JP3849926B2 - Fuel cell separator and method for producing the same - Google Patents

Fuel cell separator and method for producing the same Download PDF

Info

Publication number
JP3849926B2
JP3849926B2 JP2002007205A JP2002007205A JP3849926B2 JP 3849926 B2 JP3849926 B2 JP 3849926B2 JP 2002007205 A JP2002007205 A JP 2002007205A JP 2002007205 A JP2002007205 A JP 2002007205A JP 3849926 B2 JP3849926 B2 JP 3849926B2
Authority
JP
Japan
Prior art keywords
fuel cell
cell separator
separator
epdm
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002007205A
Other languages
Japanese (ja)
Other versions
JP2003208907A (en
Inventor
常盛 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2002007205A priority Critical patent/JP3849926B2/en
Publication of JP2003208907A publication Critical patent/JP2003208907A/en
Application granted granted Critical
Publication of JP3849926B2 publication Critical patent/JP3849926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用セパレータ及びその製造方法に関するものである。
【0002】
【従来の技術】
燃料電池には、固体高分子型、燐酸型及び溶融炭酸塩型等のタイプがある。例えば固体高分子型の燃料電池は、固体高分子膜を挟んでアノード電極およびカソード電極とセパレータとを設けて単セルを構成し、この単セルを数百個のオーダーで積み重ねて形成されている。アノード電極側に、セパレータに形成されたガス供給溝を通して水素等の燃料ガスを供給し、カソード電極側に酸素等の酸化ガスを供給して電気化学反応を生じさせて、燃料が有する化学エネルギーを電気エネルギーに変換し出力するようになっている。
【0003】
このような燃料電池に用いられるセパレータの材質特性としては、各単セルで発生した電流がこれらセパレータを通して流れ、また、隣接する単セルは、各々のセパレータを相互に密着させることで、回路的に直列接続構造となるように形成されることから、セパレータ自身の固有抵抗と共に、セパレータ同士を重ねて締付けたときのセパレータ表面間およびセパレータとそれに密着する電極接面間の接触抵抗が極力小さいことが要求される。
【0004】
また、このような燃料電池は、電気自動車に搭載した場合、電気自動車からの振動または衝撃によって燃料電池が破損する虞があるため、セパレータはその様な振動または衝撃に対する耐性が要求される。
【0005】
現在、燃料電池用セパレータの材質は、樹脂カーボン複合材(ボンドカーボン)、モールドカーボン、膨張黒鉛、焼結カーボンなどが用いられており、その中でも樹脂カーボン複合材が主流となっている。しかしながら、これらのカーボン材料は導電性に優れているが、強度上、割れやすいという欠点があった。
【0006】
【発明が解決しようとする課題】
本発明は、上記した問題点に鑑みなされたものであって、その目的は、可撓性を持つと共に、電気的特性にも優れた黒鉛製の燃料電池用セパレータおよびその製造方法を提供することにある。
【0007】
すなわち、本発明はEPDM100重量部、黒鉛粉末1000〜1500重量部および加硫剤からなる混合粉末(EPDM以外のラジカル反応性樹脂を含まない)を成形して得られてなることを特徴とする燃料電池用セパレータである。
【0008】
つまり、導電性を有する黒鉛粉末と耐衝撃性の高いゴムを混合して成形することによって、衝撃や振動に強い燃料電池用セパレータとすることができ、また本発明の燃料電池用セパレータはエチレン・プロピレンゴムを使用することにより、ゴムの比率を可能な限り少なくすることができるため、導電性カーボンブラックを使用しなくとも、黒鉛粉末のみで高い導電性を有する燃料用セパレータを提供することができる。
【0009】
【発明の実施の形態】
本発明の燃料電池用セパレータで使用されるゴムはエチレン・プロピレンゴム(EPM,EPDM)であり、EPM(エチレン・プロピレン共重合体)もしくはEPDM(エチレン・プロピレン・ジエン共重合体)が挙げられる。
【0010】
エチレン・プロピレンゴム(EPM,EPDM)は分子が少ない直線的な分子構造を有しており、この構造によって柔軟性に富む分子状態となり、補強材や軟化剤の包含性が良好となり、黒鉛粉末などを混練りする上で、これらの物質の高充填を可能とする。また、二重結合を主鎖に含有しないため、一般のジエン系ゴムと比較して安定性が大きく、耐熱性、耐酸性や耐アルカリ性などの耐薬品性に優れる。
【0011】
エチレン・プロピレンゴム(EPM,EPDM)の中で、EPMは加硫剤として硫黄を使用することができないため、より好ましくは加硫剤として硫黄や過酸化物を使用することができるEPDMが挙げられる。
【0012】
本発明の燃料電池用セパレータで使用される黒鉛粉末は、固定炭素が90質量%以上の物を用いることを特徴とし、炭素質粉末であれば特に制限されることなく使用することができる。このような黒鉛粉末としては、例えば、天然黒鉛、人造黒鉛、キッシュ黒鉛、膨張黒鉛、カーボンブラック、メソカーボン、コークス粉、木炭粉、籾殻炭、炭素繊維の粉末などが挙げられ、これらの黒鉛粉末はコストなどの条件を考慮して任意に選択することができる。この中でも天然黒鉛や人造黒鉛が電気特性の点で好ましい。上記黒鉛粉末の平均粒子径は特に制限されるものではないが、1〜250μmの範囲であることが好ましく、より好ましくは50〜150μm、特に好ましくは100μmである。1μmより小さいと電気抵抗を充分に小さなものとすることができず、250μmを超えると強度が弱くなる。
【0013】
エチレン・プロピレンゴム(EPM,EPDM)と黒鉛粉末の混合割合は、エチレン・プロピレンゴム(EPM,EPDM)100重量部に対して、黒鉛粉末を1000〜1500重量部混合させる。
【0014】
エチレン・プロピレンゴム(EPM,EPDM)100重量部に対して、黒鉛粉末を1000重量部以上配合させると、固有抵抗および接触抵抗の値が、格段に低くなり、セパレータの導電性を高くすることができる。また、エチレン・プロピレンゴム(EPM,EPDM)100重量部に対して、黒鉛粉末を1500重量部を超えて配合させることは、両者の混練り時に粘性が高くなりすぎるため、製造上、均一な混合粉末(コンパウンド)を得ることが困難となる。
【0015】
また、本発明の燃料電池用セパレータには、本発明の作用を阻害しない範囲で、加硫剤、加硫促進剤、加硫促進助剤、加硫防止剤、軟化剤、老化防止剤、着色剤などを加えることができる。
【0016】
例えば、加硫剤としては、硫黄、有機酸化物、ポリアミン、亜鉛華、マグネシア、酸化鉛などが挙げられる。但し、EPMを用いる場合、硫黄を使用することはできない。
【0017】
加硫促進剤としては、グアニジン系、チラウム系、チアゾール系、チオウレア系、スルフェンアミド系、ジチオカルバミン酸系などが挙げられ、上記加硫促進剤と共に使用する促進助剤としては金属酸化物、有機酸などが挙げられる。また、この際、加硫を調節するために加硫防止剤を入れても良い。
【0018】
軟化剤としては鉱油、石油樹脂、動植物油脂、脂肪酸、タール、ピッチ、アスファルトなどが挙げられる。例えば、ステアリン酸及び粘着剤を添加することにより、ゴムと黒鉛粉末の加工性を向上させることが可能である。
【0019】
老化防止剤としては、芳香族アミン類、フェノール類の誘導体が挙げられる。
【0020】
本発明の燃料電池用セパレータは、最初にエチレン・プロピレンゴム(EPM,EPDM)をロール、加圧ニーダ、またはバンバリミキサーなどにて素練りし、その後、徐々に黒鉛粉末を設定量になるまで添加し、均一になるまで混練りする。これらの混合物に、更に加硫剤を添加し混練した後、粉砕、分級して混合粉末(コンパウンド)とする。
【0021】
上記混合粉末(コンパウンド)をプレス成形して本成形金型形状に出来る限り近い形状の予備成形体とし、その後、予備成形体を本成形の金型に装入し、成形温度150〜200度、成形圧力10Mpa〜50Mpaにて熱圧成形することにより、最終形状の燃料電池用セパレータが製造される。
【0022】
上記のようにして製造される本発明の燃料電池用セパレータは、衝撃や振動に強く、また、エチレン・プロピレンゴムを使用することにより、ゴムの比率を可能な限り少なくすることができるため、導電性カーボンブラックを使用しなくとも高い導電性を有する。
【0023】
以下、実施例によって本発明を更に詳しく説明する。
【0024】
【実施例】
実施例1〜6、比較例1、2
EPDM(三井石油化学(株)製、EPT24)100重量部をロールによって素練りし、その後、表1に示した配合割合の黒鉛粉末(平均粒子径100μm;(株)エスイーシー製、SN−100)およびパーヘキサ25B(日本油脂(株)製)を添加し、均一になるまでそれぞれ混練りした。混練り後、混合粉末を予備成形した後、金型に入れて、170度、圧力20MPaにて熱圧成形し、所定形状の成形品を作製した。
【0025】
比較例3
黒鉛粉末(平均粒子径100μm;(株)エスイーシー製、SN−100)にフェノール樹脂(住友ベークライト(株)製、PR−50087)を全量に対して15%混合し、熱ロール、加圧ニーダ、ミル混合機などで混練した後、粉砕、分級して混合粉末とし、この混合粉末を予備成形した後、170度、圧力20MPaにて熱圧成形し、所定形状の板状の成形品を作製した。
【0026】
実施例1〜6および比較例1〜3で各々得られた各試験片を用いて、固有抵抗・接触抵抗・伸びを以下の測定法に従って測定した。
測定方法
(1)固有抵抗
体積抵抗率をJIS K 7194に準じて測定した(板厚2mm)。
(2)接触抵抗
2枚の試験片(□20mm×厚さ1mm)を測定電極間に重ねて配置し、接触面圧10kg/cmで加圧し、電流1A流した時の電圧を測定して接触抵抗を求めた。
(3)伸び
伸びをJIS K 6251 に準じて測定した(試験片:ダンベル状3号形)。
【0027】
【表1】

Figure 0003849926
【0028】
表1に示すように、実施例1〜6は比較例1および2より固有抵抗値および接触抵抗値が顕著に低くなった。
【0029】
【表2】
Figure 0003849926
【0030】
また、表2に示すように、実施例1〜6は、従来使用されていた樹脂カーボン複合材である比較例3と比較して、著しく伸びる性質を持つようになった。
【0031】
【発明の効果】
以上のように、本発明の燃料電池用セパレータは、導電性を有する黒鉛粉末と耐衝撃性の高いゴムを混合して成形することによって、伸びる性質、すなわち可撓性をもった衝撃や振動に強い燃料電池用セパレータとすることができ、また、エチレン・プロピレンゴムを使用することにより、ゴムの比率を可能な限り少なくすることができるため、導電性カーボンブラックを使用しなくとも、黒鉛粉末のみで高い導電性を有する燃料用セパレータを提供することができた。それによって、高性能の燃料電池用セパレータを、簡略した製法で、なおかつ低コストで製造することが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell separator and a method for producing the same.
[0002]
[Prior art]
Fuel cells include types such as a solid polymer type, a phosphoric acid type, and a molten carbonate type. For example, a solid polymer type fuel cell is formed by forming a single cell by providing an anode electrode, a cathode electrode, and a separator with a solid polymer membrane interposed therebetween, and stacking the single cells in the order of several hundred pieces. . A fuel gas such as hydrogen is supplied to the anode electrode side through a gas supply groove formed in the separator, and an oxidizing gas such as oxygen is supplied to the cathode electrode side to cause an electrochemical reaction. It is converted into electrical energy and output.
[0003]
As a material characteristic of the separator used in such a fuel cell, a current generated in each single cell flows through these separators, and adjacent single cells are connected to each other in a circuit manner. Since it is formed so as to have a series connection structure, the contact resistance between the separator surfaces and between the separator and the electrode contact surface in close contact with each other when the separators are stacked and tightened is minimized as well as the specific resistance of the separator itself. Required.
[0004]
In addition, when such a fuel cell is mounted on an electric vehicle, the fuel cell may be damaged by vibration or impact from the electric vehicle. Therefore, the separator is required to have resistance to such vibration or impact.
[0005]
Currently, resin carbon composite materials (bond carbon), molded carbon, expanded graphite, sintered carbon, and the like are used as the material for the fuel cell separator, and among them, resin carbon composite materials are the mainstream. However, these carbon materials are excellent in electrical conductivity, but have a drawback that they are easily cracked in strength.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a graphite fuel cell separator having flexibility and excellent electrical characteristics, and a method for producing the same. It is in.
[0007]
That is, the present invention is a fuel obtained by molding a mixed powder composed of 100 parts by weight of EPDM, 1000 to 1500 parts by weight of graphite powder and a vulcanizing agent (not containing a radical reactive resin other than EPDM). It is a battery separator.
[0008]
That is, by mixing and molding conductive graphite powder and rubber having high impact resistance, a fuel cell separator resistant to shock and vibration can be obtained. By using propylene rubber, the ratio of rubber can be reduced as much as possible. Therefore, it is possible to provide a fuel separator having high conductivity only with graphite powder without using conductive carbon black. .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The rubber used in the fuel cell separator of the present invention is ethylene / propylene rubber (EPM, EPDM), and examples thereof include EPM (ethylene / propylene copolymer) or EPDM (ethylene / propylene / diene copolymer).
[0010]
Ethylene / propylene rubber (EPM, EPDM) has a linear molecular structure with few molecules, and this structure makes the molecular state rich in flexibility, improves the inclusion of reinforcing materials and softeners, graphite powder, etc. In kneading, the high filling of these substances is made possible. In addition, since it does not contain a double bond in the main chain, it is more stable than general diene rubbers and is excellent in chemical resistance such as heat resistance, acid resistance and alkali resistance.
[0011]
Among ethylene / propylene rubbers (EPM, EPDM), EPM cannot use sulfur as a vulcanizing agent, and more preferably EPDM can use sulfur or peroxide as a vulcanizing agent. .
[0012]
The graphite powder used in the fuel cell separator of the present invention is characterized by using a material having a fixed carbon content of 90% by mass or more, and any carbonaceous powder can be used without particular limitation. Examples of such graphite powder include natural graphite, artificial graphite, quiche graphite, expanded graphite, carbon black, mesocarbon, coke powder, charcoal powder, rice husk charcoal, carbon fiber powder, and the like. Can be arbitrarily selected in consideration of conditions such as cost. Among these, natural graphite and artificial graphite are preferable in terms of electrical characteristics. The average particle diameter of the graphite powder is not particularly limited, but is preferably in the range of 1 to 250 μm, more preferably 50 to 150 μm, and particularly preferably 100 μm. If it is smaller than 1 μm, the electric resistance cannot be made sufficiently small, and if it exceeds 250 μm, the strength becomes weak.
[0013]
As for the mixing ratio of ethylene / propylene rubber (EPM, EPDM) and graphite powder, 1000 to 1500 parts by weight of graphite powder are mixed with 100 parts by weight of ethylene / propylene rubber (EPM, EPDM).
[0014]
When 1000 parts by weight or more of graphite powder is blended with 100 parts by weight of ethylene / propylene rubber (EPM, EPDM), the specific resistance and contact resistance values are remarkably lowered, and the conductivity of the separator is increased. it can. In addition, blending more than 1500 parts by weight of graphite powder with respect to 100 parts by weight of ethylene / propylene rubber (EPM, EPDM) results in excessively high viscosity when kneading the two, so that uniform mixing is possible in production. It becomes difficult to obtain a powder (compound).
[0015]
In addition, the fuel cell separator of the present invention includes a vulcanizing agent, a vulcanization accelerator, a vulcanization acceleration aid, a vulcanization inhibitor, a softening agent, an anti-aging agent, and a colorant, as long as the action of the present invention is not impaired. Agents can be added.
[0016]
Examples of the vulcanizing agent include sulfur, organic oxide, polyamine, zinc white, magnesia, lead oxide and the like. However, when using EPM, sulfur cannot be used.
[0017]
Examples of the vulcanization accelerator include guanidine series, thyrium series, thiazole series, thiourea series, sulfenamide series, dithiocarbamic acid series, and the like. An acid etc. are mentioned. At this time, a vulcanization inhibitor may be added to adjust the vulcanization.
[0018]
Examples of the softening agent include mineral oil, petroleum resin, animal and vegetable oils, fatty acids, tar, pitch, and asphalt. For example, it is possible to improve the workability of rubber and graphite powder by adding stearic acid and an adhesive.
[0019]
Examples of the antioxidant include aromatic amines and phenol derivatives.
[0020]
In the fuel cell separator according to the present invention, first, ethylene / propylene rubber (EPM, EPDM) is masticated with a roll, a pressure kneader, or a Banbury mixer, and then graphite powder is gradually added until a set amount is reached. And knead until uniform. A vulcanizing agent is further added to these mixtures and kneaded, and then pulverized and classified to obtain a mixed powder (compound).
[0021]
The mixed powder (compound) is press-molded to form a preform as close as possible to the shape of the main mold, and then the preform is inserted into the main mold, and the molding temperature is 150 to 200 degrees. A fuel cell separator having a final shape is manufactured by hot-pressure molding at a molding pressure of 10 Mpa to 50 Mpa.
[0022]
The fuel cell separator of the present invention produced as described above is resistant to shock and vibration, and the ratio of rubber can be reduced as much as possible by using ethylene / propylene rubber. High conductivity without using carbon black.
[0023]
Hereinafter, the present invention will be described in more detail by way of examples.
[0024]
【Example】
Examples 1 to 6, Comparative Examples 1 and 2
100 parts by weight of EPDM (Mitsui Petrochemical Co., Ltd., EPT24) was masticated with a roll, and then graphite powder having the blending ratio shown in Table 1 (average particle size 100 μm; SN-100, SN-100) Perhexa 25B (Nippon Yushi Co., Ltd.) was added and kneaded until uniform. After kneading, the mixed powder was preformed and then placed in a mold and hot-press molded at 170 degrees and a pressure of 20 MPa to produce a molded product having a predetermined shape.
[0025]
Comparative Example 3
Graphite powder (average particle size: 100 μm; SN-100, SN-100) is mixed with phenol resin (Sumitomo Bakelite Co., Ltd., PR-50087) at 15% of the total amount, and heated roll, pressure kneader, After kneading with a mill mixer or the like, the mixture is pulverized and classified to obtain a mixed powder. The mixed powder is preformed and then hot-press molded at 170 degrees and a pressure of 20 MPa to produce a plate-shaped molded product having a predetermined shape. .
[0026]
Using each test piece obtained in each of Examples 1 to 6 and Comparative Examples 1 to 3, the specific resistance, contact resistance, and elongation were measured according to the following measurement methods.
Measurement Method (1) The specific resistance volume resistivity was measured according to JIS K 7194 (plate thickness 2 mm).
(2) Two test pieces of contact resistance (□ 20 mm × thickness 1 mm) are placed between measurement electrodes, pressed at a contact surface pressure of 10 kg / cm 2 , and the voltage when a current of 1 A flows is measured. Contact resistance was determined.
(3) Elongation was measured according to JIS K 6251 (test piece: dumbbell shape No. 3).
[0027]
[Table 1]
Figure 0003849926
[0028]
As shown in Table 1, the specific resistance values and contact resistance values of Examples 1 to 6 were significantly lower than those of Comparative Examples 1 and 2.
[0029]
[Table 2]
Figure 0003849926
[0030]
Moreover, as shown in Table 2, Examples 1-6 came to have the property to extend remarkably compared with the comparative example 3 which is the resin carbon composite material used conventionally.
[0031]
【The invention's effect】
As described above, the fuel cell separator according to the present invention is formed by mixing conductive graphite powder and high impact-resistant rubber and molding it, so that it can be stretched, that is, has impact and vibration with flexibility. It can be a strong fuel cell separator, and by using ethylene / propylene rubber, the ratio of rubber can be reduced as much as possible, so only graphite powder can be used without using conductive carbon black. Thus, a fuel separator having high conductivity could be provided. As a result, a high-performance fuel cell separator can be manufactured at a low cost by a simple manufacturing method.

Claims (1)

EPDM100重量部、黒鉛粉末1000〜1500重量部および加硫剤からなる混合粉末(EPDM以外のラジカル反応性樹脂を含まない)を成形して得られてなることを特徴とする燃料電池用セパレータ。A fuel cell separator characterized by being obtained by molding 100 parts by weight of EPDM, 1000 to 1500 parts by weight of graphite powder, and a mixed powder (not containing a radical reactive resin other than EPDM) composed of a vulcanizing agent.
JP2002007205A 2002-01-16 2002-01-16 Fuel cell separator and method for producing the same Expired - Fee Related JP3849926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002007205A JP3849926B2 (en) 2002-01-16 2002-01-16 Fuel cell separator and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002007205A JP3849926B2 (en) 2002-01-16 2002-01-16 Fuel cell separator and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003208907A JP2003208907A (en) 2003-07-25
JP3849926B2 true JP3849926B2 (en) 2006-11-22

Family

ID=27645772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002007205A Expired - Fee Related JP3849926B2 (en) 2002-01-16 2002-01-16 Fuel cell separator and method for producing the same

Country Status (1)

Country Link
JP (1) JP3849926B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078528A1 (en) 2002-03-18 2003-09-25 Ntn Corporation Conductive resin molding

Also Published As

Publication number Publication date
JP2003208907A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
EP1869120B1 (en) Electrically conducting curable resin composition, cured product thereof and molded article of the same
EP2070143B1 (en) Separator for fuel cell, single cell unit for fuel cell, short stack unit for fuel cell, and production methods of separator for fuel cell and cell unit (single cell unit or short stack unit) for fuel cell
EP1394878B1 (en) Separator for solid state polymer type fuel cell and method for producing the same
EP2192644B1 (en) Molding material for fuel cell separator
EP1692737B1 (en) Electroconductive resin composition and molded product thereof
JP4036754B2 (en) Polymer electrolyte fuel cell
EP2067201B1 (en) Separator for fuel cell and production method thereof
EP1315223A1 (en) Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
CN1206761C (en) Separator for fuel cell production process thereof and solid polymer fuel cell using the separator
JP5224860B2 (en) Fuel cell separator and method for producing the same
US6444344B1 (en) Material for fuel cell separator and fuel cell separator made from said material
JP3849926B2 (en) Fuel cell separator and method for producing the same
CN114672116B (en) Low-compressive stress relaxation fluororubber for battery sealing element and preparation method thereof
JP3608658B2 (en) Fuel cell separator and method for producing the same
JP2001089668A (en) Conductive thermoplastic elastomer composition and conductive member formed therefrom
JP2001216977A (en) Separator material for fuel cell
JP4254698B2 (en) Resin composition for fuel cell separator and fuel cell separator
EP2752463A1 (en) Heat-curable resin composition, method for producing cured article and molded article thereof, cured article, molded article, and separator for fuel cell
US20140134520A1 (en) Molding material for fuel cell separator
CN112956055A (en) Composition for bipolar plate and preparation method thereof
US7413685B2 (en) Composition and method for making fuel cell collector plates with improved properties
JP4989880B2 (en) Fuel cell separator, resin composition therefor and method for producing the same
US20060169952A1 (en) Composition and method for making fuel cell collector plates with improved properties
JP4332781B2 (en) Fuel cell separator and fuel cell
JP4100617B2 (en) Conductive resin composition for fuel cell separator, fuel cell separator and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees