JP3994220B2 - Screw compressor - Google Patents

Screw compressor Download PDF

Info

Publication number
JP3994220B2
JP3994220B2 JP2000269866A JP2000269866A JP3994220B2 JP 3994220 B2 JP3994220 B2 JP 3994220B2 JP 2000269866 A JP2000269866 A JP 2000269866A JP 2000269866 A JP2000269866 A JP 2000269866A JP 3994220 B2 JP3994220 B2 JP 3994220B2
Authority
JP
Japan
Prior art keywords
oil
discharge
casing
cyclone separator
cyclone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000269866A
Other languages
Japanese (ja)
Other versions
JP2002070778A (en
Inventor
淳 渡邊
裕敬 亀谷
重和 野澤
昌幸 浦新
毅士 肥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000269866A priority Critical patent/JP3994220B2/en
Publication of JP2002070778A publication Critical patent/JP2002070778A/en
Application granted granted Critical
Publication of JP3994220B2 publication Critical patent/JP3994220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はスクリュー圧縮機に関し、特に冷凍空調に用いる冷媒用スクリュー圧縮機において、小型、高性能で油の持ち出しが少ないものに好適である。
【0002】
【従来の技術】
冷凍空調用に使われる冷媒用スクリュー圧縮機において、吐出ポート下流に油分離チャンバを設け、油分離チャンバで冷媒ガスから油を分離し、分離した油を油分離チャンバ内下部の油溜りに重力で落下させ、連通したメインケーシング内下部の油溜りに戻し、再度軸受に供給することが知られ、例えば特開平10―159763号公報に記載されている。
【0003】
また、高い分離効率とするため、サイクロンと濾過式(あるいは捕集フィルタ式)による2段階にすることが、特開平7−243391号公報に記載されている。
【0004】
【発明が解決しようとする課題】
上記従来技術のものでは、圧損を小さく抑制するには油分離エレメントとして粗いメッシュのものを使用しなければならず、吐出チャンバを大きくしなければ十分な分離効率を得られなかった。
【0005】
また、2段階の油分離手段を用いるものでは、全体として大型化し、吐出圧の脈動により加振される振動部分が増え、発生する騒音も大きくなる恐れがあった。 さらに、メインケーシング内の下部に設けた油溜りには、圧縮機運転中は常に吐出直後に分離された高温の油が流れ込み、この高温の油は吸入過程にある冷媒ガスと1つの壁面で隔てられているだけなので、壁面を介して熱伝達され、冷媒ガスは加熱され、性能低下の一要因となっている。
【0006】
本発明の目的は上記従来技術の課題を解決し、油分離機構を高効率化し、かつ小型なスクリュー圧縮機を実現することにある。また本発明の目的は圧縮機性能(エネルギ効率)を向上するとともに、騒音の発生を抑制することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明は、スクリューロータと該スクリューロータを回転自在に軸支する軸支手段とそれらを収納するケーシングと該ケーシングに形成される吐出ポートと、前記吐出ポートの下流に設けられた油分離手段と、該油分離手段によって分離回収された油を前記軸支手段に供給する油供給流路を備えたスクリュー圧縮機において、前記吐出ポートの下流に設けられた空間である吐出室と、サイクロン外壁と内筒とを有しサイクロン分離器とされた前記油分離手段と、前記吐出室から前記サイクロン分離器へ至る範囲に形成され、前記サイクロン外壁に対して接線方向に接続された導入流路と、前記サイクロン分離器の下部に形成された油溜めと、前記油供給流路であり前記油溜め下部から前記軸支手段へ至る給油路と、を備え、前記吐出室、前記サイクロン外壁、前記導入流路、前記油溜め、前記給油路が鋳鉄製とされた前記ケーシングに一体化されているものである。
【0008】
さらに、上記のものにおいて、前記導入流路は前記吐出室から前記サイクロン分離器に至る範囲で断面積を同一とし、直線あるいは緩い右曲がりに形成されたことことが望ましい。
【0015】
【発明の実施の形態】
本発明の一実施の形態を図1ないし3を参照して説明する。
冷媒サイクルは圧縮機1、凝縮器2、膨張弁3、蒸発器4の順に構成され、循環路(サイクル)を形成する。圧縮機1はその中で冷媒ガスを圧縮し送り出す役割を担うので、入力するエネルギに対するガス圧縮仕事であるエネルギ効率(性能)が高いことが望まれる。
【0016】
圧縮機内部の潤滑などで利用する油は冷媒サイクル中では無用なばかりか、冷媒ガスに多量に混入すると凝縮器2や蒸発器4において、熱交換を阻害する。また、冷媒サイクルに多量の油が出てしまうと圧縮機内部の油保有量が減少し、圧縮機自身の潤滑が困難となる。そこで、圧縮機から出る前に冷媒ガスから油を分離する必要がある。
【0017】
図1において、圧縮機1は全体をケーシングで覆い、分解組立てを容易にするため、ケーシングは主ケーシング11、吐出ケーシング12、吸入ケーシング13のように3分割とする。吸入ケーシング13には、外部から圧縮機本体へ冷媒ガスを導くためのガス導入口29を設ける。
【0018】
主ケーシング11にはモータ14と、一対のスクリューロータ(雄ロータ15、雌ロータ16)を内蔵し、ロータ15、16の歯溝は互いの噛み合いと、主ケーシング11に形成したボア壁と吸入側端面、吐出ケーシング12に形成した吐出側端面によって囲まれ、圧縮室を形成する。モータ14のロータは雄ロータ15の軸を延長した部分に固定する。両ロータ15、16は主ケーシング11に保持された吸入側軸受17と、吐出ケーシング12に保持された吐出側軸受18によって軸支する。
【0019】
主ケーシング11内の両ロータ15、16上部にはスライド弁19を備え、スライド弁19は吐出ケーシング12内のピストン20に作用する油圧で動かされ、冷媒ガス流量が制御される。スライド弁19には径方向吐出ポート21を、吐出ケーシング12には軸方向吐出ポート22を形成し、圧縮完了した圧縮室の吐出流路への連通路とする。これら吐出ポートの下流にスライド弁19の動く領域を確保し、複雑な形状の両吐出ポートと単純な形状の流路をつなぐため、吐出室23という空間を設ける。
【0020】
吐出ケーシング12には、サイクロン分離器25を鋳造で一体化する。サイクロン分離器25はサイクロン外壁26と内筒27、底板と上蓋28から成り、吐出室23からサイクロン分離器25への導入流路24も同じ吐出ケーシング12内部に形成する。導入流路24は吐出室23からサイクロン分離器25に至る範囲で断面積を同一とし、直線あるいは緩い右曲がりに形成する。内筒27と上蓋28は一体部材で、サイクロン外壁26上部に締結し一体化する。内筒27の上部は圧縮機としての出口であるガス導出口30を形成する。
【0021】
サイクロン分離器25の下部に油溜め31を形成し、油面32がある程度の高さ範囲にあるように油保有量が規定される。油溜め31下部から油供給流路である給油路33を、吐出ケーシング12壁面内部に開けた穴で形成する。給油路33は両ロータ15、16の回転中心以上の高さで二手に分岐させる。一方は吸入側給油路34として、主ケーシング11と吐出ケーシング12の結合面を貫通し、吸入側軸受17近くに至る。他方は吐出ケーシング12内部に開けた穴である吐出側給油路35として吐出側軸受18近くに至る。
【0022】
以上説明した実施の形態によれば、以下のように作用する。
まず、外部から供給される電力によりモータ14は回転動力を生み出し、軸を共通する雄ロータ15を回転駆動すると噛み合った雌ロータ16は雄ロータ15に回転伝達され、両ロータとボアで形成した圧縮室を軸方向に送りながら、圧縮室容積を拡大縮小し、中に閉じ込めた冷媒ガスを吸入、圧縮、吐出する。
【0023】
さらに、冷媒ガスは外部からガス導入口29を通過してスクリュー圧縮機1内部に入り、モータ14のすきまや外周を通過した後に、両ロータ15、16の下部を中心に形成した吸入ポートから圧縮室に吸い込まれる。冷媒ガスの流れに対して吸い込み前に吸入側軸受17の排出油が混入し、圧縮過程において吐出側軸受18の排出油が混入する。
【0024】
圧縮完了後に冷媒ガスとそれに混入した油は吐出ポートから出て、吐出室23を経由し導入流路24を流れ、サイクロン分離器25に入る。導入流路24は直線あるいは右曲がり形状なので、油に右向きの遠心力は作用せず、流路内部の右側面に積極的に付着することはない。導入流路24はサイクロン外壁26に対して接線方向に接続しているので、サイクロン分離器25に侵入したガスはサイクロン外壁26に沿って右回り旋回しながら下降し、内筒27の下端から内筒27に入り、ガス導出口30から外部に送り出される。
【0025】
ガスがサイクロン分離器25内部で旋回する過程で、ガスに混入した油はその密度の差から遠心力の作用で、ガスよりも直線運動しやすく、次第に外周に近付きついにはサイクロン外壁26内面に付着し、分離されたことになる。外壁26内面に付着した油は重力で下降し、油溜り31に流入して貯えられる。
【0026】
油溜り31に貯えられた油には圧縮機の吐出圧力が作用しており、一方、軸受17、18付近はほぼ吸入圧力下にある。したがって、両位置を繋ぐ給油路33、34、35を通じて、油は圧力差により軸受17、18に供給される。油は軸受の潤滑冷却に使用された後に圧縮室に入り、スクリューロータ15、16相互間の潤滑や圧縮室相互間のシール、圧縮熱に対する冷却材として作用する。この後、再び油はガスと一緒に吐出されるので、油は圧縮機内部で循環することになる。
【0027】
本実施の形態においては、サイクロン分離器25が有効に活用され、油分離効率が良く、吐出ガスはサイクロン分離器25内部で旋回する流路となるので、軸方向長さを縮小してコンパクトなものとすることができる。
【0028】
サイクロン分離器25に進入するガスに混入している油のうち、サイクロン外壁26に近いものは遠心力の作用で外壁内面に早く付着し分離しやすい。しかし、導入流路24の右端から進入する油は付着までに時間を要するため、流速の低下やガス流れの澱みなどにより遠心力の作用が低下し分離効率が悪くなる。本実施の形態においては、導入流路24を流れる過程で右側面への油の積極的付着を防止しているので、サイクロン分離器25の分離性能を十分に活用できる。
【0029】
本実施の形態では、吐出ポート22から吐出室23、導入流路24、サイクロン分離器25までを一体化した鋳鉄製吐出ケーシング12に内蔵しているため、吐出脈動による振動騒音を低減することもできる。吐出ポートを発信源とする吐出脈動はガスの流れに沿って下流に伝播するが、上記流路構成部材のいずれもが、厚くて振動の減衰係数の大きい鋳鉄性壁面で囲まれており、内部圧力が変化しても表面への伝播が抑制される。また従来の吐出チャンバに比較して吐出ケーシング12の表面積が小さくできるので表面から発する騒音の総量も抑制される。
【0030】
さらに、吐出側の各要素を吐出ケーシング12に一体化したことにより、製造や分解組立ても簡素化され、各流路をケーシング壁面内に開けた穴で構成したことにより、外回りの配管類を省略することができる。
【0031】
さらに、本実施の形態においては、比較的高温となる吐出ガスや油溜りがすべて吐出ケーシング12に内蔵されることから、吸入過程にあるガスへの熱伝達が小さく、吸気加熱による性能低下を防止できる。吸入側に至る高温の油も吸入側給油路34をボアの圧縮側側面の外側に形成したことにより、吸入過程の圧縮室への熱伝達を小さくできる。
【0032】
以上説明した実施の形態では、雄ロータ15の一端に設けたモータ14によって駆動し、雄ロータ15から雌ロータ16に回転伝達する構造としたが、逆にしても良い。
【0033】
次に本発明の他の実施の形態を図4、5を参照して説明する。
サイクロン分離器25を1次分離機構とする2段階分離方式であり、サイクロン下部の油溜りは副油溜り56とする。また、内筒27の上に延長する形で濾過式分離手段である円筒状のグラスウール製フィルタ51を設け、上端面は別部材で塞ぐ。サイクロン外壁26も上に延長し、フィルタ51を取り囲む出口室52を構成し、その上部はガス導出口30を除いて塞ぐ。主油溜り55は副油溜り56とほぼ同じ高さに設け、出口室52の底から連なる油回収路53で連通させる。主油溜り55と副油溜り56は隔壁54で区切るが、両者の底近くを油連通路57で繋げる。主油溜り55の油面58と副油溜り56の油面59は両方とも油連通路57より上になるように設定する。主油溜り55の位置は吐出側軸受18の下部にすると、空間を有効に活用することができる点から望ましい。
【0034】
サイクロン分離器は微少な油粒子はガス流れに乗りやすく分離効率が悪い。そこで、サイクロン分離を経たガスをフィルタ51に通過させることにより、油の微粒子まで分離することができる。分離された油はフィルタ51の繊維を伝って、ガス流れすなわち円筒の外周方向へ移動しながら重力で下方向にも移動する。その過程で多くの油粒子が表面張力で結合して、フィルタ51の下端から出口室52の床面に落ちる。床面に一時的に溜まった油は回収路53を通って流れ落ちて主油溜り58に流入する。
【0035】
軸受等への給油路33は主油溜り55の下部につなげており、副油溜り56の油も連通路57を通って主油溜りに流れ込み合流する。主油溜り油面58における内圧は副油溜り油面59における内圧よりも低い。なぜなら、内圧を決定する主因であるガス流れにおいて、副油溜り油面59はフィルタ51の上流側であり、主油溜り油面58はフィルタ51の下流側に連通しているため、フィルタ51の通過圧損の分だけ、油面間の内圧の差が生じる。
【0036】
分離回収する油量で比較すると、2段階の油分離機構のうち、1次側のサイクロン分離器25により分離される油が大部分であり、2次側のフィルタ51による分離量は少量である。したがって、連通路57を副油溜り56から主油溜り55へ向かって流れる油量は回収路53を流れる油量よりもはるかに多く、連通路57を通る油の通過圧損は回収路53の両端圧力差に比較し大きい。この連通路57の通過圧損を先の両油溜りの油面58、59における内圧の差にほぼ等しくなるように、連通路57断面積あるいは長さ、形状を設定しておくことが良い。
【0037】
それによって、フィルタ51におけるガスの通過圧損と、連通路57における油の通過圧損がほぼ等しくなり、油面58、59をほぼ等しい高さに維持することができる。
【0038】
本実施の形態によれば、微細な油粒子まで回収できるので、非常に高い油分離効率を実現することができる。同時に2つの油溜りを有効に利用し、圧縮機の保有油量を多くすることができる。
【0039】
運転状態や圧力状態、容量制御などの影響で、油面58、59の差が大きくなることもあるが、油面58が出口室52まで、あるいは油面59が内筒27の下端近くまで上昇しない限りは問題無く、油面変位の許容幅を比較的大きくできる。よって、特に油面差が広がる用途に用いる場合には連通路57に定流量弁を備えることが望ましい。
【0040】
本実施の形態において主油溜り55や連通路57を設けず、給油路33は副油溜り56からつなげ、回収路53の下流端は吸い込みあるいは圧縮過程にある圧縮室に連通する構造としてもよい。その場合構造を簡素化することができる。
【0041】
次に、本発明のさらに他の実施の形態を図6を用いて説明する。
スクリューロータの吐出端面から吸入側方向はすべて、従来機種と同一とし、吐出ケーシング68に油分離チャンバを一体化する。油分離チャンバとしての内部空間69に備える油分離エレメントには従来例に比較し目の細かいグラスウール製フィルタ61を使用し、下部の隔壁62と合わせて油分離チャンバの断面全部を覆う。隔壁62の下部には連通路63を設けておく。油分離チャンバ下部は油溜りとして機能し、隔壁62を境にロータ側を上流側油溜り64、ガス導出口30側を下流側油溜り65とする。また、従来の油溜り66はそのまま機能する。下流側油溜り65と従来の油溜り66は連通路63よりも太い径の油流路67で連通させる。
【0042】
本実施の形態によれば、吐出ガスは吐出室23から図面奥方向に連なる流路を抜けて壁面に衝突する方向に吹き出し、内部空間69に至る。この時、ガスに混入した油の一部は慣性で壁面に付着し、分離される。フィルタ61の目が細かいため、従来の油分離エレメントに比較して圧損が大きく、フィルタ61の前後に広い助走区間を必要とせずとも、流速分布は比較的一様になる。フィルタ61を通過し、比較的小さい粒径の油粒子を分離した後、ガスは導出口30から送り出される。
【0043】
1次分離である衝突により分離された油は上流側油溜り64に、2次分離であるフィルタ61通過により分離された油は下流側油溜り65に、それぞれ重力で流入する。内部空間の内圧はフィルタ31の圧損分だけ、フィルタの前後で差があるため、その差圧で上流側油溜り64の油は下流側油溜り65へ連通路63を通って流れる。また、下流側油溜り65から従来の油溜り66へ油流路67を通って流れ、各軸受に送られる。
【0044】
本実施の形態によれば、隔壁62があるので、ガスの流れによる油面の吹き上げ現象は発生せず、フィルタ61の目の細かさの効果もあり、油分離効率は格段に向上する。同時に下流側油溜り65を基準に保有油量を決めるので、油面の異常上昇による油の持ち出しも発生しにくい。さらに、従来の機種の吐出ケーシングと油分離チャンバを交換するのみで、スクリュー圧縮機の全長を短縮しつつ、油分離効率を向上することができる。そのため、設計変更点が少なく、改良が容易であるほか、稼働中の機械の本仕様への改造も可能となる。圧縮機停止時においても油溜り64と65の油面が一致するのみで、異常な油面上昇を発生する心配もない。
【0045】
次に、本発明のさらに他の実施の形態を図7を用いて説明する。
吐出室23からの流路は図で奥方向で吐出管74に連なり、吐出管74はフィルタ71を貫通させる。油分離チャンバ77の断面をフィルタ73と隔壁72を合わせてふさぎ、隔壁72下部には連通路73を開ける。隔壁72を境に図中右側が上流側油溜り75、左側が下流側油溜り76となる。
【0046】
本実施の形態において、ガス導出口78が上方にあるため、この先の配管を圧縮機の長手方向に伸ばす必要が無く、圧縮機搭載場所の長さに限りがある場合に有利である。また、油流路67が不用となり、下部構造を簡素化することができる。
【0047】
【発明の効果】
本発明によれば、油分離機構の分離効率を向上でき、さらに、冷媒ガスに混入した圧縮機からの油の持ち出し量を低減することにより、冷媒サイクルを構成する熱交換器の性能を高くするとともに、圧縮機内部の油保有量を確保し圧縮機の信頼性を高めることができる。また、分離効率向上により油分離機構を小型化できるので、スクリュー圧縮機全体を小型化できる。
【図面の簡単な説明】
【図1】 本発明による一実施の形態におけるスクリュー圧縮機の縦断面図。
【図2】 冷媒サイクルの系統図。
【図3】 図1の実施の形態によるスクリュー圧縮機の横断面図。
【図4】
本発明による他の実施の形態におけるスクリュー圧縮機の縦断面図。
【図5】 図4の実施の形態によるスクリュー圧縮機の横断面図。
【図6】 本発明によるさらに他の実施の形態におけるスクリュー圧縮機の吐出部付近の縦断面図。
【図7】 本発明によるさらに他の実施の形態におけるスクリュー圧縮機の吐出部付近の横断面図である。
【符号の説明】
11…主ケーシング 、12…吐出ケーシング、13…吸入ケーシング、14…モータ、15…雄ロータ(スクリューロータ)、16…雌ロータ(スクリューロータ)、17…吸入側軸受、18…吐出側軸受、21…径方向吐出ポート、22…軸方向吐出ポート 、23…吐出室、24…導入流路、25…サイクロン(サイクロン分離器)、26…サイクロン外壁、27…内筒、28…上蓋、29…ガス導入口、30…ガス導出口、31……油溜め、32…油面、33…給油路、34…吸入側給油路、 35…吐出側給油路、51…フィルタ、53…油回収路、54…隔壁、55…主油溜り、56…副油溜り、57…油連通路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a screw compressor, and is particularly suitable for a refrigerant screw compressor used for refrigerating and air-conditioning that is small in size, high in performance, and less oil is taken out.
[0002]
[Prior art]
In a refrigerant screw compressor used for refrigeration and air conditioning, an oil separation chamber is provided downstream of the discharge port, the oil is separated from refrigerant gas in the oil separation chamber, and the separated oil is separated by gravity into the oil reservoir in the lower part of the oil separation chamber. It is known to drop it, return it to the oil reservoir in the lower part of the main casing in communication, and supply it again to the bearing, for example, as described in JP-A-10-159663.
[0003]
Japanese Patent Application Laid-Open No. 7-243391 discloses a two-stage process using a cyclone and a filtration type (or a collection filter type) in order to achieve high separation efficiency.
[0004]
[Problems to be solved by the invention]
In the above prior art, a coarse mesh must be used as the oil separation element in order to suppress the pressure loss, and sufficient separation efficiency cannot be obtained unless the discharge chamber is enlarged.
[0005]
Further, in the case of using the two-stage oil separation means, there is a possibility that the size of the whole is increased, the vibration portion excited by the pulsation of the discharge pressure is increased, and the generated noise is increased. Furthermore, hot oil separated immediately after discharge flows into the oil sump provided in the lower part of the main casing during operation of the compressor, and this hot oil is separated from the refrigerant gas in the intake process by one wall surface. Therefore, heat is transferred through the wall surface, and the refrigerant gas is heated, which is a factor in performance degradation.
[0006]
An object of the present invention is to solve the above-mentioned problems of the prior art, increase the efficiency of the oil separation mechanism, and realize a small screw compressor. Another object of the present invention is to improve compressor performance (energy efficiency) and suppress noise generation.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a screw rotor, shaft support means for rotatably supporting the screw rotor, a casing for storing them, a discharge port formed in the casing, and a downstream of the discharge port. In a screw compressor provided with an oil separation means provided and an oil supply passage for supplying oil separated and recovered by the oil separation means to the shaft support means, a space provided downstream of the discharge port. The oil separation means having a discharge chamber, a cyclone outer wall and an inner cylinder and being a cyclone separator, and formed in a range from the discharge chamber to the cyclone separator and connected in a tangential direction to the cyclone outer wall An introduction flow path, an oil sump formed in a lower part of the cyclone separator, an oil supply path that is the oil supply flow path from the oil sump lower part to the shaft support means, Wherein the discharge chamber, the cyclone outer wall, said inlet flow path, said oil sump, the oil supply passage is one that is integrated with the casing is made of cast iron.
[0008]
Furthermore, in the above, it is preferable that the introduction flow path has the same cross-sectional area in the range from the discharge chamber to the cyclone separator and is formed in a straight line or a gentle right turn .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
The refrigerant cycle is configured in the order of the compressor 1, the condenser 2, the expansion valve 3, and the evaporator 4, and forms a circulation path (cycle). Since the compressor 1 plays a role of compressing and sending out the refrigerant gas therein, it is desired that the energy efficiency (performance) which is a gas compression work with respect to the input energy is high.
[0016]
Oil used for lubricating the inside of the compressor is not necessary in the refrigerant cycle, and if it is mixed in a large amount in the refrigerant gas, heat exchange is hindered in the condenser 2 and the evaporator 4. In addition, if a large amount of oil comes out in the refrigerant cycle, the amount of oil held in the compressor decreases, and it becomes difficult to lubricate the compressor itself. Therefore, it is necessary to separate the oil from the refrigerant gas before leaving the compressor.
[0017]
In FIG. 1, the compressor 1 is entirely covered with a casing, and the casing is divided into three parts such as a main casing 11, a discharge casing 12, and a suction casing 13 in order to facilitate disassembly and assembly. The suction casing 13 is provided with a gas introduction port 29 for introducing refrigerant gas from the outside to the compressor body.
[0018]
The main casing 11 incorporates a motor 14 and a pair of screw rotors (male rotor 15 and female rotor 16). The tooth spaces of the rotors 15 and 16 mesh with each other, the bore wall formed in the main casing 11, and the suction side. The compression chamber is formed by being surrounded by the end face and the discharge side end face formed in the discharge casing 12. The rotor of the motor 14 is fixed to a portion where the shaft of the male rotor 15 is extended. Both rotors 15 and 16 are supported by a suction side bearing 17 held in the main casing 11 and a discharge side bearing 18 held in the discharge casing 12.
[0019]
A slide valve 19 is provided above the rotors 15 and 16 in the main casing 11, and the slide valve 19 is moved by hydraulic pressure acting on the piston 20 in the discharge casing 12 to control the flow rate of the refrigerant gas. A radial discharge port 21 is formed in the slide valve 19, and an axial discharge port 22 is formed in the discharge casing 12, which serve as a communication path to the discharge flow path of the compression chamber that has been compressed. A space called a discharge chamber 23 is provided in order to secure a region where the slide valve 19 moves downstream of these discharge ports and to connect both discharge ports having a complicated shape and a simple flow path.
[0020]
A cyclone separator 25 is integrated with the discharge casing 12 by casting. The cyclone separator 25 includes a cyclone outer wall 26 and an inner cylinder 27, a bottom plate and an upper lid 28, and an introduction flow path 24 from the discharge chamber 23 to the cyclone separator 25 is also formed inside the same discharge casing 12. The introduction flow path 24 has the same cross-sectional area in the range from the discharge chamber 23 to the cyclone separator 25, and is formed in a straight line or a gentle right turn. The inner cylinder 27 and the upper lid 28 are integral members, and are fastened and integrated with the upper part of the cyclone outer wall 26. The upper part of the inner cylinder 27 forms a gas outlet 30 which is an outlet as a compressor.
[0021]
An oil sump 31 is formed in the lower part of the cyclone separator 25, and the oil holding amount is defined so that the oil level 32 is in a certain height range. An oil supply passage 33, which is an oil supply passage, is formed from a lower portion of the oil sump 31 with a hole opened in the wall surface of the discharge casing 12. The oil supply passage 33 is bifurcated at a height equal to or higher than the rotation center of the rotors 15 and 16. One side serves as a suction-side oil supply passage 34 that passes through the coupling surface of the main casing 11 and the discharge casing 12 and reaches the vicinity of the suction-side bearing 17. The other reaches the vicinity of the discharge-side bearing 18 as a discharge-side oil supply passage 35 which is a hole formed in the discharge casing 12.
[0022]
According to the embodiment described above, it operates as follows.
First, the motor 14 generates rotational power by the electric power supplied from the outside. When the male rotor 15 having a common shaft is rotationally driven, the meshed female rotor 16 is transmitted to the male rotor 15 and compressed by both rotors and bores. While feeding the chamber in the axial direction, the volume of the compression chamber is enlarged and reduced, and the refrigerant gas confined in the chamber is sucked, compressed and discharged.
[0023]
Further, the refrigerant gas passes from the outside through the gas inlet 29 and enters the screw compressor 1, passes through the clearance and the outer periphery of the motor 14, and then is compressed from the suction port formed around the lower portions of the rotors 15 and 16. Inhaled into the room. The oil discharged from the suction side bearing 17 is mixed before the suction of the refrigerant gas flow, and the oil discharged from the discharge side bearing 18 is mixed during the compression process.
[0024]
After the compression is completed, the refrigerant gas and the oil mixed therein exit from the discharge port, flow through the introduction passage 24 via the discharge chamber 23, and enter the cyclone separator 25. Since the introduction channel 24 is a straight line or a right-turn shape, the rightward centrifugal force does not act on the oil and does not actively adhere to the right side surface inside the channel. Since the introduction flow path 24 is tangentially connected to the cyclone outer wall 26, the gas that has entered the cyclone separator 25 descends while turning clockwise along the cyclone outer wall 26, and reaches the inner cylinder 27 from the lower end of the inner cylinder 27. It enters the cylinder 27 and is sent out from the gas outlet 30 to the outside.
[0025]
In the process in which the gas swirls inside the cyclone separator 25, the oil mixed in the gas is more likely to move linearly than the gas due to the centrifugal force due to the difference in density, and gradually approaches the outer periphery and gradually adheres to the inner surface of the cyclone outer wall 26. And separated. The oil adhering to the inner surface of the outer wall 26 descends due to gravity and flows into the oil sump 31 to be stored.
[0026]
The discharge pressure of the compressor acts on the oil stored in the oil sump 31, while the vicinity of the bearings 17 and 18 is almost under the suction pressure. Therefore, the oil is supplied to the bearings 17 and 18 by the pressure difference through the oil supply passages 33, 34, and 35 connecting both positions. The oil enters the compression chamber after being used for lubrication cooling of the bearing, and acts as a lubricant against the lubrication between the screw rotors 15 and 16, the seal between the compression chambers, and the compression heat. Thereafter, the oil is again discharged together with the gas, so that the oil circulates inside the compressor.
[0027]
In the present embodiment, the cyclone separator 25 is effectively utilized, the oil separation efficiency is good, and the discharge gas becomes a flow path that swirls inside the cyclone separator 25, so that the axial length is reduced to be compact. Can be.
[0028]
Of the oil mixed in the gas entering the cyclone separator 25, the oil close to the cyclone outer wall 26 adheres quickly to the inner surface of the outer wall due to the action of centrifugal force and is easily separated. However, since the oil entering from the right end of the introduction flow path 24 takes time to adhere, the action of centrifugal force is reduced due to a decrease in flow velocity or gas flow stagnation, and the separation efficiency is deteriorated. In the present embodiment, since the oil is prevented from actively adhering to the right side surface in the process of flowing through the introduction flow path 24, the separation performance of the cyclone separator 25 can be fully utilized.
[0029]
In this embodiment, since the discharge port 22, the discharge chamber 23, the introduction flow path 24, and the cyclone separator 25 are integrated in the integrated cast iron discharge casing 12, vibration noise due to discharge pulsation can be reduced. it can. Discharge pulsation originating from the discharge port propagates downstream along the gas flow, but all of the flow path components are surrounded by a thick cast iron wall with a large vibration damping coefficient. Propagation to the surface is suppressed even when the pressure changes. In addition, since the surface area of the discharge casing 12 can be reduced as compared with the conventional discharge chamber, the total amount of noise generated from the surface is also suppressed.
[0030]
Furthermore, by integrating each element on the discharge side into the discharge casing 12, manufacturing and disassembly are simplified, and each flow path is configured by a hole opened in the casing wall surface, so that external piping is omitted. can do.
[0031]
Further, in the present embodiment, all of the discharge gas and oil sump that are at a relatively high temperature are built in the discharge casing 12, so that heat transfer to the gas in the intake process is small and performance deterioration due to intake air heating is prevented. it can. By forming the suction side oil supply passage 34 outside the compression side surface of the bore, heat transfer to the compression chamber during the suction process can be reduced.
[0032]
In the embodiment described above, the motor 14 provided at one end of the male rotor 15 is driven to transmit the rotation from the male rotor 15 to the female rotor 16, but this may be reversed.
[0033]
Next, another embodiment of the present invention will be described with reference to FIGS.
This is a two-stage separation system in which the cyclone separator 25 is a primary separation mechanism, and an oil sump at the lower part of the cyclone is an auxiliary oil sump 56. Further, a cylindrical glass wool filter 51 which is a filtration type separating means is provided so as to extend on the inner cylinder 27, and the upper end surface is closed with another member. The cyclone outer wall 26 also extends upward to form an outlet chamber 52 that surrounds the filter 51, and its upper portion is closed except for the gas outlet 30. The main oil sump 55 is provided at substantially the same height as the sub oil sump 56, and communicates with an oil recovery path 53 that continues from the bottom of the outlet chamber 52. The main oil sump 55 and the sub oil sump 56 are separated by a partition wall 54, but the bottoms of both are connected by an oil communication passage 57. Both the oil level 58 of the main oil sump 55 and the oil level 59 of the sub oil sump 56 are set to be above the oil communication passage 57. If the position of the main oil reservoir 55 is set below the discharge-side bearing 18, it is desirable because the space can be effectively used.
[0034]
In the cyclone separator, fine oil particles are easy to get on the gas flow and the separation efficiency is poor. Therefore, by passing the gas that has undergone cyclone separation through the filter 51, it is possible to separate even fine oil particles. The separated oil travels down the fibers of the filter 51 and moves downward due to gravity while moving in the gas flow, that is, in the outer circumferential direction of the cylinder. In the process, many oil particles are combined by surface tension and fall from the lower end of the filter 51 to the floor surface of the outlet chamber 52. The oil temporarily accumulated on the floor surface flows down through the recovery path 53 and flows into the main oil sump 58.
[0035]
The oil supply passage 33 to the bearing or the like is connected to the lower portion of the main oil reservoir 55, and the oil in the auxiliary oil reservoir 56 also flows into the main oil reservoir through the communication passage 57 and joins. The internal pressure at the main oil sump oil surface 58 is lower than the internal pressure at the sub oil sump oil surface 59. This is because, in the gas flow that is the main factor that determines the internal pressure, the secondary oil sump oil surface 59 is on the upstream side of the filter 51, and the main oil sump oil surface 58 is in communication with the downstream side of the filter 51. The difference in internal pressure between the oil levels is caused by the passage pressure loss.
[0036]
Compared with the amount of oil to be separated and recovered, in the two-stage oil separation mechanism, the oil separated by the primary cyclone separator 25 is mostly, and the amount separated by the secondary filter 51 is small. . Therefore, the amount of oil flowing through the communication passage 57 from the auxiliary oil reservoir 56 toward the main oil sump 55 is much larger than the amount of oil flowing through the recovery passage 53, and the pressure loss of oil passing through the communication passage 57 is at both ends of the recovery passage 53. Larger than the pressure difference. It is preferable to set the cross-sectional area or the length and shape of the communication passage 57 so that the passage pressure loss of the communication passage 57 is substantially equal to the difference in internal pressure between the oil levels 58 and 59 of both oil reservoirs.
[0037]
Accordingly, the gas passage pressure loss in the filter 51 and the oil passage pressure loss in the communication passage 57 are substantially equal, and the oil surfaces 58 and 59 can be maintained at substantially the same height.
[0038]
According to the present embodiment, even fine oil particles can be recovered, so that very high oil separation efficiency can be realized. At the same time, two oil reservoirs can be used effectively, and the amount of oil retained in the compressor can be increased.
[0039]
Although the difference between the oil levels 58 and 59 may increase due to the influence of the operating state, the pressure state, the capacity control, etc., the oil level 58 rises to the outlet chamber 52 or the oil level 59 rises to near the lower end of the inner cylinder 27. Unless this is the case, there is no problem and the allowable width of the oil level displacement can be made relatively large. Therefore, it is desirable to provide a constant flow valve in the communication passage 57 particularly when used for applications where the oil level difference is widened.
[0040]
In the present embodiment, the main oil sump 55 and the communication passage 57 are not provided, the oil supply passage 33 is connected to the sub oil sump 56, and the downstream end of the recovery passage 53 communicates with the compression chamber in the suction or compression process. . In that case, the structure can be simplified.
[0041]
Next, still another embodiment of the present invention will be described with reference to FIG.
The direction from the discharge end surface of the screw rotor to the suction side is the same as that of the conventional model, and the oil separation chamber is integrated with the discharge casing 68. The oil separation element provided in the internal space 69 as an oil separation chamber uses a finer glass wool filter 61 than the conventional example, and covers the entire cross section of the oil separation chamber together with the lower partition wall 62. A communication path 63 is provided below the partition wall 62. The lower part of the oil separation chamber functions as an oil reservoir, and the rotor side is an upstream oil reservoir 64 and the gas outlet 30 side is a downstream oil reservoir 65 with the partition wall 62 as a boundary. The conventional oil sump 66 functions as it is. The downstream oil reservoir 65 and the conventional oil reservoir 66 are communicated with each other through an oil passage 67 having a diameter larger than that of the communication passage 63.
[0042]
According to the present embodiment, the discharge gas blows out from the discharge chamber 23 in the direction of colliding with the wall surface through the flow path continuous in the depth direction of the drawing and reaches the internal space 69. At this time, part of the oil mixed in the gas adheres to the wall surface due to inertia and is separated. Since the filter 61 has a fine mesh, the pressure loss is larger than that of the conventional oil separation element, and the flow velocity distribution becomes relatively uniform without requiring a wide approach section before and after the filter 61. After passing through the filter 61 and separating oil particles having a relatively small particle diameter, the gas is sent out from the outlet 30.
[0043]
The oil separated by the collision that is the primary separation flows into the upstream oil reservoir 64, and the oil separated by the passage of the filter 61 that is the secondary separation flows into the downstream oil reservoir 65 by gravity. Since the internal pressure in the internal space is different between before and after the filter by the pressure loss of the filter 31, the oil in the upstream oil reservoir 64 flows through the communication path 63 to the downstream oil reservoir 65 with the differential pressure. Further, the oil flows from the downstream oil reservoir 65 to the conventional oil reservoir 66 through the oil passage 67 and is sent to each bearing.
[0044]
According to the present embodiment, since there is the partition wall 62, the phenomenon of the oil surface blowing up due to the gas flow does not occur, the fineness of the filter 61 is also obtained, and the oil separation efficiency is remarkably improved. At the same time, the amount of retained oil is determined based on the downstream oil sump 65, so that it is difficult for oil to be taken out due to an abnormal rise in the oil level. Furthermore, the oil separation efficiency can be improved while shortening the overall length of the screw compressor only by exchanging the conventional model discharge casing and oil separation chamber. As a result, design changes are few and improvement is easy, and it is also possible to modify the operating machine to this specification. Even when the compressor is stopped, the oil levels of the oil reservoirs 64 and 65 coincide with each other, and there is no fear of an abnormal oil level rise.
[0045]
Next, still another embodiment of the present invention will be described with reference to FIG.
The flow path from the discharge chamber 23 is connected to the discharge pipe 74 in the back direction in the figure, and the discharge pipe 74 penetrates the filter 71. The cross section of the oil separation chamber 77 is closed together with the filter 73 and the partition wall 72, and a communication path 73 is opened below the partition wall 72. The right side in the figure is an upstream oil sump 75 and the left side is a downstream oil sump 76 with the partition wall 72 as a boundary.
[0046]
In the present embodiment, since the gas outlet 78 is on the upper side, it is not necessary to extend the pipe in the longitudinal direction of the compressor, which is advantageous when the length of the compressor mounting place is limited. Further, the oil passage 67 is not required, and the lower structure can be simplified.
[0047]
【The invention's effect】
According to the present invention, the separation efficiency of the oil separation mechanism can be improved, and the performance of the heat exchanger constituting the refrigerant cycle is increased by reducing the amount of oil taken out from the compressor mixed in the refrigerant gas. At the same time, the amount of oil held inside the compressor can be secured and the reliability of the compressor can be improved. Moreover, since the oil separation mechanism can be reduced in size by improving the separation efficiency, the entire screw compressor can be reduced in size.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a screw compressor according to an embodiment of the present invention.
FIG. 2 is a system diagram of a refrigerant cycle.
3 is a cross-sectional view of the screw compressor according to the embodiment of FIG.
[Fig. 4]
The longitudinal cross-sectional view of the screw compressor in other embodiment by this invention.
FIG. 5 is a cross-sectional view of the screw compressor according to the embodiment of FIG.
FIG. 6 is a longitudinal sectional view of the vicinity of a discharge portion of a screw compressor according to still another embodiment of the present invention.
FIG. 7 is a cross-sectional view of the vicinity of a discharge portion of a screw compressor according to still another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Main casing, 12 ... Discharge casing, 13 ... Suction casing, 14 ... Motor, 15 ... Male rotor (screw rotor), 16 ... Female rotor (screw rotor), 17 ... Suction side bearing, 18 ... Discharge side bearing, 21 DESCRIPTION OF SYMBOLS ... Radial direction discharge port, 22 ... Axial direction discharge port, 23 ... Discharge chamber, 24 ... Introduction flow path, 25 ... Cyclone (cyclone separator), 26 ... Cyclone outer wall, 27 ... Inner cylinder, 28 ... Upper lid, 29 ... Gas Inlet port, 30 ... Gas outlet port, 31 ... Oil reservoir, 32 ... Oil surface, 33 ... Oil supply passage, 34 ... Suction side oil supply passage, 35 ... Discharge side oil supply passage, 51 ... Filter, 53 ... Oil recovery passage, 54 ... partition wall, 55 ... main oil sump, 56 ... sub oil sump, 57 ... oil communication passage.

Claims (2)

スクリューロータと該スクリューロータを回転自在に軸支する軸支手段とそれらを収納するケーシングと該ケーシングに形成される吐出ポートと、前記吐出ポートの下流に設けられた油分離手段と、該油分離手段によって分離回収された油を前記軸支手段に供給する油供給流路を備えたスクリュー圧縮機において、
前記吐出ポートの下流に設けられた空間である吐出室と、
サイクロン外壁と内筒とを有しサイクロン分離器とされた前記油分離手段と、
前記吐出室から前記サイクロン分離器へ至る範囲に形成され、前記サイクロン外壁に対して接線方向に接続された導入流路と、
前記サイクロン分離器の下部に形成された油溜めと、
前記油供給流路であり前記油溜め下部から前記軸支手段へ至る給油路と、
を備え、前記吐出室、前記サイクロン外壁、前記導入流路、前記油溜め、前記給油路が鋳鉄製とされた前記ケーシングに一体化されていることを特徴とするスクリュー圧縮機。
Screw rotor, shaft support means for rotatably supporting the screw rotor, casing for housing them, discharge port formed in the casing , oil separation means provided downstream of the discharge port, and oil separation In a screw compressor provided with an oil supply channel for supplying oil separated and recovered by the means to the shaft support means,
A discharge chamber which is a space provided downstream of the discharge port;
The oil separation means having a cyclone outer wall and an inner cylinder as a cyclone separator;
An introduction flow path formed in a range from the discharge chamber to the cyclone separator and connected in a tangential direction to the cyclone outer wall;
An oil sump formed at the bottom of the cyclone separator;
An oil supply passage which is the oil supply passage and extends from the lower part of the oil reservoir to the shaft support means;
A screw compressor characterized in that the discharge chamber, the cyclone outer wall, the introduction flow path, the oil sump, and the oil supply path are integrated with the casing made of cast iron .
請求項1に記載のものにおいて、前記導入流路は前記吐出室から前記サイクロン分離器に至る範囲で断面積を同一とし、直線あるいは緩い右曲がりに形成されたことを特徴とするスクリュー圧縮機。2. The screw compressor according to claim 1, wherein the introduction flow path has the same cross-sectional area in a range from the discharge chamber to the cyclone separator, and is formed in a straight line or a gentle right turn .
JP2000269866A 2000-09-01 2000-09-01 Screw compressor Expired - Lifetime JP3994220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000269866A JP3994220B2 (en) 2000-09-01 2000-09-01 Screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000269866A JP3994220B2 (en) 2000-09-01 2000-09-01 Screw compressor

Publications (2)

Publication Number Publication Date
JP2002070778A JP2002070778A (en) 2002-03-08
JP3994220B2 true JP3994220B2 (en) 2007-10-17

Family

ID=18756404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000269866A Expired - Lifetime JP3994220B2 (en) 2000-09-01 2000-09-01 Screw compressor

Country Status (1)

Country Link
JP (1) JP3994220B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265910B (en) * 2002-11-29 2012-11-14 株式会社日立产机系统 Screw rod compressor
CN104884808A (en) * 2012-12-17 2015-09-02 大金工业株式会社 Screw compressor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521344B2 (en) 2005-09-30 2010-08-11 株式会社日立産機システム Oil-cooled screw compressor
JP2008008259A (en) * 2006-06-30 2008-01-17 Calsonic Compressor Inc Gas compressor
ITVI20120036A1 (en) * 2012-02-14 2012-05-15 Virgilio Mietto VOLUMETRIC SCREW COMPRESSOR.
KR20160139715A (en) * 2015-05-28 2016-12-07 한국에어로(주) Screw compressor integrated with synchronous motor
CN107355386B (en) 2017-09-07 2020-12-25 珠海格力电器股份有限公司 Exhaust assembly and compressor
JP6597744B2 (en) 2017-09-29 2019-10-30 ダイキン工業株式会社 Oil separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265910B (en) * 2002-11-29 2012-11-14 株式会社日立产机系统 Screw rod compressor
CN104884808A (en) * 2012-12-17 2015-09-02 大金工业株式会社 Screw compressor
CN104884808B (en) * 2012-12-17 2016-06-29 大金工业株式会社 Helical-lobe compressor

Also Published As

Publication number Publication date
JP2002070778A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
KR100318418B1 (en) Oil separator embeded in compressor
AU2005220474B2 (en) Fluid machine
CN107676260B (en) Compressor and system including the same
CN102725526A (en) Compressor and refrigeration device
US20050058564A1 (en) Scroll-type fluid machine
EP2642128B1 (en) Compressor
JP3994220B2 (en) Screw compressor
JPH10159764A (en) Screw compressor
JP4007577B2 (en) Gas compressor
CN101151465A (en) Scroll fluid machine
US6658885B1 (en) Rotary compressor with muffler discharging into oil sump
JP2003083272A (en) Screw compressor
JP6597744B2 (en) Oil separator
CN211648463U (en) Compressor, compressor assembly, heat exchange system and electrical equipment
CN113279965A (en) Horizontal compressor
US20230074153A1 (en) Scroll compressor of an electrical refrigerant drive and electrical refrigerant drive
KR100563849B1 (en) Oil Separator with Compressor
KR101805783B1 (en) Porous oil flow controller
WO2018076835A1 (en) Compressor, air conditioning system, and vehicle
JP5727348B2 (en) Gas compressor
JPH09291891A (en) Screw compressor
CN218816989U (en) Cylinder, compressor and temperature adjusting device
KR20030066044A (en) Internal oil separator for compressor
CN110454395A (en) Flange structure, compressor and air conditioner
US11137180B1 (en) System and method for OCR control in paralleled compressors

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3994220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term