JPH0429017A - Method and instrument for measuring flow velocity and flow direction of fluid - Google Patents

Method and instrument for measuring flow velocity and flow direction of fluid

Info

Publication number
JPH0429017A
JPH0429017A JP2136138A JP13613890A JPH0429017A JP H0429017 A JPH0429017 A JP H0429017A JP 2136138 A JP2136138 A JP 2136138A JP 13613890 A JP13613890 A JP 13613890A JP H0429017 A JPH0429017 A JP H0429017A
Authority
JP
Japan
Prior art keywords
flow velocity
fluid
sensor
detection
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2136138A
Other languages
Japanese (ja)
Other versions
JP2788329B2 (en
Inventor
Takashi Kobori
小堀 孝史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2136138A priority Critical patent/JP2788329B2/en
Publication of JPH0429017A publication Critical patent/JPH0429017A/en
Application granted granted Critical
Publication of JP2788329B2 publication Critical patent/JP2788329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To measure the velocity and direction of a flow in a live tube by providing a couple of heating element for detection across a shield member in the axial direction of a fluid supply tube and measuring them with signals from heat-ray type flow velocity sensors corresponding to the heating element for detection. CONSTITUTION:The couple of heating elements 2a and 2b for detection and the shield member 3 are provided in the fluid supply tube 12. The heat of the heating elements 2a and 2b is absorbed by the fluid according to the flow velocity and the elements are cooled, so sensor driving circuits 6a and 6b corresponding to the heating elements 2a and 2b output signals corresponding to the flow velocity of the fluid. The output voltages of the circuits 6a and 6b are compared by a comparator 8; when the fluid flows as shown by an arrow, the output voltage of the circuit 6b becomes higher, the comparator 8 outputs a signal indicating the heating element 2b is on an upstream side, and a changeover switch 9 selects the side of the circuit 6b. Then its output voltage is supplied to a processor 11 through a squaring device 10 to measure the means flow velocity at specific intervals of time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガスや液体等の流体の流速及び流れ方向測定方
法及び測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for measuring the flow velocity and flow direction of fluids such as gases and liquids.

(従来の技術) 貴1えば都市ガス供給系統に於ける供給ガス量の測定等
に用いる従来の流量計としては、羽根車式、ピトー管式
、差圧式、容積式等の各種の流量計があり、測定可能な
流速範囲や、測定精度、応答性等に於いて、夫々長所、
短所を有している。
(Prior art) For example, as conventional flowmeters used to measure the amount of gas supplied in city gas supply systems, there are various flowmeters such as impeller type, pitot tube type, differential pressure type, and positive displacement type. Each has its own advantages in measurable flow velocity range, measurement accuracy, responsiveness, etc.
It has disadvantages.

(発明が解決しようとする課題) 上記の従来の流量計は、測定対象の流体供給管に予め設
置して置かなければならず、必要に応じて流体供給管に
流れる流体の流量または流速を適所に於いて活管で測定
することはできないという課題がある。また、例えば都
市ガス供給系統では、供給管内の水分量の分布を調査し
て差水個所を推定する場合等のように、ガスの流れ方向
を測定することが必要な場合があり、前記流量または流
速の測定と共に流れの方向を測定可能な測定装置が望ま
れている。
(Problems to be Solved by the Invention) The above-mentioned conventional flowmeter must be installed in advance on the fluid supply pipe to be measured, and the flow rate or flow velocity of the fluid flowing into the fluid supply pipe can be controlled at an appropriate location as necessary. However, there is a problem in that it is not possible to measure with live tubes. In addition, for example, in a city gas supply system, there are cases where it is necessary to measure the flow direction of gas, such as when estimating the location of water difference by investigating the distribution of water content in the supply pipe. What is desired is a measuring device that can measure flow direction as well as flow velocity.

本発明は以上の点に鑑みてなされたものであり、即ち、
上述した従来の課題を解決して、流体の流速と流れ方向
を同時に、活管で測定可能な測定方法及び測定装置を提
供することを目的とする。
The present invention has been made in view of the above points, namely:
It is an object of the present invention to provide a measuring method and a measuring device that can solve the above-mentioned conventional problems and simultaneously measure the flow velocity and flow direction of a fluid using a live tube.

(課題を解決するための手段) 上述の課題を解決するための手段を実施例に対応する図
面を参照して説明すると、まず本発明の流体の流速及び
流れ方向測定方法は、夫々熱線式流速センサの構成要素
を成す一対の検出用発熱体2a、 2bを、測定対象の
流体供給管12の軸方向に所定距離隔てて設置すると共
にそれらの間に遮蔽部材3を設置し、これらの一対の検
出用発熱体2a。
(Means for Solving the Problems) Means for solving the above-mentioned problems will be explained with reference to drawings corresponding to examples. A pair of detection heating elements 2a and 2b, which constitute the components of the sensor, are installed at a predetermined distance apart in the axial direction of the fluid supply pipe 12 to be measured, and a shielding member 3 is installed between them. Detection heating element 2a.

2bに対応する熱線式流速センサの出力信号を比較して
流体の流れ方向を検出すると共に、上流側の検出用発熱
体2a、 2bに対応する熱線式流速センサの出力信号
により流体の流速を測定するするものである。
The flow direction of the fluid is detected by comparing the output signals of the hot wire flow velocity sensors corresponding to the hot wire flow velocity sensors 2b, and the flow velocity of the fluid is measured by the output signals of the hot wire flow velocity sensors corresponding to the upstream detection heating elements 2a and 2b. It is something to do.

上記の構成に於いて、熱線式流速センサは、センサ器体
lの一端から所定距離隔てた位置に一対の検出用発熱体
2a、 2bを間隔をおいて設置し、これらの間に遮蔽
部材3を設置すると共に、前記検出用発熱体2a、 2
bよりも前記センサ器体1の一端寄りに温度補償用抵抗
体4a、 4bを設置し、夫々の検出用発熱体2a、 
2bと温度補償用抵抗体4a、 4bをブリッジに組む
と共に、夫々のブリッジ回路の不平衡を零とするように
ブリッジ電圧を調節する一対のセンサ駆動回路6a、 
6bを設けて構成し、該センサ駆動回路6a、 6bに
よりブリッジ電圧を調節して、前記検出用発熱体2a、
 2bの温度を一定に保持し、この時にブリッジ回路に
流れる電流に対応するセンサ駆動回路6a、 6bの出
力信号から、流体の流速を導出する構成とすることがで
きる。
In the above configuration, the hot wire type flow velocity sensor has a pair of detection heating elements 2a and 2b installed at a predetermined distance apart from one end of the sensor body l, and a shielding member 3 between them. and the detection heating elements 2a, 2
Temperature compensation resistors 4a, 4b are installed closer to one end of the sensor body 1 than b, and the respective detection heating elements 2a,
2b and temperature compensation resistors 4a and 4b into a bridge, and a pair of sensor drive circuits 6a that adjust the bridge voltage so as to make the unbalance of each bridge circuit zero,
6b, the bridge voltage is adjusted by the sensor drive circuits 6a and 6b, and the detection heating element 2a,
2b may be held constant, and the flow velocity of the fluid may be derived from the output signals of the sensor drive circuits 6a, 6b corresponding to the current flowing through the bridge circuit at this time.

また本発明の流体の流速及び流れ方向測定装置は、セン
サ器体lの一端から所定距離隔てた位置に一対の検出用
発熱体2a、 2bを間隔をおいて設置し、これらの間
に遮蔽部材3を設置すると共に、前記検出用発熱体2a
、 2bよりも前記センサ器体1の一端寄りに温度補償
用抵抗体4a、 4bを設置し、夫々の検出用発熱体2
a、 2bと温度補償用抵抗体4a。
Further, the fluid flow velocity and flow direction measuring device of the present invention includes a pair of detection heating elements 2a and 2b installed at a predetermined distance from one end of the sensor body l, and a shielding member disposed between them. 3, and the detection heating element 2a
, temperature compensation resistors 4a and 4b are installed closer to one end of the sensor body 1 than 2b, and the respective detection heating elements 2
a, 2b and a temperature compensation resistor 4a.

4bをブリッジに組むと共に、夫々のブリッジの不平衡
を零とするようにブリッジ電圧を調節する一対のセンサ
駆動回路6a、 6bを設けて構成した熱線式流速セン
サを設けると共に、前記センサ駆動回路6a、 6bの
出力信号を比較する比較器8と、該比較器8の出力信号
により切替動作して、出力すべき前記センサ駆動回路6
a、 6bを選択する切替スイッチ9とから成る検出回
路Bを設け、前記比較器8により流れ方向に対応する信
号を出力すると共に、切替スイッチ9を介して流速に対
応する信号を出力する構成としたものである。
4b as a bridge, and a pair of sensor drive circuits 6a and 6b that adjust the bridge voltage so as to make the unbalance of each bridge zero. , 6b, and the sensor drive circuit 6 to be switched and output according to the output signal of the comparator 8.
A detection circuit B consisting of a changeover switch 9 for selecting between a and 6b is provided, and the comparator 8 outputs a signal corresponding to the flow direction, and the changeover switch 9 outputs a signal corresponding to the flow velocity. This is what I did.

以上の方法または装置に於いて、検出用発熱体2a、 
2bは自己加熱型半導体サーミスタで構成することがで
きる。また、遮蔽部材は板状に構成したり、棒状に構成
する等適宜である。
In the above method or apparatus, the detection heating element 2a,
2b can be composed of a self-heating semiconductor thermistor. Further, the shielding member may be formed into a plate shape or a rod shape as appropriate.

(作用) 以上の構成に於いて、測定対象である流体供給管12内
に設置され、流体の流れの中に置かれた一対の検出用発
熱体2a、 2bは、流速に応じて流体により熱を奪わ
れるので、夫々の熱線式流速センサは、各検出用発熱体
2a、 2bに対する流体の流速に応じた信号を発生す
る。
(Function) In the above configuration, the pair of detection heating elements 2a and 2b installed in the fluid supply pipe 12 to be measured and placed in the flow of fluid are heated by the fluid according to the flow velocity. Therefore, each hot wire flow velocity sensor generates a signal corresponding to the fluid flow velocity with respect to each detection heating element 2a, 2b.

かかる際、流れの下流側に位置する検出用発熱体2a、
 2bに対する流体の流速は遮蔽部材3の影響で、上流
側の検出用発熱体2a、 2bに対する流速よりも遅く
なるので、夫々の熱線式流速センサの出力信号に差が生
じ、従ってこれらの出力信号を比較することにより、ど
ちらの熱線式流速センサに対応する検出用発熱体2a、
 2bが上流側にあるか、そしてこれにより流体の流れ
の方向を検出することができる。
In this case, the detection heating element 2a located on the downstream side of the flow,
Due to the effect of the shielding member 3, the flow velocity of the fluid to the hot wire flow velocity sensor 2b is slower than the flow velocity to the upstream detection heating elements 2a and 2b. By comparing the detection heating element 2a, which corresponds to which hot wire flow velocity sensor,
2b is upstream and thereby the direction of fluid flow can be detected.

一方、夫々の検出用発熱体2a、 2bに対する流体の
流速は遮蔽部材3に影響されて実際の値よりも遅くなり
、従って夫々の熱線式流速センサの出力信号も低下する
のであるが、上流側の熱線式流速センサに関しては、こ
のように信号の出力は低下するものの、流速と出力の対
応関係の関数系は変化しないので、その対応関係により
流体の流速を正確に導出することができ、従って上記の
ようにして上流側の検出を行うと共に、この上流側の熱
線式流速センサの出力信号により、流体の流速を正確に
導出することができる。そして、この流速と流体供給管
】2の径とから流量を検出することができる。
On the other hand, the flow velocity of the fluid to each detection heating element 2a, 2b is influenced by the shielding member 3 and becomes slower than the actual value, and therefore the output signal of each hot wire flow velocity sensor also decreases. Regarding the hot wire type flow velocity sensor, although the signal output decreases in this way, the functional system of the correspondence between flow velocity and output does not change, so the fluid flow velocity can be accurately derived from that correspondence. In addition to detecting the upstream side as described above, the flow rate of the fluid can be accurately derived from the output signal of the hot wire type flow rate sensor on the upstream side. The flow rate can be detected from this flow rate and the diameter of the fluid supply pipe 2.

以上の熱線式流速センサを構成する検出用発熱体2a、
 2bは、自己加熱型半導体サーミスタで構成すること
により、熱線式流速センサの構成の小型化を図ることが
できる。即ち、この自己加熱型半導体サーミスタを検出
用発熱体2a、 2bとして用いた熱線式流速センサは
、検出用発熱体2a、 2bを、遮蔽部材3に影響され
ない流体供給管12内の位置に設置した温度補償用抵抗
体4a、 4bとブリッジに組み、このブリッジの不平
衡を零とするようにブリッジ電圧を調節して、前記検出
用発熱体2a。
A detection heating element 2a constituting the above hot wire flow rate sensor,
By configuring 2b with a self-heating semiconductor thermistor, the configuration of the hot wire flow rate sensor can be made smaller. That is, in the hot wire flow rate sensor using this self-heating semiconductor thermistor as the detection heating elements 2a, 2b, the detection heating elements 2a, 2b are installed at positions within the fluid supply pipe 12 that are not affected by the shielding member 3. The heating element 2a for detection is assembled into a bridge with the temperature compensation resistors 4a and 4b, and the bridge voltage is adjusted so as to make the unbalance of the bridge zero.

2bの温度を一定に保持し、この時にブリッジ回路に流
れる電流に対応する信号から、前記検出用発熱体2a、
 2bから奪われる熱量を検出し、この奪われる熱量に
対応した信号から流体の流速を検出することができる。
2b is held constant, and from a signal corresponding to the current flowing through the bridge circuit at this time, the detection heating element 2a
The amount of heat taken away from 2b can be detected, and the flow velocity of the fluid can be detected from a signal corresponding to this amount of heat taken away.

そして上記した流れの方向及び流速の検出は、前記セン
サ駆動回路6a、 6bの出力信号を比較する比較器8
と、該比較器8の出力信号により切替動作して、出力す
べき前記センサ駆動回路6a、 6bを選択する切替ス
イッチ9とから成る検出回路Bにより行うことができる
The flow direction and flow velocity described above are detected by a comparator 8 that compares the output signals of the sensor drive circuits 6a and 6b.
This can be carried out by a detection circuit B consisting of a changeover switch 9 which switches according to the output signal of the comparator 8 and selects the sensor drive circuit 6a, 6b to be output.

(実施例) 次に本発明の実施例を図について説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明に適用するセンサ本体Aの一部の外観を
表した斜視図、そして第2図はセンサ本体Aを構成する
熱線式流速センサを表した回路図である。かかる図に於
いて、符号lはセンサ器体であり、このセンシ器体lの
一端から所定距離離れた位置に一対の検出用発熱体2a
、 2bを間隔をおいて設置し、これらの間に遮蔽部材
3を設置している。これらの検出用発熱体2a、 2b
は自己加熱型半導体サーミスタで構成している。また符
号4a。
FIG. 1 is a perspective view showing the external appearance of a part of the sensor main body A applied to the present invention, and FIG. 2 is a circuit diagram showing a hot wire flow rate sensor constituting the sensor main body A. In this figure, reference numeral l denotes a sensor body, and a pair of heating elements 2a for detection are located at a predetermined distance from one end of the sensor body l.
, 2b are installed at intervals, and a shielding member 3 is installed between them. These detection heating elements 2a, 2b
consists of a self-heating semiconductor thermistor. Also, code 4a.

4bは前記検出用発熱体2a、 2bの夫々に対応させ
る温度補償用抵抗体であり、これらの温度補償用抵抗体
4a、・4bは半導体サーミスタで構成し、前記検出用
発熱体2a、 2bよりも前記センサ器体1の一端寄り
に設置して、前記遮蔽部材3の影響を受けない位置に設
置している。遮蔽部材3は板状に構成しており、この板
状遮蔽部材3は保護キャップ14の側壁15に取り付け
ており、該保護キャップ14をセンサ基体1の所定位置
に装着した状態に於いて前記一対の検出用発熱体2a、
 2b間に設置状態となる構成である。尚、この保護キ
ャップ14は、゛前記側壁15と頂費16によりセンサ
部を保護するもので、図中−点鎖線の矢印方向の流れに
は支障ない構成である。また前記温度補償用抵抗体4a
、 4bは前述の構成と逆に前記検出用発熱体2a。
4b is a temperature compensating resistor corresponding to each of the detecting heating elements 2a, 2b, and these temperature compensating resistors 4a, 4b are constituted by semiconductor thermistors. is also installed near one end of the sensor body 1 in a position that is not affected by the shielding member 3. The shielding member 3 is configured in a plate shape, and is attached to the side wall 15 of the protective cap 14, and when the protective cap 14 is attached to a predetermined position on the sensor base 1, the pair of heating element 2a for detection,
The configuration is such that it is installed between 2b. The protective cap 14 protects the sensor section by means of the side wall 15 and the top cover 16, and has a structure that does not interfere with the flow in the direction of the arrow indicated by the dotted chain line in the figure. Further, the temperature compensation resistor 4a
, 4b is the detection heating element 2a, which is the opposite of the above-mentioned configuration.

2bよりも前記センサ器体1から離れた位置に設置する
こともでき、遮蔽部材3も、上述のように板状でなく、
棒状に構成す、ることができ、この構成の場合には棒状
遮蔽部材3はセンサ器体1から突設して所定位置に設置
状態とすることができる。
2b can be installed at a position farther from the sensor body 1, and the shielding member 3 is also not plate-shaped as described above.
In this case, the rod-shaped shielding member 3 can be protruded from the sensor body 1 and installed at a predetermined position.

夫々の熱線式流速センサは、第2図にその一方側を示す
ように、夫々の検出用発熱体2a、 2bと温度補償用
抵抗体4a、 4bを、他の抵抗5a、 5bと共にブ
リッジに組んで構成し、このブリッジの不平衡を零とす
るようにセンサ駆動回路6a、 6bによりブリッジ電
圧を調節して、前記検出用発熱体2a、 2bの温度を
一定に保持し、この時にブリッジ回路に流れる電流に対
応する電圧を出力する構成としており、センサ駆動回路
6a、 6bは差動増幅器により構成している。
As shown on one side in FIG. 2, each hot wire flow velocity sensor has a detection heating element 2a, 2b and a temperature compensation resistor 4a, 4b assembled into a bridge together with another resistor 5a, 5b. The bridge voltage is adjusted by the sensor drive circuits 6a and 6b so that the unbalance of the bridge becomes zero, and the temperature of the detection heating elements 2a and 2b is kept constant. It is configured to output a voltage corresponding to the flowing current, and the sensor drive circuits 6a and 6b are configured by differential amplifiers.

第3図はセンサ本体Aと共に、検出回路Bを表したもの
であり、この検出回路Bは前記熱線式流速センサのセン
サ駆動回路6a、 6bの出力を夫々増幅器7a、 7
bに入力し、これらの増幅器7a、 7bの出力を比較
器8と切替スイッチ9に入力する構成としている。そし
てこの切替スイッチ9は、比較器8の比較出力により切
替動作を行って出力すべきセンサ駆動回路6a、 6b
q)選択を行う構成としている。符号IOは二乗器であ
り、この二乗器10は後述するように、流速の1/4乗
の関数となる前記センサ駆動回路6a、 6.bの出力
電圧の直線化を図るものである。また符号11は、前記
比較器8と切替スイッチ9からの出力信号に所定の処理
を行って、流速そして流量及び流れ方向を得る処理装置
で、この処理装置11はマイクロコンピュータを応用し
た機器とすることができる。
FIG. 3 shows a detection circuit B together with the sensor body A, and this detection circuit B connects the outputs of the sensor drive circuits 6a and 6b of the hot wire type flow velocity sensor to amplifiers 7a and 7, respectively.
b, and the outputs of these amplifiers 7a and 7b are input to a comparator 8 and a changeover switch 9. The changeover switch 9 performs a switching operation based on the comparison output of the comparator 8, and connects the sensor drive circuits 6a and 6b to output the output.
q) It is configured to make a selection. 6. The symbol IO is a squarer, and this squarer 10 is a function of the 1/4th power of the flow velocity, as will be described later. This is intended to linearize the output voltage of b. Reference numeral 11 is a processing device that performs predetermined processing on the output signals from the comparator 8 and the changeover switch 9 to obtain the flow velocity, flow rate, and flow direction, and this processing device 11 is a device to which a microcomputer is applied. be able to.

以上の構成に於いて本発明装置では、例えば対象とする
流体供給管12に穿孔穴13を形成し、ここから流体供
給管12の内部にセンサ器体1を挿入し、そして適宜の
方法により流体が流体供給管12から漏洩しないように
支持して、検出用発熱体2a、 2b及び遮蔽部材3を
該流体供給管12の軸方向に並ぶように設置することに
より、活管状態で下記の測定を行うことができる。
In the device of the present invention with the above configuration, for example, the perforation hole 13 is formed in the target fluid supply pipe 12, the sensor body 1 is inserted into the fluid supply pipe 12 from there, and the fluid is supplied by an appropriate method. The detection heating elements 2a, 2b and the shielding member 3 are arranged in the axial direction of the fluid supply pipe 12 so as not to leak from the fluid supply pipe 12, so that the following measurements can be carried out in the live pipe state. It can be performed.

しかして、このように流体供給管12内に設置され、流
体の流れの中に置かれた一対の検出用発熱体2a、 2
bは、流速に応じて流体により熱を奪われ、冷却される
ので、夫々の検出用発熱体2a、 2bに対応するセン
サ駆動回路6a、 6bは、各検出用発熱体2a、 2
bに対しての流体の流速に応じた信号を出力する。この
際の流れによる冷却の割合は、次のKingの式によっ
て表される。
Thus, the pair of detection heating elements 2a, 2 are installed in the fluid supply pipe 12 and placed in the fluid flow.
Since heat is removed by the fluid and cooled according to the flow velocity, the sensor drive circuits 6a, 6b corresponding to the respective detection heating elements 2a, 2b are connected to the respective detection heating elements 2a, 2b.
A signal corresponding to the fluid flow rate with respect to b is output. The rate of cooling due to the flow at this time is expressed by the following King's equation.

H=(a+bU’)(T−Ta)  ・−−−・−41
)但し、H:放散熱量、U:流速、T:検出用発熱体2
a、 2bの表面温度、Ta:流体(ガス)の温度であ
る。そこで、検出用発熱体2a、 2bの抵抗を81通
じる電流をI、両端の電圧をVとすると、次式が成り立
つ。
H=(a+bU')(T-Ta) ・---・-41
) However, H: dissipated heat amount, U: flow velocity, T: detection heating element 2
a, surface temperature of 2b, Ta: temperature of fluid (gas). Therefore, if the current flowing through the resistors 81 of the detection heating elements 2a and 2b is I, and the voltage at both ends is V, then the following equation holds true.

H=VR=V”/R・・・・・・・・・・旧・・・・・
・・・(2)従って、(1)式、(2)式より V’ = R(a + b U”)(T −Ta) −
−・−・i3Jとなり、センサ駆動回路6a、 6bの
出力電圧は流速の1/4乗の関数となる。
H=VR=V"/R... Old...
...(2) Therefore, from equations (1) and (2), V' = R(a + b U")(T - Ta) -
---i3J, and the output voltage of the sensor drive circuits 6a, 6b becomes a function of the flow velocity to the 1/4th power.

第4図(a)、(b)は、流体として都市ガス(13A
)を管径5oφの供給管に流した場合に於いて、流量及
び流速(風速)を測定した結果を表したものであり、(
a)は流量の変化に対しての、流れの上流側及び下流側
の熱線式流速センサの出力電圧の変化を表し、また(b
)は流速(風速)の変化に対しての、遮蔽部材3がない
場合の熱線式流速センサの出力電圧と、本発明による上
流側の熱線式流速センサの出力電圧の変化を表している
。尚、この測定では遮蔽部材3は図示のような板状の構
成としている。
Figure 4 (a) and (b) show city gas (13A) as the fluid.
) shows the results of measuring the flow rate and flow velocity (wind speed) when flowing through a supply pipe with a pipe diameter of 5oφ.
a) represents the change in the output voltage of the hot wire flow velocity sensor on the upstream and downstream sides of the flow with respect to the change in flow rate, and (b)
) represents the change in the output voltage of the hot-wire flow rate sensor without the shielding member 3 and the output voltage of the upstream hot-wire type flow rate sensor according to the present invention with respect to changes in flow velocity (wind speed). In this measurement, the shielding member 3 has a plate-like configuration as shown in the figure.

第4図に示すように、流れの下流側に位置する検出用発
熱体に対応する熱線式流速センサのセンサ駆動回路の出
力電圧は上流側の熱線式流速センサの出力電圧よりも小
さく、従ってこの出力電圧を比較器8により比較するこ
とにより、どちらの熱線式流速センサの検出用発熱体2
a、 2bが上流側にあるか、そしてこれにより流体の
流れの方向を検出することができる。尚、第4図(a)
に示す実施例に於いては、0.6rd/h程度のガスの
流量まで流れの方向を検出できることがわかる。
As shown in Fig. 4, the output voltage of the sensor drive circuit of the hot-wire type flow velocity sensor corresponding to the detection heating element located on the downstream side of the flow is smaller than the output voltage of the hot-wire type flow rate sensor on the upstream side. By comparing the output voltages with the comparator 8, it is possible to determine which heating element 2 for detection of the hot wire type flow velocity sensor.
a, 2b on the upstream side and thereby the direction of fluid flow can be detected. Furthermore, Fig. 4(a)
It can be seen that in the embodiment shown in , the direction of flow can be detected up to a gas flow rate of about 0.6rd/h.

このように、熱線式流速センサのセンサ駆動回路6a、
 6bの出力電圧を比較器8により比較することにより
、例えば第3図の矢印で示すようにガスが流れている場
合には、センサ駆動回路6bの出力電圧の方が他よりも
高く、従って比較器8は検出用発熱体2b側が上流側で
ある信号を出力すると共に、この比較器8の出力により
切替スイッチ9は、上流側の検出用発熱体2bに対応す
るセンサ駆動回路6b側を選択して、その出力電圧が出
力されるように切替動作する。
In this way, the sensor drive circuit 6a of the hot wire flow rate sensor,
By comparing the output voltages of sensor drive circuit 6b with comparator 8, it is found that, for example, when gas is flowing as shown by the arrow in FIG. 3, the output voltage of sensor drive circuit 6b is higher than the others; The device 8 outputs a signal indicating that the detection heating element 2b side is the upstream side, and the output of the comparator 8 causes the changeover switch 9 to select the sensor drive circuit 6b side corresponding to the detection heating element 2b on the upstream side. Then, the switching operation is performed so that the output voltage is output.

第4図(b)に示すように上流側の検出用発熱体2bに
対応する熱線式流速センサの出力電圧は、遮蔽部材3が
ない場合の出力電圧よりも低下するのであるが、流速と
出力電圧の対応関係の関数系は変化しない。従ってこの
流速と出力電圧の対応関係を予め記憶しておけば、任意
の出力電圧に対して、その流速または流量を正確に測定
することができる。
As shown in FIG. 4(b), the output voltage of the hot-wire flow velocity sensor corresponding to the upstream detection heating element 2b is lower than the output voltage when there is no shielding member 3; The functional system of voltage correspondences does not change. Therefore, if the correspondence between the flow velocity and the output voltage is stored in advance, the flow velocity or flow rate can be accurately measured for any output voltage.

前述した通り、センサ駆動回路6a、 6bの出力電圧
は流速の1/4乗の関数となるので、これを直線化する
必要があるが、この直線化はアナログ的やデジタル的な
手段により適宜行うことができる。
As mentioned above, since the output voltage of the sensor drive circuits 6a and 6b is a function of the 1/4th power of the flow velocity, it is necessary to linearize this, but this linearization can be performed as appropriate by analog or digital means. be able to.

例えば、実施例の場合には、センサ駆動回路6a。For example, in the case of the embodiment, the sensor drive circuit 6a.

6bの出力電圧を二乗器10によりアナログ的に大まか
に直線補正して、流速の1/2乗の関数のアナログ出力
信号とした後、その出力信号を処理装置11に於いて、
変換テーブル等によりデジタル的に補正を行って表示器
等(図示省略)に出力する構成としている。この実施例
の場合には、回路の複雑化と調整が必要であるというア
ナログ的補正の問題点と、流速の大きい領域、即ち出力
電圧の高い領域に於ける分解能が悪くなるというデジタ
ル的補正の問題点を緩和し、両者の特徴を生かすことが
できる。尚、流体供給管12内の流体の、渦等に起因す
る不規則な速度変動による影響は、前記処理装置11に
より所定時間毎に平均流速を算出することにより緩和し
、安定な測定を行うことができる。
After roughly linearly correcting the output voltage of 6b in an analog manner using a squarer 10 to obtain an analog output signal as a function of the 1/2 power of the flow velocity, the output signal is sent to the processing device 11 to
The data is digitally corrected using a conversion table or the like and output to a display or the like (not shown). In the case of this embodiment, there are two problems with analog correction: the circuit is complicated and adjustment is required, and digital correction has poor resolution in areas where the flow velocity is large, that is, in areas where the output voltage is high. It is possible to alleviate the problems and take advantage of the characteristics of both. Incidentally, the influence of irregular velocity fluctuations of the fluid in the fluid supply pipe 12 due to vortices, etc. can be alleviated by calculating the average flow velocity at predetermined time intervals by the processing device 11, and stable measurements can be performed. I can do it.

(発明の効果) 本発明は以上の通り、夫々熱線式流速センサの構成要素
を成す一対の検出用発熱体を、測定対象の流体供給管の
軸方向に所定距離隔てて設置すると共にそれらの間に遮
蔽部材を設置し、これらの一対の検出用発熱体に対応す
る熱線式流速センサからの信号により測定を行うので、
流体の流速、そして流量と共に、流体の流れの方向を検
出することができるという効果がある。また、本発明で
はセンサ本体を小型に構成することができ、そしてこれ
を流体供給管内に設置すれば良いので、この設置は流体
供給管に形成した穿孔穴から容易に行うことかでき、従
って都市ガス供給管等に於ける前述したガス等の流体の
流速または流量や流れの方向の測定を活管の状態で行う
ことができるという効果がある。
(Effects of the Invention) As described above, the present invention provides a pair of detection heating elements, each of which constitutes a component of a hot-wire flow velocity sensor, installed at a predetermined distance in the axial direction of a fluid supply pipe to be measured, and between them. A shielding member is installed at the
This has the advantage that the direction of the fluid flow can be detected as well as the flow rate and flow rate of the fluid. Furthermore, according to the present invention, the sensor main body can be constructed in a small size, and it can be installed inside the fluid supply pipe, so this installation can be easily done through a punched hole formed in the fluid supply pipe. There is an advantage that the flow velocity, flow rate, and flow direction of the fluid such as the gas mentioned above in the gas supply pipe or the like can be measured in the state of the live pipe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に適用するセンサ本体Aの構成の一例を
表した説明的斜視図、第2図は熱線式流速センサの構成
例を表した回路図、第3図は本発明の測定装置の全体構
成の一例を表した系統説明図、第3図(a)、(b)は
、流体として都市ガス(13A)を管径50φの供給管
に流した場合に於いて、流速を測定した結果を表したも
ので、(a)は流量の変化に対しての、流れの上流側及
び下流側の熱線式流速センサの出力電圧の変化を表し、
また(b)は流量の変化に対しての、遮蔽部材がない場
合の熱線式流速センサの出力電圧と、本発明による上流
側の熱線式流速センサの出力電圧の変化を表した説明図
である。 符号t・・・センサ器体、2a、 2b・・・検出用発
熱体、3・・・遮蔽部材、4a、 4b・・・温度補償
用抵抗体、5a。 5b・・・抵抗体、6a、 6b・・・センサ駆動回路
、?a、 7b・・増幅器、8・・・比較器、9・・・
切替スイッチ、10・・・二乗器、11・・・処理装置
、12・・・流体供給管、13・・・穿孔穴、14・・
・保護キャップ、15・・・側壁、16・・・頂壁、A
・・・センサ本体、B・・・検出回路。 第1図 第2図 手続補正書く方式) 1、事件の表示 平成2年特許願第136138号 2、発明の名称 流体の流速及び流れ方向測定方法及び測定装置3、補正
をする者 事件との関係  特許出願人 住所 東京都港区海岸−丁目5番20号名称東京瓦斯株
式会社 代表者 安 西 邦 夫 4、代理人 〒101  置 (294) 7341〜
2平成2年8月28日 7、補正の内容 明細書18頁第13行目の「第3図(a)、(b)」と
いう記載を、「第4図(a)、(b)という記載に補正
します。 」
Fig. 1 is an explanatory perspective view showing an example of the configuration of a sensor main body A applied to the present invention, Fig. 2 is a circuit diagram showing an example of the configuration of a hot wire flow rate sensor, and Fig. 3 is a measuring device of the present invention. Figure 3 (a) and (b) are system explanatory diagrams showing an example of the overall configuration of the system, and the flow velocity was measured when city gas (13A) was flowed as a fluid through a supply pipe with a pipe diameter of 50φ. The results are shown, and (a) shows the change in output voltage of the hot wire flow velocity sensor on the upstream and downstream sides of the flow in response to the change in flow rate.
In addition, (b) is an explanatory diagram showing changes in the output voltage of the hot wire type flow rate sensor in the case where there is no shielding member and the output voltage of the upstream side hot wire type flow rate sensor according to the present invention with respect to changes in flow rate. . Symbol t...sensor body, 2a, 2b...heating element for detection, 3...shielding member, 4a, 4b...resistance element for temperature compensation, 5a. 5b...Resistor, 6a, 6b...Sensor drive circuit, ? a, 7b...Amplifier, 8...Comparator, 9...
Changeover switch, 10...Squaring device, 11...Processing device, 12...Fluid supply pipe, 13...Drilling hole, 14...
・Protective cap, 15...Side wall, 16...Top wall, A
...sensor body, B...detection circuit. Figure 1 Figure 2 Procedure for writing amendments) 1. Indication of the case Patent Application No. 136138 of 1990 2. Name of the invention Method and device for measuring fluid flow velocity and flow direction 3. Person making the amendment Relationship with the case Patent Applicant Address: 5-20 Kaigan-chome, Minato-ku, Tokyo Name: Tokyo Gas Co., Ltd. Representative: Kunio Anzai 4, Agent Address: 101 (294) 7341~
2 On August 28, 1990, 7, the statement "Fig. 3 (a), (b)" on page 18, line 13 of the specification of contents of the amendment was changed to "Fig. 4 (a), (b)". I will correct the description.”

Claims (9)

【特許請求の範囲】[Claims] (1)夫々熱線式流速センサの構成要素を成す一対の検
出用発熱体を、測定対象の流体供給管の軸方向に所定距
離隔てて設置すると共にそれらの間に遮蔽部材を設置し
、これらの一対の検出用発熱体に対応する熱線式流速セ
ンサの出力信号を比較して流体の流れ方向を検出すると
共に、上流側の検出用発熱体に対応する熱線式流速セン
サの出力信号により流体の流速を測定することを特徴と
する流体の流速及び流れ方向測定方法
(1) A pair of detection heating elements, each forming a component of a hot wire flow velocity sensor, are installed a predetermined distance apart in the axial direction of the fluid supply pipe to be measured, and a shielding member is installed between them. The flow direction of the fluid is detected by comparing the output signals of the hot wire type flow velocity sensor corresponding to a pair of detection heating elements, and the fluid flow rate is detected by the output signal of the hot wire type flow velocity sensor corresponding to the upstream detection heating element. A method for measuring the flow velocity and flow direction of a fluid, characterized by measuring
(2)請求項1の熱線式流速センサは、センサ器体の一
端から所定距離隔てた位置に一対の検出用発熱体を間隔
をおいて設置し、これらの間に遮蔽部材を設置すると共
に、前記検出用発熱体よりも前記センサ器体の一端寄り
に温度補償用抵抗体を設置し、夫々の検出用発熱体と温
度補償用抵抗体をブリッジに組むと共に、夫々のブリッ
ジ回路の不平衡を零とするようにブリッジ電圧を調節す
る一対のセンサ駆動回路を設けて構成し、該センサ駆動
回路によりブリッジ電圧を調節して、前記検出用発熱体
の温度を一定に保持し、この時にブリッジ回路に流れる
電流に対応するセンサ駆動回路の出力信号から、流体の
流速を導出する構成としたことを特徴とする流体の流速
及び流れ方向測定方法
(2) The hot wire flow velocity sensor according to claim 1 includes a pair of detection heating elements installed at a predetermined distance apart from one end of the sensor body, a shielding member installed between them, and A temperature compensation resistor is installed closer to one end of the sensor body than the detection heating element, and each detection heating element and temperature compensation resistor are assembled into a bridge, and the unbalance of each bridge circuit is corrected. A pair of sensor drive circuits are provided to adjust the bridge voltage so that the bridge voltage is zero, and the bridge voltage is adjusted by the sensor drive circuit to maintain the temperature of the detection heating element constant, and at this time, the bridge circuit A fluid flow velocity and flow direction measuring method characterized in that the fluid flow velocity is derived from the output signal of a sensor drive circuit corresponding to the current flowing in the fluid.
(3)センサ器体の一端から所定距離隔てた位置に一対
の検出用発熱体を間隔をおいて設置し、これらの間に遮
蔽部材を設置すると共に、前記検出用発熱体よりも前記
センサ器体の一端寄りに温度補償用抵抗体を設置し、夫
々の検出用発熱体と温度補償用抵抗体をブリッジに組む
と共に、夫々のブリッジの不平衡を零とするようにブリ
ッジ電圧を調節する一対のセンサ駆動回路を設けて構成
した熱線式流速センサを設けると共に、前記センサ駆動
回路の出力信号を比較する比較器と、該比較器の出力信
号により切替動作して、出力すべき前記センサ駆動回路
を選択する切替スイッチとから成る検出回路を設け、前
記比較器により流れ方向に対応する信号を出力すると共
に、切替スイッチを介して流速に対応する信号を出力す
る構成としたことを特徴とする流体の流速及び流れ方向
測定装置
(3) A pair of detection heating elements are installed at a predetermined distance apart from one end of the sensor body, and a shielding member is installed between them, and the sensor A temperature compensation resistor is installed near one end of the body, each detection heating element and temperature compensation resistor are assembled into a bridge, and the bridge voltage is adjusted so that the unbalance of each bridge is zero. a hot-wire type flow velocity sensor configured by providing a sensor drive circuit, a comparator for comparing output signals of the sensor drive circuit, and the sensor drive circuit to switch and output according to the output signal of the comparator. A detection circuit comprising a changeover switch for selecting a flow rate, and a detection circuit configured to output a signal corresponding to the flow direction by the comparator and a signal corresponding to the flow velocity via the changeover switch. flow velocity and flow direction measuring device
(4)請求項1または2の検出用発熱体は自己加熱型半
導体サーミスタで構成したことを特徴とする流体の流速
及び流れ方向測定方法
(4) A method for measuring the flow velocity and flow direction of a fluid, characterized in that the heating element for detection according to claim 1 or 2 is constituted by a self-heating semiconductor thermistor.
(5)請求項1または2の遮蔽部材は板状に構成したこ
とを特徴とする流体の流速及び流れ方向測定方法
(5) A method for measuring the flow velocity and flow direction of a fluid, characterized in that the shielding member according to claim 1 or 2 is configured in a plate shape.
(6)請求項1または2の遮蔽部材は棒状に構成したこ
とを特徴とする流体の流速及び流れ方向測定方法
(6) A method for measuring the flow velocity and flow direction of a fluid, characterized in that the shielding member according to claim 1 or 2 is configured in a rod shape.
(7)請求項3の検出用発熱体は自己加熱型半導体サー
ミスタで構成したことを特徴とする流体の流速及び流れ
方向測定装置
(7) A fluid flow velocity and flow direction measuring device characterized in that the heating element for detection according to claim 3 is constituted by a self-heating semiconductor thermistor.
(8)請求項1または2の遮蔽部材は板状に構成したこ
とを特徴とする流体の流速及び流れ方向測定装置
(8) A fluid flow velocity and flow direction measuring device characterized in that the shielding member according to claim 1 or 2 is configured in a plate shape.
(9)請求項1または2の遮蔽部材は棒状に構成したこ
とを特徴とする流体の流速及び流れ方向測定装置
(9) A fluid flow velocity and flow direction measuring device characterized in that the shielding member according to claim 1 or 2 is configured in a rod shape.
JP2136138A 1990-05-25 1990-05-25 Method and apparatus for measuring flow velocity and flow direction of fluid Expired - Fee Related JP2788329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2136138A JP2788329B2 (en) 1990-05-25 1990-05-25 Method and apparatus for measuring flow velocity and flow direction of fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2136138A JP2788329B2 (en) 1990-05-25 1990-05-25 Method and apparatus for measuring flow velocity and flow direction of fluid

Publications (2)

Publication Number Publication Date
JPH0429017A true JPH0429017A (en) 1992-01-31
JP2788329B2 JP2788329B2 (en) 1998-08-20

Family

ID=15168200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2136138A Expired - Fee Related JP2788329B2 (en) 1990-05-25 1990-05-25 Method and apparatus for measuring flow velocity and flow direction of fluid

Country Status (1)

Country Link
JP (1) JP2788329B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349340A (en) * 2003-05-20 2004-12-09 Ebara Corp Substrate holding device and polish equipment
JP2011107057A (en) * 2009-11-20 2011-06-02 Fujitsu Ltd Wind direction/wind velocity sensor
CN113646612A (en) * 2018-10-15 2021-11-12 Tsi有限公司 Device, system and method for monitoring a flow direction and method for producing a flow direction sensor
WO2022163485A1 (en) * 2021-01-27 2022-08-04 Koa株式会社 Sensor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349340A (en) * 2003-05-20 2004-12-09 Ebara Corp Substrate holding device and polish equipment
JP4718107B2 (en) * 2003-05-20 2011-07-06 株式会社荏原製作所 Substrate holding device and polishing device
JP2011107057A (en) * 2009-11-20 2011-06-02 Fujitsu Ltd Wind direction/wind velocity sensor
CN113646612A (en) * 2018-10-15 2021-11-12 Tsi有限公司 Device, system and method for monitoring a flow direction and method for producing a flow direction sensor
WO2022163485A1 (en) * 2021-01-27 2022-08-04 Koa株式会社 Sensor device

Also Published As

Publication number Publication date
JP2788329B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
US5461913A (en) Differential current thermal mass flow transducer
KR0184673B1 (en) Thermal type flowmeter
US4056975A (en) Mass flow sensor system
US4563098A (en) Gradient compensated temperature probe and gradient compensation method
US4475387A (en) High temperature mass flowmeter
JPH0429017A (en) Method and instrument for measuring flow velocity and flow direction of fluid
Sarma et al. Automated constant voltage anemometer for measurements with fluid temperature drifts
JPH11190647A (en) Flowmeter utilizing thermal flow sensor and gas meter utilizing it
JP2964186B2 (en) Thermal flow meter
JP3719802B2 (en) Multipoint flow meter
JP2016217812A (en) Thermal mass flow controller and inclination error improvement method thereof
JP2879256B2 (en) Thermal flow meter
GB2142437A (en) Measuring the rate of gas flow in a duct
JP2965464B2 (en) Flowmeter
JP2929356B2 (en) Flowmeter
Kanemasu et al. A note on heat transport
US20230236051A1 (en) Thermal flow meter, flow rate control device, thermal flow rate measurement method, and program for thermal flow meter
KR102190440B1 (en) Thermal mass flowmeter
KR970009161B1 (en) Current meter
JPS63235825A (en) Flowmeter
JP5062720B2 (en) Flow detection device
KR20020080137A (en) Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it
JPH1123335A (en) Detecting apparatus for flow rate
JPH0557624U (en) Flowmeter
KR0163621B1 (en) Temperature and speed measuring method in moving field using one thermal line sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees