JP4104112B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4104112B2
JP4104112B2 JP2002071190A JP2002071190A JP4104112B2 JP 4104112 B2 JP4104112 B2 JP 4104112B2 JP 2002071190 A JP2002071190 A JP 2002071190A JP 2002071190 A JP2002071190 A JP 2002071190A JP 4104112 B2 JP4104112 B2 JP 4104112B2
Authority
JP
Japan
Prior art keywords
compressor
temperature
heat exchanger
injection circuit
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002071190A
Other languages
Japanese (ja)
Other versions
JP2003269808A (en
Inventor
知巳 梅田
進 中山
佳彦 望月
賢治 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002071190A priority Critical patent/JP4104112B2/en
Publication of JP2003269808A publication Critical patent/JP2003269808A/en
Application granted granted Critical
Publication of JP4104112B2 publication Critical patent/JP4104112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気圧縮機式のヒートポンプサイクルを有する空気調和機に関し、特に中間負荷(中間能力)以下の運転をする場合において運転効率を向上し、省エネルギ化を図るものに好適である。
【0002】
【従来の技術】
従来、空気調和機の成績係数を高くするための高効率サイクルとしてインジェクション回路を設けた空気調和機が知られている。例えば、特開平10−176866号公報では、広い能力範囲で成績係数の高い運転を実現する方法として、インジェクション回路を設け、インジェクション運転または非インジェクション運転のうち成績係数の高い方の運転を選択することが記載されている。
【0003】
また、圧縮機の容量制御手段として、圧縮室から冷媒を抜きバイパスさせる方法が知られ、例えば、特開平9−256974号公報に記載されている。さらに、50%以下の部分負荷運転を多段階に変更可能なスクロール圧縮機として、多段階の容量制御を行うことが特開平11−351167号公報に記載されている。
【0004】
【発明が解決しようとする課題】
上記従来技術においては、ガスインジェクションサイクルを用いることで空気調和機の成績係数は高くなるが、圧力比が小さくなるほど、その効果は段々と小さくなる。つまり、負荷の大きな時はガスインジェクションの効果は大きいが、負荷が小さくなると効果は小さい。一方、一般的に空気調和機が使用されている環境下は低中負荷の場合が多く、省エネ、特に年間省電力とするには充分でない。また上記従来技術による圧縮機の容量制御は多段階ではあるものの、現在省エネ機種として主流になっているインバータ制御機に比較すると、容量制御範囲は格段に狭く、省エネ効果も小さい。
【0005】
本発明の目的は、使用環境の実情に合わせて効率を向上し、年間を通じて高い成績係数(省エネ性の高い)の運転が可能な空気調和機を提供することにある。
【0006】
また、本発明の目的は、低負荷から高負荷まで運転範囲を拡大、つまりインバータ制御の機種では圧縮機が最低運転周波数とされる場合でも、さらに能力を減らすことを可能とすることにある。
【0007】
さらに、インバータ制御のない機種でも容量制御を可能としてインバータ制御の有無に係わらず、省エネに適した運転方法を選択可能とすることにある。
なお、本発明は上記目的の少なくとも一つを達成することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、圧縮機、熱源側熱交換器、第一減圧装置、レシーバ、第二減圧装置、利用側熱交換器を順次配管で接続し冷凍サイクルを構成した空気調和機において、前記レシーバと前記圧縮機の圧縮室とを結ぶインジェクション回路と、前記インジェクション回路と前記圧縮機の吸入側配管とを結ぶバイパス回路と、前記インジェクション回路における前記圧縮機の圧縮室側の配管を、前記インジェクション回路又は前記バイパス回路に開閉切り替える三方弁と、前記インジェクション回路中に設けた電磁弁と、前記熱源側熱交換器側に設けられ、室外温度を検出する第1の温度センサと、前記利用側熱交換器側に設けられ、室内温度を検出する第2の温度センサと、前記第1及び第2の温度センサからの検出信号を取り込み、室外温度と室内温度との温度差が判定値よりも大きく、かつ設定温度と室内温度との温度差も判定値よりも大きい場合に、前記インジェクション回路における前記圧縮機の圧縮室側の配管を前記インジェクション回路に連通させる信号を、前記三方弁に出力するとともに前記電磁弁に開信号を出力し、室外温度と室内温度との温度差が判定値よりも小さく、かつ設定温度と室内温度との温度差も判定値よりも小さい場合に、前記インジェクション回路における前記圧縮機の圧縮室側の配管と前記インジェクション回路との連通を閉じさせる信号を、前記三方弁に出力するとともに前記電磁弁に閉信号を出力するコントローラとを備えたものである。
【0012】
さらに、上記のものにおいて、圧縮機を運転周波数が最小周波数から最大周波数まで制御される可変容量型の圧縮機とし、運転周波数が最小周波数となった場合、バイパス回路を開いてインジェクションを行わないことが望ましい。
【0013】
【発明の実施の形態】
以下、図を参照して本発明の一実施の形態を説明する。
図1および図2は空気調和機のヒートポンプサイクルのシステム構成を示し、圧縮機1、四方弁2、熱源側熱交換器(室外熱交換器)3、第1減圧装置4、レシーバ5、阻止弁6、第2減圧装置7a、利用側熱交換器(室内熱交換器)8a、阻止弁9、そして圧縮機1を順に配管で接続している。さらにレシーバ5と圧縮機1の圧縮過程の圧縮室とを結ぶインジェクション回路(配管111、配管112、配管109を接続する回路)を有し、インジェクション回路と圧縮機1の吸入側配管108を結ぶバイパス回路(配管110)を有している。
【0014】
インジェクション回路とバイパス回路との接続点に流路切り替え弁である三方弁10を設けており、バイパス回路とインジェクション回路とを切り替える。また、バイパス回路(配管110)には減圧装置としてキャピラリチューブ12が設けられ、バイパス回路を流れる冷媒流量の流量を調節する。キャピラリチューブ12の代わりに流量調整弁や電子膨張弁を用いてもよい。
【0015】
さらに、三方弁10とレシーバ5の間のインジェクション回路(配管111、配管112)には電磁弁11を設け、インジェクション回路の開閉ができる。レシーバは冷房運転時と暖房運転時との必要冷媒量差、また定格能力運転時(高負荷運転時)と中間能力運転時(低負荷運転時)との必要冷媒量差を調整する。
【0016】
図1、図2では冷房運転時の冷媒の流れを示している。圧縮機1で高温高圧のガスとなった冷媒は、四方弁2により熱源側熱交換器(室外熱交換器)3に向かう。熱源側熱交換器3では、送風される空気に放熱し(送風系は図示省略)、冷媒は凝縮し気液二相、飽和液もしくは過冷却液冷媒のいずれかの状態となる。状態の決定は、第一減圧装置4の絞り量により制御される。第一減圧装置4を通過した冷媒は、減圧され気液二相の状態となりレシーバ5に流入する。レシーバ5からは飽和液冷媒または気液二相冷媒が取り出され、その後、阻止弁6を通過し第二減圧装置7aに至る。第二減圧装置7aで室内空気よりも低い温度の気液二相冷媒となり、利用側熱交換器(室内熱交換器)8aに流入する。利用側熱交換器6aにおいて、送風される室内空気から吸熱し(送風系は図示省略)、ガス冷媒となり圧縮機1に戻る。暖房運転時の冷媒の流れは、四方弁2を切り替えることで冷媒を逆に流す。
【0017】
図1ではインジェクション回路の冷媒の流れを、図2ではバイパス回路の冷媒の流れを示す。図1に示すように、三方弁10がインジェクション回路側に切り替えられ、またインジェクション回路上の電磁弁11が開の場合、圧縮機1の圧縮過程の圧縮室に冷媒がインジェクションされる。この時、バイパス回路は閉じている。また電磁弁12が閉じていると、三方弁10がインジェクション回路側に切り替えられていても、インジェクション回路は閉じている。
【0018】
インジェクションの方法には、レシーバ5から取り出す冷媒の状態により2種類あり、液または気液二相の冷媒を取り出し圧縮機1にインジェクションをした場合にはリキッドインジェクションとなり、また飽和ガス冷媒を取り出し圧縮機1にインジェクションした場合はガスインジェクションとなる。
【0019】
以下、ガスインジェクションをするものとして説明する。ガスインジェクションの駆動力は、圧縮機1のインジェクションされる圧縮室の圧力とレシーバ5の圧力との圧力差である。従って、レシーバ5の圧力が圧縮機1の圧縮室内圧力よりも高い場合にガスインジェクションされる。図2に示すように、三方弁10がバイパス回路に切り替えられると、圧縮機1の圧縮過程の圧縮室と圧縮機1の吸入側配管108を接続することになり、圧縮機1の圧縮室の圧力は、圧縮機1の吸入側配管108内の圧力よりも低いため、圧縮機1の圧縮過程の圧縮室から圧縮機1の吸入側配管108へ冷媒が流出(バイパス)されることになる。この時、インジェクション回路は閉じている。
【0020】
以上の空気調和機は、冷房運転、暖房運転時の各々について3つの運転方法を選択できる。図3から図5において、各々の運転についてモリエル線図を使用して説明する。モリエル線図の横軸はエンタルピh、縦軸は圧力pである。線81は飽和液線、線82は飽和ガス線である。なお運転は冷房運転時として示す。
【0021】
図3は、インジェクション回路、バイパス回路とも閉じている場合である。図中の点P1からP2までが圧縮機1、P2からP3までが熱源側熱交換器(室外熱交換器)3、P3からP4が第1減圧装置4から第2減圧装置7aまで、P4からP1が利用側熱交換器(室内熱交換器)8aでの冷媒の状態を示している。この時、冷媒の質量流量G1はサイクルで一定である。
【0022】
図4は、インジェクション回路が開き、バイパス回路が閉じている場合である。
図中の点P1からP5はガスインジェクションされるまでの圧縮機1の圧縮過程(ステージ1)で、圧縮室にP11の飽和ガスの冷媒がガスインジェクションされることで、P5の冷媒状態P6となりステージ2の圧縮過程P6からP7が開始する。P7からP3は熱源側熱交換器(室外熱交換器)3、P3からP8が第1減圧装置4、P8がレシーバ5の状態でレシーバ内にはP11の飽和ガス冷媒とP9の飽和液冷媒が共存している。主のサイクルでは、レシーバ5からP9飽和液の冷媒を取り出し第2減圧装置に送る。P9からP10は第2減圧装置7a、P10からP1が利用側熱交換器8aでの冷媒の状態を示している。サイクル内の冷媒の質量流量は熱源側熱交換器でG2、インジェクション回路でG3、利用側熱交換器でG4とすると、G2=G3+G4の関係にある。当然ながら、圧縮機1の圧縮過程では、インジェクションの前後で圧縮室内の冷媒の流量が各々G4、G2と異なる。実際には、ガスインジェクションはレシーバ5と圧縮機1の圧縮室との圧力差でなされるので、P6のように瞬時に行われるのでなく、ある時間を要し逐次行われる。
【0023】
図5は、インジェクション回路が閉じ、ガスバイパス回路が開いている場合である。P1からP2が圧縮機1であり、P5の圧力になる圧縮室が圧縮機1の吸入側配管接続しているので、圧縮室から圧縮機1の吸入側配管に冷媒が流出する。またP2からP3が熱源側熱交換器3、P3からP4が第1膨張弁から第2膨張弁、P4からP12が利用側熱交換器8a(室内熱交換器)である。従って、圧縮機1の吸入時の冷媒の質量流量をG7、バイパス流量をG6とすると、サイクルに流れる冷媒量はG5=G7−G5となる。
【0024】
図3を基準として図4、図5のサイクルの成績係数(例えば、冷房運転時:冷房COP=冷房能力/消費電力)を比較する。冷房能力は利用側熱交換器(室内熱交換器(蒸発器))のエンタルピ差と冷媒質量流量の積となる。ガスインジェクションをした場合、利用側熱交換器内のエンタルピ差は、図4ではΔh(図4)=h(P1)−h(P10)となる。一方、図3のエンタルピ差は、Δh(図3)=h(P1)−h(P4)となる。P1、P3のエンタルピは同じであるから、Δh(図4)>Δh(図3)となり、同一能力ならばガスインジェクションをした方が冷媒流量が少なくてよい(G4<G1)。従って、圧縮機1のP1からP5間の圧縮仕事が減り、即ち、成績係数の分母が小さくなり成績係数が高くなる。
【0025】
またバイパスをした場合(図5)では、利用側熱交換器のエンタルピ差は変わらないが冷媒の質量流量が減り(G5=G7−G6:圧縮機1の理論行程容積が同じならばG7=G1)、能力を小さくできる。また圧縮機1のP5からP2の区間の流量が減るためこの分の圧縮仕事が減り、消費電力も小さくなる。例えば、インバータによる能力制御をする圧縮機の場合、負荷に応じ圧縮機の運転周波数を変えて対応するが、最低回転数となっても負荷に対して能力が大きい場合は無駄な仕事をしていることになる。この時、バイパス回路を使用すると負荷に応じた能力に調整でき、高い成績係数の状態で運転が可能となる。さらに、一定速圧縮機を使用している場合は、圧縮機の運転方法による能力制御はできないが、バイパス回路を使用すると能力制御が可能となり、高い圧縮機効率の運転点での運転が可能となる。
【0026】
さらに、インバータ駆動の圧縮機,一定速の圧縮機に係わらず、バイパス回路を開き、冷媒を圧縮機吸入側に戻すことで、冷房運転時では熱源側熱交換器(室外熱交換器)を流れる冷媒質量流量が小さくなり、見かけ熱交換器が大きくなったことと同等となり、凝縮圧力が下がり、圧縮機吐出圧力(Pd)が下がる。利用側熱交換器(室内熱交換器)でも冷媒質量流量が減るため圧力損失が小さくなり蒸発圧力が上がり、圧縮機の吸入圧力(Ps)を上られる。その結果、圧力比(Pd/Ps)が小さくなり、圧縮仕事が低減でき、空気調和機の省エネとなる。
【0027】
以上のサイクルでは冷房、暖房運転ともに3つの運転方法が選択できるので、ガスインジェクション回路は、圧縮機吸入圧力(Ps)と圧縮機吐出圧力(Pd)との圧力比(=Pd/Ps)が大きい場合、バイパス回路は圧力比が小さい場合に使用する。例えばJIS規格の室内外の温度条件に当てはめると、ガスインジェクション回路は、過負荷条件、定格条件で使用し、バイパス回路は中間条件で使用する。通常は各々の運転条件に応じ、予め設定され記憶された情報に基づき、最適な3つの運転方法を選択する。
【0028】
具体的には、室外吸込み空気温度、室内吸込み空気温度、使用者が設定した設定温度と圧縮機の運転周波数を検出し、そのデータを予めメモリに記憶している設定値(例えばプログラム、テーブル)に照らし合わせて運転を選択する。図1には制御システムの構成も示し、熱源側熱交換器(室外熱交換器)3の吸込み側に温度センサを設け室外温度を測定し、利用側熱交換器(室内熱交換器)8aの吸込み側に温度センサを設け室内温度を測定する。温度センサにはサーミスタ又は熱電対を用いる。
【0029】
入力装置として例えばリモコン70から使用者が設定温度を入力する。インバータ制御の場合、圧縮機には運転周波数の計測センサが設けられ、電流波形または電圧波形から運転周波数を求める。あるいはインバータの設定周波数で代用してもよい。センサと入力装置(リモコン)はコントローラ61に接続されており、この情報がコントローラ61に入力される。例えば、室内機22aを介して、室外機21のコントローラ61に情報が伝達される。
【0030】
インジェクション回路とバイパス回路とを切り替える流路切換え弁(三方弁)10とインジェクション回路を開閉する開閉弁(電磁弁)11もコントローラ61に接続されている。コントローラ61にはセンサ、入力装置からのデータが入り、予め記憶されている判定値に基づき、3つの運転方法から最適な運転方法を選択し、それに応じ、コントローラー61から制御信号が三方弁10や電磁弁11に伝達され制御を行う。例えば、室外温度と室内温度との温度差が判定値よりも大きく、かつ設定温度と室内温度との温度差も判定値よりも大きい場合は、インジェクション回路を開く。また室外温度と室内温度との温度差が判定値よりも小さくかつ設定温度と室内温度との温度差が判定値よりも小さい場合は、バイパス回路を開く。その他の運転条件では、バイパス回路、インジェクション回路も閉じる運転を行う。
【0031】
図6は、本実施の形態に使用するスクロール圧縮機の構造と圧縮室につながるインジェクション回路を示す。スクロール圧縮機の場合、同時に2つの圧縮室が形成される。圧縮室は固定スクロール42と旋回スクロール43のラップが組み合わされて形成される。各圧縮室には所定の圧力比の場所にインジェクション用のポート47a、47bを設けている。このポート47a、47bは固定スクロール42に設けることが最も容易である。ポート47a、47bは図1の配管109に接続する。
【0032】
図7およぶ図8は、他の実施形態の空気調和機のサイクル構成を示し、基本的には図1および図2に示したサイクル構成と同じである。
図7は、図1および図2に示した三方弁10の代わりに四方弁13を使用した場合であり、四方弁の4つある通路の一つは必ず閉じている。三方弁10を使用した場合と四方弁13を使用した場合とは基本的に動作は同じである。
図8は、図1および図2に示した三方弁10の代わりに電磁弁14を使用した場合であり、電磁弁14は配管110上のキャピラリーチューブ13とインジェクション回路との接続点19との間に設ける。電磁弁11を開き、電磁弁14を閉じるとインジェクション回路を使用でき、電磁弁11を閉じ、電磁弁14を開くとバイパス回路を使用できる。どちらも閉じると、通常のサイクル構成となる。
【0033】
図9は、ガスインジェクションを行うための他の実施の形態によるサイクル構成を示し、ガスインジェクション回路とバイパス回路の使用に関しては、図1および図2に示した空気調和機と同じである。
図9のサイクルは、圧縮機1、四方弁2、熱源側熱交換器3、レシーバ5、阻止弁6、第2減圧装置7a、利用側熱交換器8a、阻止弁9、そして圧縮機1を順に配管で接続し、レシーバ5の冷媒流入口が冷房運転時、暖房運転時とも一方向になるように、レシーバ5の入口に流れ制御回路16を設けている。
【0034】
流れ制御回路16は、4つの逆止弁14a、14b、14c、14dと第1減圧装置4として可変絞りの電子膨張弁を用い、ブリッジ回路を構成している。また、レシーバ5と圧縮機1とを接続するインジェクション回路が設けており、レシーバ5側から配管116、第3減圧装置(インジェクション減圧装置)18、配管117、配管111、開閉弁11、配管112、配管109で構成される。
【0035】
第3減圧装置18の下流側に、第3減圧装置18の下流側の冷媒と、レシーバ5の下流側の冷媒とを熱交換するために中間熱交換器17を設け、インジェクション回路では、レシーバ5から飽和液冷媒を取り出し、第3減圧装置18でインジェクション圧力まで減圧し気液二相の冷媒とする。この後、中間熱交換器17により、第3減圧装置18の下流側の冷媒は、主流のレシーバ5下流の冷媒から吸熱し、気液二相の冷媒が完全ガス化して圧縮機1の中間圧縮室にインジェクションする。一方、主流の冷媒流れは、レシーバ5につながる配管116から飽和液冷媒と飽和ガス冷媒を取り出し、気液二相の冷媒状態であるが、中間熱交換器17により凝縮し、さらに冷却され、過冷却状態の液冷媒となり、利用側熱交換8aへと流れていく。室外機21と室内機22aとを接続する接続配管105および配管106が長配管である場合(例えば30m以上)などは、ガスインジェクションの方式としては、図1よりも図9の方がガスインジェクションが可能な運転範囲が大きくなる。
【0036】
以上のように、インジェクション回路にインジェクション回路と圧縮機の吸入側配管とを結ぶバイパス回路を設け、回路を切り替えて使用することでインジェクション回路を利用して、圧縮機の圧縮室から冷媒を流出させる容量制御を可能にした。基本的には、インバータ制御の有無に係わらず、ガスインジェクション回路を有効に利用し、能力を減らす方向の容量制御を可能にする。その結果、インバータ制御の機種では、最低圧縮機運転周波数の場合でも、さらに能力を減らせる容量制御が可能であり、またガスインジェクションによる能力増加の容量制御(能力一定の時は省エネ向上)が可能である。
【0037】
また、回路の切換えはインジェクション回路搭載の空気調和機では、三方弁や四方弁または電磁弁を1つ追加することで可能となる。さらに、運転制御に使用するセンサも一般的に空気調和機では保有している既存の温度センサ等からの情報を用いればよく、新設する必要もない。その結果、例えば、インバータ駆動の圧縮機を使用している場合、圧縮機の運転周波数を最小にしても負荷に対して能力が大きい場合など、さらに能力を小さくすることができ、負荷に適応した最適な運転状態を作ることで、空気調和機の成績係数が高い状態で運転することが可能となる。また一定速圧縮機を使用している場合、負荷との不適応の場合には余分な仕事を圧縮機にさせることになるが、バイパス回路を用いることで、能力制御が可能となり空気調和機の成績係数が高い運転が可能となる。さらに、インジェクション回路を搭載しているので、ガスインジェクションを行えば、インバータ駆動の圧縮機の場合、同一能力ならば、ガスインジェクションをしない場合に比べ、圧縮機の運転周波数を低減できるため、圧縮機の消費電力が低減され、省エネ運転(成績係数が高い)となる。一定速圧縮機では、同一行程容積とすると、能力アップができ、同一能力ならば行程容積を小さくできるので圧縮機運転の省エネ化、また小型化が可能となる。
【0038】
さらにインバータ駆動の圧縮機、一定速の圧縮機に係わらず、バイパス回路を開き冷媒を圧縮機吸入側に戻すことで、冷房運転時では熱源側熱交換器(室外熱交換器)を流れる冷媒質量流量が小さくなり、見かけ熱交換器が大きくなったことと同等となり、凝縮圧力が下がり、圧縮機吐出圧力(Pd)が下げることができる。利用側熱交換器(室内熱交換器)でも冷媒質量流量が減るため圧力損失が小さくなり蒸発圧力が上がり、圧縮機の吸入圧力(Ps)を上られる。よって、圧力比(Pd/Ps)が小さくなり、圧縮仕事が低減できる。
【0039】
インジェクション回路とバイパス回路を合せ持ち、条件に応じて運転方法を選択することで、インジェクションポートの有効利用を図り、広い運転範囲において成績係数の高い運転が可能となり、空気調和機の運転効率を向上させ、省エネルギとすることができる。
【0040】
また圧縮機をインバータ駆動とし圧縮機の運転周波数を変可変できるものとして効果を説明したが、一定速で運転される圧縮機では、ガスインジェクションにより圧縮機の行程容積(理論吐出容積)を小さくすることができ、それに応じ圧縮機の負荷が小さくなるので電気入力が小さくなり、また必要トルクが小さくなるのでモータ容量を下げることができる。さらに、圧縮機のケーシング等が小さくできるなどの効果も得られる。
【0041】
さらにガスインジェクション回路を利用したバイパス回路を設けることで、一定速で運転される圧縮機においても段階的な容量制御が可能となる。またインジェクション方式は、ガスインジェクションの代わりにリキッドインジェクションとすることも可能であるが、ポート位置により効果が異なる。
【0042】
さらに、圧縮機はスクロール圧縮機として説明したが、ロータリー圧縮機としても同様である。さらに、冷媒はR22、R410A、R32、R407C、炭酸ガスやHC冷媒などの自然系冷媒等でも対応可能であ。
【0043】
【発明の効果】
以上述べたように本発明によれば、インジェクション回路にインジェクション回路と圧縮機の吸入側配管とを結ぶバイパス回路を設けたので、インジェクション回路を流用し、圧縮機の圧縮室から冷媒を流出させることで容量制御を可能にし、バイパス回路を開き冷媒を圧縮機吸入側に戻すことで圧縮機吸入圧力と圧縮機吐出圧力の比である圧力比(Pd/Ps)が小さくできる。
【0044】
よって、負荷に適応した最適な運転状態を作ることができ、広い運転範囲において成績係数の高い運転が可能となり、空気調和機の運転効率を向上させ、省エネルギ化を図ることができる。
【図面の簡単な説明】
【図1】 一実施の形態による空気調和機のシステム構成図(ガスインジェクション回路開)。
【図2】 図1において、バイパス回路を開とした状態を示すシステム構成図。
【図3】 一実施の形態による空気調和機のガスインジェクション、バイパス共に行わない場合のサイクル運転のモリエル線図。
【図4】 一実施の形態による空気調和機のガスインジェクション時のモリエル線図。
【図5】 一実施の形態による空気調和機のバイパス時のモリエル線図。
【図6】 一実施の形態による圧縮機の断面図。
【図7】 他の実施の形態による空気調和機のシステム構成図。
【図8】 さらに、他の実施の形態による空気調和機のシステム構成図。
【図9】本発明の一実施例である空気調和機の別のシステム構成図。
【符号の説明】
1…圧縮機、2…四方弁、3…熱源側熱交換器(室外熱交換器)、4…第一減圧装置、5…レシーバ、6…阻止弁、7a、7b…第二減圧装置、8a、8b…利用側熱交換器(室内熱交換器)、9…阻止弁、10…三方弁、11…電磁弁、12…キヤピラリーチューブ、13…四方弁、14…電磁弁、44…吸入ポート、45a、45b…圧縮室、46…吐出ポート、47a、47b…インジェクションポート、110…バイパス配管、111、112…インジェクション配管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner having a vapor compressor type heat pump cycle, and is particularly suitable for improving the operation efficiency and saving energy when operating at an intermediate load (intermediate capacity) or less.
[0002]
[Prior art]
Conventionally, an air conditioner provided with an injection circuit as a high-efficiency cycle for increasing the coefficient of performance of the air conditioner is known. For example, in Japanese Patent Application Laid-Open No. 10-176866, as a method for realizing an operation with a high coefficient of performance in a wide capacity range, an injection circuit is provided, and an operation with a higher coefficient of performance is selected from injection operation or non-injection operation. Is described.
[0003]
Further, as a capacity control means of the compressor, a method of extracting and bypassing the refrigerant from the compression chamber is known, and is described in, for example, Japanese Patent Application Laid-Open No. 9-256974. Further, Japanese Patent Laid-Open No. 11-351167 discloses that multi-stage capacity control is performed as a scroll compressor capable of changing a partial load operation of 50% or less to multi-stages.
[0004]
[Problems to be solved by the invention]
In the above prior art, the coefficient of performance of the air conditioner increases by using the gas injection cycle, but the effect decreases gradually as the pressure ratio decreases. That is, the effect of gas injection is great when the load is large, but the effect is small when the load is small. On the other hand, generally in an environment where an air conditioner is used, there are many cases of low and medium loads, which is not sufficient for energy saving, especially annual power saving. In addition, although the compressor capacity control according to the above-described prior art is multi-stage, the capacity control range is much narrower and the energy-saving effect is small compared to the inverter controller that is currently mainstream as an energy-saving model.
[0005]
An object of the present invention is to provide an air conditioner that improves the efficiency in accordance with the actual situation of the use environment and can operate with a high coefficient of performance (high energy saving) throughout the year.
[0006]
It is another object of the present invention to expand the operating range from a low load to a high load, that is, to further reduce the capacity even when the compressor is set to the minimum operating frequency in the inverter control model.
[0007]
Furthermore, the capacity control can be performed even in a model without inverter control, and an operation method suitable for energy saving can be selected regardless of the presence or absence of inverter control.
The present invention is to achieve at least one of the above objects.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention configured a refrigeration cycle by sequentially connecting a compressor, a heat source side heat exchanger, a first pressure reducing device, a receiver, a second pressure reducing device, and a use side heat exchanger with piping. In the air conditioner, an injection circuit that connects the receiver and a compression chamber of the compressor, a bypass circuit that connects the injection circuit and a suction side pipe of the compressor, and a compression chamber side of the compressor in the injection circuit A three-way valve that opens and closes the pipe to the injection circuit or the bypass circuit, a solenoid valve provided in the injection circuit, and a first temperature sensor that is provided on the heat source side heat exchanger side and detects an outdoor temperature When provided in the utilization-side heat exchanger side, a second temperature sensor for detecting the room temperature, the detection signal from the first and second temperature sensors Uptake, larger than the temperature difference is judged value between the outdoor temperature and the indoor temperature, and when the temperature difference between the set temperature and the indoor temperature is greater than the determination value, the compression chamber side of the compressor in the injection circuit A signal for communicating the pipe to the injection circuit is output to the three-way valve and an open signal is output to the electromagnetic valve, and the temperature difference between the outdoor temperature and the room temperature is smaller than the judgment value, and the set temperature and the room temperature And a signal for closing the communication between the piping on the compression chamber side of the compressor and the injection circuit in the injection circuit is output to the three-way valve and the electromagnetic valve. it is obtained by a controller you force out of the close signal.
[0012]
Furthermore, in the above, the compressor is a variable capacity compressor whose operating frequency is controlled from the minimum frequency to the maximum frequency, and when the operating frequency becomes the minimum frequency, the bypass circuit is opened and injection is not performed. Is desirable.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1 and 2 show a system configuration of a heat pump cycle of an air conditioner, which includes a compressor 1, a four-way valve 2, a heat source side heat exchanger (outdoor heat exchanger) 3, a first pressure reducing device 4, a receiver 5, and a check valve. 6, the 2nd decompression device 7a, the utilization side heat exchanger (indoor heat exchanger) 8a, the blocking valve 9, and the compressor 1 are connected by piping in order. Furthermore, it has an injection circuit (a circuit connecting the pipe 111, the pipe 112, and the pipe 109) that connects the receiver 5 and the compression chamber in the compression process of the compressor 1, and a bypass that connects the injection circuit and the suction side pipe 108 of the compressor 1 It has a circuit (pipe 110).
[0014]
A three-way valve 10 which is a flow path switching valve is provided at a connection point between the injection circuit and the bypass circuit, and switches between the bypass circuit and the injection circuit. Further, the bypass circuit (pipe 110) is provided with a capillary tube 12 as a pressure reducing device, and adjusts the flow rate of the refrigerant flowing through the bypass circuit. Instead of the capillary tube 12, a flow rate adjusting valve or an electronic expansion valve may be used.
[0015]
Furthermore, an electromagnetic valve 11 is provided in the injection circuit (pipe 111, pipe 112) between the three-way valve 10 and the receiver 5, so that the injection circuit can be opened and closed. The receiver adjusts the necessary refrigerant amount difference between the cooling operation and the heating operation, and the necessary refrigerant amount difference between the rated capacity operation (high load operation) and the intermediate capacity operation (low load operation).
[0016]
1 and 2 show the refrigerant flow during the cooling operation. The refrigerant that has become high-temperature and high-pressure gas in the compressor 1 is directed to the heat source side heat exchanger (outdoor heat exchanger) 3 by the four-way valve 2. In the heat source side heat exchanger 3, heat is radiated to the blown air (the blower system is not shown), and the refrigerant condenses into a gas-liquid two-phase, saturated liquid or supercooled liquid refrigerant state. The determination of the state is controlled by the throttle amount of the first pressure reducing device 4. The refrigerant that has passed through the first decompression device 4 is decompressed and enters a gas-liquid two-phase state and flows into the receiver 5. A saturated liquid refrigerant or a gas-liquid two-phase refrigerant is taken out from the receiver 5, and then passes through the blocking valve 6 to reach the second pressure reducing device 7a. The second pressure reducing device 7a becomes a gas-liquid two-phase refrigerant having a temperature lower than the room air, and flows into the use side heat exchanger (indoor heat exchanger) 8a. In the use-side heat exchanger 6a, heat is absorbed from the blown room air (the blower system is not shown), and becomes a gas refrigerant and returns to the compressor 1. The refrigerant flow during the heating operation is reversed by switching the four-way valve 2.
[0017]
FIG. 1 shows the refrigerant flow in the injection circuit, and FIG. 2 shows the refrigerant flow in the bypass circuit. As shown in FIG. 1, when the three-way valve 10 is switched to the injection circuit side and the electromagnetic valve 11 on the injection circuit is open, the refrigerant is injected into the compression chamber in the compression process of the compressor 1. At this time, the bypass circuit is closed. When the electromagnetic valve 12 is closed, the injection circuit is closed even if the three-way valve 10 is switched to the injection circuit side.
[0018]
There are two types of injection methods depending on the state of the refrigerant taken out from the receiver 5. When the liquid or gas-liquid two-phase refrigerant is taken out and injected into the compressor 1, it becomes liquid injection, and the saturated gas refrigerant is taken out from the compressor. When it is injected into 1, gas injection is performed.
[0019]
Hereinafter, it demonstrates as what performs gas injection. The driving force of gas injection is a pressure difference between the pressure of the compression chamber into which the compressor 1 is injected and the pressure of the receiver 5. Therefore, gas injection is performed when the pressure of the receiver 5 is higher than the pressure in the compression chamber of the compressor 1. As shown in FIG. 2, when the three-way valve 10 is switched to the bypass circuit, the compression chamber in the compression process of the compressor 1 and the suction side pipe 108 of the compressor 1 are connected, and the compression chamber of the compressor 1 is connected. Since the pressure is lower than the pressure in the suction side pipe 108 of the compressor 1, the refrigerant flows out (bypass) from the compression chamber in the compression process of the compressor 1 to the suction side pipe 108 of the compressor 1. At this time, the injection circuit is closed.
[0020]
The above air conditioner can select three operation methods for each of the cooling operation and the heating operation. 3 to 5, each operation will be described using a Mollier diagram. The horizontal axis of the Mollier diagram is enthalpy h, and the vertical axis is pressure p. Line 81 is a saturated liquid line, and line 82 is a saturated gas line. The operation is shown as during cooling operation.
[0021]
FIG. 3 shows a case where both the injection circuit and the bypass circuit are closed. In the figure, points P1 to P2 are the compressor 1, P2 to P3 are the heat source side heat exchanger (outdoor heat exchanger) 3, P3 to P4 are the first pressure reducing device 4 to the second pressure reducing device 7a, P4 to P1 has shown the state of the refrigerant | coolant in the utilization side heat exchanger (indoor heat exchanger) 8a. At this time, the mass flow rate G1 of the refrigerant is constant in the cycle.
[0022]
FIG. 4 shows the case where the injection circuit is open and the bypass circuit is closed.
Points P1 to P5 in the figure are the compression process (stage 1) of the compressor 1 until gas injection, and the refrigerant of the saturated gas P11 is gas-injected into the compression chamber, so that the refrigerant state P6 becomes P5 and the stage The second compression process P6 to P7 starts. P7 to P3 are the heat source side heat exchanger (outdoor heat exchanger) 3, P3 to P8 are the first pressure reducing device 4, and P8 is the receiver 5, and the saturated gas refrigerant of P11 and the saturated liquid refrigerant of P9 are in the receiver. Coexist. In the main cycle, the refrigerant of the P9 saturated liquid is taken out from the receiver 5 and sent to the second decompression device. P9 to P10 show the state of the refrigerant in the second decompression device 7a, and P10 to P1 show the usage-side heat exchanger 8a. The mass flow rate of the refrigerant in the cycle is G2 = G3 + G4 where G2 is the heat source side heat exchanger, G3 is the injection circuit, and G4 is the use side heat exchanger. Naturally, in the compression process of the compressor 1, the flow rate of the refrigerant in the compression chamber before and after the injection is different from that of G4 and G2, respectively. Actually, since the gas injection is performed by a pressure difference between the receiver 5 and the compression chamber of the compressor 1, it is not performed instantaneously as in P6, but is performed sequentially over a certain time.
[0023]
FIG. 5 shows a case where the injection circuit is closed and the gas bypass circuit is open. Since P1 to P2 are the compressor 1, and the compression chamber having the pressure of P5 is connected to the suction side piping of the compressor 1, the refrigerant flows out from the compression chamber to the suction side piping of the compressor 1. P2 to P3 are the heat source side heat exchanger 3, P3 to P4 are the first expansion valve to the second expansion valve, and P4 to P12 are the use side heat exchanger 8a (indoor heat exchanger). Therefore, if the mass flow rate of the refrigerant at the time of suction of the compressor 1 is G7 and the bypass flow rate is G6, the refrigerant amount flowing in the cycle is G5 = G7−G5.
[0024]
The coefficient of performance of the cycles of FIGS. 4 and 5 (for example, during cooling operation: cooling COP = cooling capacity / power consumption) is compared with FIG. 3 as a reference. The cooling capacity is the product of the enthalpy difference of the use side heat exchanger (indoor heat exchanger (evaporator)) and the refrigerant mass flow rate. When gas injection is performed, the enthalpy difference in the use-side heat exchanger is Δh (FIG. 4) = h (P1) −h (P10) in FIG. On the other hand, the enthalpy difference in FIG. 3 is Δh (FIG. 3) = h (P1) −h (P4). Since the enthalpies of P1 and P3 are the same, Δh (FIG. 4)> Δh (FIG. 3), and if the capacity is the same, the refrigerant flow rate may be smaller when the gas injection is performed (G4 <G1). Therefore, the compression work between P1 and P5 of the compressor 1 decreases, that is, the denominator of the coefficient of performance decreases and the coefficient of performance increases.
[0025]
In the case of bypass (FIG. 5), the enthalpy difference of the use side heat exchanger is not changed, but the mass flow rate of the refrigerant is reduced (G5 = G7−G6: G7 = G1 if the theoretical stroke volume of the compressor 1 is the same). ), Ability can be reduced. Further, since the flow rate in the section from P5 to P2 of the compressor 1 is reduced, the compression work is reduced by this amount, and the power consumption is also reduced. For example, in the case of a compressor that performs capacity control with an inverter, the operation frequency of the compressor is changed according to the load. Will be. At this time, if a bypass circuit is used, the capacity can be adjusted according to the load, and operation can be performed with a high coefficient of performance. In addition, if a constant speed compressor is used, capacity control by the compressor operation method is not possible, but if the bypass circuit is used, capacity control is possible and operation at an operating point with high compressor efficiency is possible. Become.
[0026]
Furthermore, regardless of the inverter-driven compressor or the constant speed compressor, the bypass circuit is opened and the refrigerant is returned to the compressor suction side, so that it flows through the heat source side heat exchanger (outdoor heat exchanger) during cooling operation. The refrigerant mass flow rate is reduced, which is equivalent to an increase in the apparent heat exchanger, the condensation pressure is reduced, and the compressor discharge pressure (Pd) is reduced. Even in the use side heat exchanger (indoor heat exchanger), the refrigerant mass flow rate is reduced, so that the pressure loss is reduced, the evaporation pressure is increased, and the suction pressure (Ps) of the compressor can be increased. As a result, the pressure ratio (Pd / Ps) is reduced, the compression work can be reduced, and the air conditioner is energy-saving.
[0027]
In the above cycle, since three operation methods can be selected for both cooling and heating operation, the gas injection circuit has a large pressure ratio (= Pd / Ps) between the compressor suction pressure (Ps) and the compressor discharge pressure (Pd). In this case, the bypass circuit is used when the pressure ratio is small. For example, when applied to indoor and outdoor temperature conditions according to JIS standards, the gas injection circuit is used under overload conditions and rated conditions, and the bypass circuit is used under intermediate conditions. Normally, the optimum three driving methods are selected based on information set and stored in advance according to each driving condition.
[0028]
Specifically, an outdoor intake air temperature, an indoor intake air temperature, a set temperature set by a user and an operating frequency of the compressor are detected, and set values (for example, programs and tables) in which the data is stored in advance in a memory. Select driving according to. FIG. 1 also shows the configuration of the control system. A temperature sensor is provided on the suction side of the heat source side heat exchanger (outdoor heat exchanger) 3 to measure the outdoor temperature, and the use side heat exchanger (indoor heat exchanger) 8a A temperature sensor is provided on the suction side to measure the room temperature. A thermistor or a thermocouple is used for the temperature sensor.
[0029]
As an input device, for example, a user inputs a set temperature from a remote controller 70. In the case of inverter control, the compressor is provided with a measurement sensor for operating frequency, and the operating frequency is obtained from the current waveform or voltage waveform. Or you may substitute with the setting frequency of an inverter. The sensor and the input device (remote control) are connected to the controller 61, and this information is input to the controller 61. For example, information is transmitted to the controller 61 of the outdoor unit 21 via the indoor unit 22a.
[0030]
A flow path switching valve (three-way valve) 10 that switches between an injection circuit and a bypass circuit and an on-off valve (electromagnetic valve) 11 that opens and closes the injection circuit are also connected to the controller 61. The controller 61 receives data from the sensor and the input device, selects an optimum driving method from the three driving methods based on the judgment value stored in advance, and the controller 61 sends a control signal to the three-way valve 10 or the like. Control is transmitted to the electromagnetic valve 11. For example, when the temperature difference between the outdoor temperature and the room temperature is larger than the determination value and the temperature difference between the set temperature and the room temperature is larger than the determination value, the injection circuit is opened. If the temperature difference between the outdoor temperature and the room temperature is smaller than the determination value and the temperature difference between the set temperature and the room temperature is smaller than the determination value, the bypass circuit is opened. In other operating conditions, the operation is performed to close the bypass circuit and the injection circuit.
[0031]
FIG. 6 shows the structure of the scroll compressor used in this embodiment and the injection circuit connected to the compression chamber. In the case of a scroll compressor, two compression chambers are formed simultaneously. The compression chamber is formed by combining a wrap of the fixed scroll 42 and the orbiting scroll 43. Each compression chamber is provided with injection ports 47a and 47b at a predetermined pressure ratio. The ports 47a and 47b are most easily provided on the fixed scroll. The ports 47a and 47b are connected to the pipe 109 shown in FIG.
[0032]
7 and 8 show the cycle configuration of an air conditioner according to another embodiment, which is basically the same as the cycle configuration shown in FIGS. 1 and 2.
FIG. 7 shows a case where a four-way valve 13 is used instead of the three-way valve 10 shown in FIGS. 1 and 2, and one of the four passages of the four-way valve is always closed. The operation is basically the same when the three-way valve 10 is used and when the four-way valve 13 is used.
FIG. 8 shows a case where an electromagnetic valve 14 is used instead of the three-way valve 10 shown in FIGS. 1 and 2, and the electromagnetic valve 14 is connected between the capillary tube 13 on the pipe 110 and the connection point 19 between the injection circuit. Provided. When the solenoid valve 11 is opened and the solenoid valve 14 is closed, the injection circuit can be used, and when the solenoid valve 11 is closed and the solenoid valve 14 is opened, the bypass circuit can be used. When both are closed, the normal cycle configuration is obtained.
[0033]
FIG. 9 shows a cycle configuration according to another embodiment for performing gas injection, and the use of the gas injection circuit and the bypass circuit is the same as that of the air conditioner shown in FIGS. 1 and 2.
9 includes a compressor 1, a four-way valve 2, a heat source side heat exchanger 3, a receiver 5, a blocking valve 6, a second pressure reducing device 7a, a use side heat exchanger 8a, a blocking valve 9, and the compressor 1. A flow control circuit 16 is provided at the inlet of the receiver 5 so that the refrigerant inlets of the receiver 5 are in one direction both during cooling operation and during heating operation.
[0034]
The flow control circuit 16 constitutes a bridge circuit using four check valves 14a, 14b, 14c, 14d and a variable throttle electronic expansion valve as the first pressure reducing device 4. Further, an injection circuit for connecting the receiver 5 and the compressor 1 is provided. From the receiver 5 side, a pipe 116, a third pressure reducing device (injection pressure reducing device) 18, a pipe 117, a pipe 111, an on-off valve 11, a pipe 112, The pipe 109 is configured.
[0035]
An intermediate heat exchanger 17 is provided on the downstream side of the third decompression device 18 in order to exchange heat between the refrigerant on the downstream side of the third decompression device 18 and the refrigerant on the downstream side of the receiver 5. In the injection circuit, the receiver 5 The saturated liquid refrigerant is taken out of the refrigerant, and reduced to the injection pressure by the third pressure reducing device 18 to obtain a gas-liquid two-phase refrigerant. Thereafter, the intermediate heat exchanger 17 absorbs heat from the refrigerant downstream of the third decompression device 18 from the refrigerant downstream of the main receiver 5, and the gas-liquid two-phase refrigerant is completely gasified to intermediate compression of the compressor 1. Inject into the room. On the other hand, the mainstream refrigerant flow is a gas-liquid two-phase refrigerant state in which the saturated liquid refrigerant and the saturated gas refrigerant are taken out from the pipe 116 connected to the receiver 5, but are condensed by the intermediate heat exchanger 17 and further cooled. It becomes a liquid refrigerant in a cooled state and flows to the use side heat exchange 8a. When the connection pipe 105 and the pipe 106 that connect the outdoor unit 21 and the indoor unit 22a are long pipes (for example, 30 m or more), the gas injection method in FIG. 9 is more effective than that in FIG. The possible operating range is increased.
[0036]
As described above, the bypass circuit connecting the injection circuit and the suction side piping of the compressor is provided in the injection circuit, and the refrigerant is discharged from the compression chamber of the compressor by using the injection circuit by switching the circuit. Capable of capacity control. Basically, regardless of the presence or absence of inverter control, the gas injection circuit is effectively used to enable capacity control in the direction of reducing the capacity. As a result, capacity control that can further reduce the capacity is possible with inverter control models even at the lowest compressor operating frequency, and capacity control of capacity increase by gas injection (improves energy saving when capacity is constant) is possible. It is.
[0037]
Further, in an air conditioner equipped with an injection circuit, the circuit can be switched by adding one three-way valve, four-way valve or electromagnetic valve. Furthermore, the sensor used for operation control generally uses information from an existing temperature sensor or the like possessed by an air conditioner, and does not need to be newly installed. As a result, for example, when an inverter-driven compressor is used, the capacity can be further reduced even when the compressor operating frequency is minimized, and the capacity can be further reduced. By creating an optimum operating state, it is possible to operate with a high coefficient of performance of the air conditioner. In addition, if a constant speed compressor is used, extra work will be caused to the compressor in the case of maladjustment with the load, but by using the bypass circuit, capacity control becomes possible and the air conditioner Operation with a high coefficient of performance is possible. In addition, since it is equipped with an injection circuit, it is possible to reduce the operating frequency of the compressor if the same capacity is achieved if the gas injection is performed, as compared to the case where the gas injection is not performed. Power consumption is reduced and energy saving operation (high coefficient of performance) is achieved. In the constant speed compressor, if the same stroke volume is used, the capacity can be increased, and if the same capacity is used, the stroke volume can be reduced. Therefore, energy saving and downsizing of the compressor operation can be achieved.
[0038]
Regardless of inverter-driven compressors or constant speed compressors, the mass of refrigerant flowing through the heat source side heat exchanger (outdoor heat exchanger) during cooling operation by opening the bypass circuit and returning the refrigerant to the compressor suction side The flow rate is reduced, which is equivalent to the increase in the apparent heat exchanger, the condensing pressure is lowered, and the compressor discharge pressure (Pd) can be lowered. Even in the use side heat exchanger (indoor heat exchanger), the refrigerant mass flow rate is reduced, so that the pressure loss is reduced, the evaporation pressure is increased, and the suction pressure (Ps) of the compressor can be increased. Therefore, the pressure ratio (Pd / Ps) is reduced, and the compression work can be reduced.
[0039]
By combining the injection circuit and bypass circuit and selecting the operation method according to the conditions, the injection port can be used effectively, enabling operation with a high coefficient of performance in a wide operating range, and improving the operating efficiency of the air conditioner Energy saving.
[0040]
In addition, the effect was explained assuming that the compressor is driven by an inverter and the operating frequency of the compressor can be changed. However, in a compressor that operates at a constant speed, the stroke volume (theoretical discharge volume) of the compressor is reduced by gas injection. Accordingly, the load on the compressor is reduced accordingly, so that the electric input is reduced, and the required torque is reduced, so that the motor capacity can be reduced. Furthermore, the effect that the casing of a compressor etc. can be made small is also acquired.
[0041]
Furthermore, by providing a bypass circuit using a gas injection circuit, stepwise capacity control is possible even in a compressor that operates at a constant speed. In addition, the injection method can be liquid injection instead of gas injection, but the effect differs depending on the port position.
[0042]
Furthermore, although the compressor has been described as a scroll compressor, the same applies to a rotary compressor. Furthermore, R22, R410A, R32, R407C, natural refrigerants such as carbon dioxide gas and HC refrigerant can be used as the refrigerant.
[0043]
【The invention's effect】
As described above, according to the present invention, since the bypass circuit connecting the injection circuit and the suction side piping of the compressor is provided in the injection circuit, the injection circuit is diverted to allow the refrigerant to flow out from the compressor chamber. By enabling the capacity control and opening the bypass circuit and returning the refrigerant to the compressor suction side, the pressure ratio (Pd / Ps), which is the ratio between the compressor suction pressure and the compressor discharge pressure, can be reduced.
[0044]
Therefore, an optimum operating state adapted to the load can be created, an operation with a high coefficient of performance is possible in a wide operating range, the operating efficiency of the air conditioner can be improved, and energy saving can be achieved.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of an air conditioner according to an embodiment (opening of a gas injection circuit).
FIG. 2 is a system configuration diagram showing a state where a bypass circuit is opened in FIG. 1;
FIG. 3 is a Mollier diagram of cycle operation when neither gas injection nor bypass of an air conditioner according to an embodiment is performed.
FIG. 4 is a Mollier diagram at the time of gas injection of the air conditioner according to the embodiment.
FIG. 5 is a Mollier diagram at the time of bypass of the air conditioner according to the embodiment.
FIG. 6 is a cross-sectional view of a compressor according to an embodiment.
FIG. 7 is a system configuration diagram of an air conditioner according to another embodiment.
FIG. 8 is a system configuration diagram of an air conditioner according to another embodiment.
FIG. 9 is another system configuration diagram of the air conditioner according to the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Heat source side heat exchanger (outdoor heat exchanger), 4 ... First decompression device, 5 ... Receiver, 6 ... Stop valve, 7a, 7b ... Second decompression device, 8a 8b ... use side heat exchanger (indoor heat exchanger), 9 ... blocking valve, 10 ... three-way valve, 11 ... solenoid valve, 12 ... capillary tube, 13 ... four-way valve, 14 ... solenoid valve, 44 ... suction port 45a, 45b ... compression chamber, 46 ... discharge port, 47a, 47b ... injection port, 110 ... bypass piping, 111, 112 ... injection piping.

Claims (2)

圧縮機、熱源側熱交換器、第一減圧装置、レシーバ、第二減圧装置、利用側熱交換器を順次配管で接続し冷凍サイクルを構成した空気調和機において、
前記レシーバと前記圧縮機の圧縮室とを結ぶインジェクション回路と、
前記インジェクション回路と前記圧縮機の吸入側配管とを結ぶバイパス回路と、
前記インジェクション回路における前記圧縮機の圧縮室側の配管を、前記インジェクション回路又は前記バイパス回路に開閉切り替える三方弁と、
前記インジェクション回路中に設けた電磁弁と、
前記熱源側熱交換器側に設けられ、室外温度を検出する第1の温度センサと、
前記利用側熱交換器側に設けられ、室内温度を検出する第2の温度センサと、
前記第1及び第2の温度センサからの検出信号を取り込み、室外温度と室内温度との温度差が判定値よりも大きく、かつ設定温度と室内温度との温度差も判定値よりも大きい場合に、前記インジェクション回路における前記圧縮機の圧縮室側の配管を前記インジェクション回路に連通させる信号を、前記三方弁に出力するとともに前記電磁弁に開信号を出力し、室外温度と室内温度との温度差が判定値よりも小さく、かつ設定温度と室内温度との温度差も判定値よりも小さい場合に、前記インジェクション回路における前記圧縮機の圧縮室側の配管と前記インジェクション回路との連通を閉じさせる信号を、前記三方弁に出力するとともに前記電磁弁に閉信号を出力するコントローラと
を備えたことを特徴とする空気調和機。
In an air conditioner configured by connecting a compressor, a heat source side heat exchanger, a first pressure reducing device, a receiver, a second pressure reducing device, and a use side heat exchanger in a sequential pipe to constitute a refrigeration cycle,
An injection circuit connecting the receiver and the compression chamber of the compressor;
A bypass circuit connecting the injection circuit and a suction side pipe of the compressor;
A three-way valve that switches a pipe on the compression chamber side of the compressor in the injection circuit to the injection circuit or the bypass circuit;
A solenoid valve provided in the injection circuit;
A first temperature sensor provided on the heat source side heat exchanger side for detecting an outdoor temperature;
A second temperature sensor provided on the use side heat exchanger side for detecting an indoor temperature;
When detection signals from the first and second temperature sensors are taken in, the temperature difference between the outdoor temperature and the room temperature is larger than the determination value, and the temperature difference between the set temperature and the room temperature is also larger than the determination value A signal for communicating the compressor-side piping of the compressor in the injection circuit to the injection circuit is output to the three-way valve and an open signal is output to the electromagnetic valve, and the temperature difference between the outdoor temperature and the indoor temperature Is a signal that closes the communication between the piping on the compression chamber side of the compressor and the injection circuit in the injection circuit when the difference between the set temperature and the room temperature is also smaller than the determination value. the air conditioner is characterized in that a controller you outputs a close signal to the solenoid valve to output to the three-way valve.
請求項1に記載のものにおいて、前記圧縮機を運転周波数が最小周波数から最大周波数まで制御される可変容量型の圧縮機とし、前記運転周波数が最小周波数となった場合、前記バイパス回路を開いてインジェクションを行わないことを特徴とする空気調和機。  2. The compressor according to claim 1, wherein the compressor is a variable capacity compressor in which an operation frequency is controlled from a minimum frequency to a maximum frequency, and when the operation frequency becomes the minimum frequency, the bypass circuit is opened. An air conditioner characterized by not performing injection.
JP2002071190A 2002-03-15 2002-03-15 Air conditioner Expired - Fee Related JP4104112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002071190A JP4104112B2 (en) 2002-03-15 2002-03-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002071190A JP4104112B2 (en) 2002-03-15 2002-03-15 Air conditioner

Publications (2)

Publication Number Publication Date
JP2003269808A JP2003269808A (en) 2003-09-25
JP4104112B2 true JP4104112B2 (en) 2008-06-18

Family

ID=29201537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071190A Expired - Fee Related JP4104112B2 (en) 2002-03-15 2002-03-15 Air conditioner

Country Status (1)

Country Link
JP (1) JP4104112B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250491A (en) * 2005-03-14 2006-09-21 Mitsubishi Electric Corp Cold generating system, air conditioning system, refrigerating plant and cold generating method
JP2006300373A (en) * 2005-04-18 2006-11-02 Daikin Ind Ltd Air conditioner
JP4738219B2 (en) * 2006-03-23 2011-08-03 三洋電機株式会社 Refrigeration equipment
JP4920432B2 (en) * 2007-01-23 2012-04-18 三菱電機株式会社 Air conditioning system
JP2008183335A (en) * 2007-01-31 2008-08-14 Mitsubishi Electric Corp Washing and drying system
JP5125695B2 (en) * 2008-03-31 2013-01-23 ダイキン工業株式会社 Air conditioning system
KR101513305B1 (en) * 2008-12-01 2015-04-17 (주)귀뚜라미 Injection type heat pump air-conditioner and the converting method for injection mode thereof
CN105588365B (en) * 2015-06-30 2018-11-30 青岛海信日立空调系统有限公司 A kind of heat-flash type outdoor unit, heat pump system and its control method
CN105588361A (en) * 2015-11-04 2016-05-18 青岛海信日立空调系统有限公司 Multi-split air-conditioning system
JP6599002B2 (en) * 2016-06-14 2019-10-30 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2003269808A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
US7302807B2 (en) Refrigerating cycle device
JP3679323B2 (en) Refrigeration cycle apparatus and control method thereof
US8959951B2 (en) Refrigeration apparatus controlling opening degree of a second expansion mechanism based on air temperature at the evaporator or refergerant temperature at the outlet of a two stage compression element
US8109111B2 (en) Refrigerating apparatus having an intermediate-pressure refrigerant gas-liquid separator for performing refrigeration cycle
US6883346B2 (en) Freezer
US6779356B2 (en) Apparatus and method for controlling operation of air conditioner
JP4895883B2 (en) Air conditioner
WO2006028218A1 (en) Refrigerating apparatus
WO2001029489A1 (en) Refrigerating device
JP3440910B2 (en) Refrigeration equipment
JP2002081767A (en) Air conditioner
WO2007013345A1 (en) Refrigeration device
JP5375919B2 (en) heat pump
AU2006280834A1 (en) Refrigerating apparatus
JP4104112B2 (en) Air conditioner
JP2006138525A (en) Freezing device, and air conditioner
JP4179595B2 (en) Air conditioner
JP5383802B2 (en) Vapor compression cycle equipment
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
JP2007155143A (en) Refrigerating device
JP6735896B2 (en) Refrigeration cycle equipment
JPH10176866A (en) Refrigeration device
JP2007232280A (en) Refrigeration unit
KR100575223B1 (en) Variable capacity refrigeration cycle
JP6926460B2 (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees