JP2002070778A - Screw compressor - Google Patents
Screw compressorInfo
- Publication number
- JP2002070778A JP2002070778A JP2000269866A JP2000269866A JP2002070778A JP 2002070778 A JP2002070778 A JP 2002070778A JP 2000269866 A JP2000269866 A JP 2000269866A JP 2000269866 A JP2000269866 A JP 2000269866A JP 2002070778 A JP2002070778 A JP 2002070778A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- casing
- discharge
- cyclone
- screw compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はスクリュー圧縮機に
関し、特に冷凍空調に用いる冷媒用スクリュー圧縮機に
おいて、小型、高性能で油の持ち出しが少ないものに好
適である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw compressor, and more particularly, to a screw compressor for a refrigerant used for refrigeration and air conditioning, which is suitable for a small-sized, high-performance, and low oil take-out.
【0002】[0002]
【従来の技術】冷凍空調用に使われる冷媒用スクリュー
圧縮機において、吐出ポート下流に油分離チャンバを設
け、油分離チャンバで冷媒ガスから油を分離し、分離し
た油を油分離チャンバ内下部の油溜りに重力で落下さ
せ、連通したメインケーシング内下部の油溜りに戻し、
再度軸受に供給することが知られ、例えば特開平10―
159763号公報に記載されている。2. Description of the Related Art In a screw compressor for a refrigerant used for refrigeration and air conditioning, an oil separation chamber is provided downstream of a discharge port, oil is separated from refrigerant gas in the oil separation chamber, and the separated oil is supplied to a lower portion of the oil separation chamber. Drop it by gravity into the oil sump and return to the oil sump in the lower part of the main casing,
It is known that the bearing is supplied to the bearing again.
No. 1,597,763.
【0003】また、高い分離効率とするため、サイクロ
ンと濾過式(あるいは捕集フィルタ式)による2段階に
することが、特開平7−243391号公報に記載され
ている。Japanese Patent Application Laid-Open No. Hei 7-243391 discloses that two stages of a cyclone and a filtration system (or a collection filter system) are used in order to obtain a high separation efficiency.
【0004】[0004]
【発明が解決しようとする課題】上記従来技術のもので
は、圧損を小さく抑制するには油分離エレメントとして
粗いメッシュのものを使用しなければならず、吐出チャ
ンバを大きくしなければ十分な分離効率を得られなかっ
た。In the above-mentioned prior art, a coarse mesh oil separation element must be used in order to suppress the pressure loss to a small value. If the discharge chamber is not enlarged, sufficient separation efficiency is obtained. Could not be obtained.
【0005】また、2段階の油分離手段を用いるもので
は、全体として大型化し、吐出圧の脈動により加振され
る振動部分が増え、発生する騒音も大きくなる恐れがあ
った。 さらに、メインケーシング内の下部に設けた油
溜りには、圧縮機運転中は常に吐出直後に分離された高
温の油が流れ込み、この高温の油は吸入過程にある冷媒
ガスと1つの壁面で隔てられているだけなので、壁面を
介して熱伝達され、冷媒ガスは加熱され、性能低下の一
要因となっている。[0005] Further, in the case of using two-stage oil separating means, there is a possibility that the size becomes large as a whole, the vibrating portion vibrated by the pulsation of the discharge pressure increases, and the generated noise increases. Furthermore, high-temperature oil separated immediately after discharge flows into the oil sump provided in the lower part of the main casing during operation of the compressor, and the high-temperature oil is separated from the refrigerant gas in the suction process by one wall. Therefore, heat is transmitted through the wall surface, and the refrigerant gas is heated, which is one of the causes of performance degradation.
【0006】本発明の目的は上記従来技術の課題を解決
し、油分離機構を高効率化し、かつ小型なスクリュー圧
縮機を実現することにある。また本発明の目的は圧縮機
性能(エネルギ効率)を向上するとともに、騒音の発生
を抑制することにある。An object of the present invention is to solve the above-mentioned problems of the prior art, to realize a highly efficient oil separation mechanism, and to realize a small screw compressor. Another object of the present invention is to improve compressor performance (energy efficiency) and to suppress noise generation.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するた
め、本発明は、スクリューロータと該スクリューロータ
を回転自在に軸支する軸支手段とそれらを収納するケー
シングと該ケーシングの吐出ポートが形成される吐出ケ
ーシングと、前記吐出ポートの下流に設けられた油分離
手段と、該油分離手段によって分離回収された油を前記
軸支手段に供給する油供給流路を備えたスクリュー圧縮
機において、吐出ケーシングに形成されサイクロンとさ
れた油分離手段と、サイクロンの下部に形成された油溜
めと、を設けたものである。SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a screw rotor, a shaft supporting means for rotatably supporting the screw rotor, a casing for accommodating them, and a discharge port of the casing. Discharge casing, and an oil separation means provided downstream of the discharge port, and a screw compressor having an oil supply flow path for supplying oil separated and recovered by the oil separation means to the shaft support means. It is provided with oil separating means formed as a cyclone formed in the discharge casing, and an oil reservoir formed below the cyclone.
【0008】また、上記のものにおいて、吐出ケーシン
グに吐出ポートからサイクロンに至る導入流路が形成さ
れたことが望ましい。[0008] In the above, it is desirable that an introduction flow path from the discharge port to the cyclone is formed in the discharge casing.
【0009】さらに、上記のものにおいて、油供給流路
は吐出ケーシングに形成され油溜めの下部から軸支手段
へ至ることが望ましい。Further, in the above, it is desirable that the oil supply passage is formed in the discharge casing and extends from a lower portion of the oil reservoir to the shaft support means.
【0010】さらに、上記のものにおいて、サイクロン
はサイクロン外壁及び内筒が形成され、内筒にガス導出
口が設けられたことが望ましい。Further, in the above, it is desirable that the cyclone has a cyclone outer wall and an inner cylinder, and the inner cylinder has a gas outlet.
【0011】さらに、本発明はスクリューロータと、該
スクリューロータを回転自在に軸支する軸支手段と、吐
出ケーシングと、を備えたスクリュー圧縮機において、
吐出ケーシングに形成されたサイクロンと、サイクロン
の下流に設けられた濾過式油分離手段と、を設けたもの
である。Further, the present invention relates to a screw compressor including a screw rotor, a shaft supporting means for rotatably supporting the screw rotor, and a discharge casing.
It is provided with a cyclone formed in the discharge casing, and a filtration type oil separation means provided downstream of the cyclone.
【0012】さらに、上記のものにおいて、濾過式分離
手段により分離した油の回収流路を前記吐出ケーシング
の内部に形成したことが望ましい。Furthermore, in the above, it is desirable that a recovery flow path for the oil separated by the filtration type separation means is formed inside the discharge casing.
【0013】さらに、本発明は、スクリューロータとそ
れを回転自在に軸支し収納するケーシング、及び該ケー
シングに吐出ポートを備えたスクリュー圧縮機要素と、
前記吐出ポートの下流に油分離手段を備えたスクリュー
圧縮機において、吐出ケーシングに形成され、サイクロ
ン方式あるいは衝突方式など被圧縮ガスと油の密度差と
慣性を利用した1次分離手段と、濾過による2次分離手
段より構成された油分離手段と、1次分離手段の下部に
形成された主油溜りと、主油溜りとは隔壁で区切られ、
2次分離手段の下部に形成された副油溜りと、主油溜り
と副油溜りは下部を連通する油連通路と、を備えたもの
である。Further, the present invention provides a screw rotor, a casing for rotatably supporting and housing the screw rotor, and a screw compressor element having a discharge port in the casing.
In a screw compressor provided with oil separating means downstream of the discharge port, a primary separating means formed in a discharge casing and utilizing the density difference and inertia of a gas to be compressed and oil, such as a cyclone method or a collision method, and filtration. An oil separating means constituted by a secondary separating means, a main oil sump formed below the primary separating means, and a main oil sump are separated by partition walls;
The secondary oil reservoir has a sub oil reservoir formed at a lower portion thereof, and the main oil reservoir and the sub oil reservoir have an oil communication passage communicating with the lower portion.
【0014】さらに、上記のものにおいて、1次分離手
段をサイクロンとしたことが望ましい。Furthermore, in the above, it is desirable that the primary separation means is a cyclone.
【0015】[0015]
【発明の実施の形態】本発明の一実施の形態を図1ない
し3を参照して説明する。冷媒サイクルは圧縮機1、凝
縮器2、膨張弁3、蒸発器4の順に構成され、循環路
(サイクル)を形成する。圧縮機1はその中で冷媒ガス
を圧縮し送り出す役割を担うので、入力するエネルギに
対するガス圧縮仕事であるエネルギ効率(性能)が高い
ことが望まれる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. The refrigerant cycle includes a compressor 1, a condenser 2, an expansion valve 3, and an evaporator 4 in this order, and forms a circulation path (cycle). Since the compressor 1 plays a role of compressing and sending the refrigerant gas therein, it is desired that the energy efficiency (performance) as the gas compression work for the input energy be high.
【0016】圧縮機内部の潤滑などで利用する油は冷媒
サイクル中では無用なばかりか、冷媒ガスに多量に混入
すると凝縮器2や蒸発器4において、熱交換を阻害す
る。また、冷媒サイクルに多量の油が出てしまうと圧縮
機内部の油保有量が減少し、圧縮機自身の潤滑が困難と
なる。そこで、圧縮機から出る前に冷媒ガスから油を分
離する必要がある。The oil used for lubrication inside the compressor is not only unnecessary in the refrigerant cycle, but also impedes heat exchange in the condenser 2 and the evaporator 4 when mixed in a large amount with the refrigerant gas. Also, if a large amount of oil comes out of the refrigerant cycle, the amount of oil held inside the compressor decreases, and lubrication of the compressor itself becomes difficult. Thus, it is necessary to separate the oil from the refrigerant gas before exiting the compressor.
【0017】図1において、圧縮機1は全体をケーシン
グで覆い、分解組立てを容易にするため、ケーシングは
主ケーシング11、吐出ケーシング12、吸入ケーシン
グ13のように3分割とする。吸入ケーシング13に
は、外部から圧縮機本体へ冷媒ガスを導くためのガス導
入口29を設ける。In FIG. 1, the compressor 1 is entirely covered with a casing, and the casing is divided into three parts such as a main casing 11, a discharge casing 12, and a suction casing 13 to facilitate disassembly and assembly. The suction casing 13 is provided with a gas inlet 29 for guiding the refrigerant gas from outside to the compressor body.
【0018】主ケーシング11にはモータ14と、一対
のスクリューロータ(雄ロータ15、雌ロータ16)を
内蔵し、ロータ15、16の歯溝は互いの噛み合いと、
主ケーシング11に形成したボア壁と吸入側端面、吐出
ケーシング12に形成した吐出側端面によって囲まれ、
圧縮室を形成する。モータ14のロータは雄ロータ15
の軸を延長した部分に固定する。両ロータ15、16は
主ケーシング11に保持された吸入側軸受17と、吐出
ケーシング12に保持された吐出側軸受18によって軸
支する。A motor 14 and a pair of screw rotors (male rotor 15 and female rotor 16) are built in the main casing 11, and the tooth grooves of the rotors 15 and 16 are engaged with each other.
Surrounded by a bore wall and a suction side end face formed in the main casing 11, and a discharge side end face formed in the discharge casing 12,
Form a compression chamber. The rotor of the motor 14 is a male rotor 15
Fix the shaft to the extended part. The rotors 15 and 16 are supported by a suction-side bearing 17 held by the main casing 11 and a discharge-side bearing 18 held by the discharge casing 12.
【0019】主ケーシング11内の両ロータ15、16
上部にはスライド弁19を備え、スライド弁19は吐出
ケーシング12内のピストン20に作用する油圧で動か
され、冷媒ガス流量が制御される。スライド弁19には
径方向吐出ポート21を、吐出ケーシング12には軸方
向吐出ポート22を形成し、圧縮完了した圧縮室の吐出
流路への連通路とする。これら吐出ポートの下流にスラ
イド弁19の動く領域を確保し、複雑な形状の両吐出ポ
ートと単純な形状の流路をつなぐため、吐出室23とい
う空間を設ける。The two rotors 15, 16 in the main casing 11
A slide valve 19 is provided on the upper part, and the slide valve 19 is moved by hydraulic pressure acting on a piston 20 in the discharge casing 12 to control the flow rate of the refrigerant gas. A radial discharge port 21 is formed in the slide valve 19, and an axial discharge port 22 is formed in the discharge casing 12 so as to be a communication path to the discharge flow path of the compression chamber that has completed compression. A space called a discharge chamber 23 is provided in order to secure an area where the slide valve 19 moves downstream of these discharge ports and to connect both discharge ports having a complicated shape and a flow path having a simple shape.
【0020】吐出ケーシング12には、サイクロン分離
器25を鋳造で一体化する。サイクロン分離器25はサ
イクロン外壁26と内筒27、底板と上蓋28から成
り、吐出室23からサイクロン分離器25への導入流路
24も同じ吐出ケーシング12内部に形成する。導入流
路24は吐出室23からサイクロン分離器25に至る範
囲で断面積を同一とし、直線あるいは緩い右曲がりに形
成する。内筒27と上蓋28は一体部材で、サイクロン
外壁26上部に締結し一体化する。内筒27の上部は圧
縮機としての出口であるガス導出口30を形成する。A cyclone separator 25 is integrated with the discharge casing 12 by casting. The cyclone separator 25 includes a cyclone outer wall 26 and an inner cylinder 27, a bottom plate and an upper lid 28, and an introduction passage 24 from the discharge chamber 23 to the cyclone separator 25 is also formed inside the same discharge casing 12. The introduction channel 24 has the same cross-sectional area in the range from the discharge chamber 23 to the cyclone separator 25, and is formed in a straight line or a gentle right turn. The inner cylinder 27 and the upper lid 28 are an integral member and are fastened to the upper part of the cyclone outer wall 26 to be integrated. The upper part of the inner cylinder 27 forms a gas outlet 30 which is an outlet as a compressor.
【0021】サイクロン分離器25の下部に油溜め31
を形成し、油面32がある程度の高さ範囲にあるように
油保有量が規定される。油溜め31下部から油供給流路
である給油路33を、吐出ケーシング12壁面内部に開
けた穴で形成する。給油路33は両ロータ15、16の
回転中心以上の高さで二手に分岐させる。一方は吸入側
給油路34として、主ケーシング11と吐出ケーシング
12の結合面を貫通し、吸入側軸受17近くに至る。他
方は吐出ケーシング12内部に開けた穴である吐出側給
油路35として吐出側軸受18近くに至る。An oil sump 31 is provided below the cyclone separator 25.
Is formed, and the oil holding amount is defined so that the oil level 32 is within a certain height range. An oil supply passage 33 serving as an oil supply passage is formed from a lower portion of the oil reservoir 31 by a hole formed in the wall surface of the discharge casing 12. The oil supply path 33 is bifurcated at a height higher than the rotation center of the rotors 15 and 16. One of them penetrates the connection surface between the main casing 11 and the discharge casing 12 as a suction side oil supply passage 34 and reaches near the suction side bearing 17. The other reaches the vicinity of the discharge side bearing 18 as a discharge side oil supply passage 35 which is a hole formed inside the discharge casing 12.
【0022】以上説明した実施の形態によれば、以下の
ように作用する。まず、外部から供給される電力により
モータ14は回転動力を生み出し、軸を共通する雄ロー
タ15を回転駆動すると噛み合った雌ロータ16は雄ロ
ータ15に回転伝達され、両ロータとボアで形成した圧
縮室を軸方向に送りながら、圧縮室容積を拡大縮小し、
中に閉じ込めた冷媒ガスを吸入、圧縮、吐出する。According to the embodiment described above, the operation is as follows. First, the motor 14 generates rotational power by electric power supplied from the outside, and when the male rotor 15 having a common shaft is rotationally driven, the female rotor 16 meshed is rotationally transmitted to the male rotor 15, and the compression formed by both rotors and the bore is performed. While feeding the chamber in the axial direction, expand and contract the compression chamber volume,
It sucks, compresses, and discharges the refrigerant gas trapped inside.
【0023】さらに、冷媒ガスは外部からガス導入口2
9を通過してスクリュー圧縮機1内部に入り、モータ1
4のすきまや外周を通過した後に、両ロータ15、16
の下部を中心に形成した吸入ポートから圧縮室に吸い込
まれる。冷媒ガスの流れに対して吸い込み前に吸入側軸
受17の排出油が混入し、圧縮過程において吐出側軸受
18の排出油が混入する。Further, the refrigerant gas is supplied to the gas inlet 2 from the outside.
9 to the inside of the screw compressor 1 and the motor 1
After passing through the clearance and outer periphery of No. 4, both rotors 15, 16
Is sucked into the compression chamber from a suction port formed around the lower part of the cylinder. The oil discharged from the suction-side bearing 17 is mixed with the flow of the refrigerant gas before the suction, and the oil discharged from the discharge-side bearing 18 is mixed during the compression process.
【0024】圧縮完了後に冷媒ガスとそれに混入した油
は吐出ポートから出て、吐出室23を経由し導入流路2
4を流れ、サイクロン分離器25に入る。導入流路24
は直線あるいは右曲がり形状なので、油に右向きの遠心
力は作用せず、流路内部の右側面に積極的に付着するこ
とはない。導入流路24はサイクロン外壁26に対して
接線方向に接続しているので、サイクロン分離器25に
侵入したガスはサイクロン外壁26に沿って右回り旋回
しながら下降し、内筒27の下端から内筒27に入り、
ガス導出口30から外部に送り出される。After completion of the compression, the refrigerant gas and the oil mixed therein exit from the discharge port and pass through the discharge chamber 23 to the introduction flow path 2.
4 and enters the cyclone separator 25. Inflow channel 24
Is a straight or right-turned shape, no rightward centrifugal force acts on the oil, and it does not actively adhere to the right side surface inside the flow path. Since the introduction flow path 24 is connected to the cyclone outer wall 26 in a tangential direction, the gas that has entered the cyclone separator 25 descends while turning clockwise along the cyclone outer wall 26, and moves downward from the lower end of the inner cylinder 27. Enter the cylinder 27,
The gas is sent out from the gas outlet 30.
【0025】ガスがサイクロン分離器25内部で旋回す
る過程で、ガスに混入した油はその密度の差から遠心力
の作用で、ガスよりも直線運動しやすく、次第に外周に
近付きついにはサイクロン外壁26内面に付着し、分離
されたことになる。外壁26内面に付着した油は重力で
下降し、油溜り31に流入して貯えられる。In the process of swirling the gas inside the cyclone separator 25, the oil mixed into the gas is more likely to move linearly than the gas due to the effect of the centrifugal force due to the difference in density, and gradually approaches the outer periphery and eventually reaches the outer wall 26 of the cyclone. It adheres to the inner surface and is separated. The oil adhering to the inner surface of the outer wall 26 descends by gravity, flows into the oil sump 31 and is stored.
【0026】油溜り31に貯えられた油には圧縮機の吐
出圧力が作用しており、一方、軸受17、18付近はほ
ぼ吸入圧力下にある。したがって、両位置を繋ぐ給油路
33、34、35を通じて、油は圧力差により軸受1
7、18に供給される。油は軸受の潤滑冷却に使用され
た後に圧縮室に入り、スクリューロータ15、16相互
間の潤滑や圧縮室相互間のシール、圧縮熱に対する冷却
材として作用する。この後、再び油はガスと一緒に吐出
されるので、油は圧縮機内部で循環することになる。The discharge pressure of the compressor acts on the oil stored in the oil sump 31, while the vicinity of the bearings 17 and 18 is almost under the suction pressure. Therefore, through the oil supply passages 33, 34, 35 connecting the two positions, the oil is supplied to the bearing 1 by a pressure difference.
7 and 18. The oil enters the compression chamber after being used for lubricating and cooling the bearing, and acts as a lubricant between the screw rotors 15 and 16, a seal between the compression chambers, and a coolant for the heat of compression. Thereafter, the oil is discharged again together with the gas, so that the oil circulates inside the compressor.
【0027】本実施の形態においては、サイクロン分離
器25が有効に活用され、油分離効率が良く、吐出ガス
はサイクロン分離器25内部で旋回する流路となるの
で、軸方向長さを縮小してコンパクトなものとすること
ができる。In the present embodiment, the cyclone separator 25 is effectively used, the oil separation efficiency is high, and the discharged gas is a flow path swirling inside the cyclone separator 25, so that the axial length is reduced. And compact.
【0028】サイクロン分離器25に進入するガスに混
入している油のうち、サイクロン外壁26に近いものは
遠心力の作用で外壁内面に早く付着し分離しやすい。し
かし、導入流路24の右端から進入する油は付着までに
時間を要するため、流速の低下やガス流れの澱みなどに
より遠心力の作用が低下し分離効率が悪くなる。本実施
の形態においては、導入流路24を流れる過程で右側面
への油の積極的付着を防止しているので、サイクロン分
離器25の分離性能を十分に活用できる。Of the oil mixed in the gas entering the cyclone separator 25, the oil near the outer wall 26 of the cyclone easily adheres to the inner surface of the outer wall by centrifugal force and is easily separated. However, since oil entering from the right end of the introduction flow path 24 requires time until it adheres, the effect of the centrifugal force is reduced due to a decrease in flow velocity or stagnation of the gas flow, and the separation efficiency is deteriorated. In the present embodiment, since the active adhesion of oil to the right side surface is prevented in the process of flowing through the introduction flow path 24, the separation performance of the cyclone separator 25 can be fully utilized.
【0029】本実施の形態では、吐出ポート22から吐
出室23、導入流路24、サイクロン分離器25までを
一体化した鋳鉄製吐出ケーシング12に内蔵しているた
め、吐出脈動による振動騒音を低減することもできる。
吐出ポートを発信源とする吐出脈動はガスの流れに沿っ
て下流に伝播するが、上記流路構成部材のいずれもが、
厚くて振動の減衰係数の大きい鋳鉄性壁面で囲まれてお
り、内部圧力が変化しても表面への伝播が抑制される。
また従来の吐出チャンバに比較して吐出ケーシング12
の表面積が小さくできるので表面から発する騒音の総量
も抑制される。In this embodiment, since the discharge port 22 to the discharge chamber 23, the introduction flow path 24, and the cyclone separator 25 are integrated into the cast iron discharge casing 12, the vibration noise due to the discharge pulsation is reduced. You can also.
Discharge pulsation originating from the discharge port propagates downstream along the flow of gas, but any of the flow path constituent members
It is surrounded by a thick cast iron wall having a large vibration damping coefficient, and its propagation to the surface is suppressed even when the internal pressure changes.
In addition, the discharge casing 12
Since the surface area can be reduced, the total amount of noise emitted from the surface is also suppressed.
【0030】さらに、吐出側の各要素を吐出ケーシング
12に一体化したことにより、製造や分解組立ても簡素
化され、各流路をケーシング壁面内に開けた穴で構成し
たことにより、外回りの配管類を省略することができ
る。Further, by integrating each element on the discharge side into the discharge casing 12, the manufacturing and disassembly and assembly are simplified, and each flow path is constituted by a hole formed in the casing wall, so that the outer piping is formed. Classes can be omitted.
【0031】さらに、本実施の形態においては、比較的
高温となる吐出ガスや油溜りがすべて吐出ケーシング1
2に内蔵されることから、吸入過程にあるガスへの熱伝
達が小さく、吸気加熱による性能低下を防止できる。吸
入側に至る高温の油も吸入側給油路34をボアの圧縮側
側面の外側に形成したことにより、吸入過程の圧縮室へ
の熱伝達を小さくできる。Further, in the present embodiment, all of the discharge gas and oil sump which are relatively high in temperature are discharged from the discharge casing 1.
2, the heat transfer to the gas in the suction process is small, and the performance deterioration due to the heating of the suction air can be prevented. Even for the high-temperature oil reaching the suction side, the heat transfer to the compression chamber during the suction process can be reduced by forming the suction side oil supply passage 34 outside the compression side surface of the bore.
【0032】以上説明した実施の形態では、雄ロータ1
5の一端に設けたモータ14によって駆動し、雄ロータ
15から雌ロータ16に回転伝達する構造としたが、逆
にしても良い。In the embodiment described above, the male rotor 1
5 is driven by the motor 14 provided at one end, and the rotation is transmitted from the male rotor 15 to the female rotor 16, but may be reversed.
【0033】次に本発明の他の実施の形態を図4、5を
参照して説明する。サイクロン分離器25を1次分離機
構とする2段階分離方式であり、サイクロン下部の油溜
りは副油溜り56とする。また、内筒27の上に延長す
る形で濾過式分離手段である円筒状のグラスウール製フ
ィルタ51を設け、上端面は別部材で塞ぐ。サイクロン
外壁26も上に延長し、フィルタ51を取り囲む出口室
52を構成し、その上部はガス導出口30を除いて塞
ぐ。主油溜り55は副油溜り56とほぼ同じ高さに設
け、出口室52の底から連なる油回収路53で連通させ
る。主油溜り55と副油溜り56は隔壁54で区切る
が、両者の底近くを油連通路57で繋げる。主油溜り5
5の油面58と副油溜り56の油面59は両方とも油連
通路57より上になるように設定する。主油溜り55の
位置は吐出側軸受18の下部にすると、空間を有効に活
用することができる点から望ましい。Next, another embodiment of the present invention will be described with reference to FIGS. This is a two-stage separation system in which the cyclone separator 25 is used as a primary separation mechanism, and an oil reservoir below the cyclone is a sub-oil reservoir 56. Further, a cylindrical filter 51 made of glass wool, which is a filtration type separating means, is provided so as to extend above the inner cylinder 27, and the upper end surface is closed with another member. The cyclone outer wall 26 also extends upward and forms an outlet chamber 52 surrounding the filter 51, the upper part of which is closed except for the gas outlet 30. The main oil sump 55 is provided at substantially the same height as the sub oil sump 56 and communicates with an oil recovery path 53 extending from the bottom of the outlet chamber 52. The main oil sump 55 and the sub oil sump 56 are separated by a partition wall 54, but the bottoms of both are connected by an oil communication passage 57. Main oil sump 5
5 and the oil surface 59 of the auxiliary oil reservoir 56 are both set to be higher than the oil communication passage 57. It is desirable that the position of the main oil reservoir 55 be located below the discharge-side bearing 18, since the space can be effectively used.
【0034】サイクロン分離器は微少な油粒子はガス流
れに乗りやすく分離効率が悪い。そこで、サイクロン分
離を経たガスをフィルタ51に通過させることにより、
油の微粒子まで分離することができる。分離された油は
フィルタ51の繊維を伝って、ガス流れすなわち円筒の
外周方向へ移動しながら重力で下方向にも移動する。そ
の過程で多くの油粒子が表面張力で結合して、フィルタ
51の下端から出口室52の床面に落ちる。床面に一時
的に溜まった油は回収路53を通って流れ落ちて主油溜
り58に流入する。In the cyclone separator, fine oil particles easily get on the gas flow and the separation efficiency is poor. Therefore, by passing the gas having passed through the cyclone separation through the filter 51,
Oil particles can be separated. The separated oil moves along the fiber of the filter 51 and moves downward by gravity while moving in the gas flow, that is, in the outer circumferential direction of the cylinder. In the process, many oil particles are combined by surface tension and fall from the lower end of the filter 51 to the floor of the outlet chamber 52. The oil temporarily accumulated on the floor surface flows down through the recovery path 53 and flows into the main oil sump 58.
【0035】軸受等への給油路33は主油溜り55の下
部につなげており、副油溜り56の油も連通路57を通
って主油溜りに流れ込み合流する。主油溜り油面58に
おける内圧は副油溜り油面59における内圧よりも低
い。なぜなら、内圧を決定する主因であるガス流れにお
いて、副油溜り油面59はフィルタ51の上流側であ
り、主油溜り油面58はフィルタ51の下流側に連通し
ているため、フィルタ51の通過圧損の分だけ、油面間
の内圧の差が生じる。The oil supply passage 33 to the bearing and the like is connected to the lower part of the main oil sump 55, and the oil in the sub oil sump 56 also flows into the main oil sump through the communication passage 57 and joins. The internal pressure at the main oil sump oil level 58 is lower than the internal pressure at the sub oil sump oil level 59. Because, in the gas flow which is the main factor for determining the internal pressure, the sub oil sump oil level 59 is on the upstream side of the filter 51 and the main oil sump oil level 58 is communicated with the downstream side of the filter 51. The difference in internal pressure between the oil levels is caused by the passing pressure loss.
【0036】分離回収する油量で比較すると、2段階の
油分離機構のうち、1次側のサイクロン分離器25によ
り分離される油が大部分であり、2次側のフィルタ51
による分離量は少量である。したがって、連通路57を
副油溜り56から主油溜り55へ向かって流れる油量は
回収路53を流れる油量よりもはるかに多く、連通路5
7を通る油の通過圧損は回収路53の両端圧力差に比較
し大きい。この連通路57の通過圧損を先の両油溜りの
油面58、59における内圧の差にほぼ等しくなるよう
に、連通路57断面積あるいは長さ、形状を設定してお
くことが良い。Comparing the amount of oil to be separated and recovered, the oil separated by the primary cyclone separator 25 is the majority of the oil separation mechanism of the two stages, and the oil is separated by the secondary filter 51.
Is small. Therefore, the amount of oil flowing through the communication passage 57 from the sub oil reservoir 56 to the main oil reservoir 55 is much larger than the amount of oil flowing through the recovery passage 53, and
7 is larger than the pressure difference between the two ends of the recovery passage 53. It is preferable to set the sectional area, length, and shape of the communication passage 57 so that the passage pressure loss of the communication passage 57 is substantially equal to the difference between the internal pressures at the oil surfaces 58 and 59 of the two oil reservoirs.
【0037】それによって、フィルタ51におけるガス
の通過圧損と、連通路57における油の通過圧損がほぼ
等しくなり、油面58、59をほぼ等しい高さに維持す
ることができる。As a result, the gas passing pressure loss in the filter 51 becomes substantially equal to the oil passing pressure loss in the communication passage 57, and the oil levels 58 and 59 can be maintained at substantially the same height.
【0038】本実施の形態によれば、微細な油粒子まで
回収できるので、非常に高い油分離効率を実現すること
ができる。同時に2つの油溜りを有効に利用し、圧縮機
の保有油量を多くすることができる。According to the present embodiment, since even fine oil particles can be recovered, very high oil separation efficiency can be realized. At the same time, the two oil sumps can be effectively used, and the amount of oil held by the compressor can be increased.
【0039】運転状態や圧力状態、容量制御などの影響
で、油面58、59の差が大きくなることもあるが、油
面58が出口室52まで、あるいは油面59が内筒27
の下端近くまで上昇しない限りは問題無く、油面変位の
許容幅を比較的大きくできる。よって、特に油面差が広
がる用途に用いる場合には連通路57に定流量弁を備え
ることが望ましい。Although the difference between the oil levels 58 and 59 may increase due to the influence of the operation state, the pressure state, the capacity control, and the like, the oil level 58 extends to the outlet chamber 52 or the oil level 59
As long as it does not rise to the vicinity of the lower end, there is no problem, and the allowable width of the oil level displacement can be relatively large. Therefore, it is desirable to provide the communication passage 57 with a constant flow valve particularly when used for applications where the oil level difference is widened.
【0040】本実施の形態において主油溜り55や連通
路57を設けず、給油路33は副油溜り56からつな
げ、回収路53の下流端は吸い込みあるいは圧縮過程に
ある圧縮室に連通する構造としてもよい。その場合構造
を簡素化することができる。In this embodiment, the main oil reservoir 55 and the communication passage 57 are not provided, the oil supply passage 33 is connected to the sub oil reservoir 56, and the downstream end of the recovery passage 53 communicates with the compression chamber in the suction or compression process. It may be. In that case, the structure can be simplified.
【0041】次に、本発明のさらに他の実施の形態を図
6を用いて説明する。スクリューロータの吐出端面から
吸入側方向はすべて、従来機種と同一とし、吐出ケーシ
ング68に油分離チャンバを一体化する。油分離チャン
バとしての内部空間69に備える油分離エレメントには
従来例に比較し目の細かいグラスウール製フィルタ61
を使用し、下部の隔壁62と合わせて油分離チャンバの
断面全部を覆う。隔壁62の下部には連通路63を設け
ておく。油分離チャンバ下部は油溜りとして機能し、隔
壁62を境にロータ側を上流側油溜り64、ガス導出口
30側を下流側油溜り65とする。また、従来の油溜り
66はそのまま機能する。下流側油溜り65と従来の油
溜り66は連通路63よりも太い径の油流路67で連通
させる。Next, still another embodiment of the present invention will be described with reference to FIG. The direction from the discharge end face of the screw rotor to the suction side is all the same as that of the conventional model, and the oil separation chamber is integrated with the discharge casing 68. An oil separation element provided in an internal space 69 serving as an oil separation chamber has a finer filter 61 made of glass wool than the conventional example.
To cover the entire cross section of the oil separation chamber together with the lower partition 62. A communication path 63 is provided below the partition wall 62. The lower part of the oil separation chamber functions as an oil sump, and the rotor side is an upstream oil sump 64 and the gas outlet 30 side is a downstream oil sump 65 with the partition wall 62 as a boundary. Further, the conventional oil sump 66 functions as it is. The downstream oil sump 65 and the conventional oil sump 66 communicate with each other through an oil flow passage 67 having a diameter larger than that of the communication passage 63.
【0042】本実施の形態によれば、吐出ガスは吐出室
23から図面奥方向に連なる流路を抜けて壁面に衝突す
る方向に吹き出し、内部空間69に至る。この時、ガス
に混入した油の一部は慣性で壁面に付着し、分離され
る。フィルタ61の目が細かいため、従来の油分離エレ
メントに比較して圧損が大きく、フィルタ61の前後に
広い助走区間を必要とせずとも、流速分布は比較的一様
になる。フィルタ61を通過し、比較的小さい粒径の油
粒子を分離した後、ガスは導出口30から送り出され
る。According to the present embodiment, the discharge gas blows out of the discharge chamber 23 through the flow path extending in the depth direction of the drawing and in the direction of collision with the wall surface, and reaches the internal space 69. At this time, part of the oil mixed into the gas adheres to the wall surface by inertia and is separated. Since the size of the filter 61 is small, the pressure loss is large as compared with the conventional oil separation element, and the flow velocity distribution becomes relatively uniform without requiring a wide approach section before and after the filter 61. After passing through the filter 61 and separating the oil particles having a relatively small particle size, the gas is discharged from the outlet 30.
【0043】1次分離である衝突により分離された油は
上流側油溜り64に、2次分離であるフィルタ61通過
により分離された油は下流側油溜り65に、それぞれ重
力で流入する。内部空間の内圧はフィルタ31の圧損分
だけ、フィルタの前後で差があるため、その差圧で上流
側油溜り64の油は下流側油溜り65へ連通路63を通
って流れる。また、下流側油溜り65から従来の油溜り
66へ油流路67を通って流れ、各軸受に送られる。The oil separated by the collision as the primary separation flows into the upstream oil reservoir 64 and the oil separated by passing through the filter 61 as the secondary separation flows into the downstream oil reservoir 65 by gravity. Since the internal pressure of the internal space has a difference before and after the filter by an amount corresponding to the pressure loss of the filter 31, the oil in the upstream oil reservoir 64 flows to the downstream oil reservoir 65 through the communication passage 63 by the differential pressure. Further, the oil flows from the downstream oil sump 65 to the conventional oil sump 66 through the oil flow path 67 and is sent to each bearing.
【0044】本実施の形態によれば、隔壁62があるの
で、ガスの流れによる油面の吹き上げ現象は発生せず、
フィルタ61の目の細かさの効果もあり、油分離効率は
格段に向上する。同時に下流側油溜り65を基準に保有
油量を決めるので、油面の異常上昇による油の持ち出し
も発生しにくい。さらに、従来の機種の吐出ケーシング
と油分離チャンバを交換するのみで、スクリュー圧縮機
の全長を短縮しつつ、油分離効率を向上することができ
る。そのため、設計変更点が少なく、改良が容易である
ほか、稼働中の機械の本仕様への改造も可能となる。圧
縮機停止時においても油溜り64と65の油面が一致す
るのみで、異常な油面上昇を発生する心配もない。According to the present embodiment, since the partition wall 62 is provided, the oil level does not blow up due to the gas flow.
Due to the effect of the fineness of the filter 61, the oil separation efficiency is significantly improved. At the same time, the amount of retained oil is determined based on the downstream oil sump 65, so that it is difficult for oil to be taken out due to an abnormal rise in the oil level. Furthermore, the oil separation efficiency can be improved while shortening the overall length of the screw compressor only by replacing the oil discharge chamber with the discharge casing of the conventional model. Therefore, there are few design changes, and it is easy to improve. In addition, it is possible to convert a running machine to this specification. Even when the compressor is stopped, only the oil levels of the oil sumps 64 and 65 coincide with each other, and there is no fear that an abnormal oil level rise occurs.
【0045】次に、本発明のさらに他の実施の形態を図
7を用いて説明する。吐出室23からの流路は図で奥方
向で吐出管74に連なり、吐出管74はフィルタ71を
貫通させる。油分離チャンバ77の断面をフィルタ73
と隔壁72を合わせてふさぎ、隔壁72下部には連通路
73を開ける。隔壁72を境に図中右側が上流側油溜り
75、左側が下流側油溜り76となる。Next, still another embodiment of the present invention will be described with reference to FIG. The flow path from the discharge chamber 23 continues to the discharge pipe 74 in the depth direction in the figure, and the discharge pipe 74 passes through the filter 71. The cross section of the oil separation chamber 77 is
And the partition 72 are closed together, and a communication path 73 is opened below the partition 72. The right side in the drawing is the upstream oil reservoir 75 and the left side is the downstream oil reservoir 76 with the partition wall 72 as a boundary.
【0046】本実施の形態において、ガス導出口78が
上方にあるため、この先の配管を圧縮機の長手方向に伸
ばす必要が無く、圧縮機搭載場所の長さに限りがある場
合に有利である。また、油流路67が不用となり、下部
構造を簡素化することができる。In this embodiment, since the gas outlet 78 is located upward, there is no need to extend the pipe in the longitudinal direction of the compressor, which is advantageous when the length of the compressor mounting space is limited. . Further, the oil passage 67 becomes unnecessary, and the lower structure can be simplified.
【0047】[0047]
【発明の効果】本発明によれば、油分離機構の分離効率
を向上でき、さらに、冷媒ガスに混入した圧縮機からの
油の持ち出し量を低減することにより、冷媒サイクルを
構成する熱交換器の性能を高くするとともに、圧縮機内
部の油保有量を確保し圧縮機の信頼性を高めることがで
きる。また、分離効率向上により油分離機構を小型化で
きるので、スクリュー圧縮機全体を小型化できる。According to the present invention, the separation efficiency of the oil separation mechanism can be improved, and the amount of oil taken out of the compressor mixed in the refrigerant gas can be reduced, so that the heat exchanger constituting the refrigerant cycle can be achieved. The performance of the compressor can be improved, and the amount of oil retained inside the compressor can be secured to increase the reliability of the compressor. Further, since the oil separation mechanism can be downsized by improving the separation efficiency, the whole screw compressor can be downsized.
【図1】 本発明による一実施の形態におけるスクリュ
ー圧縮機の縦断面図。FIG. 1 is a longitudinal sectional view of a screw compressor according to an embodiment of the present invention.
【図2】 冷媒サイクルの系統図。FIG. 2 is a system diagram of a refrigerant cycle.
【図3】 図1の実施の形態によるスクリュー圧縮機の
横断面図。FIG. 3 is a cross-sectional view of the screw compressor according to the embodiment of FIG.
【図4】本発明による他の実施の形態におけるスクリュ
ー圧縮機の縦断面図。FIG. 4 is a longitudinal sectional view of a screw compressor according to another embodiment of the present invention.
【図5】 図4の実施の形態によるスクリュー圧縮機の
横断面図。FIG. 5 is a cross-sectional view of the screw compressor according to the embodiment of FIG.
【図6】 本発明によるさらに他の実施の形態における
スクリュー圧縮機の吐出部付近の縦断面図。FIG. 6 is a longitudinal sectional view of the vicinity of a discharge section of a screw compressor according to still another embodiment of the present invention.
【図7】 本発明によるさらに他の実施の形態における
スクリュー圧縮機の吐出部付近の横断面図である。FIG. 7 is a cross-sectional view of the vicinity of a discharge section of a screw compressor according to still another embodiment of the present invention.
11…主ケーシング 、12…吐出ケーシング、13…
吸入ケーシング、14…モータ、15…雄ロータ(スク
リューロータ)、16…雌ロータ(スクリューロー
タ)、17…吸入側軸受、18…吐出側軸受、21…径
方向吐出ポート、22…軸方向吐出ポート 、23…吐
出室、24…導入流路、25…サイクロン(サイクロン
分離器)、26…サイクロン外壁、27…内筒、28…
上蓋、29…ガス導入口、30…ガス導出口、31……
油溜め、32…油面、33…給油路、34…吸入側給油
路、 35…吐出側給油路、51…フィルタ、53…油
回収路、54…隔壁、55…主油溜り、56…副油溜
り、57…油連通路。11: Main casing, 12: Discharge casing, 13:
Suction casing, 14 ... motor, 15 ... male rotor (screw rotor), 16 ... female rotor (screw rotor), 17 ... suction side bearing, 18 ... discharge side bearing, 21 ... radial discharge port, 22 ... axial discharge port , 23 ... discharge chamber, 24 ... introduction flow path, 25 ... cyclone (cyclone separator), 26 ... cyclone outer wall, 27 ... inner cylinder, 28 ...
Upper lid, 29 ... gas inlet, 30 ... gas outlet, 31 ...
Oil sump, 32 ... Oil level, 33 ... Oil supply path, 34 ... Suction side oil supply path, 35 ... Discharge side oil supply path, 51 ... Filter, 53 ... Oil recovery path, 54 ... Partition wall, 55 ... Main oil sump, 56 ... Secondary Oil reservoir, 57 ... oil communication passage.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 野澤 重和 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 浦新 昌幸 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 肥田 毅士 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 Fターム(参考) 3H029 AA03 AA15 AA21 AB03 BB03 BB37 CC18 CC26 CC45 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigekazu Nozawa 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Hitachi Air Conditioning Systems Shimizu Production Headquarters (72) Inventor Masayuki Urasin 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture System Shimizu Production Headquarters (72) Inventor Takeshi Hida 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Hitachi Air Conditioning Systems Shimizu Production Headquarters F-term (reference) 3H029 AA03 AA15 AA21 AB03 BB03 BB37 CC18 CC26 CC45
Claims (8)
回転自在に軸支する軸支手段とそれらを収納するケーシ
ングと該ケーシングの吐出ポートが形成される吐出ケー
シングと、前記吐出ポートの下流に設けられた油分離手
段と、該油分離手段によって分離回収された油を前記軸
支手段に供給する油供給流路を備えたスクリュー圧縮機
において、 前記吐出ケーシングに形成されサイクロンとされた前記
油分離手段と、 前記サイクロンの下部に形成された油溜めと、を設けた
ことを特徴とするスクリュー圧縮機。A screw rotor, a shaft supporting means for rotatably supporting the screw rotor, a casing for accommodating them, a discharge casing in which a discharge port of the casing is formed, and a discharge casing provided downstream of the discharge port. An oil separating unit, and a screw compressor having an oil supply passage for supplying oil separated and recovered by the oil separating unit to the shaft support unit, wherein the oil separating unit is formed in the discharge casing and is a cyclone. And a sump formed at a lower portion of the cyclone.
ケーシングに前記吐出ポートから前記サイクロンに至る
導入流路が形成されたことを特徴とするスクリュー圧縮
機。2. The screw compressor according to claim 1, wherein an introduction flow path from the discharge port to the cyclone is formed in the discharge casing.
給流路は前記吐出ケーシングに形成され前記油溜めの下
部から前記軸支手段へ至ることを特徴とするスクリュー
圧縮機。3. The screw compressor according to claim 1, wherein said oil supply flow path is formed in said discharge casing and extends from a lower portion of said oil reservoir to said bearing means.
クロンはサイクロン外壁及び内筒が形成され、前記内筒
にガス導出口が設けられたことを特徴とするスクリュー
圧縮機。4. The screw compressor according to claim 1, wherein said cyclone has a cyclone outer wall and an inner cylinder, and said inner cylinder is provided with a gas outlet.
を回転自在に軸支する軸支手段と、吐出ケーシングと、
を備えたスクリュー圧縮機において、 前記吐出ケーシングに形成されたサイクロンと、 前記サイクロンの下流に設けられた濾過式油分離手段
と、を設けたことを特徴とするスクリュー圧縮機。5. A screw rotor, a shaft supporting means for rotatably supporting the screw rotor, a discharge casing,
A screw compressor comprising: a cyclone formed in the discharge casing; and a filtration oil separating unit provided downstream of the cyclone.
式分離手段により分離した油の回収流路を前記吐出ケー
シングの内部に形成したことを特徴とするスクリュー圧
縮機。6. The screw compressor according to claim 5, wherein an oil recovery flow path separated by said filtration type separation means is formed inside said discharge casing.
し収納するケーシング、及び該ケーシングに吐出ポート
を備えたスクリュー圧縮機要素と、前記吐出ポートの下
流に油分離手段を備えたスクリュー圧縮機において、 前記吐出ケーシングに形成され、サイクロン方式あるい
は衝突方式など被圧縮ガスと油の密度差と慣性を利用し
た1次分離手段と、濾過による2次分離手段より構成さ
れた前記油分離手段と、 前記1次分離手段の下部に形成された主油溜りと、 前記主油溜りとは隔壁で区切られ、前記2次分離手段の
下部に形成された副油溜りと、 前記主油溜りと前記副油溜りは下部を連通する油連通路
と、を備えたことを特徴とするスクリュー圧縮機。7. A screw compressor having a screw rotor, a casing for rotatably supporting and housing the screw rotor, a screw compressor element having a discharge port in the casing, and an oil separating means downstream of the discharge port. In the discharge casing formed in the discharge casing, a primary separation means utilizing the density difference and inertia of the gas to be compressed and oil such as a cyclone method or a collision method, and the oil separation means constituted by a secondary separation means by filtration, A main oil reservoir formed at a lower portion of the primary separation unit; a main oil reservoir separated by a partition wall; a sub oil reservoir formed at a lower portion of the secondary separation unit; A screw compressor comprising an oil reservoir and an oil communication passage communicating with a lower portion.
分離手段をサイクロンとしたことを特徴とするスクリュ
ー圧縮機。8. The screw compressor according to claim 7, wherein said primary separation means is a cyclone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000269866A JP3994220B2 (en) | 2000-09-01 | 2000-09-01 | Screw compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000269866A JP3994220B2 (en) | 2000-09-01 | 2000-09-01 | Screw compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002070778A true JP2002070778A (en) | 2002-03-08 |
JP3994220B2 JP3994220B2 (en) | 2007-10-17 |
Family
ID=18756404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000269866A Expired - Lifetime JP3994220B2 (en) | 2000-09-01 | 2000-09-01 | Screw compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3994220B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008008259A (en) * | 2006-06-30 | 2008-01-17 | Calsonic Compressor Inc | Gas compressor |
CN100390423C (en) * | 2002-11-29 | 2008-05-28 | 株式会社日立产机系统 | Screw rod compressor |
US7473084B2 (en) | 2005-09-30 | 2009-01-06 | Hitachi Industrial Equipment System Co. | Oil-cooled screw compressor |
ITVI20120036A1 (en) * | 2012-02-14 | 2012-05-15 | Virgilio Mietto | VOLUMETRIC SCREW COMPRESSOR. |
WO2014097590A1 (en) | 2012-12-17 | 2014-06-26 | ダイキン工業株式会社 | Screw compressor |
WO2016190558A1 (en) * | 2015-05-28 | 2016-12-01 | 한국에어로(주) | Screw compressor integrated with synchronous motor |
CN107355386A (en) * | 2017-09-07 | 2017-11-17 | 珠海格力电器股份有限公司 | Exhaust assembly and compressor |
EP3669994A4 (en) * | 2017-09-29 | 2021-05-05 | Daikin Industries, Ltd. | Oil separator |
-
2000
- 2000-09-01 JP JP2000269866A patent/JP3994220B2/en not_active Expired - Lifetime
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100390423C (en) * | 2002-11-29 | 2008-05-28 | 株式会社日立产机系统 | Screw rod compressor |
US8226388B2 (en) | 2005-09-30 | 2012-07-24 | Hitachi Industrial Equipment Systems Co., Ltd. | Oil-cooled screw compressor |
US7473084B2 (en) | 2005-09-30 | 2009-01-06 | Hitachi Industrial Equipment System Co. | Oil-cooled screw compressor |
US7762799B2 (en) | 2005-09-30 | 2010-07-27 | Hitachi Industrial Equipment Systems Co. | Oil-cooled screw compressor |
JP2008008259A (en) * | 2006-06-30 | 2008-01-17 | Calsonic Compressor Inc | Gas compressor |
CN104114868A (en) * | 2012-02-14 | 2014-10-22 | 维尔吉利奥·米耶托 | Volumetric screw compressor |
WO2013121257A1 (en) * | 2012-02-14 | 2013-08-22 | Virgilio Mietto | Volumetric screw compressor |
ITVI20120036A1 (en) * | 2012-02-14 | 2012-05-15 | Virgilio Mietto | VOLUMETRIC SCREW COMPRESSOR. |
RU2610871C2 (en) * | 2012-02-14 | 2017-02-17 | Виргилио МИЕТТО | Volumetric screw compressor |
WO2014097590A1 (en) | 2012-12-17 | 2014-06-26 | ダイキン工業株式会社 | Screw compressor |
US9771952B2 (en) | 2012-12-17 | 2017-09-26 | Daikin Industries, Ltd. | Screw compressor |
WO2016190558A1 (en) * | 2015-05-28 | 2016-12-01 | 한국에어로(주) | Screw compressor integrated with synchronous motor |
CN107355386A (en) * | 2017-09-07 | 2017-11-17 | 珠海格力电器股份有限公司 | Exhaust assembly and compressor |
US11371508B2 (en) | 2017-09-07 | 2022-06-28 | Gree Electric Appliances (Wuhan) Co., Ltd | Exhaust assembly and compressor |
EP3669994A4 (en) * | 2017-09-29 | 2021-05-05 | Daikin Industries, Ltd. | Oil separator |
US11020697B2 (en) | 2017-09-29 | 2021-06-01 | Daikin Industries, Ltd. | Oil separator |
EP4052795A1 (en) * | 2017-09-29 | 2022-09-07 | Daikin Industries, Ltd. | Oil separator |
Also Published As
Publication number | Publication date |
---|---|
JP3994220B2 (en) | 2007-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5516607B2 (en) | Compressor and refrigeration equipment | |
EP0899460A2 (en) | Scroll type compressor | |
EP2642128B1 (en) | Compressor | |
PL208520B1 (en) | Hybrid-type compressor | |
US7014437B2 (en) | Screw compressor | |
JP4007577B2 (en) | Gas compressor | |
JP3994220B2 (en) | Screw compressor | |
JP2003083272A (en) | Screw compressor | |
US6488480B1 (en) | Housing for screw compressor | |
US6658885B1 (en) | Rotary compressor with muffler discharging into oil sump | |
CN113279965A (en) | Horizontal compressor | |
JP6597744B2 (en) | Oil separator | |
JP2019056322A (en) | Compressor | |
JP4048751B2 (en) | Gas compressor | |
KR101805783B1 (en) | Porous oil flow controller | |
JP5727348B2 (en) | Gas compressor | |
WO2018076835A1 (en) | Compressor, air conditioning system, and vehicle | |
KR100325393B1 (en) | High Pressure Dome Compressor | |
CN114934902A (en) | Oil-gas separation structure, compressor and refrigeration and heating system | |
CN110312871B (en) | Compressor and refrigeration cycle device | |
JPH09291891A (en) | Screw compressor | |
JP2002242865A (en) | Screw compressor | |
KR20030066044A (en) | Internal oil separator for compressor | |
JP2007192047A (en) | Compressor | |
CN110454395A (en) | Flange structure, compressor and air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070703 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070716 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3994220 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
SZ03 | Written request for cancellation of trust registration |
Free format text: JAPANESE INTERMEDIATE CODE: R313Z03 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130810 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |