JP4096321B1 - 循環式内圧機関及び発電システム - Google Patents

循環式内圧機関及び発電システム Download PDF

Info

Publication number
JP4096321B1
JP4096321B1 JP2007144077A JP2007144077A JP4096321B1 JP 4096321 B1 JP4096321 B1 JP 4096321B1 JP 2007144077 A JP2007144077 A JP 2007144077A JP 2007144077 A JP2007144077 A JP 2007144077A JP 4096321 B1 JP4096321 B1 JP 4096321B1
Authority
JP
Japan
Prior art keywords
carbon dioxide
engine
dioxide gas
compressor
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007144077A
Other languages
English (en)
Other versions
JP2008297956A (ja
Inventor
孝喜 福山
Original Assignee
有限会社新科学開発研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社新科学開発研究所 filed Critical 有限会社新科学開発研究所
Priority to JP2007144077A priority Critical patent/JP4096321B1/ja
Application granted granted Critical
Publication of JP4096321B1 publication Critical patent/JP4096321B1/ja
Publication of JP2008297956A publication Critical patent/JP2008297956A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】燃料資源に起因する問題を起こさずに、従来の内燃機関によるのと同等程度以上のエネルギを効率よく取り出すこと
【解決手段】高圧状態で供給される炭酸ガス35aの体積膨張による力により作動子を駆動する炭酸ガスエンジン1と、上記炭酸ガスエンジン1から排出される炭酸ガス35bを回収するタンクと、該タンクに回収された排出炭酸ガス35bを吸引するポンプと、上記ポンプより送給される上記排出炭酸ガス35bを冷却する冷却装置57と、該冷却装置より送給される冷却された排出炭酸ガス35bを高圧にて圧縮する炭酸ガス圧縮機59と、該圧縮機59より送給される炭酸ガスを貯溜する循環タンク73とからなり、上記各部をパイプ33により連結して炭酸ガスが循環する循環回路34を構成する。
【選択図】図1

Description

本願発明は、炭酸ガスの物理的性状を最大限に活用した、燃料の燃焼を伴わずにエネルギを取り出す循環式内圧機関及びこれを使用した発電システムに関する。
内燃機関は機関の内部で燃料を燃焼させてその熱エネルギを利用する。使用する燃料のちがいによりガソリン機関、ガス機関、石油機関等種々のものがあり、世界中で広く普及し使用されている。
しかしながら、石油資源の枯渇が懸念されており、また燃焼の結果排出される排気ガスによる公害問題を惹起している。
外燃機関も燃料を燃焼させるという点で、上記した問題、即ち、資源の枯渇や排気ガスによる公害問題を惹起する。
これらを解消すべく、クリーンエネルギとして水素の利用が注目されているが、取扱いが至難のため、開発に行き詰まっているのが現状である。また原子力利用は公害乃至環境問題や安全性の点で懸念がある。
このようにエネルギー源の確保が重要である反面、炭酸ガスの増大による弊害とくに地球温暖化問題が指摘されている。日本の炭酸ガス排出量は全世界の5%を占めると言われ、毎年約38100万トンもの膨大な量の炭酸ガスが大気中に排出されている。このうち約3割が発電等のエネルギ転換部門が占めている。このような憂慮すべき状態にあるにもかかわらず、世界経済の活発化・発展途上国の発展等により、京都議定書の如き政治的制約を尻目に炭酸ガスの排出は一層増大すると言われ、その有効利用はおろか増大防止を阻止できないでいる。とくに現代生活を支える電力エネルギは炭酸ガスを大量に発生させる石油等の化石燃料を燃焼する火力発電が中心であるため、上記憂慮は深刻である。
本願発明はこのような背景の下に、提唱される全く新しい画期的なエネルギシステムである。
本願発明に関し、先行技術文献の調査をしたが有効な特許文献を発見することができなかった。強いて挙げるとすれば出願人の特許出願に係る次の文献である。
特許第3929477号
本願発明は燃料の燃焼を伴わずにエネルギを取り出すことにより上記欠点を解消する全く新しい画期的な循環式内圧機関及び発電システムを提案する。
つまり本願発明の目的は、燃料資源に起因する問題を起こさずに、従来の内燃機関によるのと同等程度以上のエネルギを効率よく取り出すことができる循環式内圧機関及び発電システムを供することである。
また他の目的は、エネルギ発生機関乃至発電機関による炭酸ガスの増加を防止することであり、ひいては温暖化現象の防止に寄与することである。
上記目的達成のため、本願発明による循環式内圧機関は、高圧状態で供給される炭酸ガスが大気圧になるときの体積膨張による力により作動子を駆動する炭酸ガスエンジンと、上記炭酸ガスエンジンから排出される炭酸ガスを回収するタンクと、該タンクに回収された炭酸ガスを吸引するポンプと、上記ポンプより送給される炭酸ガスを冷却する冷却装置と、上記冷却装置より送給される冷却された炭酸ガスを高圧にて圧縮する炭酸ガス圧縮機と、上記炭酸ガス圧縮機より送給される炭酸ガスを貯溜する循環タンクとからなり、上記各部をパイプにより連結して炭酸ガスが循環する循環回路を構成することを特徴とする。
また、請求項1記載の循環式内圧機関において、上記循環回路の供給系経路と回収系経路との接点に三方切替弁を設け、該三方切替弁を介して初期タンクを連結し、供給系のパイプ及び回収系のパイプに送給されてくる炭酸ガスの濃度が設定範囲内にあるか否かを検知するセンサを設け、該センサは上記濃度が設定範囲内に満たないときは初期切替信号を発し、設定範囲内であるときは循環切替信号を発することを特徴とする。
また、請求項1又は請求項2いずれか一記載の循環式内圧機関において、上記炭酸ガス圧縮機及び上記ポンプを同一の動力源たる上記炭酸ガスエンジンにて駆動することを特徴とする。
また、請求項1乃至請求項3いずれか一記載の循環式内圧機関において、上記炭酸ガスエンジンの加熱部に熱風を供給する圧縮機を設け、該圧縮機を上記炭酸ガスエンジンの動力により駆動することを特徴とする。
また、請求項1記載の循環式内圧機関において、上記炭酸ガスエンジンがレシプロ型炭酸ガスエンジンであることを特徴とする。
また、請求項1記載の循環式内圧機関において、上記炭酸ガスエンジンがロータリ型炭酸ガスエンジンであることを特徴とする。
また、請求項1記載の循環式内圧機関において、上記炭酸ガス圧縮機が複数からなり、各炭酸ガス圧縮機が上記冷却装置に接続されることを特徴とする。
また、請求項7記載の循環式内圧機関において、上記各炭酸ガス圧縮機は上記冷却装置に直列接続されることを特徴とする。
また、請求項7記載の循環式内圧機関において、上記各炭酸ガス圧縮機は上記冷却装置に並列接続されることを特徴とする。
また、本願発明による発電システムは、高圧状態で供給される炭酸ガスが大気圧になるときの体積膨張による力により作動子を駆動する炭酸ガスエンジンと、上記炭酸ガスエンジンから排出される炭酸ガスを回収するタンクと、該タンクに回収された炭酸ガスを吸引するポンプと、上記ポンプより送給される炭酸ガスを冷却する冷却装置と、上記冷却装置より送給される冷却された炭酸ガスを高圧にて圧縮する炭酸ガス圧縮機と、上記炭酸ガス圧縮機より送給される炭酸ガスを貯溜する循環タンクとからなり、上記各部をパイプにより連結して炭酸ガスが循環する循環回路を構成し、上記炭酸ガスエンジンにより発電することを特徴とする。
また、請求項10記載の発電システムにおいて、上記循環回路の供給系経路と回収系経路との接点に三方切替弁を設け、該三方切替弁を介して初期タンクを連結し、供給系のパイプ及び回収系のパイプに送給されてくる炭酸ガスの濃度が設定範囲内にあるか否かを検知するセンサを設け、該センサは上記濃度が設定範囲内に満たないときは初期切替信号を発し、設定範囲内であるときは循環切替信号を発することを特徴とする。
また、請求項10又は請求項11いずれか一記載の発電システムにおいて、上記炭酸ガス圧縮機及び上記ポンプを同一の動力源たる上記炭酸ガスエンジンにて駆動することを特徴とする。
また、請求項10乃至請求項12いずれか一記載の発電システムにおいて、上記炭酸ガスエンジンの加熱部に熱風を供給する圧縮機を設け、該圧縮機を上記炭酸ガスエンジンの動力により駆動することを特徴とする。
また、請求項10記載の発電システムにおいて、上記炭酸ガスエンジンがレシプロ型炭酸ガスエンジンであることを特徴とする。
また、請求項10記載の発電システムにおいて、上記炭酸ガスエンジンがロータリ型炭酸ガスエンジンであることを特徴とする。
また、請求項10記載の発電システムにおいて、上記炭酸ガス圧縮機が複数からなり、各炭酸ガス圧縮機が上記冷却装置に接続されることを特徴とする。
また、請求項16記載の発電システムにおいて、上記各炭酸ガス圧縮機は上記冷却装置に直列接続されることを特徴とする。
また、請求項16記載の発電システムにおいて、上記各炭酸ガス圧縮機は上記冷却装置に並列接続されることを特徴とする。
本願発明は炭酸ガスの有する3つの優れた物理的性状、即ち、ガスの不活性、常温液化性及び高度の体積膨張性を利用し、高圧状態で内室に供給された炭酸ガスが常圧になるときの体積膨張による力により作動子を駆動させ、これにより発生するエネルギを取り出す。よって、燃料の燃焼を伴わずにエネルギを取り出すから、燃料資源に起因する問題、即ち、資源の枯渇や排気ガスによる公害問題を惹起することがない。よって完全なクリーンエネルギである。
上記エネルギの取出しにおいて、循環回路を構成することにより排出された炭酸ガスを回収して再利用するから、エネルギ効率を非常に増大することができる。
また、炭酸ガスを用いるものの炭酸ガスを生じることがないので、現在以上の炭酸ガスの増加を防止することができ、温暖化現象の防止に寄与することができる。
エネルギ源は資源枯渇のおそれがない炭酸ガスであり、しかも取り出されるエネルギは後述するようにガソリンエンジンと同等程度以上であるから、エネルギの実行性の点でも問題はない。
次に、実施の形態を示す図面に基づき本願発明による循環式内圧機関をさらに詳しく説明する。なお、便宜上同一の機能を奏する部分には同一の符号を付してその説明を省略する。
1は炭酸ガスエンジンであり、気化後の高圧状態で供給される炭酸ガス35aの体積膨張による力により作動子を駆動せしめる。炭酸ガスエンジン1は具体的には、図8に例示するレシプロ型炭酸ガスエンジン又は図3及び図5に例示するロータリ型炭酸ガスエンジンである。前者の場合作動子はピストン7であり、後者の場合作動子はロータ105、115である。
炭酸ガスエンジン1の詳細は後述する。上記炭酸ガスエンジン1に圧料となる炭酸ガス35aを供給する供給経路34Aと、炭酸ガス35bを回収する回収経路34Bを閉回路に接続し、循環回路34を構成する。
上記供給経路34Aは、具体的には、液体状態のバージン炭酸ガスを貯溜する圧力容器からなる初期タンク31と、該初期タンク31に切替弁51、三方切替弁54及び流量制御弁55を介してパイプ33a、33b、33cにより連結される冷却装置57と、該冷却装置57のパイプ33dに連結され炭酸ガスエンジン1の供給口13、107、117に接続されるパイプ33eとからなる。
上記回収経路34Bは、具体的には、炭酸ガスエンジン1の排出口11、109、119から排出される大気圧の炭酸ガス35bを回収する回収タンク67と、大気圧の排出炭酸ガス35bよりエンジンオイル成分を分離するフィルタからなる分離装置68と、該分離装置68による上記分離処理を経た上記排出炭酸ガス35bをタンク69に圧送するポンプ61と、上記タンク69から送給されてくる上記排出炭酸ガス35bを例えば−30℃の排気の気化熱等にて冷却する冷却装置57と、上記冷却装置57から送給されてくる上記排出炭酸ガス35bを例えば40気圧に加圧・圧縮する炭酸ガス圧縮機59と、上記炭酸ガス圧縮機59から送給されてくる炭酸ガス35aを貯溜する圧力容器からなる循環タンク73とからなり、上記炭酸ガスエンジン1と上記回収タンク67はパイプ33fにより、上記回収タンク67と上記分離装置68とはパイプ33gにより、上記分離装置68と上記ポンプ61とはパイプ33hにより、上記ポンプ61と上記タンク69とはパイプ33iにより、上記タンク69と上記冷却装置57とはパイプ33jにより、上記冷却装置57と上記炭酸ガス圧縮機59とはパイプ33lにより、上記炭酸ガス圧縮機59と上記循環タンク73とはパイプ33mにより、さらに上記循環タンク73と上記三方切替弁54とはパイプ33qにより、各連結されている。なお、上記パイプを総称するときは「パイプ33」と表わす。
上記供給経路34Aと上記回収経路34Bとの接点には上記した三方切替弁54を設けてあり、上記炭酸ガスエンジン1及び上記三方切替弁54を介して両経路34A、34Bが閉回路に接続され、循環回路34を構成する。また、供給経路34Aのパイプ33aと回収経路34Bのパイプ33qには炭酸ガス35aの濃度を検知するセンサ53が接続されている。該センサ53はパイプ33a及びパイプ33q内を送給されてくる炭酸ガス35aの濃度を常に検知し、上記濃度が設定範囲内に満たないときは初期切替信号を発し、設定範囲内であるときは循環切替信号を発する。
上記回収タンク67にはパイプ33r、33sにより逆止弁63及び大気乾燥装置65が接続されており、排出口11、109、119が「開」となったとき炭酸ガス35aが大気に触れることができるような構造となっている。炭酸ガスエンジン1から排出される大気圧の炭酸ガス35bは上記ポンプ61による吸引及び排出時の噴出力により、上記回収タンク67内に回収される。なお、上記分離装置68には逆止弁75が設けられ、分離されたエンジンオイルが該逆止弁75を介して炭酸ガスエンジン1に戻される。
上記冷却装置57は、上記パイプ33dと上記パイプ33kとが相互に巻き着くような状態で内蔵され、パイプ33dを流れてくる炭酸ガスの気化熱等によりパイプ33k内を流れる炭酸ガス35bを冷却する。この冷却ステップを経ることにより、次の炭酸ガス圧縮機59による炭酸ガス35bの圧縮のためのエネルギを小とすることが可能となる。
冷却装置57には、高圧の炭酸ガス35aが常圧の炭酸ガス35bになって排出口119、109、11よりパイプ33fを経て回収されるのであるが、このとき冷却装置57内に混入している大気は計測ができない程極く微量であるので、この大気が以降の炭酸ガス35a、35bの循環に混入していてもエンジン1の作動にとって実質上全く問題ないことが最近の実験で判明した。炭酸ガスは外界の空気より比重が大であり、かつ、この炭酸ガス35aが高圧状態で移動し排出口119より噴出する。このため膨張排出行程のとき排出口119付近の圧力不均衡部P0で炭酸ガス35aが大気圧になっても、同圧の外界の空気は内室103内に流入してこない。よって冷却装置57に回収される大気圧となった炭酸ガス35bには冷却装置57を経由した外界の空気が混入せず、以降の炭酸ガスの循環において空気が混入してこないためと考えられる。よって、空気の混入による実質上の弊害がないので、回収経路34Bに空気を放出するための単離装置を設けなくともよいのである。
初期タンク31内に貯蔵されている炭酸ガス35aは大部分液体状態であるが、一部がタンク内において気体状態となっている場合がある。この場合は液体の炭酸ガス35aはタンクの下部に、また気体の炭酸ガス35aはタンクの上部に存在する。
図2に本願発明による循環式内圧機関の動作のステップを示す。初期始動は、まず切替弁51を「開」とし、初期タンク31よりバージン炭酸ガス35aをパイプ33aに流す(S1)。パイプ33aを流れてくるバージン炭酸ガス35aの濃度はセンサ53により検知され(S2)、初期切替信号が発せられる(S3)。これにより三方切替弁54が作動し、パイプ33aとパイプ33bを「開」としパイプ33bとパイプ33qを「閉」とする「第1開」の状態にする(S4)。次いでエンジンスロットル用の流量制御弁55が「開」とされ(S5)、炭酸ガス35aはパイプ33cより冷却装置57のパイプ33d内を通って(S6)、パイプ33eより炭酸ガスエンジン1内に供給される(S7)。
炭酸ガスエンジン1が炭酸ガス35aの体積膨張による力により駆動されると、その動力により例えば自動車が駆動される(図示省略)。このとき同時に上記動力がベルト58aにより炭酸ガス圧縮機59に伝動され、該炭酸ガス圧縮機59を作動する(S8)。また上記動力はベルト58bにより圧縮機49に伝動され、該圧縮機49を作動する(S9)。さらに上記動力はベルト58cによりポンプ61に伝動され、該ポンプ61を作動する(S10)。
上記ポンプ61は、炭酸ガスエンジン1から排出される大気圧の炭酸ガス35bを吸引し、回収タンク67内に回収する。この回収の際大気乾燥装置65により水分が除去された大気が回収タンク67に流入される(S11〜S13)。次いで炭酸ガス35bはオイルが分離された後(S14)、ポンプ61によりタンク69に圧送される(S15)。なお、分離されたオイルは炭酸ガスエンジン1に戻される。タンク69に送給された排出炭酸ガス35bは、パイプ33jより上記冷却装置57のパイプ33kに送られ、ここでパイプ33dを流れてくる大気圧に曝された炭酸ガスの気化熱等により冷却される(S16)。冷却された炭酸ガス35bは炭酸ガス圧縮機59に送られ、ここで例えばステップ8で述べた駆動力により40気圧に加圧され炭酸ガス35aとされる(S8)。次いでこの炭酸ガス35aはパイプ33mより循環タンク73に送られ、該循環タンク73に貯溜される(S17)。
始動後においては、センサ53はパイプ33qとパイプ33aを流れる炭酸ガス35aの濃度を検知している(S2)。この炭酸ガス35aの濃度が設定範囲内であるときは、循環切替信号を発する(S3)。この循環切替信号により三方切替弁54が作動し、パイプ33qとパイプ33bを「開」としパイプ33aとパイプ33bを「閉」とする「第2開」の状態にする(S4)。以降は上記した一連のステップが繰返され、エンジンが連続的に作動する。
ステップ9にて駆動される上記圧縮機49は、熱風供給パイプ45、熱風排出パイプ47より炭酸ガスエンジン1に熱風40a、40bを循環供給し(S18)、炭酸ガスエンジン1に供給される高圧状態の炭酸ガス35aの体積膨張を効率的に行わせる。
炭酸ガスはパイプ33を通って開弁された供給口13、107、117より密室内に高圧状態35aで供給され、常圧状態で排出・回収される。炭酸ガス35につき、高圧状態の炭酸ガスを「35a」で表わし、常圧状態のものを「35b」で表わす。なお、総称するときは「炭酸ガス35」という。
次に本願発明に用いられる炭酸ガスエンジン1について説明する。図3は炭酸ガスエン
ジン1をロータリ型炭酸ガスエンジンとする場合である。炭酸ガスエンジン1はアルミニウム合金製の密閉された円筒からなるハウジング101と、該ハウジング101の内室103に回転可能に設けられるアルミニウム合金製のロータ115とからなる。上記ハウジング101は密閉に形成された円筒が横設され、内部に断面円形に形成される内室103を有する。上記ハウジング101の上部周壁に上記内室103に通ずる供給口117を設け、対向する側の周壁に排出口119を開口する。排出口119の設置位置は高圧の炭酸ガス35aが常圧の炭酸ガス35bとなる圧力の均衡点の直前とする。本実施例の場合、該排出口119は上記供給口117を通る直径線fよりやや2次作動室122側に位置するように設ける。図示例では直径線fに対し角度αが約15°程度としてある。上記排出口119は上記供給口117より大に形成される。
上記ロータ115は図4に示すような略楕円形状の板体からなり、上記ハウジング101の内室103の中央部に回転可能に設けられる。上記ハウジング101及び上記ロータ115はロータ軸116に複数個位相をずらせて通常2個固設されている。上記ロータ115の輪郭には、図4に示すように、圧力保持のための圧力シール115aを設ける。該圧力シール115aはオイルシールも兼ねる。上記ハウジング101の上部周壁には供給口117を被覆するバルブ室124を設け、該バルブ室124に上下動自在の供給弁125を設ける。該供給弁125の弁軸127には上記バルブ室124を閉塞する方向に付勢されるスプリング129を巻着する。131は上記ロータ115に連動するカムであり、該カム131により上記供給弁125を開閉する。130はスプリングカバーである。
上記内室103には高圧状態の炭酸ガス35aが供給され、該炭酸ガス35aが大気圧になるときの体積膨張による力により上記ロータ115がロータ軸116を中心にして矢示する一方向に回転する。上記内室103は上記ロータ115の回転に伴ない、1次作動室121、2次作動室122に区画・形成される。上記各作動室121、122は上記ロータ115の作動面a,bとの関係で、吸入膨張行程、膨張排出行程又は大気圧保持行程のいずれかを担う。
吸入膨張行程は炭酸ガス35aが1次作動室121内に供給され、上記ロータ115のいずれかの作動面a又はbを押圧する行程で、このとき供給口117は「開」、排出口119は「閉」となっている(図3(A))。膨張排出行程はロータ115の回転に与り大気圧状態となった炭酸ガス35bが排出口119より外部に排出される行程で、このとき供給口117は「閉」、排出口119は「開」となっている(図3(B))。大気圧保持行程は、供給口117が「閉」、排出口119が「開」であり、内室103内が作動室121、122ともに大気圧となった炭酸ガス35bを大気圧状態に保持する行程であり、これによりロータ115の回転に円滑性を付与する(図3(C))。
ハウジング101は、図3のように、アルミニウム合金製のハウジングカバー139にて一体に被覆され、シリンダ本体の側壁の外側に中空体からなる加熱部137を設けることとしてもよい。上記ハウジングカバー139の側壁には熱風供給口141及び熱風排出口143が開口され、夫々、加熱部137を加熱するための熱風40aを供給する熱風供給パイプ45、加熱部137の加熱を終了した熱風40bを排出するための熱風排出パイプ47が連結される。上記熱風供給パイプ45、上記熱風排出パイプ47は別に設ける圧縮機49に循環可能に連結される。
図5及び図6のロータリ型炭酸ガスエンジンはロータが図7で示すような三面ロータの場合である。図5はハウジングが正円形の場合、図6は楕円形の場合である。図5において、炭酸ガスエンジン1はアルミニウム合金製の密閉された円筒からなるハウジング101と、該ハウジング101の内室103に回転可能に設けられるアルミニウム合金製のロータ105とからなる。上記ハウジング101は密閉に形成された円筒が横設され、内部に断面円形に形成される内室103を有する。また上記ハウジング101は周壁に供給口107を設け、対向する側の周壁に排出口109を開口する。該排出口109は上記供給口107より下方に位置するように設けるのが望ましい。なお、ここで「対向」とは供給口107と排出口109のこのような位置関係のある設置も含むものとする。上記排出口109は上記供給口107より大に形成される。
上記ロータ105は丸みを帯びた正三角形状の板体からなり、上記ハウジング101の内室103の中央部に回転可能に設けられる。上記ハウジング101及び上記ロータ105はロータ軸106に複数個位相をずらせて通常2個固設されている。上記ロータ105の輪郭には、図7に示すように、圧力保持のための圧力シール105aを設ける。該圧力シール105aはオイルシールも兼ねる。
上記内室103には高圧状態の炭酸ガス35aが供給され、該炭酸ガス35aが大気圧になるときの体積膨張による力により上記ロータ105がロータ軸106を中心にして時計回り方向に回転する。上記内室103は上記ロータ105の回転に伴ない、1次作動室111、2次作動室112及び3次作動室113に区画・形成される。上記各作動室111、112、113は上記ロータ105の作動面a,b,cとの関係で、吸入膨張行程、膨張排出行程又は大気圧保持行程のいずれかを担う。
吸入膨張行程は炭酸ガス35aが1次作動室111内に供給され、このときの炭酸ガス35aは「亜膨張」の状態となり、上記ロータ105のいずれかの作動面(図5(A)では「a面」)を押圧する。膨張排出行程はロータ105の回転に与り大気圧状態となった炭酸ガス35bが排出口109より外部に排出される。このときの炭酸ガス35aは「連鎖膨張」の状態となる(図5(B))。大気圧保持行程は、供給口107及び排出口109が上記ロータ105の他の作動面によりブロックされるため、大気圧となった炭酸ガス35bを保持する行程であり、これによりロータ105の回転に円滑性を付与する。このときの内室103(図5(C)では3次作動室113)は大気圧(1気圧)となる(図5(C))。
ロータリ型炭酸ガスエンジンの場合、ハウジングの形状は必ずしも断面正円形にする必要がなく、楕円形であってもよい。後者の場合例えば図6に示すように構成することができる。この場合、ハウジング102の内室123が同一径の2個の円が対称に交差して描かれる軌跡に沿って形成されている。ロータ126は丸みを帯びた正三角形状の板体からなり、上記内室123内を中心を移動させながら回転する。上記ロータ126の中央部には、円形のロータ孔126aが設けられ、ここにロータ軸126bが挿通される。該ロータ軸126bは外周にギヤ(図示省略)を設け、ロータ孔126aの内周に設けるギヤ(図示省略)と噛合する。123aは1次作動室、123bは2次作動室、123cは3次作動室である。エネルギは上記ロータ軸126bより適宜手段を介して取り出す。なお、上記ロータ126の輪郭にも、図7と同様、オイルシール兼用の圧力シール(図示省略)を設けてある。
図8は炭酸ガスエンジン1たるレシプロ型炭酸ガスエンジンを示す。炭酸ガスエンジン1を構成するシリンダ2はアルミニウム合金製のシリンダヘッド3とアルミニウム合金製のシリンダ本体5とからなり、シリンダヘッド3がシリンダ本体5に分解可能に固着される。該シリンダ本体5内にはアルミニウム合金製ピストン7が往復動可能に摺接される。上記シリンダ本体5の上部には上記シリンダヘッド3と上記ピストン7とによって密閉構造とされる内室9が形成される。上記シリンダ本体5の側壁にはピストン7の下死点D時に開口する排出口11が設けられる。上記シリンダヘッド3には供給口13が開口され、該供給口13に上下動自在の供給弁15を設ける。該供給弁15の弁軸17には上記供給口13を閉塞する方向に付勢されるスプリング19を巻着する。21は上記ピストン7に連動するカムであり、該カム21により上記供給弁15の開閉をする。23はコネクティングロッドであり、上記ピストン7とクランクシャフト25とを連結する。該クランクシャフト25の一端にはフライホイール27が取り付けられている。26は該クランクシャフト25のバランスウェイトを示す。20はスプリングカバーである。29aは圧力リングであり、上記内室9を密閉するため上記ピストン7の上部に取り付けられる。29bはオイルリングである。
上記シリンダ2は、図3で述べた実施例と同様に、アルミニウム合金製のシリンダカバーにて一体に被覆され、シリンダ本体5の側壁の外側に中空体からなる加熱部を設けることにしてもよい。
次に図9に基づき本願発明の作動原理を説明する。図9はロータ115が内室103内で回転するときの位置と炭酸ガスの膨張の様子を模式化した図である。図9(A1)(図3(A))及び図9(A2)は吸入膨張行程を示し、このときの炭酸ガスは「亜膨張」の状態となる。図9(B1)及び図9(B2)(図3(B))は膨張排出行程を示し、このときの炭酸ガスは「連鎖膨張」の状態となる。図9(C)は大気圧保持行程を示し、図3(C)の直前の状態であり、このときの内室103は大気圧(1気圧)となる。図9(D)はロータ115が1回転し他の面(b面)が作動面となった状態を示す。
炭酸ガス35aは初期タンク31又は循環タンク73よりパイプ33a〜33eを経、高圧状態のまま炭酸ガスエンジン1に供給されるのであるが、この炭酸ガス35aが炭酸ガスエンジン1の内室103に流入されるときの様子を図9に基づいて説明してみる。
まず始動を図示しないセルスターターにより行ない、ロータ115を強制回転させる。ロータ115が図9(A1)の位置即ち供給口117の直前の位置にくると供給弁125が「開」となり、高圧状態の炭酸ガス35aが1次作動室121に流入してくる。この炭酸ガス35aは1次作動室121に流入するとすぐに膨張を開始するが、ロータ115が図9(A2)に示すように供給口117を通過する位置にくると供給弁125が「閉」となるため膨張が一旦終了する。これは炭酸ガス35aの膨張が1次作動室121の容積の限度内で行われるためである。これを仮りに「亜膨張」と呼ぶ。亜膨張時にロータ115が受ける圧力エネルギーは、ガソリンエンジンにおける場合と同様、a面全体で圧力を受けることになる。つまり図9(A1)及び図9(A2)の吸入膨張行程において、炭酸ガス35aは亜膨張エネルギーのストレスを溜め保持した状態で次の膨張排出行程に移行することになる。なお、この吸入膨張行程における他面(b面)側の圧力は大気圧である。
図9(B1)及び図9(B2)の膨張排出行程において、ロータ115の回転により排出口119が「開」となった瞬間、即ち排出口119がピンホール状態となると炭酸ガス35aは大気圧になるため爆発的に膨張する。このとき炭酸ガス35aの動きを中心にみると、膨張した炭酸ガス35aはロータ115の表面に沿って動き「開」となった排出口119に向かって急激に移動する。このときの炭酸ガス35aの膨張圧力は吸入膨張行程における場合とは異なり、ロータ115のa面全体に均等にかかるのではなく、ロータ115の排出口119側の半面にだけ集中してかかる。よって排出口119は益々大きく開口し、これにより炭酸ガス35aが益々排出口119に向かって急激に移動するため、炭酸ガス35aの膨張による力(これを「膨張力」と呼ぶ)は一層ロータ115の排出口119側の半面にだけ集中する。この状態は「連鎖膨張」の状態と呼ぶことができ、こうなると炭酸ガス35aは十分に膨張しきり、このためロータ115の排出口119側の半面には十分な回転モーメントを得ることができ、これによりロータ115は回転する。この膨張排出行程における各面の圧力は、図9(B1)では他面(b面)側の圧力が大気圧であり、図9(B2)(図3(B))ではa、b両面側とも大気圧である。
この点を図10(A)乃至図10(D)に基づきもう少し詳しく説明する。図10(A)に示すように膨張排出行程の直前の状態では炭酸ガス35aの膨張(亜膨張)の力は1次作動室121及びロータ115のすべての面にかかっている。しかし、排出口119が「開」となった瞬間、炭酸ガス35aは高圧の1次作動室121から低圧(大気圧)の開口部分119に向けて急激に流れ噴出する(図10(B))。このとき1次作動室121内をみると、排出口119付近は大気圧に曝されるので圧力が不均衡となる圧力不均衡部P0が形成され、この圧力不均衡部P0は、炭酸ガス35aが噴出すると低圧となるので、隣接する層P1の炭酸ガス35aが移動してくる。これにより、1次作動室121内の上部Lには比較的に低圧の部分が形成される(図10(B))。このような炭酸ガス35aの移動は図10(C)及び図10(D)に示すように次々に連鎖的になされる。よって1次作動室121の上部には炭酸ガス35aが抜けた低圧空間Lが形成されこの低圧空間Lは徐々に大となり、他方、排出口119付近の圧力不均衡部P0には次々に新たな炭酸ガス35aが爆発的に移動してくるので、圧力不均衡部P0は大気圧より常に高圧となっている。そして圧力不均衡部P0から次々に排出される炭酸ガス35aは排出口119より排出されるとき、即ちロータ115が「1」の位置から「n」の位置に至るまで爆発的に膨張するから、排出される炭酸ガス35aはロータ115の排出口119側の半面を押圧し、ロータ115はハウジング101に枢着されているため、上記した炭酸ガス35aの膨張力により回転するのである。つまり、排出される炭酸ガス35aは圧力不均衡部P0での爆発的膨張と該圧力不均衡部P0への補給が連続的になされるため爆発的な膨張が持続的になされ、これによりロータ105が回転する。
なお、この膨張排出行程において炭酸ガス35bは排出口119より噴出状態で排出されるので、この排出時の噴出力によりパイプ内を圧送される。
次いで図9(B2)に示す膨張排出行程の終了時から図9(C)及び図3(C)に示す大気圧保持行程において、ロータ115のa、b両面とも大気圧となるため、ロータ115は慣性力により回転し図9(D)(図3(D))に示す位置となる。これにより、他面(b面)が作動面となり、今度はロータ115のb面において上記した一連の行程が繰り返されることになる。
かくして始動が終了すると、その後は上記した一連の行程が連続的に繰り返されることにより炭酸ガスエンジンが本格作動することになるのである。
図5及び図6に示す三面ロータの場合の作動原理も上記と同様であり、炭酸ガス35aの膨張は吸入膨張行程、膨張排出行程及び大気圧保持行程をとり、各行程において上記と同様に作用する。図3に示す二面ロータの場合と異なるのは供給弁125がないことであるが、この供給弁125の機能即ち供給口117の開閉はロータ105、126の回転位置によって行なうのである。
図5に基づき炭酸ガスエンジン1の動きを詳しくみてみる。
図5(A)に示すように、ロータ105の作動面aが吸入膨張行程をする位置にあるとき、高圧状態(例えば60気圧)の炭酸ガス35a(気体)が供給口107より1次作動室111内に供給される。上記炭酸ガス35aは1次作動室111内に供給されると、1気圧の大気圧下に曝されるから、一気にその体積を膨張させる。この膨張は「亜膨張」である。
吸入膨張行程では慣性力によりロータ105が押圧されて図5(B)に示す位置に回転する。これにより作動面aは2次作動室112に位置し、排出口109が「開」となるため膨張排出行程となる。ロータ105の回転により排出口109が「開」となった瞬間、即ち排出口109がピンホール状態となると炭酸ガス35aは大気圧になるため爆発的に膨張する。このとき炭酸ガス35aの動きを中心にみると、膨張した炭酸ガス35aはロータ115の表面に沿って動き「開」となった排出口109に向かって急激に移動する。よって二面ロータの場合で述べたように、炭酸ガス35aは2次作動室112が大気圧となるので爆発的に膨張する「連鎖膨張」となり、この排出口109より噴出する。
さらにロータ105が図5(C)に示す位置に回転すると、供給口107と排出口109とがともに「閉」となるので大気圧保持行程となり、炭酸ガス35bを大気圧状態で保持する。
ロータ105はさらに回転し図5(A)に示す位置となる。かくして炭酸ガス35aの体積膨張力と慣性力によりハウジング内をロータが連続的に回転するから、これによるエネルギを適宜手段により取り出す。
図8に示すレシプロ型炭酸ガスエンジンの場合の作動原理も上記と同様であり、炭酸ガス35aの膨張は吸入膨張行程、膨張排出行程及び大気圧保持行程をとり、各行程において上記と同様に作用する。ピストン7の下降により吸入膨張行程となり、内室9内は「亜膨張」となる。続いて排出口11の「開」の開始から図8(C)に示す「全開」を経て排出口11の「開」の終了まで膨張排出行程が続き、高圧状態の炭酸ガス35aが大気圧に曝され爆発的に膨張する「連鎖膨張」となる。続いてピストンの上昇による排出口11の「閉」となるまで大気圧保持行程となる。この連鎖膨張の膨張力によりピストン7が作動する。
図8に基づき炭酸ガスエンジン1の動きを詳しくみてみる。まず、図示しないスタータモータにより、カム21を回転させる。するとカム21に連動してピストン7が図8(A)に示すように下降するとともに、カム21により供給弁15が押圧される。すると図8(B)に示すように、スプリング19の付勢力に抗して供給弁15が「開」となる。このときピストン7は上死点Uに位置している。次いでカム21がさらに回転すると、回転後すぐに供給弁15の押圧が解除されるから、供給弁15はスプリング19の付勢力により「閉」となる。図8(C)はピストン7が下死点Dまで下降した状態を示す。
この上死点Uから下死点Dに移行する過程を詳しくみる。供給弁15が「閉」となると、密室内では高圧状態(例えば60気圧)で供給された炭酸ガス35a(気体)は、内室9という限られた空間内において1気圧の大気圧下に曝されるからその体積を膨張させる。この膨張は「亜膨張」である。この体積膨張による力はピストン7に伝動され、ピストン7を下降させるとともに、この力はクランクシャフト25の一端に固着されているフライホイール27にも伝動する。ピストン7が下死点Dに達すると、フライホイール27に伝動している上記力に起因する慣性力によりピストン7は上昇過程に移行する。
図8(C)に示すように下死点D時において内室9の排出口11は「開」となるので、ピストン7の押下げに与った炭酸ガス35aは、大気圧となるとき爆発的に膨張する「連鎖膨張」となり、排出口11より噴出する。この連鎖膨張の膨張力によりピストン7が作動する。次いで上昇過程に移行したピストン7の上死点U時においては大気圧となったすべての炭酸ガス35bが排気される。
かくして、炭酸ガス35aの体積膨張力と上記慣性力とにより、ピストン7は上記した下降過程及び上昇過程を連続的に繰り返す。よって、炭酸ガスエンジンのピストン7は連続的に往復動するから、これによるエネルギを適宜手段により取り出す。
ここで従来のガソリンエンジンと原理の対比をしてみる。
従来のガソリンエンジンは〈1〉吸入行程、〈2〉圧縮行程、〈3〉燃焼行程及び排気行程の4行程が必要であるが、本願発明による炭酸ガスエンジンは上記〈3〉燃焼行程が不要であり、〈2〉圧縮行程についてはあってもなくてもよいのである。本願発明による炭酸ガスエンジンの行程は、〈a〉吸入膨張行程、〈b〉膨張排出行程及び〈c〉大気圧保持行程である。またエンジン特性についてみれば、従来のガソリンエンジン(内燃機関)の燃焼膨張は一過性エネルギーであるのに対し、本願発明による炭酸ガスエンジン(内圧機関)は連続膨張エネルギーである。このようなエネルギー特性の違いにより、従来のガソリンエンジンでは各行程が明瞭に区別できるのであるが、本願発明による炭酸ガスエンジンの各行程は連続している。
よって従来のガソリンエンジンと本願発明による炭酸ガスエンジンとは原理が全然異なり、ガソリンエンジンに適用される理論をそのまま本願発明による炭酸ガスエンジンに適用することはできないのである。
上記の点をもう少し具体的に見てみる。ガソリンエンジンは爆発燃焼時の瞬間エネルギを利用するため、ロータ面にかかる均等圧力をロータの結合部分を中心軸より偏心させて楕円に回転方向性を与えている。空気と燃料の圧縮行程は必ず必要であり、ロータを偏心させ内室の容積変化を起こさせるためにシリンダを楕円構成とするのである。
これに対し、本願発明による炭酸ガスエンジンにおいては圧縮行程は必ずしも必要でなく、図示実施態様に示すようになくてもよいのである。これは、本願発明においてはガソリンエンジンのように燃焼のための空気と燃料との圧縮行程が不要であるので、大気圧保持行程より吸入膨張行程に移行するとすぐに「亜膨張」となり、ロータの先端が排出口を切った瞬間高圧状態の炭酸ガスが爆発的に膨張する「連鎖膨張」を起こすからである。この結果、排出口119側のロータの半面に膨張圧力が集中し、これによりロータが回転するのである。このように、従来のガソリンエンジンと本願発明による炭酸ガスエンジンとは原理が全然相違するのである。
このように原理が相違する結果、炭酸ガスエンジンの態様も次のように相違することになる。まず、三面ロータについては、従来のガソリンエンジンはシリンダが楕円構成でなければならず、正円構成のシリンダとすることができない。また二面ロータについても、従来のガソリンエンジンはシリンダが楕円構成でなければならず、正円構成のシリンダとすることができない。その理由は前述したように、ガソリンエンジンは爆発燃焼時の瞬間エネルギを利用するため、ロータ面にかかる均等圧力を偏心させて回転方向性を与える必要があるからであり、また吸入、圧縮時の作動室の容積変化が必要だからである。
これに対し、本願発明においては、圧縮行程が不要であるから、三面ロータ、二面ロータともにシリンダは楕円構成であっても正円構成であってもよく、いずれでもロータは回転するのである。
本願発明による発電システムは上記した循環式内圧機関により発電機を駆動し発電するシステムである。この場合、炭酸ガスエンジン1は出力の大なる大規模のものが用いられる。この場合は炭酸ガス圧縮機も大量の炭酸ガスを容易迅速に処理できるよう3段以上の多段にするのが望ましい。
ここで炭酸ガス35について詳しく説明する。炭酸ガス(二酸化炭素 CO2)は次のような物理的性状を有する。
空気との比重 1.529
毒性 無
臭 無臭
性状 不燃性
分子量 44.01
三重点(0.53MPa) −56.6℃
沸点(昇華) −78.5℃
臨界温度 31.1℃
臨界圧 7.38MPa
熱力学的性質 図11の通り
また炭酸ガスは物の燃焼や動物の呼吸、有機物の腐敗、発酵等に伴って発生し、空気中に普通に存在する。一方で植物は炭酸ガスを吸収し炭素同化作用を営む。
本願発明はこのような物理的性状を有する炭酸ガスの不活性、常温液化性及び高度の体積膨張性に着目し、これを最大限に活用する。
ここで炭酸ガス35aの膨張率、即ち炭酸ガス35aにより取り出されるエネルギの大きさについてみる。密室たる内室9、1次作動室111、121内に供給される炭酸ガス35aが常温(25℃)の場合、該炭酸ガス35aの圧力は図11より6.432MPa(64.32気圧)であるから、常圧(1気圧)の内室9、1次作動室111、121内にあるピストン7、ロータ105、115には64.32倍の圧力がかかる。よって理論上約64倍の運動エネルギを取り出すことが可能となる。
このエネルギと従来の内燃機関の代表としてガソリンエンジンから取り出されるエネルギとを比較する。
(オープン条件化でのガソリン燃焼)
ガソリンの分子表記は難しいため、ガソリンの平均分子量に比較的近い炭化水素であるオクタン(C818)をガソリンの組成と見なして計算する。オクタンの物理的性状は次の通りである。
化学式 C818
比重 d=0.7
分子量 M=114.0
燃焼熱 10200kcal/kg=10200×114/1000×4.186≒4868kJ/mol
オクタンの燃焼反応式は(1)式の通りである。
Figure 0004096321
(1)式よりオクタン1molが燃焼すると空気中の酸素を取り込みながら17molのガスが発生する。
(ガス比容V0の計算)
生成ガスを理想気体として仮定しているので、標準状態で1molの占める容積は22.4lとなる。従って、ガス比容V0は(1)式から
Figure 0004096321
となる。
(燃焼温度T1の計算)
爆発温度T1を求めるには、生成ガスのモル数、発熱量、生成ガスの定容比熱が必要となる。ここでは、定容比熱のみ不明であるが、TNTのような火薬類と同じとしてみる。
爆発温度T1は(2)式によって求めることができる。
Figure 0004096321
なお、生成ガスの平均定容比熱が約40J/℃として知られていることについては、日本火薬工業会、「一般火薬学新改訂第2版」、P18(2005)参照。
(2)式より爆発温度T1
Figure 0004096321
従って
Figure 0004096321
つまり、1kgのオクタンは、爆発すると7430(K)(約7100℃)で、90900(l)を占める。反応前の容積は1000/0.7=1430(ml)であるから、反応前の温度を0℃とした場合の膨張率は
Figure 0004096321
となる。
しかしながら上記値は、火薬と同じ爆発状態を想定しているため現実以上に爆発温度が高くなっている。現実的には、爆発温度が1500K程度であり、また燃焼に空気が十分ないと反応が進まない。よって、現実には酸素が不足するためTNT火薬のようには反応が起きないのである。
(空気を考慮したガス比容)
そこで空気を考慮したオクタンの燃焼反応式を考える。(1)式で必要な酸素は12.5molであり、空気の組成を酸素21%、窒素79%とすると、それに伴う窒素は
12.5mol×(79/21)=47.0mol
となる。したがって、燃焼反応式は
Figure 0004096321
となる。
オクタン1molが燃焼すると空気中の酸素を取り込みながら合計17molのガスが発生し、燃焼に与らない窒素47.0molが存在する。
生成ガスを理想気体と仮定しているので、標準状態で1molの占める容積は22.4lとなる。したがって、ガス比容V0は(3)式から、
Figure 0004096321
となる。
(空気を考慮した燃焼温度T1の計算)
燃焼温度T1を求めるには、生成ガスのモル数、発熱量、生成ガスの定容比熱が必要となる。ここでは、定容比熱のみ不明であるが、TNTのような火薬類と同じとしてみる。燃焼温度T1は次式によって求めることができる。
Figure 0004096321
(4)式より爆発温度T1
Figure 0004096321
従って、
Figure 0004096321
つまり1kgのオクタンは空気の初期体積を考慮すると、瞬間的に燃焼したとして、2175(K)(約1900℃)で100185(l)を占める。反応前の容積は
(12.5+47)×22.4+1/0.7=1334(l)であるから、反応前の温度を0℃とした場合の膨張率は100185/1334≒75倍となる。ただし上記値は実際上は燃焼中に熱が周囲に逸散するので、燃焼温度はさらに低くなる筈である。
(ガソリンエンジン内の燃焼)
燃費10km/l、排気量2000cc、平均速度40km/h、平均回転数2000rpm/minの自動車のガソリンエンジンを考える。上記ガソリンエンジンは1時間あたりでは4(l)のガソリンを消費する。また、上記ガソリンエンジンは2000rpm/minであるので、2000×2×60(ストローク/h)となる。また、上記エンジンのボアストロークが直径86mm、ストローク86mmよりシリンダ室内の容積は
S=(8.6)×(4.3)2×π=500(cm3
となる。
これは1ストロークあたりでは
4000(ml)/(2000×2×60)=1/60(ml)
のガソリンを消費し、そのときの燃焼ガスは500(cm3)になる。
次に、圧縮比からこのエンジンの行程を解析してみる。
圧縮比は一般的な乗用車エンジンでは「9」前後である。燃焼室容積をVb(ml)とすると、圧縮比=(Vb+500)/Vbであるので、9Vb=Vb+500となり、これを解くと
Vb=62.5(ml)となる。
以上を詳細を省いて簡単にまとめると、
62.5(ml)の燃焼室と500(ml)のシリンダ室に1/60(ml)(=16.7×10-3(ml)=1.025×10-4(mol)のガソリンが空気約560(ml)(酸素5.25×10-3(mol)と窒素19.75×10-3(mol))と一緒に吸い込まれ(1気圧)、9倍に圧縮されたガソリンと空気(9気圧)に点火される。(3)式から消費される酸素は
1.025×10-4×12.5=1.281×10-3
である。したがって、残りの酸素と窒素は、それぞれ
(5.25−1.28)×10-3=1.97×10-3(mol)、19.75×10-3(mol)
となる。
また、発生するガスと熱量は、
2O:1.025×10-4×9=9.225×10-4(mol)
CO2:1.025×10-4×8=8.200×10-4(mol)
Q=1.025×10-4×4868=0.499kJ
である。
燃焼温度T1を求めるには、前記のように生成ガスのモル数、発熱量、生成ガスの定容比熱が必要となる。ここでは、定容比熱のみ不明であるが、TNTのような火薬類と同じとしてみる。燃焼温度T1は前記のように次式によって求めることができる。
Figure 0004096321
(4’)より燃焼温度T1
Figure 0004096321
つまり、2000ccのエンジンでは瞬間的に燃焼したとして、805(K)(約532℃)で23.5×10-3(mol)(=9.225×10-4+8.200×10-4+19.7×10-4+197.5×10-4)のガスが、62.5(ml)を占める。
このときの、圧力P1を計算してみると、理想気体として状態方程式から
Figure 0004096321
である。
最後に、この高温高圧のガスがシリンダを押し下げる膨張行程で9倍に膨張すると、
10=一定であるから、9倍に膨張したときの圧力P2
2=P1/9=24.8/9=2.7(atm)
となる。
このように従来のガソリンエンジンより取り出すエネルギの大きさは、この場合約25倍程度である。
よって本願発明による炭酸ガスエンジンから取り出されるエネルギは従来の内燃機関から取り出されるエネルギと比較し、同程度以上である。とくに、上記実施例(25℃のとき64倍の例)及び上記比較例(25倍の例)に限って言えば、従来に比し2.5倍のエネルギを得ることができる。
このように本願発明によるエネルギの発生は燃料の燃焼を伴わないから、燃料資源に起因する資源の枯渇や排気ガスによる公害問題を惹起することがなく安全であり、完全なクリーンエネルギを得ることができる。また、炭酸ガスを生じることがないので、炭酸ガスの増加を防止することができ、温暖化現象の防止に寄与することができる。しかも取り出されるエネルギは上記のようにガソリンエンジンと同等程度以上であるから、エネルギの実行性も担保される。
本願発明による循環式内圧機関によれば、密室(内室9、内室103)の圧縮比に影響されず、供給される炭酸ガス35aの圧力は一定(例えば常温(25℃)の場合約64倍)である。またタンク乃至ボンベに収納される炭酸ガス35aは最後の1molまで有効に使用可能である。よって、エネルギの取出効率が大変よい。
上記エネルギの取出しにおいて、循環回路を構成することにより排出された炭酸ガスを回収して再利用するから、エネルギ効率を非常に増大することができる。
また、炭酸ガス35aの常温液化性及び高度の体積膨張性により、密室(内室9、103、123)の設計が容易となる。さらに炭酸ガス35aの不活性により、例えば水素ガスや酸素ガスより遙かに扱い易く、制御性が大である。よって高度の実用性を有する。
炭酸ガス35の体積膨張率と温度とは相関関係にあり、内室9、103、123、1次作動室111、121内に供給されている高圧状態の炭酸ガス35aは上記加熱部37、137による加熱により一層体積が膨張するから、炭酸ガスエンジンの仕事率は一層向上する。
この点につき、図11及びボイル・シャルルの法則により内室9、103、123、1次作動室111、121内に供給される炭酸ガス35aの圧力を具体的に算出してみる。
ボイル・シャルルの法則は一定量の気体ではPV/Tは常に一定の値となるという法則で、
Figure 0004096321
の式により表わす。炭酸ガス35aは初期タンク31からパイプ33を経由して常圧(25℃)・気体状態にて上記内室9、103、123に供給されるから、内室9、103、123の内圧は内室9、103、123が50℃に加熱される場合次の如く算出される。ただし、内室9、103、123の容量を20ccとする。
Figure 0004096321
また内室9、103、123、1次作動室111、121が100℃に加熱される場合、内室9、103、123、1次作動室111、121の内圧は次の算出値となる。
Figure 0004096321
よって内室9、103、123、1次作動室111、121が加熱部37、137により加熱されると炭酸ガスエンジン1の仕事率は一層向上する。
本願発明は上記した実施の形態に限定されない。例えば、「膨張力」を得るために炭酸ガスを常圧化する手段としては圧力調整弁により圧力の調整をされた炭酸ガスを炭酸ガスエンジン1に供給してもよく、かかる場合も本文中で述べたような炭酸ガスの膨張による「亜膨張」、「連鎖膨張」を惹起せしめ「膨張力」を得ることができる。なお、この場合は、冷却装置57に大気乾燥部65及び逆止弁63を接続しないでよい。
また炭酸ガス圧縮機59と循環タンク73の間に他の循環タンク(図示省略)を設け、循環タンクを1次と2次に分けると、炭酸ガスエンジン1制御のための炭酸ガス35aの流量調整が円滑になることが期待され望ましい。
炭酸ガス圧縮機59は複数とすることができる。これにより、前機による吸引と後機による圧送とのセットとし、両者の相乗作用により炭酸ガスの圧縮処理能力を炭酸ガスの量に応じて容易に増大させることができる。よって、所望の出力に応じて、例えば図12(A)、(B)に示すように炭酸ガス圧縮機59a、59b、59cを3個以上の多段にすることができる。もちろん所望の大出力を得られるのであれば、単一機であることを妨げない。
また複数個の炭酸ガス圧縮機の相互の接続は、例えば図12(A)に示すように直列接続はもとより、例えば図12(B)に示すように並列接続にすることもできる。
冷却装置57は、図12(A)に示すように、ケーシング57aと該ケーシング57a内に幾重にも重なるように内蔵される復路のパイプ33kとから構成し、往路のパイプ33dを省略することとしてもよい。この場合排出炭酸ガス35bは大気圧下に曝されると気化熱等により例えば−30℃と低温になるため、ケーシング57aには−30℃の排出炭酸ガス35bが充満している。ここに炭酸ガス圧縮機59a、59bにてすべての量を圧縮処理しきれなかった炭酸ガス35a’が復路のパイプ33k中に流れてくるので、炭酸ガス35a’を上記−30℃の排出炭酸ガスの気化熱等により再度冷却し、炭酸ガス圧縮機59cにて圧縮するのである。図12(B)に示す並列接続の場合は、ケーシング57にて冷却された炭酸ガス35bを炭酸ガス圧縮機59a、59b、59cにて炭酸ガス35aに同時に圧縮処理する。
また圧縮機49及び炭酸ガス圧縮機59の駆動力は、その1として、大気圧に曝され連鎖膨張し排出される炭酸ガスの噴出力及びベルト58a、58bにより伝動される炭酸ガスエンジン1からの駆動力、その2として前者(炭酸ガスの噴出力)のみの駆動力、その3として後者(ベルト58a、58bにより伝動される炭酸ガスエンジン1からの駆動力)のみの駆動力の3パターンがある。つまり、ベルト58a、58bにより伝動される炭酸ガスエンジン1からの駆動力は場合によりあってもなくてもよい。
初期始動を循環タンク73の残溜分より取り出し、初期タンク31を設けないこととしてもよい。
炭酸ガス圧縮機59による加圧は、温度等の外部環境によって適宜に選択され、必ずしも常温で液化しない程度の圧力、例えば20気圧位乃至40気圧位でも可能である。ちなみに、例えば水素ガスの場合、常温液化性を有しないから、この程度の冷却では液化しない。
加熱部37、137による加熱システムは任意であり、加熱しなくても本願発明の目的を達成することができる(図6参照)。
供給系のパイプの中を流れる炭酸ガスは、気体と粉体としてのドライアイスの混合又は液体の状態での送給もあり得る。どの相をとるかは現場の気圧、温度等の条件による。
ポンプ61は圧送式のポンプでもよい。
タンク69の設置は任意的である。
内室9、103、123に設ける供給弁15は、図示例とは反対に、内室9、103、123を外側から供給弁15の弁蓋により閉塞または開放するようにしてもよい。また供給弁15の設置はシリンダ本体5の側壁であってもよい。
カム機構は他の公知のものも適用可能であり、例えばスプリングを要しないカム機構も考えられる。
また炭酸ガスエンジン1を構成する素材も鉄その他適宜に選択することができる。
取り出したエネルギの適用は任意であり、発電機の駆動乃至発電はもちろん、例えば自動車、電車、航空機、船舶等の駆動、モータの駆動等をすることができる。
本願発明において「高圧」とは、炭酸ガスエンジンを作動せしめるに十分な圧力の程度を指称し、常温で液化する70気圧位はもちろん、それより低い例えば20気圧程度乃至40気圧程度とか60気圧程度も含む。また「大気圧」と「常圧」とは同義で用いている。
本願発明は例えば発電、自動車、電車、航空機、船舶等の駆動、モータの駆動、発電機の駆動に活用することができる。
本願発明による循環式内圧機関の回路構成図を示す。 本願発明による循環式内圧機関の動作ステップを示すフローチャートである。 本願発明に使用する炭酸ガスエンジンの実施例を示す概略正面断面図で、(A)は吸入膨張行程を、(B)は膨張排出行程を、(C)は大気圧保持行程を、(D)は次の吸入膨張行程を各示す。 ロータの実施例を示す概略斜視図である。 本願発明に使用する炭酸ガスエンジンの他の実施例を示す概略正面断面図で、(A)は吸入膨張行程を、(B)は膨張排出行程を、(C)は大気圧保持行程を各示す。 本願発明に使用する炭酸ガスエンジンのさらに他の実施例を示す概略正面断面図で、(A)は吸入膨張行程を、(B)は膨張排出行程を、(C)は大気圧保持行程を各示す。 ロータの他の実施例を示す概略斜視図である。 本願発明に使用する炭酸ガスエンジンのさらに他の実施例を示す概略正面断面図で、(A)はピストンの始動状態を示す図、(B)は上死点Uにおける開弁状態を、(C)は下死点Dにおける閉弁状態を各示す。 本願発明による炭酸ガスエンジンの作動原理を示す説明図である。 本願発明による炭酸ガスエンジンの作動原理を示す説明図である。 炭酸ガスの熱力学的性質を示す表である。 (A)は本願発明に使用する炭酸ガス圧縮機の接続例、(B)は他の接続例を示す。
符号の説明
1 炭酸ガスエンジン
2 シリンダ
3 シリンダヘッド
5 シリンダ本体
7 ピストン
9 内室
11 排出口
13 供給口
15 供給弁
17 弁軸
19 スプリング
20 スプリングカバー
21 カム
23 コネクティングロッド
25 クランクシャフト
26 バランスウェイト
27 フライホイール
29a 圧力リング
29b オイルリング
31 初期タンク
33 パイプ
34 循環回路
34A 供給経路
34B 回収経路
35 炭酸ガス
35a 炭酸ガス
35b 炭酸ガス
37 加熱部
39 シリンダカバー
40 熱風
41 熱風供給口
43 熱風排出口
45 熱風供給パイプ
47 熱風排出パイプ
49 圧縮機
51 切替弁
53 センサ
54 三方切替弁
55 流量制御弁
57 冷却装置
58a ベルト
58b ベルト
58c ベルト
59 炭酸ガス圧縮機
61 ポンプ
63 逆止弁
65 大気乾燥装置
67 回収タンク
68 分離装置
69 混合タンク
73 循環タンク
75 逆止弁
101 ハウジング
103 内室
105 ロータ
105a オイルシール兼用圧力シール
106 ロータ軸
107 供給口
109 排出口
111 1次作動室
112 2次作動室
113 3次作動室
115 ロータ
115a オイルシール兼用圧力シール
116 ロータ軸
117 供給口
119 排出口
121 1次作動室
122 2次作動室
123 内室
123a 1次作動室
123b 2次作動室
123c 3次作動室
124 バルブ室
125 供給弁
126 ロータ
126a ロータ孔
126b ロータ軸
127 弁軸
129 スプリング
130 スプリングカバー
131 カム
137 加熱部
139 ハウジングカバー
141 熱風供給口
143 熱風排出口
a 作動面
b 作動面
c 作動面

Claims (18)

  1. 高圧状態で供給される炭酸ガスが大気圧になるときの体積膨張による力により作動子を駆動する炭酸ガスエンジンと、上記炭酸ガスエンジンから排出される炭酸ガスを回収するタンクと、該タンクに回収された炭酸ガスを吸引するポンプと、上記ポンプより送給される炭酸ガスを冷却する冷却装置と、上記冷却装置より送給される冷却された炭酸ガスを高圧にて圧縮する炭酸ガス圧縮機と、上記炭酸ガス圧縮機より送給される炭酸ガスを貯溜する循環タンクとからなり、上記各部をパイプにより連結して炭酸ガスが循環する循環回路を構成することを特徴とする循環式内圧機関。
  2. 請求項1記載の循環式内圧機関において、上記循環回路の供給系経路と回収系経路との接点に三方切替弁を設け、該三方切替弁を介して初期タンクを連結し、供給系のパイプ及び回収系のパイプに送給されてくる炭酸ガスの濃度が設定範囲内にあるか否かを検知するセンサを設け、該センサは上記濃度が設定範囲内に満たないときは初期切替信号を発し、設定範囲内であるときは循環切替信号を発することを特徴とする循環式内圧機関。
  3. 請求項1又は請求項2いずれか一記載の循環式内圧機関において、上記炭酸ガス圧縮機及び上記ポンプを同一の動力源たる上記炭酸ガスエンジンにて駆動することを特徴とする循環式内圧機関。
  4. 請求項1乃至請求項3いずれか一記載の循環式内圧機関において、上記炭酸ガスエンジンの加熱部に熱風を供給する圧縮機を設け、該圧縮機を上記炭酸ガスエンジンの動力により駆動することを特徴とする循環式内圧機関。
  5. 請求項1記載の循環式内圧機関において、上記炭酸ガスエンジンがレシプロ型炭酸ガスエンジンであることを特徴とする循環式内圧機関。
  6. 請求項1記載の循環式内圧機関において、上記炭酸ガスエンジンがロータリ型炭酸ガスエンジンであることを特徴とする循環式内圧機関。
  7. 請求項1記載の循環式内圧機関において、上記炭酸ガス圧縮機が複数からなり、各炭酸ガス圧縮機が上記冷却装置に接続されることを特徴とする循環式内圧機関。
  8. 請求項7記載の循環式内圧機関において、上記各炭酸ガス圧縮機は上記冷却装置に直列接続されることを特徴とする循環式内圧機関。
  9. 請求項7記載の循環式内圧機関において、上記各炭酸ガス圧縮機は上記冷却装置に並列接続されることを特徴とする循環式内圧機関。
  10. 高圧状態で供給される炭酸ガスが大気圧になるときの体積膨張による力により作動子を駆動する炭酸ガスエンジンと、上記炭酸ガスエンジンから排出される炭酸ガスを回収するタンクと、該タンクに回収された炭酸ガスを吸引するポンプと、上記ポンプより送給される炭酸ガスを冷却する冷却装置と、上記冷却装置より送給される冷却された炭酸ガスを高圧にて圧縮する炭酸ガス圧縮機と、上記炭酸ガス圧縮機より送給される炭酸ガスを貯溜する循環タンクとからなり、上記各部をパイプにより連結して炭酸ガスが循環する循環回路を構成し、上記炭酸ガスエンジンにより発電することを特徴とする発電システム。
  11. 請求項10記載の発電システムにおいて、上記循環回路の供給系経路と回収系経路との接点に三方切替弁を設け、該三方切替弁を介して初期タンクを連結し、供給系のパイプ及び回収系のパイプに送給されてくる炭酸ガスの濃度が設定範囲内にあるか否かを検知するセンサを設け、該センサは上記濃度が設定範囲内に満たないときは初期切替信号を発し、設定範囲内であるときは循環切替信号を発することを特徴とする発電システム。
  12. 請求項10又は請求項11いずれか一記載の発電システムにおいて、上記炭酸ガス圧縮機及び上記ポンプを同一の動力源たる上記炭酸ガスエンジンにて駆動することを特徴とする発電システム。
  13. 請求項10乃至請求項12いずれか一記載の発電システムにおいて、上記炭酸ガスエンジンの加熱部に熱風を供給する圧縮機を設け、該圧縮機を上記炭酸ガスエンジンの動力により駆動することを特徴とする発電システム。
  14. 請求項10記載の発電システムにおいて、上記炭酸ガスエンジンがレシプロ型炭酸ガスエンジンであることを特徴とする発電システム。
  15. 請求項10記載の発電システムにおいて、上記炭酸ガスエンジンがロータリ型炭酸ガスエンジンであることを特徴とする発電システム。
  16. 請求項10記載の発電システムにおいて、上記炭酸ガス圧縮機が複数からなり、各炭酸ガス圧縮機が上記冷却装置に接続されることを特徴とする発電システム。
  17. 請求項16記載の発電システムにおいて、上記各炭酸ガス圧縮機は上記冷却装置に直列接続されることを特徴とする発電システム。
  18. 請求項16記載の発電システムにおいて、上記各炭酸ガス圧縮機は上記冷却装置に並列接続されることを特徴とする発電システム。
JP2007144077A 2007-05-30 2007-05-30 循環式内圧機関及び発電システム Expired - Fee Related JP4096321B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007144077A JP4096321B1 (ja) 2007-05-30 2007-05-30 循環式内圧機関及び発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007144077A JP4096321B1 (ja) 2007-05-30 2007-05-30 循環式内圧機関及び発電システム

Publications (2)

Publication Number Publication Date
JP4096321B1 true JP4096321B1 (ja) 2008-06-04
JP2008297956A JP2008297956A (ja) 2008-12-11

Family

ID=39560819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007144077A Expired - Fee Related JP4096321B1 (ja) 2007-05-30 2007-05-30 循環式内圧機関及び発電システム

Country Status (1)

Country Link
JP (1) JP4096321B1 (ja)

Also Published As

Publication number Publication date
JP2008297956A (ja) 2008-12-11

Similar Documents

Publication Publication Date Title
JP2019534979A (ja) 内燃蒸気エンジン
JP4147562B1 (ja) 発電システム
WO2018203498A1 (ja) 爆縮式エンジン
JP3929477B1 (ja) 循環式内圧機関
JP4016291B1 (ja) 循環式内圧機関及び発電システム
JP4042823B1 (ja) 循環式内圧機関及び発電システム
JP4096321B1 (ja) 循環式内圧機関及び発電システム
JP4042824B1 (ja) 発電システム
JP4147561B1 (ja) 循環式内圧機関及び発電システム
JP4016292B1 (ja) 循環式内圧機関及び発電システム
JP4147563B1 (ja) 循環式内圧機関及び発電システム
US8561390B2 (en) Energy production system using combustion exhaust
JP4042822B1 (ja) 発電システム
JP2008297955A (ja) 複式炭酸ガスエンジン
CA2987343A1 (en) Natural gas engine
JP6802449B1 (ja) ブラウンガス発生システムを備えたブラウンガスの爆発爆縮機能を利用した爆発爆縮4サイクルエンジンシステム。
JP3580091B2 (ja) ランキンサイクルにおけるコンデンサ
WO2008015818A1 (fr) Moteur à dioxyde de carbone
JP6796748B1 (ja) ブラウンガス発生システムを備えたブラウンガスの爆発爆縮機能を利用した爆発爆縮ブラウンガスロータリーエンジンシステム。
WO2018069845A1 (en) Regeneratively utilising heat in a thermodynamic cycle
JP2012002191A (ja) 同一気筒ハイブリッド機関
JP2007270622A (ja) 内燃エンジンシステム
JP2007270623A (ja) 蒸気発生装置及び内燃エンジンシステム
JP2007270621A (ja) 内燃エンジンシステム
WO2007104087A1 (en) A steam driven engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees