JP4100617B2 - Conductive resin composition for fuel cell separator, fuel cell separator and method for producing the same - Google Patents

Conductive resin composition for fuel cell separator, fuel cell separator and method for producing the same Download PDF

Info

Publication number
JP4100617B2
JP4100617B2 JP2003003304A JP2003003304A JP4100617B2 JP 4100617 B2 JP4100617 B2 JP 4100617B2 JP 2003003304 A JP2003003304 A JP 2003003304A JP 2003003304 A JP2003003304 A JP 2003003304A JP 4100617 B2 JP4100617 B2 JP 4100617B2
Authority
JP
Japan
Prior art keywords
fuel cell
resin composition
cell separator
conductive resin
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003003304A
Other languages
Japanese (ja)
Other versions
JP2004217689A (en
Inventor
剛 稲垣
秀幸 猪谷
睦 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2003003304A priority Critical patent/JP4100617B2/en
Publication of JP2004217689A publication Critical patent/JP2004217689A/en
Application granted granted Critical
Publication of JP4100617B2 publication Critical patent/JP4100617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用セパレータの成形材料である燃料電池用セパレータ用導電性樹脂組成物(以下、「導電性樹脂組成物」ともいう)に関する。本発明はまた、燃料電池用セパレータ及びその製造方法に関する。
【0002】
【従来の技術】
近年、燃料の有する化学エネルギーを電気エネルギー直接変換する燃料電池に関する需要が高まっている。一般に燃料電池は、電解質を含有するマトリックスを挟んで、電極板が配置され、さらにその外側に燃料電池用セパレータが配置された単位セルを多数積層した形になっている。
【0003】
図1は一般的な燃料電池用セパレータ10の一例を示す斜視図であるが、平板部11の両面に所定間隔で複数の隔壁12を立設して形成されており、燃料電池とするには、隔壁12の突出方向(図中、上下方向)に沿って多数の燃料電池用セパレータ10を積層する。そして、この積層により、隣接する一対の隔壁12で形成されるチャネル13に各種流体を流通させる。
【0004】
通常、燃料電池用セパレータ10の片面には燃料が、もう一方の面には気体酸化剤等が供給されるため、燃料電池用セパレータ10には両者が混合しないように気体不透過性に優れることが必要である。また、単位セルを積層して用いるので、高い導電性を有するとともに、重量が小さく、コストが安いことが要求される。このような要求に対して、従来では炭素粉末と樹脂とを混合成形した燃料電池用セパレータ10が主流となっている。例えば、フェノール樹脂等の熱硬化性樹脂と黒鉛、カーボン等からなる燃料電池用セパレータ(例えば、特許文献1〜6参照)、エポキシ樹脂等の熱硬化性樹脂とグラファイト等の導電性物質とからなる双極隔壁板(例えば、特許文献7参照)、フェノール樹脂、フラン樹脂等の熱硬化性樹脂に膨張黒鉛及びカーボンブラックを配合して成る燃料電池用セパレータ(例えば、特許文献8参照)、エチレン−酢酸エチル共重合体等にカーボンブラックを含有させた導電性プラスチック板(例えば、特許文献9参照)、熱可塑性樹脂又は熱硬化性樹脂にケッチェンブラック及び真球状黒鉛を配合して得られる成形品(例えば、特許文献10参照)等が知られている。
【特許文献1】
特開昭58−53167号公報
【特許文献2】
特開昭60−37670号公報
【特許文献3】
特開昭60−246568号公報
【特許文献4】
特公昭64−340号公報
【特許文献5】
特公平6−22136号公報
【特許文献6】
WO97/02612号公報
【特許文献7】
特公昭57−42157号公報
【特許文献8】
特開平1−311570号公報
【特許文献9】
特開平8−259767号公報
【特許文献10】
特開平8−31231号公報
【0005】
【発明が解決しようとする課題】
しかしながら、導電性樹脂組成物からなる燃料電池用セパレータでは、樹脂が電気絶縁性であるが故に導電性に劣る欠点がある。この欠点を改善すべく、導電性フィラーを多量に配合すると、導電性樹脂組成物の流動性が小さくなり、成形が困難となり、寸法精度に劣るようになる。また、場合によっては成形が不可能となる。燃料電池用セパレータ10は積層して使用されるため、隔壁12の寸法精度が低い場合には隔壁間に隙間が生じ、流体同士が混合する。そのため、燃料電池用セパレータ用の導電性樹脂組成物では、導電性フィラーの配合量には上限があり、導電性の向上にも限度がある。
【0006】
このような背景から、成形方法も、流動性が比較的小さい成形材料でも成形が可能な圧縮成形方法が一般に採用されている。しかし、圧縮成形方法は、射出成形方法、押出成形方法等の成形方法に比べてサイクルタイムが長いために成形コストが高くなるという問題がある。
【0007】
本発明はこのような状況に鑑みてなされたものであり、導電性フィラーを多量に配合しても従来の導電性樹脂組成物に比べて流動性の低下が少なく、射出成形や押出成形といった安価に成形できる成形方法を適用し得る導電性樹脂組成物を提供することを目的とする。また、前記導電性樹脂組成物を用い、高導電性で軽量の燃料電池用セパレータを安価に提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく樹脂材料と導電性材料の種類と配合を鋭意検討した結果、樹脂材料としてポリメチルペンテンを用い、更に、導電性フィラーとして膨張黒鉛と特定のカーボンブラックとを併用することにより、導電性材料の配合を増しても流動性を低下させることがなく、射出成形や押出成形に適用可能な導電性樹脂組成物が得られることを見出し、本発明を完成するに至った。
【0009】
即ち、本発明は、上記目的を達成するために、次の燃料電池用セパレータ用導電性樹脂組成物、燃料電池用セパレータ、及び燃料電池用セパレータの製造方法を提供する。
(1)ケッチェンブラック、アセチレンブラック、ファーネスカーボンブラック及びサーマルカーボンブラックからなる群より選択される少なくとも1種で、かつ、粒径が0.1〜20μmであるカーボンブラックと、粒径が400〜800μmの膨張黒鉛とからなる導電性フィラーと、ポリメチルペンテンとを含むことを特徴とする燃料電池用セパレータ用導電性樹脂組成物。
(2)前記ポリメチルペンテンの含有量が導電性樹脂組成物全量の20〜50重量%であり、前記導電性フィラーの含有量が導電性樹脂組成物全量50〜80重量%であることを特徴とする上記(1)記載の燃料電池用セパレータ用導電性樹脂組成物。
(3)前記導電性フィラーにおける膨張黒鉛とカーボンブラックとの配合比が1:1〜4:1(重量比)であることを特徴とする上記(1)または(2)記載の燃料電池用セパレータ用導電性樹脂組成物。
(4)上記(1)〜(3)の何れか一項に記載の燃料電池用セパレータ用導電性樹脂組成物から成ることを特徴とする燃料電池用セパレータ
(5)上記(1)〜(3)の何れか一項に記載の燃料電池用セパレータ用導電性樹脂組成物を得る工程と、得られた導電性樹脂組成物を射出成形または押出成形により成形する成形工程とを備えたことを特徴とする燃料電池用セパレータの製造方法
【0010】
【発明の実施の形態】
以下、本発明に関して詳細に説明する。
【0011】
(導電性樹脂組成物)
本発明の導電性樹脂組成物では、樹脂成分としてポリメチルペンテンを使用することが重要な要件である。後記する実施例でも示すように、樹脂成分として他のポリマーを用いても、本発明が目的とする、流動性を低下させることなく高導電性で軽量の導電性樹脂組成物を得ることはできない。本発明に従い、ポリメチルペンテンを樹脂成分とすることにより、流動性、導電性、ガスシール性、軽量であることの各物性がバランス良く優れる導電性樹脂組成物を得ることができる。しかも、本発明の導電性樹脂組成物は、従来の熱硬化性樹脂を樹脂成分とする導電性樹脂組成物と比べた場合は勿論、熱可塑性樹脂を樹脂成分とする導電性樹脂組成物と比べても、製造、成形が容易である。
【0012】
ポリメチルペンテン(PMP)は、それ自体は公知である。PMPは、ポリプロピレン(PP)の2量化反応によって作られるもので、ポリマーの中で一番低密度のものに属する。PMPの密度はPPのそれとほとんど変わらないが、後記する実施例でも示すように、PMPの流動性はPPのそれに比べ非常に大きい。また、PMPは、耐薬品性、耐熱性が優れ、燃料電池の環境下(酸雰囲気、温度100℃)においても安定性に優れる特徴をもつ。また、表面張力がポリマーの中ではフッ素に次ぎ小さく、離型性に優れるのも大きな特徴である。
【0013】
また、PMPは、流動性を考慮すると、平均分子量で10万〜100万、好ましくは30万〜60万のものが好ましい。導電性樹脂組成物としての流動率は、射出成形や押出成形を可能にするために、2%以上が好ましく、10%以上が更に好ましい。そのため、配合される導電性フィラーの種類や配合量にもよるが、上記平均分子量のPMPを用いることにより、好ましい流動率とすることができる。
【0014】
このようなPMPは、市場から容易に入手可能であり、例えば三井化学(株)製から商品名「TPX」シリーズが上市されており、中でも一般グレード「RT−18」(平均分子量50万)を好ましく用いることができる。
【0015】
本発明においては、導電性フィラーとして、後述するカーボンブラックと、膨張黒鉛とを混合して使用する。
【0016】
カーボンブラックとしては、ケッチェンブラック、アセチレンブラック、サーマルカーボンブラック、ファーネスカーボンブラックであり、これらを単独もしくは複数組み合わせて使用することにより、導電性樹脂組成物の導電性がより高まる。
【0017】
尚、ケッチェンブラック、アセチレンブラックは高導電性フィラーとして開発されたものであり、それぞれ天然ガス等の不完全燃焼、アセチレンの熱分解により得られる。サーマルカーボンブラックは天然ガスの熱分解により得られる大粒子径のカーボンであり、例としてFTカーボン、MTカーボン等が挙げられる。ファーネスカーボンブラックは炭化水素油や天然ガスの不完全燃焼により得られるフィラーであり、粒径に応じてSAF、ISAF、IISAF、HAF、FF、FEF、MAF、GPF、SRF、CF等に分類される。これら各種のカーボンブラックのうちでも、ケッチェンブラック、アセチレンブラックが一層好ましく用いられる。
【0018】
膨張黒鉛は、鱗片状黒鉛を濃硫酸等で処理し、加熱して得られる。
【0019】
本発明では、導電性フィラーとして膨張黒鉛と上記カーボンブラックを併用する、従来の導電性樹脂組成物では、導電性材料の間に樹脂材料が入り込んで導電性材料間の導電パスを形成し難くしている。そこで、大径の膨張黒鉛と小径のカーボンブラックとを併用することにより、膨張黒鉛の隙間にカーボンブラックが入り込んで導電パスを確保する。そのため、膨張黒鉛の粒径を400〜00μm、カーボンブラックの粒径0.1〜20μmとする
【0020】
また、上記の導電パスをより確実に確保するために、膨張黒鉛とカーボンブラックとの配合を、重量比で膨張黒鉛:カーボンブラック=1:1〜4:1、より好ましくは3:2〜7:2とする。
【0021】
導電性フィラーの配合量は、その合計量で導電性樹脂組成物全量の50〜80重量%とすることが好ましい。50重量%以上とすることにより、燃料電池用セパレータとしたときにより低抵抗性(高導電性)を確保することができる。尚、導電性を一層追求するには、導電性フィラーの配合量を導電性樹脂組成物全量の70〜80重量%とすることが好ましい。
【0022】
導電性フィラーの配合量に対応して、ポリメチルペンテンの配合量を導電性樹脂組成物全量の20〜50重量%とする。この配合量により、導電性樹脂組成物の成形性、成形品の形状保持性、成形品の金型からの離型性が良好となり、燃料電池用セパレータとした場合にはガス遮断性等の事項を満足できる。即ち、ポリメチルペンテンの配合量が20重量%未満であると、導電性樹脂組成物の流動性が低下して成形性に劣るようになり、50重量%を超えると、相対的に導電性フィラーの配合量が少なくなり、燃料電池用セパレータとしたときに導電性が低くなる
【0023】
なお、コスト的に許容されるのであれば、燃料電池用セパレータとしたときの特性を低下させない範囲で無機繊維質材料や黒鉛繊維質材料、炭素繊維質材料等を混合し、強度の一層の増加を図っても良い。
【0024】
導電性樹脂組成物は、種々の慣用の方法によって調製することができる。一般的には、PMPを加熱溶融させて混練し、そこに導電性フィラーを所定量添加し、ニーダー、バンバリミキサー等公知の混練手段を用いて混練して調製される。この調製においては、一般的に溶融混合方式を用い、樹脂の流動性を高めて混合するため、樹脂に導電性フィラーを容易に均一に混合することができる。その結果、得られる導電性樹脂組成物の安定性が高まる。
【0025】
本発明において、導電性樹脂組成物の電気抵抗、比重等の物性は、用途に応じて適宜設定することができるが、燃料電池用セパレータとする場合には、電気抵抗は50mΩ・cm以下が好ましく、10mΩ・cm以下が更に好ましい。
【0026】
上述した電気抵抗値は、導電性フィラーの配合量を調整して得られるが、本発明においては、樹脂成分としてPMPを採用することで、比重1.3〜1.45の低密度の導電性樹脂組成物を得ることができ、燃料電池セパレータの軽量化を実現することができる。
【0027】
また、本発明の導電性樹脂組成物を成形するには、種々の成形方法が可能であり、成形品に応じて適宜選択できる。例えば、圧縮成形、射出成形、押出成形、トランスファー成形、ブロー成形、押出圧縮成形等を適用できる。尚、各成形方法における成形条件は、導電性樹脂組成物の組成や物性に合わせて、適宜設定する。
【0028】
(燃料電池用セパレータ)
本発明の燃料電池用セパレータは、上記した本発明の導電性樹脂組成物を成形して得られる。形状や構造には制限が無く、例えば図1に例示した形状とすることができる。また、成形方法は、従来と同様に圧縮成形も勿論可能であるが、コスト面から射出成形あるいは押出成形を採用する。上述のように、本発明の導電性樹脂組成物は流動性が高く、射出成形や押出成形が十分可能である。尚、成形条件には制限がなく、導電性樹脂組成物の組成や物性に合わせて、適宜設定する。
【0029】
【実施例】
以下に実施例及び比較例を挙げて本発明を更に説明するが、本発明はこれにより何ら限定されるものではない。
【0030】
(実施例1〜9、比較例1〜2)
下記導電性材料及び熱可塑性樹脂を用いて、表1に示す配合にて溶融混合方式で混合し、更に混練して混練物とした。そして、この混練物を、離型剤を塗布した型に充填し、所定温度、圧力98MPaで圧縮成形を行い、100mm×100mmで、厚さ0.7mmのシート状に成形して試験片を得た。
【0031】
〈導電性材料〉
膨張黒鉛(粒径:約400〜800μm)
アセチレンブラック(粒径:約5〜10μm)
〈樹脂〉
ポリメチルペンテン(三井化学(株)製) (平均分子量:50万)
液晶ポリエステル(ユニチカ(株)製) (平均分子量: 3万)
ポリプロピレン(グランドポリマー(株)製) (平均分子量:30万)
【0032】
得られた混練物または試験片を用いて以下の評価を行った。結果を表1に併記した。
【0033】
〈流動率〉
流動率の測定を、JIS K7210 熱可塑性プラスチックの流れ試験法に準じて行った。即ち、図2に示すように、内径10mmの穴1と下部に内径1mmの穴2が連続して設けられた試験装置を180℃に加熱して、上記の混練物からなる外径8mmの予備成形体S(重量A)を穴1に投入した後、押圧部材3により一定荷重(10MPa)で押し込んで4分間保持する。その後、穴2から流れ出てきた試料4を切り取り、その重量Bを測定して次式により流動率を求める。
流動率=〔(予備成形体Sの重量A−試料4の重量B)/試料4の重量B〕×100(%)
【0034】
〈抵抗〉
JIS K7194 導電性プラスチックの4探針法による抵抗率試験方法に準じて求めた。即ち、上記の試験験片の中央部について、4探針式導電計ロレスタCPを用いて表面抵抗値を測定し、その値にサンプル厚、JIS K7194に従う補正係数を乗じ、体積固有抵抗とした。
【0035】
〈比重〉
混練物の軽量性について水に対する比重で比較した。比重の測定は、水中置換法で行った。
【0036】
【表1】

Figure 0004100617
【0037】
表1に示されるように、本発明に従い、ポリメチルペンテンを樹脂成分とする各実施例の混練物または試験片は高流動性、高導電性であり、比重も小さいという特徴を有する。また、実施例2〜4に示すように、樹脂量が50重量%以下の範囲で液晶ポリエチレンやポリプロピレンを用いた場合に比べても低抵抗である。また、実施例5〜6に示すように、膨張黒鉛とカーボンブラックとの配合比が最適値に近づくほど、より低抵抗となる。
【0038】
また、各実施例の混練物を用いて射出成形したところ、100mm×100mm×2mmのシートに成形できた。このことから、燃料電池用セパレータを低コストで提供できることがわかる。
【0039】
一方、液晶ポリエステル(比較例1)、ポリプロピレン(比較例2)を樹脂成分とする混練物または試験片は、流動性が小さく、抵抗が大きく、比重も大きくなっている。また、混練物を用いて射出成形を試みたが、流動性が悪いため、良好なシートを得ることができなかった。
【0040】
【発明の効果】
以上説明したように、本発明によれば、高流動性、高導電性、軽量の物性を兼備し、成形性に優れた導電性樹脂組成物が提供される。また、この導電性樹脂組成物を用いることにより、高導電性、軽量の燃料電池用セパレータを安価に提供することができる。
【図面の簡単な説明】
【図1】本発明及び従来の燃料電池用セパレータの一例を示す斜視図である。
【図2】実施例及び比較例で行った流動率の評価に用いた試験装置の概念図である。
【符合の説明】
1 穴
2 穴
3 押圧部材
4 試料
10 燃料電池用セパレータ
11 平板部
12 隔壁
13 チャネル[0001]
BACKGROUND OF THE INVENTION
The present invention, fuel cells for fuel cell separator conductive resin composition is a molding material of the separator (hereinafter also referred to as "conductive resin composition") relates. The present invention also relates to a fuel cell separator and a method for producing the same.
[0002]
[Prior art]
In recent years, there has been an increasing demand for fuel cells that directly convert chemical energy of fuel into electrical energy. In general, a fuel cell has a shape in which a large number of unit cells each having an electrode plate and a fuel cell separator disposed on the outer side of a matrix containing an electrolyte are stacked.
[0003]
FIG. 1 is a perspective view showing an example of a general fuel cell separator 10, in which a plurality of partition walls 12 are erected at predetermined intervals on both surfaces of a flat plate portion 11. A large number of fuel cell separators 10 are stacked along the protruding direction of the partition wall 12 (the vertical direction in the figure). And by this lamination | stacking, various fluid is distribute | circulated through the channel 13 formed of a pair of adjacent partition 12.
[0004]
Normally, fuel is supplied to one side of the fuel cell separator 10 and a gas oxidant or the like is supplied to the other side. Therefore, the fuel cell separator 10 is excellent in gas impermeability so that both do not mix. is required. Further, since the unit cells are stacked and used, it is required to have high conductivity, low weight, and low cost. Conventionally, fuel cell separators 10 in which carbon powder and resin are mixed and molded have been mainstream in response to such demands. For example, a separator for a fuel cell made of a thermosetting resin such as a phenol resin and graphite, carbon or the like (see, for example, Patent Documents 1 to 6), a thermosetting resin such as an epoxy resin, and a conductive substance such as graphite. Bipolar partition plates (for example, see Patent Document 7), separators for fuel cells in which expanded graphite and carbon black are blended with thermosetting resins such as phenol resin and furan resin (for example, see Patent Document 8), ethylene-acetic acid A conductive plastic plate containing carbon black in an ethyl copolymer or the like (see, for example, Patent Document 9), a molded product obtained by blending ketjen black and true spherical graphite with a thermoplastic resin or a thermosetting resin ( For example, see Patent Document 10).
[Patent Document 1]
JP 58-53167 A [Patent Document 2]
JP-A-60-37670 [Patent Document 3]
JP-A-60-246568 [Patent Document 4]
Japanese Patent Publication No. 64-340 [Patent Document 5]
Japanese Patent Publication No. 6-22136 [Patent Document 6]
WO97 / 02612 [Patent Document 7]
Japanese Patent Publication No.57-42157 [Patent Document 8]
Japanese Patent Laid-Open No. 1-311570 [Patent Document 9]
JP-A-8-259767 [Patent Document 10]
Japanese Patent Laid-Open No. 8-31231
[Problems to be solved by the invention]
However, a separator for a fuel cell made of a conductive resin composition has a drawback of poor conductivity because the resin is electrically insulating. If a large amount of a conductive filler is blended to improve this defect, the fluidity of the conductive resin composition becomes small, the molding becomes difficult, and the dimensional accuracy becomes poor. In some cases, molding is impossible. Since the fuel cell separator 10 is used by being laminated, when the dimensional accuracy of the partition wall 12 is low, a gap is generated between the partition walls, and the fluids mix. Therefore, in the conductive resin composition for a fuel cell separator, the blending amount of the conductive filler has an upper limit, and there is a limit in improving the conductivity.
[0006]
Against this background, a compression molding method that can be molded with a molding material having a relatively low fluidity is generally employed. However, the compression molding method has a problem that the molding cost is high because the cycle time is longer than the molding methods such as the injection molding method and the extrusion molding method.
[0007]
The present invention has been made in view of such circumstances, and even when a large amount of conductive filler is blended, there is little decrease in fluidity compared to conventional conductive resin compositions, and low costs such as injection molding and extrusion molding. It aims at providing the conductive resin composition which can apply the shaping | molding method which can be shape | molded. Another object of the present invention is to provide a highly conductive and lightweight fuel cell separator at low cost using the conductive resin composition.
[0008]
[Means for Solving the Problems]
As a result of intensive studies on the types and blends of resin materials and conductive materials in order to achieve the above object, the present inventors have used polymethylpentene as the resin material, and further expanded graphite and specific carbon as the conductive filler. By using in combination with black, it has been found that a conductive resin composition applicable to injection molding and extrusion molding can be obtained without reducing fluidity even if the blending of the conductive material is increased, and the present invention It came to be completed.
[0009]
That is, the present invention is, in order to achieve the above object, provides the following fuel cell separator conductive resin composition, a fuel cell separator, and a method for manufacturing a fuel cell separator.
(1) Carbon black having at least one selected from the group consisting of ketjen black, acetylene black, furnace carbon black and thermal carbon black and having a particle size of 0.1 to 20 μm, and a particle size of 400 to A conductive resin composition for a fuel cell separator , comprising a conductive filler composed of 800 μm expanded graphite and polymethylpentene .
(2) The content of the polymethylpentene is 20 to 50% by weight of the total amount of the conductive resin composition, and the content of the conductive filler is 50 to 80% by weight of the total amount of the conductive resin composition. The conductive resin composition for a fuel cell separator as described in (1) above.
(3) The fuel cell separator as described in (1) or (2) above, wherein the compounding ratio of expanded graphite and carbon black in the conductive filler is 1: 1 to 4: 1 (weight ratio). use a conductive resin composition.
(4) above (1) to (3) fuel cell separator, wherein formation Rukoto from the fuel cell separator conductive resin composition according to any one of.
(5) A step of obtaining the conductive resin composition for a fuel cell separator according to any one of (1) to ( 3 ) above , and molding the obtained conductive resin composition by injection molding or extrusion molding the method of manufacturing a fuel cell separator which is characterized in that a shaping step for.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0011]
(Conductive resin composition)
In the conductive resin composition of the present invention, it is an important requirement to use polymethylpentene as a resin component. As shown in the examples described later, even if another polymer is used as the resin component, it is not possible to obtain a conductive resin composition that is highly conductive and lightweight without reducing fluidity, which is the purpose of the present invention. . By using polymethylpentene as a resin component according to the present invention, a conductive resin composition having excellent balance of fluidity, conductivity, gas sealability, and light weight can be obtained. In addition, the conductive resin composition of the present invention is compared with a conductive resin composition containing a thermoplastic resin as a resin component, as well as a conventional resin composition containing a thermosetting resin as a resin component. However, manufacturing and molding are easy.
[0012]
Polymethylpentene (PMP) is known per se. PMP is made by a dimerization reaction of polypropylene (PP) and belongs to the lowest density among polymers. Although the density of PMP is almost the same as that of PP, the fluidity of PMP is much higher than that of PP as shown in the examples described later. PMP is excellent in chemical resistance and heat resistance, and has excellent characteristics in the environment of a fuel cell (acid atmosphere, temperature 100 ° C.). Another major feature is that the surface tension of the polymer is the second smallest after fluorine, and the mold releasability is excellent.
[0013]
In consideration of fluidity, PMP has an average molecular weight of 100,000 to 1,000,000, preferably 300,000 to 600,000. The flow rate as the conductive resin composition is preferably 2% or more, more preferably 10% or more, in order to enable injection molding or extrusion molding. Therefore, although it depends on the type and blending amount of the conductive filler to be blended, a preferable fluidity can be obtained by using PMP having the above average molecular weight.
[0014]
Such PMPs are easily available from the market. For example, the product name “TPX” series is marketed by Mitsui Chemicals, Inc., among which general grade “RT-18” (average molecular weight 500,000) is available. It can be preferably used.
[0015]
In the present invention, as the conductive filler, carbon black, which will be described later, to use a mixture of expanded graphite.
[0016]
Examples of the carbon black include ketjen black, acetylene black, thermal carbon black, and furnace carbon black. By using these alone or in combination, the conductivity of the conductive resin composition is further increased.
[0017]
Ketjen black and acetylene black were developed as highly conductive fillers, and are obtained by incomplete combustion of natural gas or the like and thermal decomposition of acetylene, respectively. Thermal carbon black is carbon having a large particle diameter obtained by thermal decomposition of natural gas, and examples thereof include FT carbon and MT carbon. Furnace carbon black is a filler obtained by incomplete combustion of hydrocarbon oil or natural gas, and is classified into SAF, ISAF, IISAF, HAF, FF, FEF, MAF, GPF, SRF, CF, etc. according to the particle size. . Of these various carbon blacks, ketjen black and acetylene black are more preferably used.
[0018]
Expanded graphite scales flake graphite treated with concentrated sulfuric acid, Ru obtained by heating.
[0019]
In the present invention, combination of expanded graphite and the carbon black as the conductive filler, in the conventional conductive resin composition, enters the resin material is difficult to form a conductive path between the conductive material between the conductive material is doing. Therefore, by using a large diameter expanded graphite and a small diameter carbon black in combination, the carbon black enters the gap between the expanded graphite to ensure a conductive path. Therefore, the particle diameter of 40 0~ 8 00μ m of expanded graphite, the particle size of carbon black and 0.1 to 20 [mu] m.
[0020]
Further, in order to ensure the above-mentioned conductive path more reliably, the composition of expanded graphite and carbon black is in a weight ratio of expanded graphite: carbon black = 1: 1 to 4: 1, more preferably 3: 2 to 7. : 2
[0021]
The blending amount of the conductive filler is preferably 50 to 80% by weight based on the total amount of the conductive resin composition. By setting it to 50% by weight or more, low resistance (high conductivity) can be ensured when a fuel cell separator is obtained. In order to further pursue conductivity, it is preferable that the amount of the conductive filler is 70 to 80% by weight of the total amount of the conductive resin composition.
[0022]
Corresponding to the blending amount of the conductive filler, the blending amount of polymethylpentene is 20 to 50% by weight of the total amount of the conductive resin composition. This blending amount improves the moldability of the conductive resin composition, the shape retainability of the molded product, and the mold release from the mold. Matters such as gas barrier properties when used as a fuel cell separator Can be satisfied. That is, when the blending amount of polymethylpentene is less than 20% by weight, the fluidity of the conductive resin composition is lowered and the moldability is deteriorated, and when it exceeds 50% by weight, the conductive filler is relatively conductive. The blending amount is reduced, and the conductivity becomes lower when a fuel cell separator is used.
If it is acceptable in terms of cost, inorganic fiber materials, graphite fiber materials, carbon fiber materials, etc. are mixed in a range that does not deteriorate the characteristics of a fuel cell separator, and the strength is further increased. You may plan.
[0024]
The conductive resin composition can be prepared by various conventional methods. In general, PMP is heated and melted and kneaded, a predetermined amount of conductive filler is added thereto, and kneaded using a known kneading means such as a kneader or a Banbury mixer. In this preparation, generally, a melt-mixing method is used, and the fluidity of the resin is increased and mixed, so that the conductive filler can be easily and uniformly mixed with the resin. As a result, the stability of the obtained conductive resin composition is increased.
[0025]
In the present invention, the physical properties such as the electrical resistance and specific gravity of the conductive resin composition can be appropriately set according to the intended use. However, in the case of a fuel cell separator, the electrical resistance is preferably 50 mΩ · cm or less. More preferably, it is 10 mΩ · cm or less.
[0026]
The above-described electrical resistance value can be obtained by adjusting the blending amount of the conductive filler, but in the present invention, by adopting PMP as a resin component, the low density conductivity having a specific gravity of 1.3 to 1.45. A resin composition can be obtained and weight reduction of a fuel cell separator can be realized.
[0027]
Moreover, in order to shape | mold the conductive resin composition of this invention, various shaping | molding methods are possible and can be suitably selected according to a molded article. For example, compression molding, injection molding, extrusion molding, transfer molding, blow molding, extrusion compression molding and the like can be applied. The molding conditions in each molding method are appropriately set according to the composition and physical properties of the conductive resin composition.
[0028]
(Separator for fuel cell)
The fuel cell separator of the present invention is obtained by molding the above-described conductive resin composition of the present invention. There is no limitation on the shape and structure, and for example, the shape illustrated in FIG. The molding method can of course be compression-molded as in the prior art, but injection molding or extrusion molding is adopted from the viewpoint of cost. As described above, the conductive resin composition of the present invention has high fluidity and can be sufficiently injection molded or extruded. In addition, there is no restriction | limiting in molding conditions, According to the composition and physical property of a conductive resin composition, it sets suitably.
[0029]
【Example】
Hereinafter, the present invention will be further described with reference to examples and comparative examples, but the present invention is not limited thereto.
[0030]
(Examples 1-9, Comparative Examples 1-2)
Using the following conductive material and thermoplastic resin, the mixture shown in Table 1 was mixed by a melt mixing method, and further kneaded to obtain a kneaded product. Then, the kneaded product is filled in a mold coated with a release agent, compression-molded at a predetermined temperature and a pressure of 98 MPa, and molded into a sheet of 100 mm × 100 mm and a thickness of 0.7 mm to obtain a test piece. It was.
[0031]
<Conductive material>
Expanded graphite (particle size: about 400-800 μm)
Acetylene black (particle size: about 5-10μm)
<resin>
Polymethylpentene (Mitsui Chemicals) (average molecular weight: 500,000)
Liquid crystalline polyester (Made by Unitika Ltd.) (Average molecular weight: 30,000)
Polypropylene (Grand Polymer Co., Ltd.) (Average molecular weight: 300,000)
[0032]
The following evaluation was performed using the obtained kneaded material or test piece. The results are also shown in Table 1.
[0033]
<Flow rate>
The flow rate was measured according to the JIS K7210 thermoplastic flow test method. That is, as shown in FIG. 2, a test apparatus in which a hole 1 having an inner diameter of 10 mm and a hole 2 having an inner diameter of 1 mm are continuously provided is heated to 180 ° C. to prepare a preliminary 8 mm outer diameter made of the kneaded material. After the molded body S (weight A) is put into the hole 1, it is pushed by the pressing member 3 with a constant load (10 MPa) and held for 4 minutes. Thereafter, the sample 4 flowing out from the hole 2 is cut out, its weight B is measured, and the fluidity is obtained by the following equation.
Fluidity = [(Weight A of Pre-formed Body S−Weight B of Sample 4) / Weight B of Sample 4] × 100 (%)
[0034]
<resistance>
It calculated | required according to the resistivity test method by the 4-probe method of JISK7194 conductive plastic. That is, the surface resistance value was measured using a four-probe type conductivity meter Loresta CP at the center of the test specimen, and the value was multiplied by the sample thickness and the correction coefficient according to JIS K7194 to obtain the volume resistivity.
[0035]
<specific gravity>
The light weight of the kneaded materials was compared by specific gravity with respect to water. The specific gravity was measured by an underwater substitution method.
[0036]
[Table 1]
Figure 0004100617
[0037]
As shown in Table 1, according to the present invention, the kneaded product or test piece of each example using polymethylpentene as a resin component is characterized by high fluidity, high conductivity, and low specific gravity. Moreover, as shown in Examples 2-4, it is low resistance compared with the case where liquid crystal polyethylene and a polypropylene are used in the range whose resin amount is 50 weight% or less. Moreover, as shown in Examples 5-6, it becomes so low that the compounding ratio of expanded graphite and carbon black approaches an optimal value.
[0038]
Moreover, when it knead | molded using the kneaded material of each Example, it was able to shape | mold into the sheet | seat of 100 mm x 100 mm x 2 mm. This shows that the fuel cell separator can be provided at low cost.
[0039]
On the other hand, a kneaded product or a test piece containing liquid crystal polyester (Comparative Example 1) and polypropylene (Comparative Example 2) as resin components has low fluidity, high resistance, and high specific gravity. Moreover, although injection molding was attempted using the kneaded material, a good sheet could not be obtained due to poor fluidity.
[0040]
【The invention's effect】
As described above, according to the present invention, a conductive resin composition having high fluidity, high conductivity, and lightweight physical properties and excellent moldability is provided. Further, by using this conductive resin composition, a highly conductive and lightweight fuel cell separator can be provided at low cost.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of the present invention and a conventional fuel cell separator.
FIG. 2 is a conceptual diagram of a test apparatus used for evaluation of fluidity rate performed in Examples and Comparative Examples.
[Explanation of sign]
1 Hole 2 Hole 3 Pressing Member 4 Sample 10 Fuel Cell Separator 11 Flat Plate 12 Bulkhead 13 Channel

Claims (5)

ケッチェンブラック、アセチレンブラック、ファーネスカーボンブラック及びサーマルカーボンブラックからなる群より選択される少なくとも1種で、かつ、粒径が0.1〜20μmであるカーボンブラックと、粒径が400〜800μmの膨張黒鉛とからなる導電性フィラーと、ポリメチルペンテンとを含むことを特徴とする燃料電池用セパレータ用導電性樹脂組成物。 Carbon black that is at least one selected from the group consisting of ketjen black, acetylene black, furnace carbon black, and thermal carbon black and that has a particle size of 0.1 to 20 μm and an expansion that has a particle size of 400 to 800 μm A conductive resin composition for a fuel cell separator , comprising a conductive filler made of graphite and polymethylpentene . 前記ポリメチルペンテンの含有量が導電性樹脂組成物全量の20〜50重量%であり、前記導電性フィラーの含有量が導電性樹脂組成物全量50〜80重量%であることを特徴とする請求項1記載の燃料電池用セパレータ用導電性樹脂組成物。The content of the polymethylpentene is 20 to 50% by weight of the total amount of the conductive resin composition, and the content of the conductive filler is 50 to 80% by weight of the total amount of the conductive resin composition. Item 2. A conductive resin composition for a fuel cell separator according to Item 1. 前記導電性フィラーにおける膨張黒鉛とカーボンブラックとの配合比が1:1〜4:1(重量比)であることを特徴とする請求項1または2記載の燃料電池用セパレータ用導電性樹脂組成物。The conductive resin composition for a fuel cell separator according to claim 1 or 2, wherein a blending ratio of expanded graphite and carbon black in the conductive filler is 1: 1 to 4: 1 (weight ratio) . . 請求項1〜3の何れか一項に記載の燃料電池用セパレータ用導電性樹脂組成物から成ることを特徴とする燃料電池用セパレータ Fuel cell separator, wherein formation Rukoto from the fuel cell separator conductive resin composition according to any one of claims 1 to 3. 請求項1〜の何れか一項に記載の燃料電池用セパレータ用導電性樹脂組成物を得る工程と、得られた導電性樹脂組成物を射出成形または押出成形により成形する成形工程とを備えたことを特徴とする燃料電池用セパレータの製造方法A step of obtaining a conductive resin composition for a fuel cell separator according to any one of claims 1 to 3 , and a molding step of molding the obtained conductive resin composition by injection molding or extrusion molding. A method for producing a fuel cell separator.
JP2003003304A 2003-01-09 2003-01-09 Conductive resin composition for fuel cell separator, fuel cell separator and method for producing the same Expired - Fee Related JP4100617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003304A JP4100617B2 (en) 2003-01-09 2003-01-09 Conductive resin composition for fuel cell separator, fuel cell separator and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003304A JP4100617B2 (en) 2003-01-09 2003-01-09 Conductive resin composition for fuel cell separator, fuel cell separator and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004217689A JP2004217689A (en) 2004-08-05
JP4100617B2 true JP4100617B2 (en) 2008-06-11

Family

ID=32894609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003304A Expired - Fee Related JP4100617B2 (en) 2003-01-09 2003-01-09 Conductive resin composition for fuel cell separator, fuel cell separator and method for producing the same

Country Status (1)

Country Link
JP (1) JP4100617B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693151B2 (en) 2017-06-12 2020-06-23 Morgan Co., Ltd. Bipolar plate for fuel cell having controlled structure of carbon materials and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915637B2 (en) * 2005-06-27 2012-04-11 パナソニック株式会社 Composition for molding fuel cell separator and fuel cell separator
KR101959998B1 (en) * 2017-07-27 2019-03-20 주식회사 모간 High-content polymer-carbon masterbatch manufacturing method and bipolar plate for fuel cell using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693151B2 (en) 2017-06-12 2020-06-23 Morgan Co., Ltd. Bipolar plate for fuel cell having controlled structure of carbon materials and method of manufacturing the same

Also Published As

Publication number Publication date
JP2004217689A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
CN101740743B (en) Molding material for fuel cell separator
Derieth et al. Development of highly filled graphite compounds as bipolar plate materials for low and high temperature PEM fuel cells
US20080032176A1 (en) Fuel cell separator composition, fuel cell separator, and method for producing the same
US20040185320A1 (en) Conductive resin composition, fuel cell separator and method for producing fuel cell separator
TW200405599A (en) Mesh reinforced fuel cell separator plate
US20100127428A1 (en) Fabrication of carbon nanotubes reinforced semi-crystalline polymer composite bipolar plates for fuel cell
US20080280202A1 (en) Conductive composite material
JP2002025571A (en) Fuel cell separator, its manufacturing method, and solid high polymer molecule fuel cell
US20050042496A1 (en) Method for manufacturing fuel cell separator plates under low shear strain
US20090098447A1 (en) Resin composition for fuel cell separator, and fuel cell separator
JP2002298865A (en) Fuel cell separator and manufacturing method therefor
KR100988915B1 (en) Fuel cell separator and its manufacturing method
JP4100617B2 (en) Conductive resin composition for fuel cell separator, fuel cell separator and method for producing the same
CN101615680B (en) Manufacturing method of separator material and fuel battery separator and fuel battery
Wang Conductive thermoplastic composite blends for flow field plates for use in polymer electrolyte membrane fuel cells (PEMFC)
JP2005108616A (en) Separator for fuel cell, and its manufacturing method
JP3296801B2 (en) Carbon composite molding
US9048010B2 (en) Method for preparing an electrically conducting article
JP2004119346A (en) Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator
CN112956055A (en) Composition for bipolar plate and preparation method thereof
JP4005539B2 (en) Manufacturing method of fuel cell separator
JP2002289214A (en) Separator for fuel cell
JP3849926B2 (en) Fuel cell separator and method for producing the same
US20060169952A1 (en) Composition and method for making fuel cell collector plates with improved properties
JP2005108591A (en) Molding material for fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees