JP4095362B2 - Flowmeter - Google Patents

Flowmeter Download PDF

Info

Publication number
JP4095362B2
JP4095362B2 JP2002204750A JP2002204750A JP4095362B2 JP 4095362 B2 JP4095362 B2 JP 4095362B2 JP 2002204750 A JP2002204750 A JP 2002204750A JP 2002204750 A JP2002204750 A JP 2002204750A JP 4095362 B2 JP4095362 B2 JP 4095362B2
Authority
JP
Japan
Prior art keywords
temperature
cooling device
electronic cooling
fluid
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002204750A
Other languages
Japanese (ja)
Other versions
JP2004045290A (en
Inventor
正規 井上
泰昌 岩田
宏和 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Stec Co Ltd
Original Assignee
Horiba Stec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Stec Co Ltd filed Critical Horiba Stec Co Ltd
Priority to JP2002204750A priority Critical patent/JP4095362B2/en
Publication of JP2004045290A publication Critical patent/JP2004045290A/en
Application granted granted Critical
Publication of JP4095362B2 publication Critical patent/JP4095362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、熱交換の原理に基づいて流体流量を測定する流量計の改良に関する。
【0002】
【従来の技術】
微小の流体流量を測定する手段として、熱交換の原理に基づいて流体流量を測定する流量計があり、このような流量計として例えば特公平8−1405号公報に記載されるものが公知である。
【0003】
図5は、前記流量計のセンサ部50の構成を概略的に示すもので、この図において、51は測定対象の流体Fが流れる管で、その一部51aが電子冷却装置52によって冷却されるように構成されている。この管51の電子冷却装置52で冷却される部位(被冷却部)51aよりも上流側の電子冷却装置52で冷却されない部位(非冷却部)51bに第1温度検出素子53を設け、電子冷却装置52の管51から離れた部位52aに第2温度検出素子54を設け、前記被冷却部51aに第3温度検出素子55を設けている。なお、図示は省略しているが、前記構成のセンサ部50は、密閉されたケース内に設けられている。
【0004】
そして、前記第1温度検出素子53の検出温度と第2温度検出素子54の検出温度との差が常に所定値になるように制御の対象である電子冷却装置52の温度を制御しつつ、第3温度検出素子55の検出温度と第2温度検出素子54の検出温度との差に基づいて前記管51内を流れる流体Fの流量を測定するようにしている。
【0005】
上記構成の流量計によれば、管内を流れる流体Fの流量を非接触で測定し、かつ微小流量の流体Fを測定することができることは勿論のこと、流体Fが流れる管51を電子冷却装置52で冷却するようにしているので、例えば微小流量の液体を測定する場合において、その液体中に気泡が発生せず、したがって、低沸点液体など気体を発生しやすい液体流量の測定が可能になる。そして、液体中にガスが溶存していてもその影響を受けず、しかも、液体の温度変化に応じて電子冷却装置52の温度を変化させ、電子冷却装置52によって冷却されない管の温度と、電子冷却装置52の温度との差が常に所定の値になるようにしているので、取付け姿勢の影響を受けることがないこととあいまって、精度の高い測定を行うことができる。
【0006】
【発明が解決しようとする課題】
ところで、上記熱交換の原理に基づく流量計によって流体Fの流量を測定する場合、センサ部50に流れ込む流体Fの温度は、センサ感度に大きな影響を及ぼす。すなわち、センサ感度は、熱交換部分である電子冷却装置52の温度と流体Fの温度の差が大きくなるほど大きくなる。そして、上記従来の流量計においては、管51内に流れ込む流体Fの温度は、管51の非冷却部51bに設けられる第1温度検出素子53が配置されているケース内の雰囲気温度と同じであるとし、電子冷却装置52における温度設定を行うようにしていた。
【0007】
しかしながら、実際に管51内に流れ込む流体Fの温度は、前記雰囲気温度とと必ずしも一致しているわけではない。そのため、実際に使用環境において流体Fの温度に変化が生じたとしても、電子冷却装置52の温度設定値は変化しない。その結果、流体Fの温度変化が感度変化となってしまい、流量計測の安定性が大きく損なわれることとなる。
【0008】
ところで、上記流量計は、僅かな外部リークも許されない流体流路に設けられるため、流体に接触しこれの温度をダイレクトに測定することがきわめて困難である。そして、上述のように、上記流量計においては、流路(管)の外壁の温度を測定している。したがって、実際には、第1温度検出素子53が設けられているケース内の雰囲気温度と流体温度の中間の温度を測定していることとなっている。そのため、前記センサ部50の電子冷却装置52の設定温度を流体温度に完全にリンクさせることができず、流体温度が大きく変化するような場合、流量の測定値に誤差が生ずることがあった。
【0009】
そのため、従来の流量計の使用に際しては、流体の温度変化範囲ができるだけ小さくなるようにしていたが、流体の温度変化範囲が大きくなっても使用したいといった要望がユーザサイドから出されるようになり、この点、従来の流量計では必ずしも対応できるものとはいえなかった。
【0010】
この発明は、上述の事柄に留意してなされたもので、その目的は、流体の温度変化範囲が大きい条件下であっても、流体流量を精度よくかつ安定して測定することのできる流量計を提供することである。
【0011】
【課題を解決するための手段】
上記目的を達成するため、この発明の流量計は、流体が流れる管と、この管の一部を冷却する電子冷却装置と、前記管において前記電子冷却装置により冷却される被冷却部位よりも上流側の非冷却部位の温度を検出する第1温度検出素子と、前記電子冷却装置の温度を検出する第2温度検出素子と、前記被冷却部位の温度を検出する第3温度検出素子と、雰囲気温度を検出する第4温度検出素子と、前記第2温度検出素子の検出温度と前記第1温度検出素子の検出温度との差が所定値となるように前記電子冷却装置の温度を制御し、前記第4温度検出素子の検出温度と前記第1温度検出素子の検出温度との差に基づいて前記電子冷却装置の温度を制御するとともに、前記第2温度検出素子の検出温度と前記第3温度検出素子の検出温度との差に基づいて前記管を流れる流体の流量を算出する演算制御部とを備えている(請求項1)。
【0012】
より詳しくは、この発明では、流体が流れる管をケース内を挿通するように設け、前記ケース内に、前記管の一部が電子冷却装置によって冷却されるとともに、前記管の被冷却部位よりも上流側の非冷却部位に第1温度検出素子を設け、電子冷却装置の前記管から離れた部位に第2温度検出素子を設け、前記被冷却部位に第3温度検出素子を設けてなるセンサ部を形成し、第1温度検出素子の検出温度と第2温度検出素子の検出温度との差が常に所定値になるように電子冷却装置の温度を制御しつつ、第3温度検出素子の検出温度と第2温度検出素子の検出温度との差に基づいて前記管内を流れる流体の流量を測定するようにした流量計において、前記ケース内の雰囲気温度を測定するための第4温度検出素子を設け、この第4温度検出素子の検出温度と前記第1温度検出素子の検出温度との差に基づいて前記電子冷却装置の温度を制御するようにしている(請求項2)。
【0013】
上記構成の流量計においては、センサ部が設けられているケース内の温度と、冷却される前の流体が流れる管の温度とに基づいて、前記管に流入する流体の温度変化の状態を常にモニターし、このモニターによって得られる情報に基づいて前記管を冷却する電子冷却装置の温度を制御するようにしているので、電子冷却装置の設定温度を流体温度に完全にリンクさせることができ、流体温度が大きく変化するような場合であっても、管内を流れる流体の流量を精度よく安定して測定することができる。
【0014】
【発明の実施の形態】
以下、この発明の詳細を、図を参照しながら説明する。図1〜図4は、この発明の一つの実施の形態を示すものである。図1〜図3において、1はこの発明の流量計で、2はその例えばステンレス鋼よりなる直方体形状のケース2には、その内部を挿通するように管3が設けられている。この管3は、例えば外径が0.8mm、内径が0.6mmのステンレス鋼管よりなり、内部に液体またはガスなどの流体Fが流れる。4,5は継手部材である。
【0015】
前記ケース2内には、次のように構成されたセンサ部6が設けられている。すなわち、7はケース内の管3の一部3aを冷却する電子冷却装置で、サーモモジュール8とこれの上面側において熱的に緊密に結合されるプレート9と下面側において熱的に緊密に結合されるヒートシンク10とからなる。そして、サーモモジュール8は、プリント基板11に開設された開口11a内に位置するように設けられている。また、プレート9は、熱伝導性に優れた素材(例えばステンレス鋼板または銅板)よりなり、その一部9aが管3の被冷却部位3aに密着して巻き付けられている。さらに、ヒートシンク10は、ケース2の下部開口を閉塞するように設けられ、外部に複数の放熱用フィン10aを備えている。
【0016】
前記プリント基板11は、その上面に電気回路(図示していない)が形成されるとともに、後述する4つの温度検出素子に所定大きさの電流を供給するための定電流回路や、前記電子冷却装置7を制御するための定温度制御回路などが設けられている。また、このプリント基板11には、外部回路、例えば流量計本体部(図示していない)と接続するための接続端子部(図示していない)11bがケース2の外部に突出している(図1参照)。
【0017】
そして、12は管3の被冷却部位3aよりも上流側の非冷却部位3bの温度を検出する第1温度検出素子で、適宜の素子ホルダ13を介して管表面に設けられている。14は電子冷却装置7の温度を検出する第2温度検出素子で、プレート9に取り付けられている。15は電子冷却装置7によって冷却される管3の被冷却部分3aの温度を検出する第3温度検出素子で、プレート9のホルダ部9aに取り付けられている。
【0018】
ここまでの構成は、前記図5に示した従来の流量計と変わるところはない。この発明では、ケース2内の雰囲気温度を測定するための第4温度検出素子16を設け、この第4温度検出素子16の検出温度と第1温度検出素子12の検出温度との差に基づいて電子冷却装置7の温度を制御するようにしている。すなわち、この実施の形態においては、前記第4温度検出素子16は、プリント基板11の表面であって、第1温度検出素子12に比較的近い部位に設けられている。なお、第4温度検出素子16の設置位置は、ケース2内の雰囲気温度を測定できる部位であればどこでもよい。また、ケース2は、その内部が外部と遮断された気密状態となるように、ケース2の上部の開口は適宜の蓋部材(図示していない)によって閉塞されるとともに、管3の挿通部分やプリント基板11の突出部分は、適宜のコンパウンドによって隙間が生じないように構成されている。また、上記構成のセンサ部6は、本体側(図示していない)の演算制御部によって制御されるように構成されている。
【0019】
次に、上記流量計の作動について説明する。上記構成の流量計において、温度検出素子12,14,15に対してそれぞれ定電流回路によって所定の大きさ(例えば1.0mA)の電流を流すとともに、第1温度検出素子12の検出温度T1 と第2温度検出素子14の検出温度T2 との差(T1 −T2 )が所定の値(例えば10℃)となるように、定温度制御回路において例えばPIDを用いて電子冷却装置7を制御する。
【0020】
前記条件下において、管3内に流体Fが流れていないときは、電子冷却装置7のプレート9上は全て同一温度であるから、第3温度検出素子15の検出温度T3 と第2温度検出素子14の検出温度T2 とは等しく、すなわち、差(T3 −T2 )はゼロである。そして、管3内に流体Fが流れているときは、第3温度検出素子15の検出温度T3 は、前記流体Fの流量に比例して上昇するので、第3温度検出素子15の検出温度T3 と第2温度検出素子14の検出温度T2 との間に差(T3 −T2 )が生ずる。したがって、前記差(T1 −T2 )が所定の値になるようにして、差(T3 −T2 )を得ることにより、管3内に流れる流体Fの流量を求めることができるのである。
【0021】
ところで、管3内を流れる流体Fの流量に対応する流量信号は、流体Fの温度T1 と電子冷却装置7の温度T2 との差に比例し、この温度差が大きければ流量信号は大きくなる。したがって、温度T1 を正確に測定する必要がある。
【0022】
そこで、電子冷却装置7の設定温度と流体Fの温度との温度差を常に一定の大きさに維持するため、前記温度検出素子12,14,15が設けられているケース2内の雰囲気温度を第4温度検出素子16によって検出し、この温度検出素子16の検出温度T4 と第1温度検出素子12の検出温度T1 との差(T4 −T1 )を、電子冷却装置7の温度制御値に加算して、流体Fの温度変化に追従するように、電子冷却装置7の温度を制御するのである。
【0023】
例えば、今、第1温度検出素子12の検出温度T1 と第2温度検出素子14の検出温度T2 との差(T1 −T2 )が10℃)となるように、定温度制御回路において例えばPIDを用いて電子冷却装置7を制御する場合、電子冷却装置7の温度T7 は、下記(1)式のように制御する。すなわち、
7 =10℃+α(T4 −T1 ) ……(1)
但し、α:任意の補正係数
【0024】
したがって、例えば、流体Fの温度がマイナス側にシフトした(低くなった)ときには、前記温度差(T4 −T1 )はプラスにシフトし、流量信号はマイナスにシフトする。この場合の補正は、電子冷却装置7の温度制御値(T1 −T2 )に温度差(T4 −T1 )を加える。このようにすることにより、電子冷却装置7の設定温度と流体Fの温度との差が大きくなり、流量信号はプラスにシフトし、流量信号の補正が行われることとなる。逆に、流体Fの温度がプラス側にシフトした(高くなった)ときにも、上記と同様にすることにより、流量信号の補正を行うことができる。
【0025】
図4は、この種の流量計の流体Fの温度変化とセンサ出力との関係を概略的に示すもので、横軸は流体Fの温度変化(℃)、縦軸はセンサ出力(V)をそれぞれ示している。そして、図5に示す従来の流量計においては、必要な精度幅A内で測定を行う場合、管3内を流れる流体Fの温度変化幅としては、図中の符号Bで示すように、0℃を中心に余り大きくとれなかったが、この発明の流量計によれば、図中の符号Cで示すように、従来に比べてかなり大きくとれるようになり、したがって、温度変化の大きな流体Fの流量をも精度よく安定して測定することができるようになった。
【0026】
なお、上記温度検出素子12,14,15,16としては、リニアサーミスタ、白金温度計、抵抗温度素子、巻線、熱電対などを好適に用いることができる。そして、管3は、ステンレス鋼以外に、アルミニウム、銅、ニッケルなどの金属材料のほか、その肉厚を薄くした場合にはフッ化エチレン樹脂、ポリマー系などによって構成してもよい。また、この発明の流量計は、液体のみならず、空気やアルゴンあるいは腐食性ガスなどの気体の流量測定にも使用することができる。
【0027】
【発明の効果】
以上説明したように、この発明の流量計においては、センサ部が設けられるケース内の温度と、冷却される前の流体が流れる管の温度とに基づいて、前記管に流入する流体の温度変化の状態を常にモニターし、このモニターによって得られる情報に基づいて前記管を冷却する電子冷却装置の温度を制御するようにしているので、電子冷却装置の設定温度を流体温度に完全にリンクさせることができ、流体温度が大きく変化するような場合であっても、管内を流れる流体の流量を精度よく安定して測定することができる。
【図面の簡単な説明】
【図1】 この発明の流量計の構成を概略的に示す平面図である。
【図2】 前記流量計の縦断面図である。
【図3】 前記流量計を透視して示す斜視図である。
【図4】 熱交換の原理に基づいて流体流量を測定する流量計における流体の温度変化とセンサ出力との関係を概略的に示す図である。
【図5】 従来の流量計のセンサ部の構成を概略的に示す図である。
【符号の説明】
2…ケース、3…管、6…センサ部、7…電子冷却装置、F…流体。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a flow meter for measuring a fluid flow rate based on the principle of heat exchange.
[0002]
[Prior art]
As means for measuring the fluid flow rate of the micro, there is a flow meter for measuring fluid flow rate based on the principle of heat exchange, known those described in such as a flow meter for example Kokoku 8-14 5 05 No. It is.
[0003]
FIG. 5 schematically shows the configuration of the sensor unit 50 of the flow meter. In this figure, 51 is a pipe through which the fluid F to be measured flows, and a part 51 a thereof is cooled by the electronic cooling device 52. It is configured as follows. A first temperature detecting element 53 is provided in a portion (uncooled portion) 51b of the tube 51 that is not cooled by the electronic cooling device 52 upstream of the portion (cooled portion) 51a that is cooled by the electronic cooling device 52. A second temperature detection element 54 is provided in a portion 52a away from the tube 51 of the apparatus 52, and a third temperature detection element 55 is provided in the cooled portion 51a. In addition, although illustration is abbreviate | omitted, the sensor part 50 of the said structure is provided in the sealed case.
[0004]
Then, while controlling the temperature of the electronic cooling device 52 to be controlled so that the difference between the detected temperature of the first temperature detecting element 53 and the detected temperature of the second temperature detecting element 54 is always a predetermined value, The flow rate of the fluid F flowing through the pipe 51 is measured based on the difference between the detected temperature of the third temperature detecting element 55 and the detected temperature of the second temperature detecting element 54.
[0005]
According to the flowmeter having the above configuration, the flow rate of the fluid F flowing through the pipe can be measured in a non-contact manner, and the fluid F having a minute flow rate can be measured. For example, in the case of measuring a liquid with a minute flow rate, bubbles are not generated in the liquid. Therefore, it is possible to measure a liquid flow rate that easily generates a gas such as a low boiling point liquid. . Even if gas is dissolved in the liquid, it is not affected, and the temperature of the electronic cooling device 52 is changed according to the temperature change of the liquid, and the temperature of the tube that is not cooled by the electronic cooling device 52 and the electron Since the difference between the temperature of the cooling device 52 and the temperature of the cooling device 52 is always set to a predetermined value, measurement with high accuracy can be performed in combination with being not affected by the mounting posture.
[0006]
[Problems to be solved by the invention]
By the way, when the flow rate of the fluid F is measured by the flowmeter based on the principle of the heat exchange, the temperature of the fluid F flowing into the sensor unit 50 greatly affects the sensor sensitivity. That is, the sensor sensitivity increases as the difference between the temperature of the electronic cooling device 52 that is the heat exchange portion and the temperature of the fluid F increases. In the conventional flow meter, the temperature of the fluid F flowing into the pipe 51 is the same as the ambient temperature in the case where the first temperature detection element 53 provided in the non-cooling portion 51b of the pipe 51 is disposed. It is assumed that there is a temperature setting in the electronic cooling device 52.
[0007]
However, the temperature of the fluid F that actually flows into the pipe 51 does not necessarily match the ambient temperature. Therefore, even if the temperature of the fluid F actually changes in the usage environment, the temperature setting value of the electronic cooling device 52 does not change. As a result, the temperature change of the fluid F becomes a sensitivity change, and the stability of the flow rate measurement is greatly impaired.
[0008]
By the way, since the flow meter is provided in a fluid flow path that does not allow even a slight external leak, it is extremely difficult to directly contact the fluid and measure the temperature thereof. And as mentioned above, in the said flow meter, the temperature of the outer wall of a flow path (pipe) is measured. Therefore, actually, an intermediate temperature between the ambient temperature and the fluid temperature in the case where the first temperature detection element 53 is provided is measured. For this reason, the set temperature of the electronic cooling device 52 of the sensor unit 50 cannot be completely linked to the fluid temperature, and if the fluid temperature changes greatly, an error may occur in the measured value of the flow rate.
[0009]
Therefore, when using a conventional flow meter, the temperature change range of the fluid has been made as small as possible, but the desire to use it even when the temperature change range of the fluid becomes large comes out from the user side. In this regard, conventional flowmeters have not always been compatible.
[0010]
The present invention has been made in consideration of the above-mentioned matters, and its object is to provide a flowmeter capable of accurately and stably measuring a fluid flow rate even under conditions where the temperature change range of the fluid is large. Is to provide.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a flow meter according to the present invention includes a pipe through which a fluid flows, an electronic cooling device that cools a part of the pipe, and an upstream side of the portion to be cooled that is cooled by the electronic cooling device in the pipe. A first temperature detecting element for detecting the temperature of the non-cooled part on the side, a second temperature detecting element for detecting the temperature of the electronic cooling device, a third temperature detecting element for detecting the temperature of the part to be cooled, and an atmosphere Controlling the temperature of the electronic cooling device so that the difference between the detected temperature of the fourth temperature detecting element for detecting the temperature and the detected temperature of the second temperature detecting element and the detected temperature of the first temperature detecting element becomes a predetermined value; The temperature of the electronic cooling device is controlled based on the difference between the detected temperature of the fourth temperature detecting element and the detected temperature of the first temperature detecting element, and the detected temperature of the second temperature detecting element and the third temperature are controlled. Difference from detection temperature of detection element Based on and a calculation control unit for calculating the flow rate of the fluid flowing through the tube (claim 1).
[0012]
More specifically, in the present invention, a pipe through which a fluid flows is provided so as to pass through the inside of the case. In the case, a part of the pipe is cooled by an electronic cooling device, and more than the portion to be cooled of the pipe. A sensor unit in which a first temperature detection element is provided at an upstream non-cooled part, a second temperature detection element is provided at a part away from the tube of the electronic cooling device, and a third temperature detection element is provided at the part to be cooled. The temperature detected by the third temperature detecting element is controlled while controlling the temperature of the electronic cooling device so that the difference between the detected temperature of the first temperature detecting element and the detected temperature of the second temperature detecting element is always a predetermined value. In the flowmeter that measures the flow rate of the fluid flowing in the pipe based on the difference between the temperature detected by the second temperature detection element and the second temperature detection element, a fourth temperature detection element is provided for measuring the ambient temperature in the case. The fourth temperature detection element Based on the difference between the detected temperature of the the detected temperature first temperature sensing element so as to control the temperature of the electronic cooling device (claim 2).
[0013]
In the flowmeter having the above configuration, the temperature change state of the fluid flowing into the pipe is always determined based on the temperature in the case where the sensor unit is provided and the temperature of the pipe through which the fluid flows before being cooled. Since the temperature of the electronic cooling device that cools the tube is controlled based on the information obtained by monitoring, the set temperature of the electronic cooling device can be completely linked to the fluid temperature. Even when the temperature changes greatly, the flow rate of the fluid flowing in the pipe can be measured accurately and stably.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the details of the present invention will be described with reference to the drawings. 1 to 4 show one embodiment of the present invention. 1 to 3, reference numeral 1 denotes a flow meter according to the present invention. Reference numeral 2 denotes a rectangular parallelepiped case 2 made of, for example, stainless steel, and a tube 3 is provided so as to pass through the inside thereof. The tube 3 is made of, for example, a stainless steel tube having an outer diameter of 0.8 mm and an inner diameter of 0.6 mm, and a fluid F such as a liquid or a gas flows therein. 4 and 5 are joint members.
[0015]
In the case 2, a sensor unit 6 configured as follows is provided. That is, 7 is an electronic cooling device that cools a part 3a of the tube 3 in the case, and is thermally tightly coupled to the thermomodule 8 and the plate 9 that is thermally tightly coupled to the upper surface thereof and the lower surface. Heat sink 10 to be made. And the thermo module 8 is provided so that it may be located in the opening 11a opened in the printed circuit board 11. FIG. The plate 9 is made of a material excellent in thermal conductivity (for example, a stainless steel plate or a copper plate), and a part 9 a thereof is tightly wound around the cooled portion 3 a of the tube 3. Furthermore, the heat sink 10 is provided so as to close the lower opening of the case 2 and includes a plurality of heat radiation fins 10a outside.
[0016]
The printed circuit board 11 has an electric circuit (not shown) formed on the upper surface thereof, a constant current circuit for supplying a predetermined amount of current to four temperature detection elements described later, and the electronic cooling device. A constant temperature control circuit for controlling 7 is provided. Further, on the printed board 11, a connection terminal portion (not shown) 11b for connecting to an external circuit, for example, a flow meter main body portion (not shown) protrudes outside the case 2 (FIG. 1). reference).
[0017]
Reference numeral 12 denotes a first temperature detecting element that detects the temperature of the non-cooled part 3b upstream of the cooled part 3a of the pipe 3, and is provided on the pipe surface via an appropriate element holder 13. Reference numeral 14 denotes a second temperature detection element that detects the temperature of the electronic cooling device 7 and is attached to the plate 9. Reference numeral 15 denotes a third temperature detecting element that detects the temperature of the cooled portion 3 a of the tube 3 cooled by the electronic cooling device 7, and is attached to the holder portion 9 a of the plate 9.
[0018]
The configuration so far is the same as the conventional flow meter shown in FIG. In the present invention, the fourth temperature detection element 16 for measuring the ambient temperature in the case 2 is provided, and based on the difference between the detection temperature of the fourth temperature detection element 16 and the detection temperature of the first temperature detection element 12. The temperature of the electronic cooling device 7 is controlled. In other words, in the present embodiment, the fourth temperature detection element 16 is provided on the surface of the printed board 11 and relatively close to the first temperature detection element 12. In addition, the installation position of the 4th temperature detection element 16 may be anywhere as long as it can measure the atmospheric temperature in the case 2. In addition, the case 2 has an airtight state in which the inside is shut off from the outside, the upper opening of the case 2 is closed by a suitable lid member (not shown), and the insertion portion of the tube 3 The protruding portion of the printed circuit board 11 is configured such that no gap is generated by an appropriate compound. The sensor unit 6 having the above configuration is configured to be controlled by an arithmetic control unit on the main body side (not shown).
[0019]
Next, the operation of the flow meter will be described. In the flow meter having the above-described configuration, a current of a predetermined magnitude (for example, 1.0 mA) is supplied to each of the temperature detection elements 12, 14, and 15 by a constant current circuit, and the detected temperature T 1 of the first temperature detection element 12. In the constant temperature control circuit, for example, PID is used in the electronic cooling device 7 so that the difference (T 1 −T 2 ) between the first temperature detecting element 14 and the detected temperature T 2 of the second temperature detecting element 14 becomes a predetermined value (for example, 10 ° C.). To control.
[0020]
When the fluid F does not flow in the tube 3 under the above conditions, the temperature on the plate 9 of the electronic cooling device 7 is all the same temperature, so that the detected temperature T 3 of the third temperature detecting element 15 and the second temperature detection The detection temperature T 2 of the element 14 is equal, that is, the difference (T 3 −T 2 ) is zero. When the fluid F flows in the tube 3, the detected temperature T 3 of the third temperature detecting element 15, since increases in proportion to the flow rate of the fluid F, the temperature detected by the third temperature detecting element 15 A difference (T 3 −T 2 ) is generated between T 3 and the detected temperature T 2 of the second temperature detecting element 14. Therefore, the flow rate of the fluid F flowing in the pipe 3 can be obtained by obtaining the difference (T 3 -T 2 ) so that the difference (T 1 -T 2 ) becomes a predetermined value. .
[0021]
Meanwhile, the flow rate signal corresponding to the flow rate of the fluid F flowing through the tube 3 is proportional to the difference between the temperature T 2 of the temperature T 1 of the electronic cooling device 7 of the fluid F, the flow rate signal is greater if the temperature difference is greater Become. Therefore, it is necessary to accurately measure the temperature T 1 .
[0022]
Therefore, in order to always maintain a constant temperature difference between the set temperature of the electronic cooling device 7 and the temperature of the fluid F, the ambient temperature in the case 2 in which the temperature detecting elements 12, 14, and 15 are provided is changed. 4 detected by the temperature detecting element 16, a difference between the detected temperature T 1 of the detected temperature T 4 and the first temperature detecting element 12 of the temperature detecting element 16 (T 4 -T 1), the temperature of the electronic cooling device 7 In addition to the control value, the temperature of the electronic cooling device 7 is controlled so as to follow the temperature change of the fluid F.
[0023]
For example, now, as the difference between the detected temperature T 2 detected temperatures T 1 and the second temperature detecting element 14 of the first temperature detecting element 12 (T 1 -T 2) is 10 ° C.), the constant temperature control circuit For example, when the electronic cooling device 7 is controlled using PID, the temperature T 7 of the electronic cooling device 7 is controlled as shown in the following equation (1). That is,
T 7 = 10 ° C. + α (T 4 −T 1 ) (1)
Where α is an arbitrary correction factor.
Therefore, for example, when the temperature of the fluid F shifts to the minus side (becomes low), the temperature difference (T 4 −T 1 ) shifts to a plus and the flow rate signal shifts to a minus. The correction in this case adds a temperature difference (T 4 −T 1 ) to the temperature control value (T 1 −T 2 ) of the electronic cooling device 7. By doing so, the difference between the set temperature of the electronic cooling device 7 and the temperature of the fluid F is increased, the flow rate signal is shifted to plus, and the flow rate signal is corrected. On the contrary, even when the temperature of the fluid F shifts (becomes higher) to the plus side, the flow rate signal can be corrected in the same manner as described above.
[0025]
FIG. 4 schematically shows the relationship between the temperature change of the fluid F and the sensor output of this type of flow meter. The horizontal axis represents the temperature change (° C.) of the fluid F, and the vertical axis represents the sensor output (V). Each is shown. In the conventional flow meter shown in FIG. 5, when the measurement is performed within the required accuracy width A, the temperature change width of the fluid F flowing in the pipe 3 is 0 as shown by the symbol B in the figure. ℃ did not take so large mainly, according to the flowmeter of the present invention, as indicated at C in the figure, rather large bets are by Uninari than the conventional, thus, large fluid F of temperature change The flow rate can be measured accurately and stably.
[0026]
As the temperature detection elements 12, 14, 15, and 16, a linear thermistor, a platinum thermometer, a resistance temperature element, a winding, a thermocouple, and the like can be suitably used. In addition to stainless steel, the tube 3 may be made of a metal material such as aluminum, copper, or nickel, or a fluoroethylene resin, a polymer, or the like when the thickness is reduced. Moreover, the flowmeter of this invention can be used not only for liquids but also for measuring the flow rate of gases such as air, argon or corrosive gases.
[0027]
【The invention's effect】
As described above, in the flowmeter of the present invention, the temperature change of the fluid flowing into the pipe based on the temperature in the case in which the sensor unit is provided and the temperature of the pipe through which the fluid before being cooled flows. The temperature of the electronic cooling device that controls the temperature of the tube is controlled based on the information obtained by this monitoring, so that the set temperature of the electronic cooling device is completely linked to the fluid temperature. Even when the fluid temperature changes greatly, the flow rate of the fluid flowing in the pipe can be measured accurately and stably.
[Brief description of the drawings]
FIG. 1 is a plan view schematically showing a configuration of a flow meter of the present invention.
FIG. 2 is a longitudinal sectional view of the flow meter.
FIG. 3 is a perspective view showing the flow meter as seen through.
FIG. 4 is a diagram schematically showing a relationship between a temperature change of a fluid and a sensor output in a flow meter that measures a fluid flow rate based on the principle of heat exchange.
FIG. 5 is a diagram schematically showing a configuration of a sensor unit of a conventional flow meter.
[Explanation of symbols]
2 ... Case, 3 ... Tube, 6 ... Sensor part, 7 ... Electronic cooling device, F ... Fluid.

Claims (2)

流体が流れる管と、この管の一部を冷却する電子冷却装置と、前記管において前記電子冷却装置により冷却される被冷却部位よりも上流側の非冷却部位の温度を検出する第1温度検出素子と、前記電子冷却装置の温度を検出する第2温度検出素子と、前記被冷却部位の温度を検出する第3温度検出素子と、雰囲気温度を検出する第4温度検出素子と、前記第2温度検出素子の検出温度と前記第1温度検出素子の検出温度との差が所定値となるように前記電子冷却装置の温度を制御し、前記第4温度検出素子の検出温度と前記第1温度検出素子の検出温度との差に基づいて前記電子冷却装置の温度を制御するとともに、前記第2温度検出素子の検出温度と前記第3温度検出素子の検出温度との差に基づいて前記管を流れる流体の流量を算出する演算制御部とを備えていることを特徴とする流量計。 A pipe through which a fluid flows, an electronic cooling device that cools a part of the pipe, and a first temperature detection that detects the temperature of an uncooled part upstream of the cooled part that is cooled by the electronic cooling device in the pipe An element, a second temperature detecting element for detecting the temperature of the electronic cooling device, a third temperature detecting element for detecting the temperature of the cooled part, a fourth temperature detecting element for detecting an ambient temperature, and the second The temperature of the electronic cooling device is controlled so that the difference between the detected temperature of the temperature detecting element and the detected temperature of the first temperature detecting element becomes a predetermined value, and the detected temperature of the fourth temperature detecting element and the first temperature The temperature of the electronic cooling device is controlled based on the difference between the detection temperature of the detection element and the tube is controlled based on the difference between the detection temperature of the second temperature detection element and the detection temperature of the third temperature detection element. Calculate the flow rate of flowing fluid Flowmeter, characterized in that it comprises a calculation control unit. 流体が流れる管をケース内を挿通するように設け、前記ケース内に、前記管の一部が電子冷却装置によって冷却されるとともに、前記管の被冷却部位よりも上流側の非冷却部位に第1温度検出素子を設け、電子冷却装置の前記管から離れた部位に第2温度検出素子を設け、前記被冷却部位に第3温度検出素子を設けてなるセンサ部を形成し、第1温度検出素子の検出温度と第2温度検出素子の検出温度との差が常に所定値になるように電子冷却装置の温度を制御しつつ、第3温度検出素子の検出温度と第2温度検出素子の検出温度との差に基づいて前記管内を流れる流体の流量を測定するようにした流量計において、前記ケース内の雰囲気温度を測定するための第4温度検出素子を設け、この第4温度検出素子の検出温度と前記第1温度検出素子の検出温度との差に基づいて前記電子冷却装置の温度を制御するようにしたことを特徴とする流量計。A pipe through which a fluid flows is provided so as to be inserted through the case. In the case, a part of the pipe is cooled by an electronic cooling device, and the pipe is placed in an uncooled part upstream of the part to be cooled of the pipe. A first temperature detection element is provided, a second temperature detection element is provided at a location away from the tube of the electronic cooling device, and a third temperature detection element is provided at the cooled location to form a first temperature detection while controlling the temperature of the electronic cooling device such that the difference between the detected temperature of the detected temperature and the second temperature sensing element of the device is always a predetermined value, the detection of the detected temperature and the second temperature detecting element of the third temperature detecting element In the flowmeter configured to measure the flow rate of the fluid flowing in the pipe based on the difference from the temperature, a fourth temperature detection element for measuring the ambient temperature in the case is provided, and the fourth temperature detection element Detection temperature and first temperature detection Flowmeter is characterized in that so as to control the temperature of the electronic cooling device based on the difference between the detected temperature of the child.
JP2002204750A 2002-07-12 2002-07-12 Flowmeter Expired - Lifetime JP4095362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002204750A JP4095362B2 (en) 2002-07-12 2002-07-12 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204750A JP4095362B2 (en) 2002-07-12 2002-07-12 Flowmeter

Publications (2)

Publication Number Publication Date
JP2004045290A JP2004045290A (en) 2004-02-12
JP4095362B2 true JP4095362B2 (en) 2008-06-04

Family

ID=31710263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204750A Expired - Lifetime JP4095362B2 (en) 2002-07-12 2002-07-12 Flowmeter

Country Status (1)

Country Link
JP (1) JP4095362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9218915B2 (en) 2010-10-07 2015-12-22 Uchicago Argonne, Llc Non-aqueous electrolyte for lithium-ion battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935225B2 (en) * 2006-07-28 2012-05-23 株式会社島津製作所 Electronic component assembly
US8015870B2 (en) 2007-01-26 2011-09-13 Horiba Stec, Co., Ltd. Flowmeter for measuring a flow rate using a heat exchange principle
JP2017101955A (en) * 2015-11-30 2017-06-08 アズビル株式会社 Measuring apparatus and method for manufacturing measuring apparatus
CN107589210B (en) * 2016-07-07 2020-01-03 株式会社岛津制作所 Column oven for liquid chromatograph and liquid chromatograph
JP2020008338A (en) * 2018-07-04 2020-01-16 アズビル株式会社 Thermal flowmeter
CN113865657B (en) * 2021-09-09 2024-02-02 夏罗登工业科技(上海)股份有限公司 Electromagnetic flowmeter with multi-functional color display screen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9218915B2 (en) 2010-10-07 2015-12-22 Uchicago Argonne, Llc Non-aqueous electrolyte for lithium-ion battery

Also Published As

Publication number Publication date
JP2004045290A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US4947889A (en) Method of measuring flow rate and flow meter for use in said method as well as apparatus for controlling flow rate of liquid using said flow meter
JP4945581B2 (en) Flowmeter
JP4709499B2 (en) Thermal mass flow meter
JP4316083B2 (en) Thermal flow meter with fluid discrimination function
US20090049907A1 (en) Configuration and methods for manufacturing time-of-flight MEMS mass flow sensor
JPH07111367B2 (en) Flow rate sensor and its inspection method
JP4095362B2 (en) Flowmeter
JP2011209152A (en) Flowmeter
JP2012181090A (en) Heat flux sensor
GB2159631A (en) Fluid flow measurement
US20220397438A1 (en) Non-invasive thermometer
US20220334003A1 (en) Noninvasive thermometer
US20240044723A1 (en) Noninvasive thermometer
JP6460911B2 (en) Thermal mass flow controller and tilt error improving method thereof
JPH04115125A (en) Heat flow-rate sensor
JP3998295B2 (en) Mass flow meter
US20230314235A1 (en) Protective tube for cryogenic applications
JP3163558B2 (en) Flow velocity detector
CN112648726A (en) Water heater and detection method for input water flow of water heater
JPH0579875A (en) Thermal flowmeter
JPH0429017A (en) Method and instrument for measuring flow velocity and flow direction of fluid
JPH02193019A (en) Flow sensor
JPH04240566A (en) Flow rate direction sensor
JPH01107114A (en) Flowmeter
JP2004198277A (en) Differential pressure measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20071205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4095362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term