JP2011107057A - Wind direction/wind velocity sensor - Google Patents

Wind direction/wind velocity sensor Download PDF

Info

Publication number
JP2011107057A
JP2011107057A JP2009264581A JP2009264581A JP2011107057A JP 2011107057 A JP2011107057 A JP 2011107057A JP 2009264581 A JP2009264581 A JP 2009264581A JP 2009264581 A JP2009264581 A JP 2009264581A JP 2011107057 A JP2011107057 A JP 2011107057A
Authority
JP
Japan
Prior art keywords
wind
wind speed
thermistors
turbulent flow
thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009264581A
Other languages
Japanese (ja)
Other versions
JP5568961B2 (en
Inventor
Yukihiro Yooku
幸宏 陽奥
Shinichi Wakana
伸一 若菜
Yasuhiro Endo
康浩 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009264581A priority Critical patent/JP5568961B2/en
Publication of JP2011107057A publication Critical patent/JP2011107057A/en
Application granted granted Critical
Publication of JP5568961B2 publication Critical patent/JP5568961B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind direction/wind velocity sensor of a tubular structure using thermistors suitable for space-saving, such as of a server rack, relating to the wind direction/wind velocity sensor for use in environments that control air conditioners. <P>SOLUTION: The wind direction/wind velocity sensor that uses the thermistors includes a turbulent flow generating structure which is provided in a tube and causes turbulent flow in the blowing wind, and two thermistors provided in front of and behind in the axial direction of the tube across the turbulent flow generating structure; and the resistance values of the two thermistors are compared, and the wind direction is determined to identify a side where the resistance value becomes large as the upstream. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、風向き及び風速センサ技術に関する。   The present invention relates to wind direction and wind speed sensor technology.

空調機を制御する環境で用いる風向・風速センサにおいて、空調装置毎、あるいは、サーバラック毎に風向・風速センサを配置するような大規模センシングシステムでは、個々のセンサは、小型化、低コスト化、および省電力化が必須となる。   In a large-scale sensing system in which a wind direction / wind speed sensor used in an environment for controlling an air conditioner is arranged for each air conditioner or server rack, each sensor is reduced in size and cost. And power saving is essential.

一般に風向と風速を計測できるセンサは、風杯型(あるいは風車型)の風速センサと風見鶏型の風向センサを組み合わせた方式がほとんどで、上記方式では小型化、低コスト化に限界がある。   In general, most of the sensors that can measure the wind direction and the wind speed are a combination of a wind cup type (or windmill type) wind speed sensor and a windcock type wind direction sensor, and the above methods have limitations in downsizing and cost reduction.

また、別の方式として、超音波を使用した風向・風速センサもあるが、この方式の場合、小型化は可能であるがコストが非常に高価となる。   As another method, there is a wind direction / velocity sensor using ultrasonic waves. In this method, the size can be reduced, but the cost is very high.

上述したセンサは、小規模(少数)の使用、あるいは、十分にスペースのある広い環境での使用においては大きな問題とならないが、今後発展が予想される大量のセンサを使用する大規模センシングシステムや、サーバラックなど、限られた空間内の詳細な気流を計測するセンシングシステムには不向きである。   The above-mentioned sensors are not a big problem in small-scale (small number) use or in a large environment with sufficient space, but large-scale sensing systems that use a large number of sensors that are expected to develop in the future. It is not suitable for a sensing system that measures detailed airflow in a limited space such as a server rack.

これに対し、サーミスタ(温度依存型抵抗素子)による風速センサと温度センサを一つの管の中に直線的に設置し、風向・風速を計測する方法が提案されている。   On the other hand, a method of measuring a wind direction and a wind speed by linearly installing a wind speed sensor and a temperature sensor by a thermistor (temperature dependent resistance element) in one pipe has been proposed.

特開2003−75461号公報JP 2003-75461 A

しかしながら、図11に示すように、風速センサと温度センサをすべてサーミスタで構成した場合、最低でも3つのサーミスタを必要とするためコスト高となる。また、温度センサ(図中、7a、7b)において、熱せられた風の流れを検知するには、サーミスタによる大きな発熱量を必要とし、電力が増大する。さらに、サーミスタの上流側に配置された温度センサがサーミスタに流れてくる気流を乱すため、風速の計測精度が低下する、などの問題を抱える。   However, as shown in FIG. 11, when all the wind speed sensors and temperature sensors are thermistors, at least three thermistors are required, resulting in high costs. Moreover, in order to detect the flow of the heated wind in the temperature sensor (7a, 7b in the figure), a large amount of heat generated by the thermistor is required, and the power increases. Furthermore, since the temperature sensor arranged on the upstream side of the thermistor disturbs the airflow flowing to the thermistor, there is a problem that the measurement accuracy of the wind speed is lowered.

発明の一つの態様は、管内に配置し流入する風に乱流を生じさせる乱流発生構造体と、前記菅内においてその軸方向に前記乱流発生構造体を挟むように配置した複数のサーミスタと、前記複数のサーミスタのそれぞれの抵抗値を測定する測定回路と、前記複数のサーミスタのそれぞれの抵抗値を比較し、前記乱流発生構造体を挟んで、当該抵抗値が大きくなるサーミスタ側を上流側として風向きを判定する風向判定手段とを有することを特徴とする風向・風速センサに関する。   One aspect of the invention includes a turbulent flow generating structure that is arranged in a pipe and generates turbulent flow in an incoming wind, and a plurality of thermistors that are arranged so as to sandwich the turbulent flow generating structure in the axial direction in the cage. The resistance value of each of the plurality of thermistors is compared with the measurement circuit that measures the resistance values of the plurality of thermistors, and the thermistor side where the resistance value increases is sandwiched upstream of the turbulent flow generation structure. The present invention relates to a wind direction / velocity sensor having a wind direction determination unit for determining a wind direction as a side.

また、発明の別な態様は、互いに交わる方向に延在する複数の配管を連結した連結管の結合部に設置された乱流発生構造体と、前記乱流発生構造体を挟むように各方向の配管内に配置した複数のサーミスタと、前記各方向の配管内の複数のサーミスタのそれぞれの抵抗値を測定する測定回路と、前記各方向の配管内において、前記乱流発生構造体を挟んで、前記抵抗値が大きい方のサーミスタ側を上流側として各配管の風速を求め、該各配管の風速を基にベクトル計算することによって前記連結管の風向と風速を算出する手段を有することを特徴とする風向・風速センサに関する。   In another aspect of the invention, a turbulent flow generating structure installed at a connecting portion of a connecting pipe connecting a plurality of pipes extending in directions intersecting each other, and each direction so as to sandwich the turbulent flow generating structure A plurality of thermistors arranged in the pipe, a measuring circuit for measuring the resistance values of the thermistors in the pipes in the respective directions, and the turbulent flow generation structure in the pipes in the respective directions. And a means for calculating a wind speed and a wind speed of the connecting pipe by calculating a wind speed of each pipe with the thermistor side having a larger resistance value as an upstream side and calculating a vector based on the wind speed of each pipe. It relates to the wind direction and wind speed sensor.

上記本発明の一態様によれば、1つの軸に対し、最低2つのサーミスタを使用するだけで、風向きを計測することができ、小型化が可能となる。   According to the above aspect of the present invention, the wind direction can be measured and the size can be reduced only by using at least two thermistors for one axis.

本発明の実施の形態になる風向・風速センサの一基本構成を示す図である。It is a figure which shows one basic composition of the wind direction / wind speed sensor which becomes embodiment of this invention. 本発明の実施の形態になる風向・風速センサによる計測の仕組みを説明する図である。It is a figure explaining the mechanism of the measurement by the wind direction and the wind speed sensor which becomes embodiment of this invention. 本発明の実施の形態になる乱流発生構造体の構造例を示す図である。It is a figure which shows the structural example of the turbulent flow generation structure which becomes embodiment of this invention. 本発明の実施の形態になる風速の変換テーブルとして適用するサーミスタの計測電圧と風速の関係を表す図である。It is a figure showing the relationship between the measurement voltage of a thermistor applied as a conversion table of the wind speed which becomes embodiment of this invention, and a wind speed. 本発明の実施の形態になる風向・風速センサの計測フローを示す図である。It is a figure which shows the measurement flow of the wind direction and the wind speed sensor which becomes embodiment of this invention. 本発明の実施の形態になる複数のサーミスタによる風向・風速センサの構成例を示す図である。It is a figure which shows the structural example of the wind direction and the wind speed sensor by the some thermistor which becomes embodiment of this invention. 本発明の実施の形態になる十字菅の中央に乱流発生構造体を配置させた風向・風速センサの構造例を示す図である。It is a figure which shows the structural example of the wind direction / wind speed sensor which has arrange | positioned the turbulent flow generation | occurrence | production structure in the center of the crosshairs which become embodiment of this invention. 本発明の実施の形態になる十字管に配置した風向・風速センサによる計測の仕組みを説明する図である。It is a figure explaining the mechanism of the measurement by the wind direction and the wind speed sensor arrange | positioned at the cross pipe which becomes embodiment of this invention. 本発明の実施の形態になる十字管に配置した球状乱流発生構造体の例を示す図である。It is a figure which shows the example of the spherical turbulent flow generation | occurrence | production structure arrange | positioned at the cross pipe which becomes embodiment of this invention. 本発明の実施の形態になる十字管に配置した風向・風速センサによる計測フローを示す図である。It is a figure which shows the measurement flow by the wind direction and the wind speed sensor arrange | positioned at the cross pipe which becomes embodiment of this invention. 従来の風速センサの構造例を示す図である。It is a figure which shows the structural example of the conventional wind speed sensor.

以下、本発明の風向・風速センサの実施形態につき、図面に基づいて説明する。以下では、2つの実施例を取り上げ、実施例1として、一軸の円筒状管内に2つのサーミスタを設けた場合のセンサ例を、また、実施例2として、二軸の直交する十字管内に4つのサーミスタを設けたセンサ例を説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a wind direction / wind speed sensor of the present invention will be described with reference to the drawings. In the following, two examples are taken, and as Example 1, an example of a sensor when two thermistors are provided in a uniaxial cylindrical tube, and as Example 2, four sensors are arranged in a biaxial orthogonal cross tube. An example of a sensor provided with a thermistor will be described.

(実施例1)
以下の実施例1では、一軸の円筒状管内に2つのサーミスタを配置した風向・風速センサの例を説明する。
Example 1
In Example 1 below, an example of a wind direction / wind speed sensor in which two thermistors are arranged in a uniaxial cylindrical tube will be described.

図1は、本発明の実施の形態になる風向・風速センサの一基本構成を示す。風向・風速センサは、一軸の円筒状の管4内の中央に設置され、管4に取り込んだ気流を乱流とする乱流発生構造体3、および該乱流発生構造体3を挟んで前後に配置された2つサーミスタ(1、2)を有する。   FIG. 1 shows a basic configuration of a wind direction / velocity sensor according to an embodiment of the present invention. The wind direction / velocity sensor is installed in the center of the uniaxial cylindrical tube 4, and the turbulent flow generating structure 3 that makes the airflow taken in the tube 4 turbulent, and the front and rear of the turbulent flow generating structure 3 Have two thermistors (1, 2).

さらに、電流を投入し自己加熱状態としたサーミスタが気流に晒されたときに変化する抵抗値を電圧(V1、V2)として測定する測定回路5、2つのサーミスタから検出された電圧V1とV2を比較(すなわち、サーミスタ抵抗値の変化量を比較)して風向を判定する風向判定手段6、および風向判定手段6によって上流側と判定されたサーミスタにおいて、電圧を風速に変換する変換テーブル100に基づいて風速を算出する風速算出手段7を有する。   Furthermore, the resistance V which changes when the thermistor which supplied the electric current and was made into the self-heating state is exposed to an airflow is measured as voltage (V1, V2), and the voltages V1 and V2 detected from the two thermistors are measured. Based on the conversion table 100 that converts the voltage into the wind speed in the wind direction determining means 6 that determines the wind direction by comparing (that is, comparing the amount of change in the thermistor resistance value) and the thermistor determined to be upstream by the wind direction determining means 6. Wind speed calculating means 7 for calculating the wind speed.

本発明の風向・風速センサは、抵抗値の変化量の大きい方のサーミスタの風速をセンサの風速計測値とすることを特徴とする。   The wind direction / wind speed sensor according to the present invention is characterized in that the wind speed of the thermistor having the larger change amount of the resistance value is used as a wind speed measurement value of the sensor.

測定回路5については、とくに制限は無く、例えば、サーミスタに数mA程度の電流を流し、2つのサーミスタの抵抗値の変化を電圧として計測する回路を用意し、必要に応じてオペアンプを用いたゲイン調整を行い、ADC(Analog-Digital Converter)回路などを用いてデジタル信号として取り出すことが可能である。   The measurement circuit 5 is not particularly limited. For example, a circuit that measures a change in resistance value of two thermistors as a voltage by passing a current of about several mA through the thermistor is prepared. It is possible to perform adjustment and take out as a digital signal using an ADC (Analog-Digital Converter) circuit or the like.

上述したように、本発明の風向・風速センサでは、1つの軸管に対し、最低2つのサーミスタを使用するだけで、風向と風速を計測することができ、従来方式に比べ、小型化、低コスト化が可能となる。   As described above, the wind direction / wind speed sensor of the present invention can measure the wind direction and the wind speed by using at least two thermistors for one axial tube, and is smaller and lower in size than the conventional method. Cost can be reduced.

また、サーミスタの熱を他のセンサに伝える必要がないため、サーミスタ自身が検知できる程度の熱量を発生させるだけでよく、消費電力が抑制できる。   Further, since it is not necessary to transmit the heat of the thermistor to other sensors, it is only necessary to generate an amount of heat that can be detected by the thermistor itself, and power consumption can be suppressed.

さらに、風速計測に使う上流側サーミスタの上流には気流を妨げるものがないため、高精度に風速を計測できる。   Furthermore, since there is nothing to block the airflow upstream of the upstream thermistor used for wind speed measurement, the wind speed can be measured with high accuracy.

図2は、本発明の実施の形態になる風向・風速センサによる計測の仕組みを説明する図である。   FIG. 2 is a diagram for explaining a measurement mechanism using a wind direction / velocity sensor according to the embodiment of the present invention.

サーミスタの温度抵抗特性としては、例えば、以下の式1(Steinhart-Hart式)に示すような関係があり、上記の加熱状態において、管4内に風が流入した場合、流入側のサーミスタは整流の風により冷却されるため、放熱量が大きく、サーミスタ抵抗値が大きく増加する。逆に、流出側のサーミスタは乱流発生構造体により乱された乱流の風により冷却されるため、放熱量が小さく、サーミスタ抵抗値の増加量が小さくなる。   As the temperature resistance characteristics of the thermistor, for example, there is a relationship as shown in the following equation 1 (Steinhart-Hart equation). When the wind flows into the tube 4 in the above heating state, the inflow thermistor rectifies Therefore, the amount of heat radiation is large and the thermistor resistance value is greatly increased. On the contrary, since the thermistor on the outflow side is cooled by the turbulent wind disturbed by the turbulent flow generating structure, the heat dissipation amount is small and the increase in the thermistor resistance value is small.

図2のように、管4内に乱流発生構造体3を挟んで配置された2つの風速計測用サーミスタ(自己加熱)を備えた風向・風速センサの右側から風が流入した場合に、流入側のサーミスタ2の抵抗値は、整流された風によって冷却され増大し、流出側のサーミスタ1の抵抗値は、乱流発生構造体3を通過した乱流の風で増加量が小さくなる。   As shown in FIG. 2, when the wind flows from the right side of the wind direction / wind speed sensor provided with two thermistors for wind speed measurement (self-heating) arranged with the turbulent flow generation structure 3 sandwiched in the pipe 4, The resistance value of the thermistor 2 on the side is cooled and increased by the rectified wind, and the amount of increase in the resistance value of the thermistor 1 on the outflow side is reduced by the turbulent wind passing through the turbulent flow generation structure 3.

上記2つのサーミスタ(1、2)の抵抗値(R1、R2)を電圧(V1、V2)に変換した上で比較し、抵抗値(電圧)の大きいサーミスタ側を上流として風向を判定する。   The resistance values (R1, R2) of the two thermistors (1, 2) are converted into voltages (V1, V2) and compared, and the wind direction is determined with the thermistor side having a large resistance value (voltage) as the upstream.

また、上流側のサーミスタの抵抗値(電圧)から風速を算出する。上流側のサーミスタを使用することによって、風が乱されることなく風速を計測することが可能となる。   Also, the wind speed is calculated from the resistance value (voltage) of the upstream thermistor. By using the upstream thermistor, the wind speed can be measured without being disturbed by the wind.

なお、風向・風速センサの2つのサーミスタは、図に示すように、測定対象気流に対して垂直に配置することが好ましい。   In addition, it is preferable to arrange | position two thermistors of a wind direction and a wind speed sensor perpendicularly | vertically with respect to measurement object airflow, as shown in a figure.

以上述べたように、本風向・風速センサは、管の一方から風が流入した場合、風による放熱でサーミスタ抵抗値が増大するが、流入側のサーミスタは整流の風による冷却で抵抗値が大きく増大するのに対し、流出側のサーミスタは乱流の風となり風速が低下するため冷却作用が弱まり抵抗値の増大量が小さくなる仕組みを利用するものである。   As described above, when the wind flows from one side of the pipe, the thermistor resistance value increases due to heat dissipation by the wind, but the resistance value of the thermistor on the inflow side increases due to cooling by the rectified wind. On the other hand, the thermistor on the outflow side becomes a turbulent wind, and the wind speed is lowered, so that the cooling action is weakened and the mechanism of increasing the resistance value is reduced.

図3は、本発明の実施の形態になる乱流発生構造体の構造例を示す。図には、乱流を発生させる乱流発生構造体3の代表例として好適な構造として、メッシュ構造、パンチング(貫通孔)構造、およびグリル(スリット)構造を示している。しかし、本発明はこれに限定されるものではない。   FIG. 3 shows a structural example of a turbulent flow generation structure according to an embodiment of the present invention. In the figure, a mesh structure, a punching (through hole) structure, and a grille (slit) structure are shown as typical structures of the turbulent flow generating structure 3 that generates turbulent flow. However, the present invention is not limited to this.

図4は、本発明の実施の形態になる風速の変換テーブルとして適用するサーミスタの計測電圧と風速の関係を表す図である。   FIG. 4 is a diagram showing the relationship between the measurement voltage of the thermistor applied as the wind speed conversion table and the wind speed according to the embodiment of the present invention.

横軸は、測定回路5で検出されたサーミスタの電圧Vを示し、縦軸は実験的に得られた風速m/sを示す。なお、グラフは、電圧−風速の特性イメージを表したものであり、個々のサーミスタに固有の曲線となる。また、測定回路や部品構成によっても異なった特性となる。   The horizontal axis represents the thermistor voltage V detected by the measurement circuit 5, and the vertical axis represents the experimentally obtained wind speed m / s. The graph represents a voltage-wind speed characteristic image and is a curve unique to each thermistor. In addition, the characteristics vary depending on the measurement circuit and component configuration.

図5は、本発明の実施の形態になる風向・風速センサの計測フローを示す。   FIG. 5 shows a measurement flow of the wind direction / velocity sensor according to the embodiment of the present invention.

まず、ステップS11において、サーミスタ1、2に電流を流し、サーミスタを自己加熱状態とする。つぎに、ステップS12、13において、測定回路5によりサーミスタ1、2抵抗値R1、R2を電圧V1、V2として計測する。   First, in step S11, a current is passed through the thermistors 1 and 2 to bring the thermistor into a self-heating state. Next, in steps S12 and S13, the measurement circuit 5 measures the thermistor 1, 2 resistance values R1, R2 as voltages V1, V2.

そして、ステップS14において、風向判定手段6は、計測された電圧V1とV2を比較し、V1>V2であれば、ステップS15において、風向きをサーミスタ1側が上流にあると判定する。つぎに、ステップS16において、風速算出手段7は、計測電圧V1と予め実験値をもとに作成された電圧−風速の変換テーブルを参照し、風速を算出する。   In step S14, the wind direction determining means 6 compares the measured voltages V1 and V2, and if V1> V2, the wind direction is determined in step S15 that the thermistor 1 side is upstream. Next, in step S16, the wind speed calculation means 7 refers to the voltage-wind speed conversion table created based on the measured voltage V1 and experimental values in advance, and calculates the wind speed.

また、V1=V2であれば、ステップS17において、無風と判定する。さらに、V1<V2であれば、ステップS19において、風向きをサーミスタ2側が上流にあると判定する。つぎに、ステップS20において、風速算出手段7は、計測電圧V2と予め実験値をもとに作成された電圧−風速の変換テーブルを参照し、風速を算出する。   If V1 = V2, it is determined that there is no wind in step S17. Further, if V1 <V2, it is determined in step S19 that the wind direction is upstream of the thermistor 2 side. Next, in step S20, the wind speed calculation means 7 refers to the voltage-wind speed conversion table created based on the measured voltage V2 and experimental values in advance, and calculates the wind speed.

図6は、本発明の実施の形態になる複数のサーミスタによる風向・風速センサの構成例を示す図である。図6は、風向/風速計測用サーミスタは、2つに限らず複数個配置した例を示している。   FIG. 6 is a diagram showing a configuration example of a wind direction / wind speed sensor using a plurality of thermistors according to the embodiment of the present invention. FIG. 6 shows an example in which a plurality of thermistors for wind direction / wind speed measurement are arranged, not limited to two.

サーミスタの抵抗値は、乱流発生構造体3によって区切られた領域ごとにそれぞれのサーミスタ群(1a、1b)、(2a、2b)の平均値として取得する構成としている。本構成によって、より高精度にサーミスタの抵抗値変化の検出が可能となる。   The resistance value of the thermistor is obtained as an average value of each of the thermistor groups (1a, 1b) and (2a, 2b) for each region partitioned by the turbulent flow generation structure 3. With this configuration, it is possible to detect the thermistor resistance value change with higher accuracy.

(実施例2)
以下の実施例2では、二軸の直交する十字管内に4つのサーミスタを配置した風向・風速センサの例を説明する。
(Example 2)
In Example 2 below, an example of a wind direction / wind speed sensor in which four thermistors are arranged in a biaxial orthogonal cross tube will be described.

図7は、本発明の実施の形態になる十字菅の中央に乱流発生構造体を配置させた風向・風速センサの構造例を示す。   FIG. 7 shows a structural example of a wind direction / velocity sensor in which a turbulent flow generating structure is arranged at the center of the crosshairs according to the embodiment of the present invention.

図に示すように、十字管構造の風向・風速センサは、X軸方向の管4とY軸方向の管4’を直交させた十字管の結合部(中央部側)に設置した4つの乱流発生構造体3と、各乱流発生構造体3と対向する十字管の各位置に配置させた4つのサーミスタ(11、12、21、22)を備える。   As shown in the drawing, the wind direction / wind speed sensor of the cross tube structure has four disturbances installed at the cross tube connecting portion (center side) in which the tube 4 'in the X-axis direction and the tube 4' in the Y-axis direction are orthogonal to each other. The flow generating structure 3 and four thermistors (11, 12, 21, 22) arranged at each position of the cross tube facing each turbulent flow generating structure 3 are provided.

また、X軸方向の管4におけるサーミスタ(11、12)およびY軸方向の管4’におけるサーミスタ(21、22)の抵抗変化をそれぞれ検出する測定回路5、5’と、各軸の管のサーミスタで検出される電圧から風向きを判定する風向判定手段6と、風向判定手段6によって上流側と判定された各軸の管のサーミスタにおいて、電圧を風速に変換する変換テーブル100に基づいて風速を算出する風速算出手段7と、を有する。   Also, measurement circuits 5 and 5 ′ for detecting resistance changes of the thermistors (11 and 12) in the tube 4 in the X-axis direction and the thermistors (21 and 22) in the tube 4 ′ in the Y-axis direction, and the tubes of the respective axes In the wind direction determination means 6 for determining the wind direction from the voltage detected by the thermistor, and the thermistor of the tube of each axis determined to be upstream by the wind direction determination means 6, the wind speed is determined based on the conversion table 100 for converting the voltage into the wind speed. Wind speed calculating means 7 for calculating.

上記4つのサーミスタの抵抗比率から風向を判定し、各管において直線状に配置された2つのサーミスタの内、抵抗値の変化量の最も大きいサーミスタ2つの風速から風速計測値を算出することとなる。   The wind direction is determined from the resistance ratio of the above four thermistors, and the wind speed measurement value is calculated from the wind speeds of the two thermistors having the largest resistance value change out of the two thermistors arranged linearly in each pipe. .

図8は、本発明の実施の形態になる十字管に配置した風向・風速センサによる計測の仕組みを説明する図である。   FIG. 8 is a diagram for explaining a measurement mechanism by a wind direction / wind speed sensor arranged in the cross tube according to the embodiment of the present invention.

図では、十字管の中央に乱流発生構造体3が設置され、各軸で上記乱流発生構造体3を挟むように風速計測用のサーミスタ11、12、21、22が配置された十字構造の風向・風速センサにおいて、斜め右上から風が管4、4‘のサーミスタ12、21側から流入する場合を示している。   In the figure, a cross structure in which a turbulent flow generating structure 3 is installed at the center of the cross pipe, and the thermistors 11, 12, 21, and 22 for measuring wind speed are arranged so as to sandwich the turbulent flow generating structure 3 on each axis. In the wind direction / wind speed sensor, the wind flows from the upper right side of the thermistors 12, 21 of the tubes 4, 4 '.

各軸において上記のサーミスタ抵抗値を電圧に変換した上で比較し、抵抗値(電圧)の大きいサーミスタ側を上流として、各軸の風速を算出する。   The above thermistor resistance values are converted into voltages for each axis and compared, and the wind speed of each axis is calculated with the thermistor side having a large resistance value (voltage) as the upstream.

その後、各軸の上流判定とその風速をもとに、最終的な風向、風速を算出する。   Then, the final wind direction and wind speed are calculated based on the upstream determination of each axis and the wind speed.

ここで、サーミスタ1、2の電圧V1、V2の比較により得られた風速をW1、サーミスタ3、4の電圧V3、V4の比較により得られた風速をW2とすると、風向(角):θ、風速:Wは、それぞれ以下の式で算出できる。   Here, when the wind speed obtained by comparing the voltages V1 and V2 of the thermistors 1 and 2 is W1, and the wind speed obtained by comparing the voltages V3 and V4 of the thermistors 3 and 4 is W2, the wind direction (angle): θ, Wind speed: W can be calculated by the following equations.

なお、風向/風速計測用サーミスタは、各軸に2つに限らず複数個ずつ設置して、乱流発生構造体で区切られた領域ごとの平均値を取得してもかまわない。   The wind direction / wind speed measuring thermistors are not limited to two on each axis, and a plurality of thermistors may be installed to obtain an average value for each region partitioned by the turbulent flow generating structure.

以上述べたように、2軸(あるいは3軸)に直交するように連結した管の結合部に乱流発生構造体を設置するとともに、各軸において、乱流発生構造体を挟むように対向する風速計測用サーミスタを配置し、各軸の対向するサーミスタ抵抗値を比較し、各軸で抵抗値の大きいサーミスタの抵抗値から各軸の風速を算出し、ベクトル計算により風向を判定することができる。   As described above, the turbulent flow generating structure is installed at the joint portion of the pipes connected so as to be orthogonal to two axes (or three axes), and the turbulent flow generating structure is opposed to each axis so as to sandwich the turbulent flow generating structure. Thermistors for wind speed measurement are arranged, the resistance values of the thermistors facing each axis are compared, the wind speed of each axis is calculated from the resistance value of the thermistor with a large resistance value on each axis, and the wind direction can be determined by vector calculation .

図9は、本発明の実施の形態になる十字管に配置した球状乱流発生構造体の例を示す。なお、十字管構造の風向・風速センサに適用する乱流発生構造体3については、図3に示したメッシュ構造、パンチング構造、グリル構造の構造体が同様に適用される。   FIG. 9 shows an example of a spherical turbulent flow generation structure arranged on the cross tube according to the embodiment of the present invention. The turbulent flow generating structure 3 applied to the cross-wind structure wind direction / velocity sensor is similarly applied to the mesh structure, punching structure, and grill structure shown in FIG.

また、十字管構造の風向・風速センサでは、乱流発生構造体は、例えば、上記メッシュ構造、パンチング構造、およびグリル構造の構造体を球状に形成したものでも良い。   In the cross direction wind direction / wind speed sensor, the turbulent flow generation structure may be, for example, a spherical structure of the mesh structure, the punching structure, and the grill structure.

図10は、本発明の実施の形態になる十字管に配置した風向・風速センサによる計測フローを示す。   FIG. 10 shows a measurement flow by the wind direction / velocity sensor arranged on the cross tube according to the embodiment of the present invention.

まず、ステップS21において、サーミスタ11、12、21、22に電流を流し、サーミスタを自己加熱状態とする。つぎに、ステップS22〜25において、測定回路5によりサーミスタ11、12、21、22の抵抗値を電圧V1、V2、V3、V4として計測する。   First, in step S21, a current is passed through the thermistors 11, 12, 21, and 22 to bring the thermistor into a self-heating state. Next, in steps S22 to S25, the measurement circuit 5 measures the resistance values of the thermistors 11, 12, 21, and 22 as voltages V1, V2, V3, and V4.

そして、ステップS26において、風向判定手段6は、計測電圧V1とV2を比較し、V1≧V2であれば、風向きをサーミスタ1側が上流にあると判定し、ステップS27において、風速算出手段7は、計測電圧V1と予め実験値をもとに作成された電圧−風速の変換テーブルを参照し、風速W1を算出する。   In step S26, the wind direction determining means 6 compares the measured voltages V1 and V2, and if V1 ≧ V2, the wind direction is determined to be upstream of the thermistor 1, and in step S27, the wind speed calculating means 7 The wind speed W1 is calculated with reference to the voltage-wind speed conversion table prepared based on the measured voltage V1 and the experimental value in advance.

また、V1<V2であれば、風向きをサーミスタ2側が上流にあると判定し、ステップS28において、風速算出手段7は、検出電圧V2と変換テーブルをもとに風速W1を算出する。   If V1 <V2, the wind direction is determined to be upstream of the thermistor 2, and in step S28, the wind speed calculating means 7 calculates the wind speed W1 based on the detected voltage V2 and the conversion table.

一方、ステップS29において、風向判定手段6は、計測電圧V3とV4を比較し、V3≧V4であれば、風向きをサーミスタ3側が上流にあると判定し、ステップS30において、風速算出手段7は、計測電圧V3と予変換テーブルをもとに風速W2を算出する。   On the other hand, in step S29, the wind direction determining means 6 compares the measured voltages V3 and V4, and if V3 ≧ V4, the wind direction is determined to be upstream of the thermistor 3, and in step S30, the wind speed calculating means 7 Wind speed W2 is calculated based on measurement voltage V3 and the pre-conversion table.

また、V3<V4であれば、風向きをサーミスタ4側が上流にあると判定し、ステップS31において、風速算出手段7は、検出電圧V2と変換テーブルをもとに風速W2を算出する。   If V3 <V4, it is determined that the wind direction is upstream of the thermistor 4 side. In step S31, the wind speed calculation means 7 calculates the wind speed W2 based on the detected voltage V2 and the conversion table.

つぎに、ステップS32において、X方向の管4で得られた風速W1とY方向の管4’で得られた風速W2を用い、式2及び式3のベクトル計算によって風向角度と真の風速Wとを求める。本フローにより、十字管構造の風向・風速センサに4個のサーミスタを適用することで、風向と風速を正確に捉えることができ、従来の風杯型、風見鶏型の風向センサに比べ小型化が可能となる。   Next, in step S32, using the wind speed W1 obtained by the X-direction tube 4 and the wind speed W2 obtained by the Y-direction tube 4 ′, the wind direction angle and the true wind speed W are calculated by the vector calculation of Equations 2 and 3. And ask. With this flow, four thermistors are applied to the wind direction / wind speed sensor with a cross tube structure, so that the wind direction and wind speed can be accurately captured, which is smaller than conventional wind cup type and weathercock type wind direction sensors. It becomes possible.

以上、本発明により、(1)個々のサーミスタでは自己加熱の変化分だけを検出すればよいので、過度の加熱をする必要はなく消費電力が低減できる、(2)風速計測側の上流には気流を乱すものがないため、高精度に風速を計測できる、(3)乱流発生構造を管内に設置することで上流と下流の気流が大きく変わり、風向検知の判定制度が向上する等の効果を生じる。   As described above, according to the present invention, (1) since each individual thermistor only needs to detect a change in self-heating, it is not necessary to overheat, and power consumption can be reduced. (2) Upstream on the wind speed measurement side Since there is nothing that disturbs the airflow, the wind speed can be measured with high accuracy. (3) By installing the turbulent flow generation structure in the pipe, the upstream and downstream airflows change significantly and the wind direction detection judgment system improves. Produce.

このように、従来型に比べ、小型、低コスト、省電力の風向・風速センサを製造することが可能となり、数百〜数万個オーダーのセンサ数を必要とする大規模センシングシステムにおいて、大幅な省スペース化、コストダウンにつながる。   In this way, it is possible to manufacture wind direction / velocity sensors that are smaller, lower cost, and power-saving than conventional models, and are greatly improved in large-scale sensing systems that require hundreds to tens of thousands of sensors. Space saving and cost reduction.

とくに、特に逆流の防止等、対向方向のみの風向・風速を計測する場合には、サーミスタ2つだけの構成にすることで、さらなるコストダウンが可能になる。   In particular, when measuring the wind direction / wind speed only in the opposite direction, such as for preventing backflow, the cost can be further reduced by using only two thermistors.

工場、データセンタ、オフィス等、空調機を制御する環境で用いる風向・風速センサの分野。   The field of wind direction and speed sensors used in environments that control air conditioners, such as factories, data centers, and offices.

1、2 サーミスタ
3 乱流発生構造体
4、4’ 管
5、5’ 測定回路
6 風向判定手段
7 風速算出手段
11、12、21、22 サーミスタ
100 変換テーブル
DESCRIPTION OF SYMBOLS 1, 2 Thermistor 3 Turbulence generating structure 4, 4 'pipe 5, 5' Measurement circuit 6 Wind direction determination means 7 Wind speed calculation means 11, 12, 21, 22 Thermistor 100 Conversion table

Claims (6)

管内に配置し流入する風に乱流を生じさせる乱流発生構造体と、
前記菅内においてその軸方向に前記乱流発生構造体を挟むように配置した複数のサーミスタと、
前記複数のサーミスタのそれぞれの抵抗値を測定する測定回路と、
前記複数のサーミスタのそれぞれの抵抗値を比較し、前記乱流発生構造体を挟んで、当該抵抗値が大きくなるサーミスタ側を上流側として風向きを判定する風向判定手段とを有することを特徴とする風向・風速センサ。
A turbulent flow generating structure that is arranged in a pipe and generates turbulence in the incoming wind;
A plurality of thermistors arranged so as to sandwich the turbulent flow generating structure in the axial direction in the cage;
A measurement circuit for measuring a resistance value of each of the plurality of thermistors;
Wind resistance determination means for comparing the resistance values of each of the plurality of thermistors and determining the wind direction with the thermistor side having the increased resistance value as the upstream side across the turbulent flow generation structure. Wind direction / speed sensor.
前記サーミスタの抵抗値と風速との関係が予め実験値用意された変換テーブルを基に、前記複数のサーミスタの内、抵抗値の大きいサーミスタから風速を算出することを特徴とする請求項1に記載の風向・風速センサ。   2. The wind speed is calculated from a thermistor having a large resistance value among the plurality of thermistors based on a conversion table in which experimental values are prepared in advance for the relationship between the resistance value of the thermistor and the wind speed. Wind direction / speed sensor. 前記乱流発生構造体を挟んで配置されるサーミスタは、2以上複数のサーミスタで構成され、前記サーミスタの抵抗値は、前記乱流発生構造体によって区切られた領域ごとにその平均値を採用することを特徴とする請求項1または2に記載の風向・風速センサ。   The thermistor arranged with the turbulent flow generation structure sandwiched therebetween is composed of two or more thermistors, and the resistance value of the thermistor adopts the average value for each region partitioned by the turbulent flow generation structure. The wind direction / wind speed sensor according to claim 1 or 2. 前記乱流発生構造体は、メッシュ構造、またはパンチング構造、またはグリル構造を有構造体であることを特徴とする請求項1乃至3に記載の風向・風速センサ。   4. The wind direction / velocity sensor according to claim 1, wherein the turbulent flow generation structure has a mesh structure, a punching structure, or a grill structure. 互いに交わる方向に延在する複数の配管を連結した連結管の結合部に設置された乱流発生構造体と、
前記乱流発生構造体を挟むように各方向の配管内に配置した複数のサーミスタと、
前記各方向の配管内の複数のサーミスタのそれぞれの抵抗値を測定する測定回路と、
前記各方向の配管内において、前記乱流発生構造体を挟んで、前記抵抗値が大きい方のサーミスタ側を上流側として各配管の風速を求め、該各配管の風速を基にベクトル計算することによって前記連結管の風向と風速を算出する手段を有することを特徴とする風向・風速センサ。
A turbulent flow generating structure installed at a connecting portion of a connecting pipe connecting a plurality of pipes extending in directions intersecting each other;
A plurality of thermistors arranged in the piping in each direction so as to sandwich the turbulent flow generation structure;
A measurement circuit for measuring the resistance value of each of the plurality of thermistors in the pipe in each direction;
In the pipe in each direction, the wind speed of each pipe is obtained with the turbulent flow generation structure sandwiched between the thermistor side having the larger resistance value as the upstream side, and vector calculation is performed based on the wind speed of each pipe. A wind direction / wind speed sensor comprising means for calculating a wind direction and a wind speed of the connecting pipe.
前記互いに交わる方向に延在する複数の配管を連結した連結管は、その結合部において2軸あるいは3軸に直交する構造であることを特徴とする請求項5に記載の風向・風速センサ。   The wind direction / wind speed sensor according to claim 5, wherein the connection pipe connecting the plurality of pipes extending in the intersecting direction has a structure orthogonal to two axes or three axes at the joint portion.
JP2009264581A 2009-11-20 2009-11-20 Wind direction / velocity sensor Expired - Fee Related JP5568961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009264581A JP5568961B2 (en) 2009-11-20 2009-11-20 Wind direction / velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009264581A JP5568961B2 (en) 2009-11-20 2009-11-20 Wind direction / velocity sensor

Publications (2)

Publication Number Publication Date
JP2011107057A true JP2011107057A (en) 2011-06-02
JP5568961B2 JP5568961B2 (en) 2014-08-13

Family

ID=44230690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009264581A Expired - Fee Related JP5568961B2 (en) 2009-11-20 2009-11-20 Wind direction / velocity sensor

Country Status (1)

Country Link
JP (1) JP5568961B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114528A1 (en) * 2012-01-30 2013-08-08 富士通株式会社 Air-conditioning system
JP2014013099A (en) * 2012-07-04 2014-01-23 Fujitsu Ltd Local air conditioning system and control device of the same
CN106153980A (en) * 2016-07-18 2016-11-23 无锡信大气象传感网科技有限公司 A kind of measuring method of low speed wind direction and wind velocity direct reading measurement instrument
CN106290975A (en) * 2016-07-18 2017-01-04 无锡信大气象传感网科技有限公司 A kind of low speed wind direction and wind velocity direct reading measurement instrument
CN108931663A (en) * 2017-05-22 2018-12-04 深圳木瓦科技有限公司 Sensor and the method for utilizing the sensor measurement wind speed and direction
CN112577200A (en) * 2019-09-30 2021-03-30 芜湖美的厨卫电器制造有限公司 Wind speed measuring assembly, gas combustion equipment and control method of gas combustion equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157768U (en) * 1979-04-27 1980-11-13
JPH0429017A (en) * 1990-05-25 1992-01-31 Tokyo Gas Co Ltd Method and instrument for measuring flow velocity and flow direction of fluid
JP2003075461A (en) * 2001-09-03 2003-03-12 Natl Inst For Environmental Studies Anemometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157768U (en) * 1979-04-27 1980-11-13
JPH0429017A (en) * 1990-05-25 1992-01-31 Tokyo Gas Co Ltd Method and instrument for measuring flow velocity and flow direction of fluid
JP2003075461A (en) * 2001-09-03 2003-03-12 Natl Inst For Environmental Studies Anemometer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114528A1 (en) * 2012-01-30 2013-08-08 富士通株式会社 Air-conditioning system
JPWO2013114528A1 (en) * 2012-01-30 2015-05-11 富士通株式会社 Air conditioning system
JP2014013099A (en) * 2012-07-04 2014-01-23 Fujitsu Ltd Local air conditioning system and control device of the same
CN106153980A (en) * 2016-07-18 2016-11-23 无锡信大气象传感网科技有限公司 A kind of measuring method of low speed wind direction and wind velocity direct reading measurement instrument
CN106290975A (en) * 2016-07-18 2017-01-04 无锡信大气象传感网科技有限公司 A kind of low speed wind direction and wind velocity direct reading measurement instrument
CN108931663A (en) * 2017-05-22 2018-12-04 深圳木瓦科技有限公司 Sensor and the method for utilizing the sensor measurement wind speed and direction
CN112577200A (en) * 2019-09-30 2021-03-30 芜湖美的厨卫电器制造有限公司 Wind speed measuring assembly, gas combustion equipment and control method of gas combustion equipment
CN112577199A (en) * 2019-09-30 2021-03-30 芜湖美的厨卫电器制造有限公司 Water heating device

Also Published As

Publication number Publication date
JP5568961B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5568961B2 (en) Wind direction / velocity sensor
Sewall et al. Experimental validation of large eddy simulations of flow and heat transfer in a stationary ribbed duct
WO2016104321A1 (en) Thermal-type flow velocity/flow rate sensor equipped with current direction detection function
Chen et al. Heat transfer enhancement of turbulent channel flow using tandem self-oscillating inverted flags
Chen et al. Further study on the heat exchanger circuitry arrangement for an active chilled beam terminal unit
Jabbour et al. High performance finned-tube heat exchangers based on filled polymer
Yashar et al. An experimental and computational study of approach air distribution for a finned-tube heat exchanger
JP5215750B2 (en) Sensor, liquid film measuring device
Nada et al. Heat transfer and fluid flow around semi-circular tube in cross flow at different orientations
WO2018152178A1 (en) Multi-component fast-response velocity sensor
Stafford et al. The effect of global cross flows on the flow field and local heat transfer performance of miniature centrifugal fans
Yu et al. A gray-box based virtual SCFM meter in rooftop air-conditioning units
JP2011002315A (en) Anemometer and sensor
da Silva et al. Mean wake and aerodynamic forces for surface-mounted finite-height square prisms of very small aspect ratio
Bhaiyat et al. Off-design performance of a louvered fin-tube heater core in an automotive climate control system
AU2017366667A1 (en) Electrical connector, fluid state test device and fluid heat exchange system
JP2011226891A (en) Wind velocity sensor unit and wind velocity measuring system
Shaddix A NEW METHOD TO COMPUTE THE RADIANT CORRECTION OF BARE-WIRE THERMOCOUPLES.
Imbriale et al. Heat transfer enhancement of natural convection with ribs
JP7305189B2 (en) thermal flow sensor
JP2005292026A (en) Joint and fluid device using same
Sauter et al. Using PCB technology for calorimetric water flow sensing in HVAC systems-a feasibility study
CN102788618A (en) Temperature difference flow meter for high temperature liquid metal
JP2013224890A (en) Deposit detection sensor head and deposit detection device
Steiner et al. Flexible flow sensors for air conditioning systems based on printed thermopiles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5568961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees