part, and oil separation is performed. A centrifugal separation part for generating a centrifugal force to be performed, and a passage part that is separated from the oil by the centrifugal force and descends while swirling is swirled up to the inside of the inner cylinder part and discharged to the cycle side.

サイクロン方式の油分離器を備えた圧縮機において、効率的に油と気体を分離させるためには、遠心分離部分での遠心力、すなわち旋回流速の低下を抑えて旋回流速を維持する必要があり、また、圧縮機性能を向上させるためには、通路部分での上昇流の旋回方向の流速を抑え、油を分離した後の旋回上昇流が開口面積の縮小する出口部や出口部を通過する際、またその後の逆止弁部を通過する際に発生する圧力損失を低減させる必要がある。   In a compressor equipped with a cyclone oil separator, in order to efficiently separate oil and gas, it is necessary to maintain the swirl flow rate by suppressing the centrifugal force in the centrifugal separation part, that is, the decrease in swirl flow rate In order to improve the compressor performance, the flow rate in the swirling direction of the upward flow in the passage portion is suppressed, and the swirling upward flow after separating the oil passes through the outlet portion and the outlet portion where the opening area is reduced. In this case, it is necessary to reduce the pressure loss that occurs when passing through the check valve portion thereafter.

そこで、内筒部分の外周から外筒内壁に向かって板状の旋回流強化板を設けて旋回流速を維持させ、旋回流速の低下を抑制して効率的に油を分離させるとともに、内筒内部の空間を円周方向に整流板で垂直に仕切って油分離後の旋回上昇流の抵抗にし、旋回方向の流速を抑制することで圧力損失を低減させる、油分離効率および冷凍サイクルの性能を高くする油分離器を備えた圧縮機が知られている。(例えば、特許文献1参照)。   Therefore, a plate-shaped swirl flow reinforcing plate is provided from the outer periphery of the inner cylinder portion toward the inner wall of the outer cylinder to maintain the swirl flow velocity, and the oil is efficiently separated while suppressing the decrease in swirl flow velocity. The space is vertically divided by a baffle plate in the circumferential direction to make resistance to the swirling upward flow after oil separation, and by reducing the flow velocity in the swirling direction, pressure loss is reduced, and the oil separation efficiency and refrigeration cycle performance are increased. A compressor equipped with an oil separator is known. (For example, refer to Patent Document 1).

特開2003−83272号公報 (図1)Japanese Patent Laying-Open No. 2003-83272 (FIG. 1)

しかしながら、従来の油分離器を備えた圧縮機では、遠心分離部分の旋回流速を維持する旋回流強化板および通路部分の旋回上昇流の速度を抑制する整流板を設けるにあたり溶接などの作業が発生するため、部品の組立などの製造性が悪く、製造に時間やコストを要するという問題があった。   However, in a compressor equipped with a conventional oil separator, work such as welding is required to provide a swirl flow reinforcing plate that maintains the swirl flow velocity in the centrifugal separation part and a rectifying plate that suppresses the speed of swirl upflow in the passage part. For this reason, there is a problem that manufacturability such as assembling of parts is poor and time and cost are required for manufacturing.

本発明は、上記のような問題を解決するためになされたものであり、旋回流強化板や整流板を設けるための溶接などの作業を発生させることなく遠心分離部分の旋回流速を維持させるとともに通路部分の旋回上昇流の速度を抑制し、安価でかつ容易な構造にて高効率な油分離効率および圧力損失低減による圧縮機性能の向上を実現させる圧縮機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and maintains the swirling flow velocity in the centrifugal separation portion without generating work such as welding for providing a swirl flow reinforcing plate or a rectifying plate. An object of the present invention is to provide a compressor that suppresses the speed of the swirl upward flow in the passage portion, and realizes an improvement in compressor performance by high efficiency oil separation efficiency and pressure loss reduction with an inexpensive and easy structure.

本発明に係る圧縮機は、サイクロン油分離器の内筒部外周面と内周面の面粗度を異なるものとし、外周面は面粗度を小さくして旋回流の抵抗を小さくし、内周面は面粗度を大きくして旋回流の抵抗を大きくしたことを特徴とするものである。   The compressor according to the present invention has different surface roughness between the outer peripheral surface of the inner cylinder portion and the inner peripheral surface of the cyclone oil separator, and the outer peripheral surface reduces the surface roughness to reduce the resistance of the swirling flow. The peripheral surface is characterized by increasing the surface roughness and increasing the resistance of the swirling flow.

本発明によれば、油分離器内筒部の外周面の面粗度を小さくして旋回流に対する抵抗を小さくすることで、遠心分離を行うための旋回流速を維持させ、旋回流速の低下を抑制することができるとともに、油分離器内筒部の内周面の面粗度を大きくして旋回流に対する抵抗を大きくすることで、油分離後の上昇流における旋回方向の流速を抑制し旋回上昇流による圧力損失を低減させることができるため、容易な構造および安い費用で、高効率な油分離効率および圧損低減による圧縮機性能の向上を実現できる圧縮機を提供することができる。   According to the present invention, by reducing the surface roughness of the outer peripheral surface of the inner cylindrical portion of the oil separator and reducing the resistance to the swirling flow, the swirling flow velocity for performing the centrifugal separation is maintained, and the swirling flow velocity is reduced. In addition to suppressing the flow velocity in the swirling direction in the upward flow after oil separation by increasing the surface roughness of the inner circumferential surface of the inner cylinder of the oil separator and increasing the resistance to the swirling flow Since the pressure loss due to the upward flow can be reduced, it is possible to provide a compressor capable of realizing high-efficiency oil separation efficiency and improved compressor performance by reducing pressure loss with an easy structure and low cost.

本発明の実施の形態1に係るスクリュー圧縮機の横断面図である。It is a cross-sectional view of the screw compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る油分離器の縦断面図である。It is a longitudinal cross-sectional view of the oil separator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る油分離器の横断面図である。It is a cross-sectional view of the oil separator which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る油分離器の縦断面図である。It is a longitudinal cross-sectional view of the oil separator which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る油分離器の横断面図である。It is a cross-sectional view of the oil separator according to Embodiment 2 of the present invention. 本発明の実施の形態3に係る油分離器の縦断面図である。It is a longitudinal cross-sectional view of the oil separator which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る油分離器の横断面図である。It is a cross-sectional view of the oil separator which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る油分離器の縦断面図である。It is a longitudinal cross-sectional view of the oil separator which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る油分離器の横断面図である。It is a cross-sectional view of the oil separator according to Embodiment 4 of the present invention.

以下、本発明に係る圧縮機の好適な実施の形態について図を参照して説明する。なお、これらの実施の形態によって本発明が限定されることはない。 Hereinafter, a preferred embodiment of a compressor according to the present invention will be described with reference to the drawings. Note that the present invention is not limited by these embodiments.

実施の形態1.
本実施の形態1に係るスクリュー圧縮機について、図1〜3を用いて説明する。
図1は、本発明の実施の形態1に係るスクリュー圧縮機の断面模式図であり、より詳しくは二点鎖線より右側(A側)は本実施の形態1に係るスクリュー圧縮機を水平方向に切断した横断面概略図であり、二点鎖線より左側(B側)は本実施の形態1に係るスクリュー圧縮機を垂直方向に切断した縦断面概略図である。
Embodiment 1 FIG.
The screw compressor according to the first embodiment will be described with reference to FIGS.
FIG. 1 is a schematic sectional view of a screw compressor according to Embodiment 1 of the present invention. More specifically, the right side (A side) of the two-dot chain line indicates the screw compressor according to Embodiment 1 in the horizontal direction. It is the cut cross-sectional schematic, and the left side (B side) from the dashed-two dotted line is the longitudinal cross-sectional schematic which cut | disconnected the screw compressor which concerns on this Embodiment 1 in the orthogonal | vertical direction.

図2は、本実施の形態1に係るスクリュー圧縮機の図1に示す断面模式図における油分離器の断面の様子を拡大した図であり、図3は、本実施の形態1に係るスクリュー圧縮機の油分離器を横方向に切断し、下面から見た場合の断面の様子を示した図である。 FIG. 2 is an enlarged view of the cross section of the oil separator in the cross-sectional schematic diagram shown in FIG. 1 of the screw compressor according to the first embodiment, and FIG. 3 is a screw compression according to the first embodiment. It is the figure which showed the mode of the cross section at the time of cut | disconnecting the oil separator of a machine in the horizontal direction and seeing from the lower surface.

この実施の形態1に係るスクリュー圧縮機1は、油分離器を備えたシングルスクリュー圧縮機であり、圧縮機本体部2と圧縮機本体部2を構成するケーシング3にボルトによって締結された油分離器4とで構成されている。   The screw compressor 1 according to Embodiment 1 is a single screw compressor provided with an oil separator, and an oil separator fastened to a compressor main body 2 and a casing 3 constituting the compressor main body 2 by bolts. And a container 4.

圧縮機本体部2は、図1に示すように、筒状のケーシング3と、ケーシング3内に収容されたモーター5と、モーター5に固定されモーター5によって回転駆動されるスクリュー軸6と、スクリュー軸6に固定されたスクリューローター7と、スクリュー軸6のモーター5に固定されていない側の端部を回転自在に支持する軸受8と、を備えている。 As shown in FIG. 1, the compressor main body 2 includes a cylindrical casing 3, a motor 5 accommodated in the casing 3, a screw shaft 6 fixed to the motor 5 and driven to rotate by the motor 5, a screw A screw rotor 7 fixed to the shaft 6 and a bearing 8 that rotatably supports an end portion of the screw shaft 6 that is not fixed to the motor 5 are provided.

また、スクリューローター7の側面には、スクリュー軸6に対して軸対象となるように配置された一対のゲートロータ9を備え、ケーシング3の側面とスクリューローター7の間に摺動可能に設けられたスライドバルブ10とを備えている。 Further, the side surface of the screw rotor 7 is provided with a pair of gate rotors 9 arranged so as to be axial objects with respect to the screw shaft 6, and is slidably provided between the side surface of the casing 3 and the screw rotor 7. The slide valve 10 is provided.

モーター5はケーシング3内に内接して固定されたステーター5aと、ステーター5aの内側に配置されたモーターローター5bとから構成されており、モーターローター5bはスクリュー軸6に固定され、スクリューローター7と同一線上に配置されている。 The motor 5 includes a stator 5a that is inscribed and fixed in the casing 3, and a motor rotor 5b that is disposed inside the stator 5a. The motor rotor 5b is fixed to the screw shaft 6, and the screw rotor 7 and It is arranged on the same line.

スクリューローター7は円柱状であり、外周面にはスクリューローター7の一端から他端に向かって複数の螺旋状に延びるスクリュー溝7aが複数本形成されている。ケーシング3は低圧の冷媒ガスで満たされる吸入圧力側と高圧の冷媒ガスで満たされる吐出圧力側とが隔てられ、スクリューローター7の一端側は冷媒ガスの吸入側となり吸入圧力側と連通し、スクリューローター7の他端側は冷媒ガスの吐出側となりスクリュー溝7aが吐出圧力側と連通する。 The screw rotor 7 has a cylindrical shape, and a plurality of screw grooves 7 a extending in a spiral shape from one end of the screw rotor 7 to the other end are formed on the outer peripheral surface. The casing 3 is separated from the suction pressure side filled with the low-pressure refrigerant gas and the discharge pressure side filled with the high-pressure refrigerant gas, and one end side of the screw rotor 7 becomes the refrigerant gas suction side and communicates with the suction pressure side. The other end of the rotor 7 becomes the refrigerant gas discharge side, and the screw groove 7a communicates with the discharge pressure side.

ゲートロータ9は円板状であり、外周面には周方向に沿って複数の歯部9aが設けられている。ゲートロータ9の歯部9aはスクリューローター7のスクリュー溝7aに噛み合うように配置されており、スクリュー溝7aとゲートロータ9の歯部9aとケーシング3の内周面とスライドバルブ10とによって囲まれた空間は、圧縮される冷媒ガスが満たされる圧縮室11として形成されている。また、圧縮室11には軸受8の潤滑および圧縮室11のシールをおこなうための油が注入されている。 The gate rotor 9 has a disk shape, and a plurality of tooth portions 9a are provided on the outer peripheral surface along the circumferential direction. The tooth portion 9a of the gate rotor 9 is disposed so as to mesh with the screw groove 7a of the screw rotor 7, and is surrounded by the screw groove 7a, the tooth portion 9a of the gate rotor 9, the inner peripheral surface of the casing 3, and the slide valve 10. The space is formed as a compression chamber 11 filled with a refrigerant gas to be compressed. Oil for lubricating the bearing 8 and sealing the compression chamber 11 is injected into the compression chamber 11.

スライドバルブ10は、スクリューローター7の外周面に沿って、スクリューローター7の吸入圧力側と吐出圧力側に摺動可能に設けられており、中央部には、開口部10aを有している。 The slide valve 10 is slidably provided on the suction pressure side and the discharge pressure side of the screw rotor 7 along the outer peripheral surface of the screw rotor 7, and has an opening 10a at the center.

また、ケーシング3の吐出圧力側の内周面には吐出室12へつながる吐出口(図示せず)が開口しており、圧縮室11内に満たされた高圧の冷媒ガスおよび油はスライドバルブ10に開口した開口部10aおよびこの吐出口を介して吐出室12に吐出される。 Further, a discharge port (not shown) connected to the discharge chamber 12 is opened on the inner peripheral surface on the discharge pressure side of the casing 3, and the high-pressure refrigerant gas and oil filled in the compression chamber 11 are transferred to the slide valve 10. Is discharged into the discharge chamber 12 through the opening 10a and the discharge port.

吐出室12は、圧縮室11内の高圧の冷媒ガスおよび油が吐出される空間であり、吐出室12内に満たされた高圧の冷媒ガスおよび油を油分離器4へと導出する。 The discharge chamber 12 is a space in which the high-pressure refrigerant gas and oil in the compression chamber 11 are discharged, and guides the high-pressure refrigerant gas and oil filled in the discharge chamber 12 to the oil separator 4.

次に、油分離器4について図1〜3を用いて詳細に説明する。油分離器4は冷媒ガスと油を分離するためのサイクロン方式の油分離器であり、図1に示すように、圧縮機本体部2のケーシング3に、ボルトによって締結されている。   Next, the oil separator 4 will be described in detail with reference to FIGS. The oil separator 4 is a cyclone type oil separator for separating refrigerant gas and oil, and is fastened to the casing 3 of the compressor main body 2 by bolts as shown in FIG.

油分離器4は二重円筒で形成されており、外筒部13と、外筒部13内部に設けられた内筒部14と、外筒部13および内筒部14の上部開口部を覆う蓋部15と、外筒部13の底を覆う底部16と、外筒部13の内部下方に設けられた整波板17とで構成されている。 The oil separator 4 is formed of a double cylinder and covers the outer cylinder part 13, the inner cylinder part 14 provided inside the outer cylinder part 13, and the upper opening part of the outer cylinder part 13 and the inner cylinder part 14. The lid portion 15, a bottom portion 16 that covers the bottom of the outer cylinder portion 13, and a wave plate 17 provided below the outer cylinder portion 13.

外筒部13は圧縮機本体部2とボルトによって締結され、外筒部13の内側面の上方に圧縮機本体部2の吐出室12と連通する流入口(図示せず)が設けられており、外筒部13の内周面は面粗度が小さくなるよう機械加工が施されている。 The outer cylinder part 13 is fastened to the compressor body part 2 by bolts, and an inlet (not shown) communicating with the discharge chamber 12 of the compressor body part 2 is provided above the inner surface of the outer cylinder part 13. The inner peripheral surface of the outer cylinder portion 13 is machined so that the surface roughness is reduced.

また、内筒部14と蓋部15は一体化されており、蓋部15がボルトによって外筒部13に締結されている。内筒部14は外周面と内周面の面粗度が異なるように加工されており、外周面は面粗度を小さくする切削加工が施され、内周面は面粗度を大きくする溝加工が施されている。 Moreover, the inner cylinder part 14 and the cover part 15 are integrated, and the cover part 15 is fastened by the outer cylinder part 13 with the volt | bolt. The inner cylinder part 14 is processed so that the surface roughness of the outer peripheral surface is different from that of the inner peripheral surface, the outer peripheral surface is cut to reduce the surface roughness, and the inner peripheral surface is a groove that increases the surface roughness. Processing has been applied.

蓋部15は円盤形状をしており、図3に示すように、中央には上下に貫通し内筒部14の内径よりも小さな径を有する穴を設けている。この穴は油分離器4において油を分離させた後の冷媒ガスをスクリュー圧縮機1から外部へ排出する出口部15aであり、出口部15aの下流には逆止弁18が設けられている。 The lid portion 15 has a disk shape, and as shown in FIG. 3, a hole penetrating in the vertical direction and having a diameter smaller than the inner diameter of the inner cylinder portion 14 is provided in the center. This hole is an outlet portion 15a for discharging the refrigerant gas after oil is separated in the oil separator 4 from the screw compressor 1, and a check valve 18 is provided downstream of the outlet portion 15a.

また、整波板17は、内筒部14の開口面と平行に延在しており、外筒部13内部の下方に降下してくる冷媒ガスを折り返させるとともに油面の乱れを抑える板である。さらに、外筒部13内部の最下端には冷媒ガスと分離された油が貯留される油貯留部19が形成されている。 The wave plate 17 extends in parallel with the opening surface of the inner cylinder portion 14 and is a plate that folds down the refrigerant gas descending inside the outer cylinder portion 13 and suppresses disturbance of the oil surface. is there. Furthermore, an oil storage part 19 in which oil separated from the refrigerant gas is stored is formed at the lowermost end inside the outer cylinder part 13.

次に、本実施の形態1に係るスクリュー圧縮機における冷媒ガスおよび油の流れの過程を説明する。 Next, the flow of refrigerant gas and oil in the screw compressor according to the first embodiment will be described.

スクリューローター7と同一軸線上に固定されたモーター5が回転することで、スクリューローター7の吸入圧力側から吸込まれた低圧の冷媒ガスは、圧縮室11で圧縮されつつ、スクリューローター7の吐出圧力側へ送られる。高圧に圧縮された冷媒ガスは圧縮室11に注入されている油と一緒に吐出口から吐出室12へ吐出され、吐出室12から油分離器4へと導出される。   When the motor 5 fixed on the same axis as the screw rotor 7 rotates, the low-pressure refrigerant gas sucked from the suction pressure side of the screw rotor 7 is compressed in the compression chamber 11 and discharged from the screw rotor 7. Sent to the side. The refrigerant gas compressed to a high pressure is discharged from the discharge port to the discharge chamber 12 together with the oil injected into the compression chamber 11, and is led out from the discharge chamber 12 to the oil separator 4.

油分離器4に到達した冷媒ガスおよび油は外筒部13の側面に開口した流入口より流入し、外筒部13と内筒部14の間の隙間を旋回しながら下降する。この際、旋回下降する冷媒ガスおよび油のうち、冷媒ガスよりも密度の高い油は遠心力によって外筒部13の内周面へ飛ばされ、油と冷媒ガスが分離される。 Refrigerant gas and oil that have reached the oil separator 4 flow in from an inlet opening in the side surface of the outer cylinder part 13 and descend while swirling through the gap between the outer cylinder part 13 and the inner cylinder part 14. At this time, of the refrigerant gas and oil that swirls and descends, oil having a density higher than that of the refrigerant gas is blown to the inner peripheral surface of the outer cylinder portion 13 by centrifugal force, and the oil and the refrigerant gas are separated.

また、外筒部13の内周面および内筒部14の外周面は加工によって面粗度が小さく施されているため、旋回流の摩擦抵抗による流速低下が抑制されて旋回流の速度が維持され、遠心力の低下による油分離効率の悪化を防止し、油分離効率を向上させることができる。 Moreover, since the surface roughness of the inner peripheral surface of the outer cylindrical portion 13 and the outer peripheral surface of the inner cylindrical portion 14 is reduced by machining, a decrease in the flow rate due to the frictional resistance of the swirling flow is suppressed, and the speed of the swirling flow is maintained. Thus, it is possible to prevent the oil separation efficiency from being deteriorated due to a decrease in centrifugal force and to improve the oil separation efficiency.

また、旋回流により分離された油は重力により、油貯留部19へ落下し、油貯留部19へ溜められた油は、ケーシング3内に設けられた経路(図示せず)を通って圧縮室11や軸受8へ供給される。 Further, the oil separated by the swirling flow falls to the oil reservoir 19 due to gravity, and the oil stored in the oil reservoir 19 passes through a path (not shown) provided in the casing 3 and is a compression chamber. 11 and the bearing 8.

一方、油と分離した冷媒ガスは旋回しながら下降し整波板17で折り返し、旋回を継続しながら上昇流となって内筒部14内部へ流入される。そして、内筒部14内側を経由し、蓋部15の出口部15aから逆止弁18を通過してサイクル側へ流出される。 On the other hand, the refrigerant gas separated from the oil descends while turning, turns back at the wave plate 17, and flows upward into the inner cylinder portion 14 while continuing the turning. Then, after passing through the inside of the inner cylinder portion 14, it passes through the check valve 18 from the outlet portion 15 a of the lid portion 15 and flows out to the cycle side.

その際、内筒部14内周面は加工によって面粗度が大きく施されているため、旋回方向の流れの抵抗となることで上昇流の旋回方向の流速が抑制され、上昇旋回流による油の巻き込みの抑制や逆止弁18での圧力損失を低下させ、圧縮機の性能を向上させることできる。 At this time, since the inner peripheral surface of the inner cylinder portion 14 has a large surface roughness by machining, the flow velocity in the swirling direction is suppressed by resisting the flow in the swirling direction, and the oil caused by the rising swirling flow is reduced. The pressure loss at the check valve 18 can be reduced and the compressor performance can be improved.

以上のように本実施の形態1によれば、外筒部の内周面および内筒部の外周面の面粗度を小さくし、内筒部内周面の面粗度を大きくすることで、外筒部と内筒部の間に発生した旋回流の流速を維持させるとともに内筒部の内部を流れる旋回方向の流れを抑制することができる。   As described above, according to the first embodiment, by reducing the surface roughness of the inner peripheral surface of the outer cylindrical portion and the outer peripheral surface of the inner cylindrical portion, and increasing the surface roughness of the inner peripheral surface of the inner cylindrical portion, It is possible to maintain the flow velocity of the swirling flow generated between the outer tube portion and the inner tube portion and to suppress the swirl direction flow flowing inside the inner tube portion.

すなわち、旋回強化板および整流板を設けることなく、内筒部外部を流れる旋回流の流速を維持するとともに、内筒部内部を流れる上昇流の旋回方向の流れを抑制することができるので、製造に手間のかかる旋回強化板や整流板の溶接作業が省け、製造時間、コストを低減させることができ、容易に安価な高性能、高油分離効率なスクリュー圧縮機を得ることができる。 That is, since the flow velocity of the swirling flow flowing outside the inner cylinder portion can be maintained and the flow in the swirling direction flowing inside the inner cylinder portion can be suppressed without providing the swirl strengthening plate and the rectifying plate. Therefore, it is possible to reduce the manufacturing time and cost, and to easily obtain an inexpensive high-performance and high oil separation efficiency screw compressor.

実施の形態2
本実施の形態2に係るスクリュー圧縮機について、図4,5を用いて説明する。
図4は実施の形態2に係わるスクリュー圧縮機におけるサイクロン油分離器の断面の様子を拡大した図であり、図5は、本実施の形態2に係るスクリュー圧縮機の油分離器を横方向に切断し、下面から見た場合の断面の様子を示した図である。実施の形態2に係わるスクリュー圧縮機全体の断面構造は、内筒部と蓋部が円筒蓋部に置き換わった点を除いて実施の形態1で示す図1とほぼ同様であるため、図2に示すように油分離器分の拡大図のみを記載し、説明を行う。
Embodiment 2
A screw compressor according to the second embodiment will be described with reference to FIGS.
FIG. 4 is an enlarged view of a cross section of the cyclone oil separator in the screw compressor according to the second embodiment, and FIG. 5 shows the oil separator of the screw compressor according to the second embodiment in the lateral direction. It is the figure which showed the mode of the cross section at the time of cut | disconnecting and seeing from the lower surface. The overall cross-sectional structure of the screw compressor according to the second embodiment is substantially the same as FIG. 1 shown in the first embodiment except that the inner cylinder portion and the lid portion are replaced with the cylindrical lid portion. As shown, only the enlarged view of the oil separator is shown and described.

この実施の形態2が図2に示す実施の形態1と異なるのは、蓋部、内筒部を鋳造により一体形成し、その境界面を曲面に形成した点である。その他の構成については実施の形態1と同一又は同等である。なお、実施の形態1と同一又は同等な構成部分については同一符号を付し、その説明は省略する。 The second embodiment is different from the first embodiment shown in FIG. 2 in that the lid portion and the inner cylinder portion are integrally formed by casting and the boundary surface is formed into a curved surface. Other configurations are the same as or equivalent to those of the first embodiment. In addition, the same code | symbol is attached | subjected about the component which is the same as that of Embodiment 1, or equivalent, and the description is abbreviate | omitted.

図4に示すように、油分離器20は、外筒部21と、外筒部21の上部を覆う円筒蓋部22と、外筒部21の底を覆う底部16と、外筒部21の内部下方に設けられた整波板17とで構成されている。 As shown in FIG. 4, the oil separator 20 includes an outer cylinder part 21, a cylindrical lid part 22 that covers the upper part of the outer cylinder part 21, a bottom part 16 that covers the bottom of the outer cylinder part 21, and an outer cylinder part 21. It is comprised with the wave plate 17 provided in the internal downward direction.

円筒蓋部22は、鋳造により蓋部22aと内筒部22bが一体形成されており、ボルトによって外筒部21と締結されている。内筒部22bの外周面には面粗度が小さくなるよう機械加工が施されているが、内筒部22bの内周面は加工が施されておらず、鋳肌面を残した形状となっている。さらに、外筒部21についても鋳造により形成されており、外筒部21の内周面には面粗度が小さくなるよう機械加工が施されている。 The cylindrical lid part 22 is integrally formed with a lid part 22a and an inner cylinder part 22b by casting, and is fastened to the outer cylinder part 21 by bolts. The outer peripheral surface of the inner cylindrical portion 22b is machined so as to reduce the surface roughness, but the inner peripheral surface of the inner cylindrical portion 22b is not processed and has a shape that leaves a cast surface. It has become. Furthermore, the outer cylinder part 21 is also formed by casting, and the inner peripheral surface of the outer cylinder part 21 is machined so that the surface roughness becomes small.

また、図5に示すように、蓋部22aの中央には上下に貫通し内筒部22bの内径よりも小さな径を有する出口部22cが設けられ、蓋部22aと内筒部22bの境界は、内筒部22bの内周面から蓋部22aの出口部22cの縁にかけて滑らかなR形状の曲面が形成されている。なお、蓋部22aおよび内筒部22bは鋳造により形成されているため、内筒部22bの内周面の上部から蓋部22aの出口部22cにかけての曲面の形成には、曲面状の板を溶接することや、曲面を形成する加工を実施するといった面倒な作業は必要なく、鋳物の型にあらかじめ成形しておくことで容易に形成することができる。 As shown in FIG. 5, an outlet portion 22c that penetrates vertically and has a diameter smaller than the inner diameter of the inner cylindrical portion 22b is provided in the center of the lid portion 22a, and the boundary between the lid portion 22a and the inner cylindrical portion 22b is A smooth R-shaped curved surface is formed from the inner peripheral surface of the inner cylindrical portion 22b to the edge of the outlet portion 22c of the lid portion 22a. Since the lid portion 22a and the inner cylinder portion 22b are formed by casting, a curved plate is used to form a curved surface from the upper part of the inner peripheral surface of the inner cylinder portion 22b to the outlet portion 22c of the lid portion 22a. There is no need for troublesome work such as welding or processing to form a curved surface, and it can be easily formed by previously forming a casting mold.

次に、本実施の形態2に係るスクリュー圧縮機における冷媒ガスおよび油の流れの過程を説明する。 Next, the flow of refrigerant gas and oil in the screw compressor according to the second embodiment will be described.

スクリューローター7と同一軸線上に固定されたモーター5が回転することで、スクリューローター7の吸入圧力側から吸込まれた低圧の冷媒ガスは、圧縮室11で圧縮されつつ、スクリューローター7の吐出圧力側へ送られる。高圧に圧縮された冷媒ガスは圧縮室11に注入されている油と一緒に吐出口から吐出室12へ吐出され、吐出室12から油分離器20へと導出される。   When the motor 5 fixed on the same axis as the screw rotor 7 rotates, the low-pressure refrigerant gas sucked from the suction pressure side of the screw rotor 7 is compressed in the compression chamber 11 and discharged from the screw rotor 7. Sent to the side. The refrigerant gas compressed to a high pressure is discharged from the discharge port to the discharge chamber 12 together with the oil injected into the compression chamber 11, and is led out from the discharge chamber 12 to the oil separator 20.

油分離器20に到達した冷媒ガスおよび油は外筒部21の側面に開口した流入口より流入し、外筒部21と内筒部22bの間の隙間を旋回しながら下降する。この際、旋回下降する冷媒ガスおよび油のうち、冷媒ガスよりも密度の高い油は遠心力によって外筒部21の内周面へ飛ばされ、油と冷媒ガスが分離される。 Refrigerant gas and oil that have reached the oil separator 20 flow in from the inlet opening in the side surface of the outer cylinder part 21, and descend while swirling through the gap between the outer cylinder part 21 and the inner cylinder part 22b. At this time, of the refrigerant gas and oil swirling and descending, oil having a density higher than that of the refrigerant gas is blown to the inner peripheral surface of the outer cylinder portion 21 by centrifugal force, and the oil and the refrigerant gas are separated.

また、外筒部21の内周面および内筒部22bの外周面は加工によって面粗度が小さく施されているため、旋回流の摩擦抵抗による流速低下が抑制されて旋回流の速度が維持され、遠心力の低下による油分離効率の悪化を防止し、油分離効率を向上させることができる。 Further, since the surface roughness of the inner peripheral surface of the outer cylindrical portion 21 and the outer peripheral surface of the inner cylindrical portion 22b is reduced by machining, a decrease in flow velocity due to the frictional resistance of the swirling flow is suppressed, and the speed of the swirling flow is maintained. Thus, it is possible to prevent the oil separation efficiency from being deteriorated due to a decrease in centrifugal force and to improve the oil separation efficiency.

また、旋回流により分離された油は重力により、油貯留部19へ落下し、油貯留部19へ溜められた油は、ケーシング3内に設けられた経路(図示せず)を通って圧縮室11や軸受8へ供給される。 Further, the oil separated by the swirling flow falls to the oil reservoir 19 due to gravity, and the oil stored in the oil reservoir 19 passes through a path (not shown) provided in the casing 3 and is a compression chamber. 11 and the bearing 8.

一方、油と分離した冷媒ガスは旋回しながら下降し整波板17で折り返し、旋回を継続しながら上昇流となって内筒部22b内部へ流入される。そして、内筒部22b内側を経由し、蓋部22aの出口部22cから逆止弁18を通過してサイクル側へ流出される。 On the other hand, the refrigerant gas separated from the oil descends while turning, turns back at the wave plate 17, and flows upward into the inner cylinder portion 22 b while continuing the turning. Then, it passes through the inner cylinder portion 22b, passes through the check valve 18 from the outlet portion 22c of the lid portion 22a, and flows out to the cycle side.

その際、内筒部22b内周面は鋳肌面がそのまま残されているため面粗度が大きく、旋回方向の流れの抵抗となることで旋回流が抑制され、上昇旋回流による油の巻き込みの抑制や蓋部22aの出口部22cおよび逆止弁18での圧力損失を低下させ、圧縮機の性能を向上させることできる。 At that time, the inner peripheral surface of the inner cylindrical portion 22b is left as it is, so that the surface roughness is large, and the swirling flow is suppressed by resisting the flow in the swirling direction. And the pressure loss at the outlet portion 22c of the lid portion 22a and the check valve 18 can be reduced, and the performance of the compressor can be improved.

さらに、内筒部22bの内周面から蓋部22aの出口部22cの縁にかけて滑らかな曲面が形成されているため、急な開口面積の変化に伴った縮流による圧力損失の発生を抑制し、内筒部22b内に流れ込んだ上昇流を油分離器20から抵抗なく流出させることができ、流路急縮小による圧力損失をさらに抑制することができる。 In addition, since a smooth curved surface is formed from the inner peripheral surface of the inner cylindrical portion 22b to the edge of the outlet portion 22c of the lid portion 22a, the occurrence of pressure loss due to contraction due to a sudden change in the opening area is suppressed. The upward flow that has flowed into the inner cylindrical portion 22b can flow out of the oil separator 20 without resistance, and the pressure loss due to the rapid contraction of the flow path can be further suppressed.

以上のように本実施の形態2によれば、蓋部および内筒部を鋳造により一体形成することで、加工を施すことなく内筒部内周面の面粗度を大きくでき、また、溶接などの作業をすることなく蓋部と内筒部の境界を曲面に仕上げることができる。よって、内筒部の内周面の面粗度を大きくする加工および、蓋部と内筒部の境目に曲面状の板を溶接して形成するといった手間のかかる作業を省くことができるので、製造工程を少なくすることができ、本実施の形態1よりもさらに容易に安価な構造で、生産性に優れた、高性能、高油分離効率なスクリュー圧縮機を得ることができる。   As described above, according to the second embodiment, by integrally forming the lid portion and the inner cylindrical portion by casting, the surface roughness of the inner peripheral surface of the inner cylindrical portion can be increased without processing, and welding or the like can be performed. The boundary between the lid portion and the inner cylinder portion can be finished into a curved surface without performing the above operation. Therefore, since it is possible to save the process of increasing the surface roughness of the inner peripheral surface of the inner cylinder part and the troublesome work of welding and forming a curved plate at the boundary between the lid part and the inner cylinder part, It is possible to reduce the number of manufacturing steps, and it is possible to obtain a high-performance, high oil separation efficiency screw compressor having a structure that is more easily and cheaper than that of the first embodiment and that is excellent in productivity.

実施の形態3
本実施の形態3に係るスクリュー圧縮機について、図6,7を用いて説明する。
図6は、本発明の実施の形態3に係るスクリュー圧縮機における油分離器の断面の様子を拡大した図であり、図7は、本実施の形態3に係るスクリュー圧縮機の油分離器を横方向に切断し、下面から見た場合の断面の様子を示した図である。実施の形態3に係わるスクリュー圧縮機全体の断面構造は、内筒部と蓋部が円筒蓋部に置き換わった点および、整流板の有無を除いて実施の形態1で示す図1とほぼ同様であるため、図6に示すように油分離器分の拡大図のみを記載し、説明を行う。
Embodiment 3
A screw compressor according to the third embodiment will be described with reference to FIGS.
FIG. 6 is an enlarged view of a cross section of the oil separator in the screw compressor according to Embodiment 3 of the present invention, and FIG. 7 shows the oil separator of the screw compressor according to Embodiment 3. It is the figure which showed the mode of the cross section at the time of cut | disconnecting to a horizontal direction and seeing from the lower surface. The cross-sectional structure of the entire screw compressor according to the third embodiment is substantially the same as that of FIG. 1 shown in the first embodiment except that the inner cylinder portion and the lid portion are replaced with the cylindrical lid portion and the presence or absence of the current plate. Therefore, only an enlarged view of the oil separator is shown and described as shown in FIG.

この実施の形態3が図4に示す実施の形態2と異なるのは、内筒部の内部に整流板を設けている点である。その他の構成については実施の形態2と同一又は同等である。なお、実施の形態2と同一又は同等な構成部分については同一符号を付し、その説明は省略する。 The third embodiment is different from the second embodiment shown in FIG. 4 in that a rectifying plate is provided inside the inner cylinder portion. Other configurations are the same as or equivalent to those of the second embodiment. In addition, the same code | symbol is attached | subjected about the component which is the same as that of Embodiment 2, or equivalent, and the description is abbreviate | omitted.

図6に示すように、油分離器30は、外筒部21と、外筒部21の上部を覆う円筒蓋部31と、外筒部21の底を覆う底部16と、外筒部21の内部下方に設けられた整波板17とで構成されている。 As shown in FIG. 6, the oil separator 30 includes an outer cylinder part 21, a cylindrical lid part 31 that covers the upper part of the outer cylinder part 21, a bottom part 16 that covers the bottom of the outer cylinder part 21, and an outer cylinder part 21. It is comprised with the wave plate 17 provided in the internal downward direction.

円筒蓋部31は、鋳造により蓋部31aと内筒部31bが一体形成されており、図7に示すように、蓋部31aの中央には上下に貫通し内筒部31bの内径よりも小さな径を有する出口部31cが設けられ、蓋部31aと内筒部31bの境界は、内筒部31bの内周面から蓋部31aの出口部31cの縁にかけて滑らかなR形状の曲面が形成されている。 In the cylindrical lid portion 31, a lid portion 31a and an inner cylinder portion 31b are integrally formed by casting, and as shown in FIG. 7, the center of the lid portion 31a penetrates vertically and is smaller than the inner diameter of the inner cylinder portion 31b. An outlet portion 31c having a diameter is provided, and a smooth R-shaped curved surface is formed at the boundary between the lid portion 31a and the inner cylinder portion 31b from the inner peripheral surface of the inner cylinder portion 31b to the edge of the outlet portion 31c of the lid portion 31a. ing.

また、内筒部31b内部の下方には内筒部31b内部の空間の開口断面を分割するように、内筒部31bと鋳造により一体形成された整流板31dが設けられている。内筒部31bの内周面は加工が施されておらず、鋳肌面を残した形状となっている。 A rectifying plate 31d formed integrally with the inner cylinder portion 31b by casting is provided below the inner cylinder portion 31b so as to divide the opening cross section of the space inside the inner cylinder portion 31b. The inner peripheral surface of the inner cylinder portion 31b is not processed and has a shape that leaves a cast surface.

なお、整流板31dは蓋部31aおよび31bと鋳造により一体形成されているため、溶接などの作業が発生せず、面倒な作業は必要なく、鋳物の型にあらかじめ成形しておくことで容易に形成することができる。 In addition, since the current plate 31d is integrally formed with the lid portions 31a and 31b by casting, work such as welding does not occur, no troublesome work is required, and it is easy to form in a casting mold in advance. Can be formed.

次に、本実施の形態3に係るスクリュー圧縮機における冷媒ガスおよび油の流れの過程を説明する。 Next, the process of refrigerant gas and oil flow in the screw compressor according to the third embodiment will be described.

スクリューローター7と同一軸線上に固定されたモーター5が回転することで、スクリューローター7の吸入圧力側から吸込まれた低圧の冷媒ガスは、圧縮室11で圧縮されつつ、スクリューローター7の吐出圧力側へ送られる。高圧に圧縮された冷媒ガスは圧縮室11に注入されている油と一緒に吐出口から吐出室12へ吐出され、吐出室12から油分離器30へと導出される。   When the motor 5 fixed on the same axis as the screw rotor 7 rotates, the low-pressure refrigerant gas sucked from the suction pressure side of the screw rotor 7 is compressed in the compression chamber 11 and discharged from the screw rotor 7. Sent to the side. The refrigerant gas compressed to a high pressure is discharged from the discharge port to the discharge chamber 12 together with the oil injected into the compression chamber 11, and is led out from the discharge chamber 12 to the oil separator 30.

油分離器30に到達した冷媒ガスおよび油は外筒部21の側面に開口した流入口より流入し、外筒部21と内筒部31bの間の隙間を旋回しながら下降する。この際、旋回下降する冷媒ガスおよび油のうち、冷媒ガスよりも密度の高い油は遠心力によって外筒部21の内周面へ飛ばされ、油と冷媒ガスが分離される。 Refrigerant gas and oil that have reached the oil separator 30 flow from the inlet opening in the side surface of the outer cylinder part 21, and descend while swirling through the gap between the outer cylinder part 21 and the inner cylinder part 31b. At this time, of the refrigerant gas and oil swirling and descending, oil having a density higher than that of the refrigerant gas is blown to the inner peripheral surface of the outer cylinder portion 21 by centrifugal force, and the oil and the refrigerant gas are separated.

また、外筒部21の内周面および内筒部31bの外周面は加工によって面粗度が小さく施されているため、旋回流の摩擦抵抗による流速低下が抑制されて旋回流の速度が維持され、遠心力の低下による油分離効率の悪化を防止し、油分離効率を向上させることができる。 In addition, since the surface roughness of the inner peripheral surface of the outer cylindrical portion 21 and the outer peripheral surface of the inner cylindrical portion 31b is reduced by machining, a decrease in the flow velocity due to the frictional resistance of the swirling flow is suppressed, and the speed of the swirling flow is maintained. Thus, it is possible to prevent the oil separation efficiency from being deteriorated due to a decrease in centrifugal force and to improve the oil separation efficiency.

また、旋回流により分離された油は重力により、油貯留部19へ落下し、油貯留部19へ溜められた油は、ケーシング3内に設けられた経路(図示せず)を通って圧縮室11や軸受8へ供給される。 Further, the oil separated by the swirling flow falls to the oil reservoir 19 due to gravity, and the oil stored in the oil reservoir 19 passes through a path (not shown) provided in the casing 3 and is a compression chamber. 11 and the bearing 8.

一方、油と分離した冷媒ガスは旋回しながら下降し整波板17で折り返し、旋回を継続しながら上昇流となって内筒部31b内部へ流入される。そして、内筒部31b内側を経由し、油分離器30の出口部31cから逆止弁18を通過してサイクル側へ流出される。 On the other hand, the refrigerant gas separated from the oil descends while turning, turns back at the wave plate 17, and flows upward into the inner cylinder portion 31 b while continuing the turning. Then, it passes through the inner cylinder portion 31b, passes through the check valve 18 from the outlet portion 31c of the oil separator 30, and flows out to the cycle side.

その際、内筒部31bの内部には整流板31dが設けられているため、上昇流の旋回が抑制され、さらに、内筒部31bの内周面には鋳肌面がそのまま残されているため面粗度が大きく、旋回方向の流れの抵抗となることで旋回流がさらに抑制され、上昇旋回流による油の巻き込みの抑制や蓋部31aの出口部31cおよび逆止弁18での圧力損失を低下させて、圧縮機の性能を向上させることできる。 At that time, since the rectifying plate 31d is provided inside the inner cylinder portion 31b, the swirling of the upward flow is suppressed, and the cast surface is left as it is on the inner peripheral surface of the inner cylinder portion 31b. Therefore, the surface roughness is high, and the swirling flow is further suppressed by the flow resistance in the swirling direction, the oil entrainment due to the rising swirling flow is suppressed, and the pressure loss at the outlet portion 31c of the lid portion 31a and the check valve 18 The compressor performance can be improved.

さらに、内筒部31bの内周面から蓋部31aの出口部31cの縁にかけて滑らかな曲面が形成されているため、急な開口面積の変化に伴った縮流による圧力損失の発生を抑制し、内筒部31b内に流れ込んだ上昇流を油分離器30から抵抗なく流出させることができ、流路急縮小による圧力損失をさらに抑制することができる。 In addition, since a smooth curved surface is formed from the inner peripheral surface of the inner cylinder portion 31b to the edge of the outlet portion 31c of the lid portion 31a, the occurrence of pressure loss due to contraction due to a sudden change in the opening area is suppressed. The upward flow that has flowed into the inner cylinder portion 31b can be allowed to flow out of the oil separator 30 without resistance, and the pressure loss due to the rapid contraction of the flow path can be further suppressed.

以上のように本実施の形態3によれば、蓋部と内筒部を鋳造により一体形成し、さらに整流板を内筒部内側に鋳造により一体形成することで、蓋部と内筒部を鋳造により一体形成する工程と合わせて整流板を製造することができるので、製造に手間のかかる内筒部内側の溶接作業をすることなく、内筒部の内側に整流板を作成することができる。すなわち、本実施の形態2と同じ製造工程の回数で整流板を設けることができるので、優れた生産性を維持したまま、さらに高性能、高分離効率なスクリュー圧縮機を得ることができる。   As described above, according to the third embodiment, the lid part and the inner cylinder part are integrally formed by casting, and further, the rectifying plate is integrally formed inside the inner cylinder part by casting, so that the lid part and the inner cylinder part are formed. Since the rectifying plate can be manufactured together with the process of integrally forming by casting, the rectifying plate can be created inside the inner cylinder part without performing welding work inside the inner cylinder part, which is troublesome to manufacture. . That is, since the current plate can be provided with the same number of manufacturing steps as in the second embodiment, a screw compressor with higher performance and higher separation efficiency can be obtained while maintaining excellent productivity.

実施の形態4
本実施の形態4に係るスクリュー圧縮機について、図8,9を用いて説明する。
図8は、本発明の実施の形態4に係るスクリュー圧縮機における油分離器の断面の様子を拡大した図であり、図9は、本実施の形態4に係るスクリュー圧縮機の油分離器を横方向に切断し、下面から見た場合の断面の様子を示した図である。実施の形態4に係わるスクリュー圧縮機全体の断面構造は内筒部と蓋部が円筒蓋部に置き換わった点および、整流板の有無を除いて実施の形態1で示す図1とほぼ同様であるため、図8に示すように油分離器分の拡大図のみを記載し、説明を行う。
Embodiment 4
A screw compressor according to the fourth embodiment will be described with reference to FIGS.
FIG. 8 is an enlarged view of a cross section of the oil separator in the screw compressor according to Embodiment 4 of the present invention, and FIG. 9 shows the oil separator of the screw compressor according to Embodiment 4. It is the figure which showed the mode of the cross section at the time of cut | disconnecting to a horizontal direction and seeing from the lower surface. The cross-sectional structure of the entire screw compressor according to the fourth embodiment is substantially the same as FIG. 1 shown in the first embodiment except that the inner cylinder portion and the lid portion are replaced with the cylindrical lid portion and the presence or absence of the rectifying plate. Therefore, as shown in FIG. 8, only an enlarged view of the oil separator is described and described.

この実施の形態4が図6に示す実施の形態3と異なるのは、整流板を設けている位置が内筒部の内部ではなく、外筒部内部であり、内筒部と整波板の間の空間に設けている点である。その他の構成については実施の形態4と同一又は同等である。なお、実施の形態3と同一又は同等な構成部分については同一符号を付し、その説明は省略する。 The fourth embodiment is different from the third embodiment shown in FIG. 6 in that the position where the rectifying plate is provided is not inside the inner cylinder part but inside the outer cylinder part, and between the inner cylinder part and the wave plate. It is a point provided in the space. Other configurations are the same as or equivalent to those of the fourth embodiment. In addition, the same code | symbol is attached | subjected about the component which is the same as that of Embodiment 3, or equivalent, and the description is abbreviate | omitted.

図8に示すように、油分離器40は、外筒部41と、外筒部41の上部を覆う円筒蓋部31と、外筒部41の底を覆う底部16と、外筒部41の内部下方に設けられた整波板17とで構成されている。 As shown in FIG. 8, the oil separator 40 includes an outer cylinder part 41, a cylindrical lid part 31 that covers the upper part of the outer cylinder part 41, a bottom part 16 that covers the bottom of the outer cylinder part 41, and an outer cylinder part 41. It is comprised with the wave plate 17 provided in the internal downward direction.

円筒蓋部31は、鋳造により蓋部31aと内筒部31bが一体形成されており、図9に示すように、蓋部31aの中央には上下に貫通し内筒部31bの内径よりも小さな径を有する出口部31cが設けられ、蓋部31aと内筒部31bの境界は、内筒部31bの内周面から蓋部31aの出口部31cの縁にかけて滑らかなR形状の曲面が形成されている。 In the cylindrical lid portion 31, a lid portion 31a and an inner cylindrical portion 31b are integrally formed by casting. As shown in FIG. 9, the cylindrical lid portion 31 vertically penetrates the center of the lid portion 31a and is smaller than the inner diameter of the inner cylindrical portion 31b. An outlet portion 31c having a diameter is provided, and a smooth R-shaped curved surface is formed at the boundary between the lid portion 31a and the inner cylinder portion 31b from the inner peripheral surface of the inner cylinder portion 31b to the edge of the outlet portion 31c of the lid portion 31a. ing.

また、外筒部41内部には内筒部31bと整波板17の間に位置する空間部分に、外筒部41内部の空間の開口断面を分割するように、外筒部41と鋳造により一体形成された整流板41dが設けられている。なお、整流板41dが設けられる位置は、内筒部31bに流入する旋回流の流れによる油の遠心分離に影響を与えない程度の距離を保って設けられ、例えば、整流板41dは、整波板17の上面から内筒部31bの下端面の中間の位置よりも下寄りに設けられている。 Further, by casting the outer cylinder part 41 and the outer cylinder part 41 so as to divide the opening cross section of the space inside the outer cylinder part 41 into a space part located between the inner cylinder part 31 b and the wave plate 17. An integrally formed rectifying plate 41d is provided. The position where the rectifying plate 41d is provided is provided at a distance that does not affect the centrifugal separation of the oil by the flow of the swirling flow that flows into the inner cylinder portion 31b. The upper surface of the plate 17 is provided below the middle position of the lower end surface of the inner cylinder portion 31b.

なお、整流板41dは外筒部41と鋳造により一体形成されているため、溶接などの作業が発生せず、面倒な作業は必要なく、鋳物の型にあらかじめ成形しておくことで容易に形成することができる。 In addition, since the current plate 41d is integrally formed with the outer cylinder portion 41 by casting, work such as welding does not occur and troublesome work is not necessary, and it is easily formed by pre-molding into a casting mold. can do.

次に、本実施の形態4に係るスクリュー圧縮機における冷媒ガスおよび油の流れの過程を説明する。 Next, the flow of refrigerant gas and oil in the screw compressor according to Embodiment 4 will be described.

スクリューローター7と同一軸線上に固定されたモーター5が回転することで、スクリューローター7の吸入圧力側から吸込まれた低圧の冷媒ガスは、圧縮室11で圧縮されつつ、スクリューローター7の吐出圧力側へ送られる。高圧に圧縮された冷媒ガスは圧縮室11に注入されている油と一緒に吐出口から吐出室12へ吐出され、吐出室12から油分離器40へと導出される。   When the motor 5 fixed on the same axis as the screw rotor 7 rotates, the low-pressure refrigerant gas sucked from the suction pressure side of the screw rotor 7 is compressed in the compression chamber 11 and discharged from the screw rotor 7. Sent to the side. The refrigerant gas compressed to a high pressure is discharged from the discharge port to the discharge chamber 12 together with the oil injected into the compression chamber 11, and is led out from the discharge chamber 12 to the oil separator 40.

油分離器40に到達した冷媒ガスおよび油は外筒部41の側面に開口した流入口より流入し、外筒部41と内筒部31bの間の隙間を旋回しながら下降する。この際、旋回下降する冷媒ガスおよび油のうち、冷媒ガスよりも密度の高い油は遠心力によって外筒部41の内周面へ飛ばされ、油と冷媒ガスが分離される。 Refrigerant gas and oil that have reached the oil separator 40 flow from the inlet opening in the side surface of the outer cylinder portion 41, and descend while swirling through the gap between the outer cylinder portion 41 and the inner cylinder portion 31b. At this time, of the refrigerant gas and oil swirling and descending, oil having a density higher than that of the refrigerant gas is blown to the inner peripheral surface of the outer cylinder portion 41 by centrifugal force, and the oil and the refrigerant gas are separated.

また、外筒部41の内周面および内筒部31bの外周面は加工によって面粗度が小さく施されているため、旋回流の摩擦抵抗による流速低下が抑制されて旋回流の速度が維持され、遠心力の低下による油分離効率の悪化を防止し、油分離効率を向上させることができる。 Moreover, since the surface roughness of the inner peripheral surface of the outer cylindrical portion 41 and the outer peripheral surface of the inner cylindrical portion 31b is reduced by machining, a decrease in the flow velocity due to the frictional resistance of the swirling flow is suppressed, and the speed of the swirling flow is maintained. Thus, it is possible to prevent the oil separation efficiency from being deteriorated due to a decrease in centrifugal force and to improve the oil separation efficiency.

また、旋回流により分離された油は重力により、油貯留部19へ落下し、油貯留部19へ溜められた油は、ケーシング3内に設けられた経路(図示せず)を通って圧縮室11や軸受8へ供給される。 Further, the oil separated by the swirling flow falls to the oil reservoir 19 due to gravity, and the oil stored in the oil reservoir 19 passes through a path (not shown) provided in the casing 3 and is a compression chamber. 11 and the bearing 8.

一方、油と分離した冷媒ガスは旋回しながら下降するが、内筒部31bと整波板17の間には外筒部41内部の空間の断面を分割するように整流板41dが設けられており,その整流板41dで旋回方向の流れが抑制される。そして整波板17で折り返し、旋回が抑制された状態で上昇流となって内筒部31b内部へ流入される。そして、内筒部31b内側を経由し、油分離器40の出口部31cから逆止弁18を通過してサイクル側へ流出される。 On the other hand, the refrigerant gas separated from the oil descends while turning, but a rectifying plate 41d is provided between the inner cylinder portion 31b and the wave plate 17 so as to divide the cross section of the space inside the outer cylinder portion 41. Thus, the flow in the turning direction is suppressed by the rectifying plate 41d. Then, the wave is turned back by the wave plate 17 and is turned into an upward flow in a state where the turning is suppressed, and flows into the inner cylinder portion 31b. And it passes through the check valve 18 from the outlet 31c of the oil separator 40 and flows out to the cycle side via the inside of the inner cylinder part 31b.

その際、整流板41dが外筒部41内部の内筒部31bと整波板17の間に設けられているため、内筒部31bに流入する前に上昇流の旋回が抑制され、上昇旋回流による油の巻き込みの抑制や蓋部31aの出口部31cおよび逆止弁18での圧力損失をより効果的に低下させて、圧縮機の性能を向上させることできる。 At that time, since the rectifying plate 41d is provided between the inner cylindrical portion 31b inside the outer cylindrical portion 41 and the wave rectifying plate 17, the swirling of the upward flow is suppressed before flowing into the inner cylindrical portion 31b, and the rising swirl It is possible to improve the performance of the compressor by suppressing oil entrainment due to the flow and reducing pressure loss at the outlet 31c of the lid 31a and the check valve 18 more effectively.

以上のように本実施の形態4によれば、整流板を鋳造により外筒部と一体形成することで、外筒部を形成する工程と合わせて整流板を製造することができるので、製造に手間のかかる外筒部内側の溶接作業をすることなく、外筒部の内側に整流板を作成することができる。したがって、本実施の形態3同様、本実施の形態2と同じ製造工程の回数で整流板を設けることができるので、優れた生産性を維持したまま、さらに高性能、高分離効率なスクリュー圧縮機を得ることができる。   As described above, according to the fourth embodiment, since the current plate is integrally formed with the outer cylinder part by casting, the current plate can be manufactured together with the step of forming the outer cylinder part. The rectifying plate can be created inside the outer cylinder part without performing labor-intensive welding work inside the outer cylinder part. Therefore, as in the third embodiment, the baffle plate can be provided with the same number of manufacturing steps as in the second embodiment, so that a screw compressor with higher performance and higher separation efficiency while maintaining excellent productivity. Can be obtained.

さらに、整流板を内筒部内部ではなく、外筒部内部の内筒部と整波板の間に位置する空間に設けるため、内筒部に流入する前に、下降している旋回流の旋回方向の流れおよび上昇している旋回流の旋回方向の流れを共に抑制することができるので、上昇旋回流による油の巻き込みの抑制や蓋部の出口部および逆止弁での圧力損失をより効果的に低下させて、圧縮機の性能を向上させることできる。 Further, since the rectifying plate is provided not in the inner cylinder part but in a space located between the inner cylinder part inside the outer cylinder part and the wave plate, the swirl direction of the swirling flow descending before flowing into the inner cylinder part The flow in the swirling direction and the upward swirling flow can both be suppressed, so that the oil entrainment due to the rising swirling flow and the pressure loss at the outlet of the lid and the check valve are more effective. The performance of the compressor can be improved.

なお、本実施の形態2、3、4において、蓋部と内筒部の境界には内筒部の内周面から蓋部の出口部の縁に向かって滑らかなR形状の曲面が形成されているが、蓋部と内筒部の境界の形状は曲面に限らず、内筒部の内周面から蓋部の出口部の縁に向かって円錐状に先細りになっていくスロート形状にした場合でも、溶接や加工などの面倒な作業が不要で、流路急縮小による圧力損失を防ぎ、本実施の形態2、3、4と同様の効果を得ることができる。 In the second, third, and fourth embodiments, a smooth R-shaped curved surface is formed at the boundary between the lid portion and the inner cylindrical portion from the inner peripheral surface of the inner cylindrical portion toward the edge of the outlet portion of the lid portion. However, the shape of the boundary between the lid part and the inner cylinder part is not limited to a curved surface, but a throat shape that tapers conically from the inner peripheral surface of the inner cylinder part toward the edge of the outlet part of the lid part. Even in this case, troublesome work such as welding and processing is unnecessary, pressure loss due to rapid contraction of the flow path can be prevented, and the same effects as those of the second, third, and fourth embodiments can be obtained.

1 スクリュー圧縮機、2 圧縮機本体部、3 ケーシング、4 油分離器、5 モーター、5a ステーター、5b モーターローター、6 スクリュー軸、7 スクリューローター、7a スクリュー溝、8 軸受、9 ゲートロータ、9a 歯部、10 スライドバルブ、10a 開口部、11 圧縮室、12 吐出室、13 外筒部、14 内筒部、15 蓋部、15a 出口部、16 底部、17 整波板、18 逆止弁、19 油貯留部、20 油分離器、21 外筒部、22 円筒蓋部、22a 蓋部、22b 内筒部、22c 出口部、30 油分離器、31 円筒蓋部、31a 蓋部、31b 内筒部、31c 出口部、31d 整流板、40 油分離器、41 外筒部、41d 整流板 1 Screw compressor, 2 Compressor body, 3 Casing, 4 Oil separator, 5 Motor, 5a Stator, 5b Motor rotor, 6 Screw shaft, 7 Screw rotor, 7a Screw groove, 8 Bearing, 9 Gate rotor, 9a Teeth Part, 10 slide valve, 10a opening part, 11 compression chamber, 12 discharge chamber, 13 outer cylinder part, 14 inner cylinder part, 15 lid part, 15a outlet part, 16 bottom part, 17 wave plate, 18 check valve, 19 Oil reservoir, 20 Oil separator, 21 Outer cylinder, 22 Cylindrical lid, 22a Lid, 22b Inner cylinder, 22c Outlet, 30 Oil separator, 31 Cylindrical lid, 31a Lid, 31b Inner cylinder 31c outlet part, 31d current plate, 40 oil separator, 41 outer cylinder part, 41d current plate

Claims (8)

圧縮機本体部と、
前記圧縮機本体部と一体化して構成され、前記圧縮機本体部より吐出された気体と油とを旋回分離する油分離器と、を有し、
前記油分離器は、前記圧縮機本体部より吐出された気体および油を旋回下降させる外筒部と、前記外筒部の内部に設けられ、油と分離された気体を前記油分離器の外部へ導出させる内筒部と、を備え、
前記内筒部の内周面は、前記内筒部の外周面よりも面粗度が大きいことを特徴とする圧縮機。
A compressor body,
An oil separator that is configured integrally with the compressor main body, and that separates the gas and oil discharged from the compressor main body by swirling,
The oil separator includes an outer cylinder part that swirls and lowers the gas and oil discharged from the compressor main body part, and the gas separated from the oil is provided outside the oil separator. An inner cylinder part to be led to
The compressor characterized in that the inner peripheral surface of the inner cylinder part has a larger surface roughness than the outer peripheral surface of the inner cylinder part.
前記内筒部は鋳造により成形され、
前記内筒部の内周面は鋳肌面のままであることを特徴とする請求項1に記載の圧縮機。
The inner cylinder part is formed by casting,
The compressor according to claim 1, wherein an inner peripheral surface of the inner cylinder portion remains a cast surface.
前記外筒部の上部開口部を覆うように設けられ、前記内筒部と鋳造により一体成形された蓋部を備え、
前記蓋部と前記内筒部の境界は、前記蓋部の中央に設けられた上下貫通穴の縁から前記内筒部の内周面にかけて滑らかな曲面を形成していることを特徴とする請求項1もしくは請求項2のいずれかに記載の圧縮機。
Provided so as to cover the upper opening of the outer cylinder part, provided with a lid part integrally formed by casting with the inner cylinder part,
The boundary between the lid part and the inner cylinder part forms a smooth curved surface from an edge of an upper and lower through hole provided in the center of the lid part to an inner peripheral surface of the inner cylinder part. The compressor according to claim 1 or 2.
前記外筒部の上部開口部を覆うように設けられ、前記内筒部と鋳造により一体成形された蓋部を備え、
前記蓋部と前記内筒部の境界は、前記蓋部の中央に設けられた上下貫通穴の縁から前記内筒部の内周面にかけて円錐状に広がっていくスロート形状を形成していることを特徴とする請求項1〜3のいずれかに記載の圧縮機。
Provided so as to cover the upper opening of the outer cylinder part, provided with a lid part integrally formed by casting with the inner cylinder part,
The boundary between the lid part and the inner cylinder part forms a throat shape that spreads in a conical shape from the edge of the upper and lower through holes provided in the center of the lid part to the inner peripheral surface of the inner cylinder part. The compressor according to any one of claims 1 to 3.
前記内筒部内部の下方には、鋳造により前記内筒部と一体成形され、前記内筒部における内部空間の開口断面を分割する整流板が設けられていることを特徴とする請求項1〜4のいずれかに記載の圧縮機。 2. A rectifying plate that is integrally formed with the inner cylinder part by casting and that divides an opening cross section of the inner space in the inner cylinder part is provided below the inner cylinder part. 4. The compressor according to any one of 4. 前記外筒部の内部下方に設けられ、前記内筒部の開口面と平行に延在する整波板と、
鋳造により前記外筒部と一体成形され、
前記内筒部と前記整波板の間の空間に、前記外筒部の開口断面を分割するように設けられた整流板とを有することを特徴とする請求項1〜5のいずれかに記載の圧縮機。
A wave plate that is provided in the lower part of the outer cylinder part and extends in parallel with the opening surface of the inner cylinder part,
It is integrally formed with the outer cylinder by casting,
6. The compression according to claim 1, further comprising: a rectifying plate provided to divide an opening cross section of the outer cylinder portion in a space between the inner cylinder portion and the wave plate. Machine.
前記整流板は、前記整波板の上面から前記内筒部の下端面の中間の位置よりも下寄りに設けられていることを特徴とする請求項6に記載の圧縮機。 The compressor according to claim 6, wherein the rectifying plate is provided at a position lower than an intermediate position of a lower end surface of the inner cylinder portion from an upper surface of the wave shaping plate. 前記圧縮機は、外郭を構成するケーシングと、前記ケーシング内で回転可能に配置されたスクリューロータと、前記ケーシングおよび前記スクリューロータで区画された圧縮室を有するスクリュー圧縮機であり、前記圧縮機外部からの気体の逆流を防止する逆止弁を前記油分離器の出口側に設けていることを特徴とする請求項1〜7のいずれかに記載の圧縮機。 The compressor is a screw compressor having a casing constituting an outer shell, a screw rotor disposed rotatably in the casing, and a compression chamber partitioned by the casing and the screw rotor, A compressor according to any one of claims 1 to 7, wherein a check valve for preventing a backflow of gas from the oil separator is provided on the outlet side of the oil separator.
JP2013087016A 2013-04-18 2013-04-18 Compressor Active JP6136513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013087016A JP6136513B2 (en) 2013-04-18 2013-04-18 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013087016A JP6136513B2 (en) 2013-04-18 2013-04-18 Compressor

Publications (2)

Publication Number Publication Date
JP2014211101A true JP2014211101A (en) 2014-11-13
JP6136513B2 JP6136513B2 (en) 2017-05-31

Family

ID=51931028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013087016A Active JP6136513B2 (en) 2013-04-18 2013-04-18 Compressor

Country Status (1)

Country Link
JP (1) JP6136513B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106015005A (en) * 2016-06-21 2016-10-12 珠海格力电器股份有限公司 Oil-gas separation device and screw compressor
JP2017008810A (en) * 2015-06-23 2017-01-12 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Compressor and refrigeration cycle device
WO2018185914A1 (en) * 2017-04-06 2018-10-11 三菱電機株式会社 Screw compressor
WO2020136815A1 (en) * 2018-12-27 2020-07-02 三菱電機株式会社 Oil separator, screw compressor, and refrigeration cycle device
WO2020148824A1 (en) * 2019-01-16 2020-07-23 三菱電機株式会社 Compressor and refrigeration cycle device
WO2023096160A1 (en) * 2021-11-25 2023-06-01 한온시스템 주식회사 Electric compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083272A (en) * 2001-09-11 2003-03-19 Hitachi Ltd Screw compressor
JP2003201964A (en) * 2002-01-09 2003-07-18 Seiko Instruments Inc Gas compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083272A (en) * 2001-09-11 2003-03-19 Hitachi Ltd Screw compressor
JP2003201964A (en) * 2002-01-09 2003-07-18 Seiko Instruments Inc Gas compressor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008810A (en) * 2015-06-23 2017-01-12 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Compressor and refrigeration cycle device
CN106015005A (en) * 2016-06-21 2016-10-12 珠海格力电器股份有限公司 Oil-gas separation device and screw compressor
WO2018185914A1 (en) * 2017-04-06 2018-10-11 三菱電機株式会社 Screw compressor
JPWO2018185914A1 (en) * 2017-04-06 2019-11-07 三菱電機株式会社 Screw compressor
WO2020136815A1 (en) * 2018-12-27 2020-07-02 三菱電機株式会社 Oil separator, screw compressor, and refrigeration cycle device
WO2020148824A1 (en) * 2019-01-16 2020-07-23 三菱電機株式会社 Compressor and refrigeration cycle device
WO2023096160A1 (en) * 2021-11-25 2023-06-01 한온시스템 주식회사 Electric compressor

Also Published As

Publication number Publication date
JP6136513B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6136513B2 (en) Compressor
JP5813215B2 (en) Hermetic compressor and vapor compression refrigeration cycle apparatus including the hermetic compressor
CN104937273B (en) Hermetic type compressor and the steam compression type refrigeration EGR with the hermetic type compressor
JP5863609B2 (en) Screw compressor and chiller unit including the same
JP2010031759A (en) Vane compressor
KR101295614B1 (en) Compressor
US9651047B2 (en) Compressor having a partitioned discharge chamber
JP6181405B2 (en) Compressor
JP6437294B2 (en) Scroll compressor
JP2010048099A (en) Compressor
JP6597744B2 (en) Oil separator
JP2010077847A (en) Scroll fluid machine
KR101460425B1 (en) Oil separation means and freezer equipped therewith
JP6762420B2 (en) Screw compressor
JP6193306B2 (en) Screw compressor and chiller unit including the same
WO2019202682A1 (en) Oil separator, screw compressor, and refrigeration cycle device
JP6292910B2 (en) Liquid supply type compressor and gas-liquid separator
WO2019146100A1 (en) Oil separator, compressor and refrigeration cycle device
JP5570917B2 (en) Rotary compressor
CZ2017240A3 (en) A compressor
JP2013015069A (en) Oil separator and compressor having the same
JP2015096781A (en) Oil separator
JP6369066B2 (en) Compressor
WO2020148824A1 (en) Compressor and refrigeration cycle device
JP5764733B2 (en) Rotary compressor and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R151 Written notification of patent or utility model registration

Ref document number: 6136513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250