JP4095215B2 - Manufacturing method of bearing - Google Patents

Manufacturing method of bearing Download PDF

Info

Publication number
JP4095215B2
JP4095215B2 JP34409099A JP34409099A JP4095215B2 JP 4095215 B2 JP4095215 B2 JP 4095215B2 JP 34409099 A JP34409099 A JP 34409099A JP 34409099 A JP34409099 A JP 34409099A JP 4095215 B2 JP4095215 B2 JP 4095215B2
Authority
JP
Japan
Prior art keywords
bearing
bearing material
diameter
shaft support
core rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34409099A
Other languages
Japanese (ja)
Other versions
JP2001159424A (en
Inventor
近藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP34409099A priority Critical patent/JP4095215B2/en
Publication of JP2001159424A publication Critical patent/JP2001159424A/en
Application granted granted Critical
Publication of JP4095215B2 publication Critical patent/JP4095215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、精密機器に内蔵されるスピンドルモータの駆動軸等、比較的高速で回転する軸を高精度で支持する場合に用いて好適な焼結含油軸受の製造方法に関する。
【0002】
【従来の技術】
精密機器に内蔵されるスピンドルモータの駆動軸等に用いられる焼結含油軸受として、軸受の軸方向中央部の内径に回転軸と接触しない隙間(以下、中逃げ部と言う)を設け、両端部に軸支面を形成して、2個の軸受機能を精度よく一体に具備した焼結含油軸受がある。この種の焼結含油軸受の製造方法としては、軸受素材の軸方向の一端部または両端部の外径を成形型に形成されたテーパ状絞り形成部に圧入することにより、端部の外径をテーパ状に縮小させて絞り部を形成し、この絞り部の内径面をコアロッドに圧接させて軸支面を形成する方法がある。
【0003】
例えば特開平3−240901号公報には、圧粉成形により得られる筒状成形物として、一端側の内径を軸受面とし、他端側の外形面にその他端に向かって小径となるテーパ面を形成したものを焼結した後、内径にコアーピンを挿入した状態で、端部にテーパ面を形成した金型内に押し込んで軸方向に圧縮し、内径面がコアーピンに沿うまで塑性変形させる焼結含油軸受の製造技術が開示されている。
【0004】
また、特開平6−238381号公報には、軸受体の挿通孔にサイジングバーを配置し、軸受体の端部を加圧加工して挿通孔の端部にサイジングバーの外径と等しい小径部を形成する技術が開示されている。
【0005】
【発明が解決しようとする課題】
上記の製造方法で形成された軸受の軸支面をよく観察すると、中逃げ部側(奥側)の軸支面が密になり、端面側の軸支面が粗になりやすい。その理由は軸受素材がテーパ状絞り形成部に圧入される際に生じる肉の塑性変形の方向が中逃げ部側(奥側)に向かう斜め方向になることによるものと考えられる。
【0006】
このように軸支部の端面側の密度が低く軸支面が粗であることは、端面付近で潤滑油の浸み出しが活発になるから、潤滑油が軸受要素の外へ浪費しやすくなる。また、回転軸と軸支面との間の油圧が端面側で低下するから回転軸を支持する支持力が不安定となる等の原因になる。
【0007】
本発明は、このような問題点を解消し、軸支面の気孔量を均等化させて回転軸の支持力を安定化させ、潤滑油の浪費を少なくした軸受の製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明は上記目的を達成するためになされたもので、その特徴とする技術手段は、
軸方向一端部又は両端部にテーパ状絞りを形成した型内に円筒状の軸受素材を圧入して素材端部の外径を縮小させ、その内径面をコアロッドに圧接させて軸支面を形成する軸受の製造方法において、
前記テーパ状絞り形成型に素材を圧入したのち、そのテーパ状絞りにより外径が縮小した素材端部における端面を、下パンチを突き上げることにより、軸方向に加圧、圧縮することを特徴とする軸受の製造方法である。
【0009】
本発明は、円筒状の軸受素材にコアロッドを挿入し、この円筒状素材を、軸方向一端部又は両端部を成形型に形成されたテーパ状絞り形成部に円筒状素材を圧入し、端部の外径を縮小させて絞り部を形成すると共に、この絞り部の内径面をコアロッドに圧接させて回転軸を支持する軸支面を形成し、一方、この軸支面に隣接する軸方向中央部の内径面に回転軸と接触しない中逃げ部を形成する軸受の製造方法に適用されるものである。そして、前記テーパ状絞り形成部に素材を圧入したのち、そのテーパ状絞りにより外径が縮小した素材端部における端面を軸方向に加圧して、素材の軸方向寸法を圧縮することを特徴としている。この圧縮量は形成した軸支面の密度や気孔量を均等化させるもので軸受素材の材料、特性、寸法等に応じて適正値を定めることができるが、概ね軸受素材の長さの5%以下の縮み量とするのがよい。また、下限も同様に定めることができ、軸受素材の長さの1%以上とすれば好適である。
【0010】
成形型に形成されるテーパ状絞り形成部のテーパは、軸受素材の肉厚によっても異なるが、通常、角度10〜40°(軸心に対する傾きが5〜20°)程度である。このような絞り形成部に円筒状の軸受素材を押し込むと、成形型面に倣って軸受素材の外径は縮怪し、その変形は軸受素材の内径に達してコアロッドに当接する。内径の縮径は端面側から奥側に向かって進むが、押し込みの途中段階から最終段階にかけては、テーパ面からほぼ直角方向(奥側)に向かって塑性変形する。さらに、コアロッドを固定した状態で軸受素材を押し込む形態では、軸受素材はコアロッドの軸方向に移動するから、コアロッドに圧接している軸受素材の肉は奥側に向かって移動することになる。その結果、軸支面の気孔量は奥側が少なく端面側が多い状態となっている。本発明では、このような状態において端面を圧縮する。
【0011】
端面の圧縮によって軸受素材の変形は気孔量の多い端面付近が活発であり気孔量を減少させる。圧縮量は、上述のように軸受素材の全長寸法(軸方向長さ)の5%程度が最大で、それより大きくすると、軸受素材の変形は中逃げ部まで及んで中逃げ部を縮径させるため好ましくない。また、圧縮量が軸受素材の全長寸法1%に満たないと端面寄りの軸支面気孔量の減少が明確に行われない。軸受素材が青銅系材料で通常の密度であれば全長寸法の2〜3%が最適となる。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。図1から図5は、軸受に軸支部及び中逃げを形成するための成形装置と圧縮過程の手順を説明する縦断面図である。成形装置は成形型20、コアロッド30、下パンチ40、上パンチ50からなっている。成形型20は内孔の下方にテーパ状絞り形成部21があり、図4に示す最大絞り部21aより下方は下パンチ40が嵌合する小径孔となっている。
【0013】
図1に示す円筒状の軸受素材10は、外径が均一で、内径の上部に内径小径部11、軸方向の中間部と下部が内径大径部12となっているものである。軸受素材10の外径は成形型20の内孔径に嵌合する程度又は僅かに大きめに設定され、内径小径部11はコアロッド30の外径より小径で、内径大径部12はコアロッド30の外径より大径に設定されている。
【0014】
図2に示す軸受素材10は、外径の上部に外径大径部13を備え、外径の軸方向の中間部と下部が均一径となっている。外径大径部13は成形型20の内孔径より大きい。また、内径は均一でコアロッド30の外径より大径に設定されている。これらの軸受素材10は、焼結体または一旦サイジングしたものが用いられる。
【0015】
図3は、図1又は図2の軸受素材を成形型20内に押し込んだ状態を示している。軸受素材10の形状が図1に示す形態では、軸受素材10の内径小径部11は、コアロッド30によって押し拡げられて気孔状態が均質な軸支面14を形成する。一方、軸受素材10の下端は、テーパ状絞り形成部21に倣って押し込まれて縮径し、これに伴って下方から奥に向かってコアロッド30に圧接する。また、軸受素材10が押し込まれる最中に、コアロッド30に圧接した軸支面15はコアロッド30でしごかれて、軸支面は奥部(中逃げ部方向)へと押される。軸受素材10の形状が図2に示す形態では、外径大径部13が成形型20内に圧入されて縮径し、これに伴ってその内径が奥から上方端面側に向かってコアロッド30に圧接する。そのため軸支面14の端面側(図3の上方)気孔量は奥側より密に形成される。素材下端部のテーパ状絞り形成部21による縮径は前述したと同様である。
【0016】
図4は、図3の絞り部17付近を拡大表示したものである。テーパ状絞り形成部21に軸受素材10が押し込まれて縮径し、コアロッド30に圧接して軸支面15が形成されている。この軸支面15は、前述したように、変形方向が内径の奥方向になるため、内径の縮径はテーパ状絞り形成部21の始まり部分よりも少し奥部(中逃げ部方向)にまで形成されている。軸支面15の中間より奥側(中逃げ部方向)はコアロッド30の外径に比較的強く圧接して気孔が少ない(小さい)表面を形成しているが、下パンチ40寄りの最大絞り部21aに対応する付近は比較的気孔が多い(大きい)表面を形成している。圧入された軸受素材10の下端面は最大絞り部21aより下方まで侵入している。
【0017】
本発明では、次に、図4に示すような状態から、図5に示すように、下パンチ40を突き上げて、軸受素材10の下端端面を圧縮する。この圧縮により下パンチ40側の円筒部が消滅している。圧縮によって下パンチ40に近い端部軸支面15aが緻密化され、軸支面15の他の部分(奥部軸支面15b)と均質な気孔状態を形成する。圧縮量が少ないと緻密化は少ないのは当然である。圧縮量を大きくすると軸受素材10の変形は中逃げ部16にまで影響し、ついには中逃げ部16の中間部から順にコアロッド30に当接することになる。中逃げ部16を著しく狭くすると、使用したときに潤滑油の粘性抵抗が上がって摩擦抵抗が大きくなりったり不安定になるから好ましくない。圧縮量(縮み量)は通常の軸受では軸受全長寸法の2〜3%程度が適当である。
【0018】
図4及び図5の例では、テーパ状絞り形成部21に圧入された軸受素材10の下端面は最大絞り部21aより下方まで侵入して円筒部を形成させて、端面圧縮は、その円筒部を消滅させているが、圧入されたときに円筒部が形成されない状態、端面圧縮して円筒部が残る状態であっても、軸受形状に支障なければ採用することができる。
【0019】
図6から図8は、上下にテーパ状絞り形成部21を備えた成形装置により円筒状の軸受素材10に軸支部14,15及び中逃げ部16を形成するための圧縮過程の手順を説明する縦断面図である。成形装置は、下側は成形型20、下パンチ40、コアロッド30からなり、上方は成形型20、上パンチ50から構成されている。成形型20内孔に上下にテーパ状絞り形成部21があることは図1に示したと同様である。また、下側の成形型20を除いてはそれぞれ上下動(進退)可能となっている。
【0020】
図6に示す円筒状の軸受素材10は、内外径とも均一で、軸受素材10の内径はコアロッド30の外径より大きく設定されている。図6は、コアロッド30を軸受素材10に差し込んだ後、上方の成形型20及び上パンチ50を下降させる状態を示している。
【0021】
次に図7は、上方の成形型20及び上パンチ50を更に下降させて、上下のテーパ状絞り形成部21に軸受素材10が押し込まれて縮径し、コアロッド30に圧接して軸支面14,15が形成されている。圧入された軸受素材10の上下の端面は上下各成形型20の最大絞り部21aより上下ともパンチ寄りまで侵入していて円筒部を形成している。また、軸受素材10の中間部外径は太くなる。この圧縮過程においては、図4で説明したと同様に、軸受素材10の上下の縮径は内径の奥方向になるため、奥部軸支面14b,15bに比べて端部軸支面14a,15aの気孔量が多い表面をしている。
【0022】
図8は、上パンチ50及び下パンチ40を軸受素材10側にそれぞれ前進させて、両端面を圧縮した状態である。この圧縮で軸受素材10の上下とも端部外径の円筒部が消滅し、端部軸支面14a,15aの気孔量が減少し、軸支面全体が均質な気孔状態を形成する。
【0023】
図8の状態から、上側の成形型20及び上パンチ50を上昇させ、下パンチ40を上昇させるか、またはコアロッド30を下降させたのち下パンチ40を上昇させることにより軸受素材10は離型される。
【0024】
図9は、その他の実施の形態を説明するための軸受素材10の形状の例を示したものである。図9(a)は、図1に示した軸受素材の内径小径部側にフランジを備えた形状をしている。この場合、成形型がフランジ部を収納するに必要な内孔部を備える以外は図1の場合と同様である。図9(b)は、図2に示した軸受素材の外径大径部が一層大きく、フランジとなっている形状である。成形型がフランジ部を適量に縮径するのに必要な内孔部を備えている以外は図1の場合と同様にして製作することができる。
【0025】
なお、以上の説明では端面部の内外の面取りを省略して説明してあるが、実際には、成形型孔への挿入性、ハウジングへの組立性などから、面取りが設けられている。面取りがあっても本発明における作用や効果はなんら異なるところはない。
【0026】
【発明の効果】
以上説明したように、本発明によれば、絞り部と共に軸支面を形成して2点支持構造の軸受を製造するにあたり、絞り部を形成したのちに端部を圧縮して緻密化させるので、軸支面の密度を均質化させることができ、その結果、回転軸の支持力を安定化させ、潤滑油の浪費を少なくさせることができるといった効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施形態に係る軸受の形状及び成形装置を示す縦断面図である。
【図2】本発明の別の実施形態に係る軸受の形状及び成形装置を示す縦断面図である。
【図3】本発明の実施形態に係る軸受素材を成形装置に挿入した状態を示す縦断面図である。
【図4】本発明の実施形態における図3の絞り部を拡大した縦断面図である。
【図5】本発明の実施形態における端面圧縮した状態を示す縦断面図である。
【図6】本発明の他の実施例の成形工程を示す縦断面図である。
【図7】本発明の他の実施例の成形工程を示す縦断面図である。
【図8】本発明の他の実施例の成形工程を示す縦断面図である。
【図9】本発明に係る軸受素材の他の形態を示す縦断面図である。
【符号の説明】
10 軸受素材
11 内径小径部
12 内経大径部
13 外径大径部
14,15 軸支面
14a,15a 端部軸支面
14b,15b 奥部軸支面
16 中逃げ部
17 絞り部
20 成形型
21 テーパ状絞り形成部
21a 最大絞り部
30 コアロッド
40 下パンチ
50 上パンチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a sintered oil-impregnated bearing suitable for use in supporting a shaft rotating at a relatively high speed, such as a drive shaft of a spindle motor incorporated in a precision instrument, with high accuracy.
[0002]
[Prior art]
As a sintered oil-impregnated bearing used for the drive shaft of a spindle motor built in precision equipment, a clearance (hereinafter referred to as a center escape portion) that does not contact the rotating shaft is provided on the inner diameter of the axial central portion of the bearing. There is a sintered oil-impregnated bearing in which a shaft support surface is formed and two bearing functions are integrated with high precision. As a manufacturing method of this kind of sintered oil-impregnated bearing, the outer diameter of the end portion is pressed by press-fitting the outer diameter of one end portion or both end portions in the axial direction of the bearing material into a tapered drawing forming portion formed in the mold. There is a method of forming a throttle part by reducing the diameter of the throttle part and pressing the inner diameter surface of the throttle part against a core rod to form a shaft support surface.
[0003]
For example, in JP-A-3-240901, as a cylindrical molded product obtained by compacting, a tapered surface having an inner diameter on one end side as a bearing surface and an outer surface on the other end side having a smaller diameter toward the other end is provided. After sintering the formed product, with the core pin inserted into the inner diameter, it is pressed into a mold with a tapered surface at the end and compressed in the axial direction. An oil-impregnated bearing manufacturing technique is disclosed.
[0004]
Japanese Patent Laid-Open No. 6-233831 discloses that a sizing bar is disposed in the insertion hole of the bearing body, the end portion of the bearing body is subjected to pressure processing, and a small diameter portion equal to the outer diameter of the sizing bar is formed at the end portion of the insertion hole. Techniques for forming the are disclosed.
[0005]
[Problems to be solved by the invention]
When the bearing surface of the bearing formed by the above manufacturing method is observed closely, the bearing surface on the middle escape portion side (back side) becomes dense and the bearing surface on the end surface side tends to become rough. The reason is considered to be that the direction of the plastic deformation of the meat that occurs when the bearing material is press-fitted into the tapered diaphragm forming portion is an oblique direction toward the middle escape portion side (back side).
[0006]
Since the density of the end surface side of the shaft support portion is low and the shaft support surface is rough in this way, since the seepage of the lubricating oil becomes active near the end surface, the lubricating oil is likely to be wasted out of the bearing element. In addition, since the hydraulic pressure between the rotating shaft and the shaft support surface decreases on the end surface side, the support force for supporting the rotating shaft becomes unstable.
[0007]
The present invention provides a bearing manufacturing method that eliminates such problems, equalizes the amount of pores on the shaft support surface, stabilizes the support force of the rotating shaft, and reduces waste of lubricating oil. It is aimed.
[0008]
[Means for Solving the Problems]
The present invention has been made to achieve the above-mentioned object, and the technical means characterized by it are as follows:
A cylindrical bearing material is press-fitted into a mold with tapered throttles at one or both ends in the axial direction to reduce the outer diameter of the material end, and the inner diameter surface is pressed against the core rod to form a shaft support surface. In the manufacturing method of the bearing
After the material is press-fitted into the tapered drawing die, the end surface of the material whose outer diameter is reduced by the tapered drawing is pressed and compressed in the axial direction by pushing up the lower punch. It is a manufacturing method of a bearing.
[0009]
In the present invention, a core rod is inserted into a cylindrical bearing material, and the cylindrical material is press-fitted into a tapered diaphragm forming portion formed in one end or both ends in the axial direction of the cylindrical material. The outer diameter of the throttle portion is reduced to form a throttle portion, and the inner diameter surface of the throttle portion is pressed against the core rod to form a shaft support surface that supports the rotating shaft, while the axial center adjacent to the shaft support surface is formed. The present invention is applied to a method for manufacturing a bearing in which an inner clearance portion that does not contact the rotating shaft is formed on the inner diameter surface of the portion. Then, after press-fitting the material into the tapered diaphragm forming portion, the end surface of the material end portion whose outer diameter is reduced by the tapered diaphragm is pressed in the axial direction to compress the axial dimension of the material. Yes. This amount of compression equalizes the density and pore volume of the formed bearing surface, and can be set to an appropriate value according to the material, characteristics, dimensions, etc. of the bearing material, but is roughly 5% of the length of the bearing material. The following shrinkage is recommended. Further, the lower limit can be determined in the same manner, and it is preferable that the lower limit is 1% or more of the length of the bearing material.
[0010]
The taper of the tapered drawing forming portion formed in the molding die varies depending on the thickness of the bearing material, but is usually about 10 to 40 ° (inclination with respect to the axis is 5 to 20 °). When a cylindrical bearing material is pushed into such a drawing portion, the outer diameter of the bearing material shrinks along the surface of the mold, and the deformation reaches the inner diameter of the bearing material and comes into contact with the core rod. The inner diameter is reduced from the end face side toward the back side, but from the middle stage to the final stage of the push-in, it is plastically deformed from the taper face in a substantially perpendicular direction (back side). Furthermore, in a form in which the bearing material is pushed in with the core rod fixed, the bearing material moves in the axial direction of the core rod, and therefore the meat of the bearing material pressed against the core rod moves toward the back side. As a result, the amount of pores on the shaft support surface is small on the back side and large on the end surface side. In the present invention, the end face is compressed in such a state.
[0011]
Due to the compression of the end face, the deformation of the bearing material is active near the end face with a large amount of pores, reducing the amount of pores. As described above, the maximum compression amount is about 5% of the total length (axial length) of the bearing material. If the compression amount is larger than that, the deformation of the bearing material reaches the middle relief portion and the middle relief portion is reduced in diameter. Therefore, it is not preferable. In addition, if the amount of compression is less than 1% of the total length of the bearing material, the amount of shaft support surface pores near the end face cannot be clearly reduced. If the bearing material is a bronze-based material and has a normal density, 2-3% of the overall length is optimal.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 to FIG. 5 are longitudinal sectional views for explaining a molding apparatus and a compression process procedure for forming a shaft support portion and a center relief in a bearing. The molding apparatus includes a mold 20, a core rod 30, a lower punch 40, and an upper punch 50. The molding die 20 has a tapered drawing forming portion 21 below the inner hole, and a small diameter hole into which the lower punch 40 is fitted below the maximum drawing portion 21a shown in FIG.
[0013]
A cylindrical bearing material 10 shown in FIG. 1 has a uniform outer diameter, and has a small inner diameter portion 11 at the upper portion of the inner diameter, and an inner diameter large diameter portion 12 at the middle portion and the lower portion in the axial direction. The outer diameter of the bearing material 10 is set so as to fit or slightly larger than the inner hole diameter of the mold 20, the inner diameter small diameter portion 11 is smaller than the outer diameter of the core rod 30, and the inner diameter large diameter portion 12 is outside the core rod 30. The diameter is set larger than the diameter.
[0014]
The bearing material 10 shown in FIG. 2 includes an outer diameter large diameter portion 13 at the upper portion of the outer diameter, and the intermediate portion and the lower portion of the outer diameter in the axial direction have a uniform diameter. The outer diameter large diameter portion 13 is larger than the inner hole diameter of the mold 20. Further, the inner diameter is uniform and set larger than the outer diameter of the core rod 30. As these bearing materials 10, a sintered body or a sized member is used.
[0015]
FIG. 3 shows a state in which the bearing material of FIG. 1 or 2 is pushed into the mold 20. In the form in which the shape of the bearing material 10 is shown in FIG. 1, the inner diameter small diameter portion 11 of the bearing material 10 is expanded by the core rod 30 to form the shaft support surface 14 having a uniform pore state. On the other hand, the lower end of the bearing material 10 is pushed in along the tapered diaphragm forming portion 21 to reduce the diameter, and in accordance with this, presses against the core rod 30 from the bottom to the back. In addition, while the bearing material 10 is being pushed in, the shaft support surface 15 that is in pressure contact with the core rod 30 is squeezed by the core rod 30, and the shaft support surface is pushed toward the back (in the direction of the middle escape portion). In the form of the bearing material 10 shown in FIG. 2, the outer diameter large diameter portion 13 is press-fitted into the mold 20 to reduce the diameter, and accordingly, the inner diameter becomes the core rod 30 from the back toward the upper end face side. Press contact. Therefore, the amount of pores on the end surface side (upper side in FIG. 3) of the shaft support surface 14 is formed more densely than the back side. The diameter reduction by the tapered diaphragm forming portion 21 at the lower end of the material is the same as described above.
[0016]
FIG. 4 is an enlarged view of the vicinity of the aperture 17 in FIG. The bearing material 10 is pushed into the tapered diaphragm forming portion 21 to reduce the diameter, and the shaft support surface 15 is formed in pressure contact with the core rod 30. As described above, since the deformation direction of the shaft support surface 15 is the depth direction of the inner diameter, the inner diameter is reduced slightly to the back (in the middle escape portion direction) from the beginning of the tapered diaphragm forming portion 21. Is formed. The inner side of the shaft support surface 15 (in the direction of the middle relief portion) is relatively strongly pressed against the outer diameter of the core rod 30 to form a surface with few (small) pores. In the vicinity corresponding to 21a, a surface having relatively large (large) pores is formed. The lower end surface of the press-fitted bearing material 10 penetrates below the maximum throttle portion 21a.
[0017]
In the present invention, next, as shown in FIG. 5, the lower punch 40 is pushed up from the state shown in FIG. 4 to compress the lower end face of the bearing material 10. Due to this compression, the cylindrical portion on the lower punch 40 side disappears. The end shaft support surface 15a close to the lower punch 40 is densified by the compression, and forms a uniform pore state with the other part of the shaft support surface 15 (the back shaft support surface 15b). Naturally, when the amount of compression is small, densification is small. When the amount of compression is increased, the deformation of the bearing material 10 affects the middle escape portion 16 and finally comes into contact with the core rod 30 in order from the middle portion of the middle escape portion 16. If the middle relief portion 16 is remarkably narrow, the viscosity resistance of the lubricating oil increases when used, and this is not preferable because the frictional resistance increases or becomes unstable. The compression amount (shrinkage amount) is appropriately about 2 to 3% of the overall length of the bearing in a normal bearing.
[0018]
In the example of FIGS. 4 and 5, the lower end surface of the bearing material 10 press-fitted into the tapered throttle forming portion 21 penetrates below the maximum throttle portion 21a to form a cylindrical portion, and the end surface compression is performed on the cylindrical portion. However, even when the cylindrical portion is not formed when it is press-fitted, or when the cylindrical portion remains after compression of the end face, it can be adopted as long as the bearing shape is not affected.
[0019]
6 to 8 illustrate a procedure of a compression process for forming the shaft support portions 14 and 15 and the intermediate relief portion 16 in the cylindrical bearing material 10 by a molding apparatus having a tapered drawing forming portion 21 at the top and bottom. It is a longitudinal cross-sectional view. The molding apparatus includes a molding die 20, a lower punch 40, and a core rod 30 on the lower side, and a molding die 20 and an upper punch 50 on the upper side. It is the same as that shown in FIG. 1 that the tapered die forming portion 21 is provided in the upper and lower portions of the inner hole of the mold 20. Further, except for the lower mold 20, each can move up and down (advance and retreat).
[0020]
The cylindrical bearing material 10 shown in FIG. 6 has a uniform inner and outer diameter, and the inner diameter of the bearing material 10 is set larger than the outer diameter of the core rod 30. FIG. 6 shows a state where the upper mold 20 and the upper punch 50 are lowered after the core rod 30 is inserted into the bearing material 10.
[0021]
Next, in FIG. 7, the upper mold 20 and the upper punch 50 are further lowered, the bearing material 10 is pressed into the upper and lower tapered drawing portions 21 to reduce the diameter, and the shaft support surface is pressed against the core rod 30. 14 and 15 are formed. The upper and lower end surfaces of the press-fitted bearing material 10 penetrate into the upper and lower end portions of the upper and lower molds 20 as far as the punch, forming a cylindrical portion. Moreover, the intermediate part outer diameter of the bearing raw material 10 becomes thick. In this compression process, as described with reference to FIG. 4, since the upper and lower diameters of the bearing material 10 are in the depth direction of the inner diameter, the end shaft support surfaces 14 a and 14 b are compared to the back shaft support surfaces 14 b and 15 b. The surface has a large amount of pores of 15a.
[0022]
FIG. 8 shows a state in which the upper punch 50 and the lower punch 40 are respectively advanced toward the bearing material 10 and both end faces are compressed. Due to this compression, the cylindrical portion having the outer diameter of the end portion disappears on both the upper and lower sides of the bearing material 10, the amount of pores of the end shaft support surfaces 14a and 15a is reduced, and the entire shaft support surface forms a homogeneous pore state.
[0023]
The bearing material 10 is released from the state of FIG. 8 by raising the upper mold 20 and the upper punch 50, raising the lower punch 40, or lowering the core rod 30 and then raising the lower punch 40. The
[0024]
FIG. 9 shows an example of the shape of the bearing material 10 for explaining other embodiments. FIG. 9A shows a shape in which a flange is provided on the inner diameter small diameter portion side of the bearing material shown in FIG. In this case, it is the same as in the case of FIG. 1 except that the mold has an inner hole portion necessary for housing the flange portion. FIG. 9B shows a shape in which the outer diameter and large diameter portion of the bearing material shown in FIG. It can be manufactured in the same manner as in FIG. 1 except that the mold has an inner hole portion necessary for reducing the diameter of the flange portion to an appropriate amount.
[0025]
In the above description, the chamfering on the inside and outside of the end surface portion is omitted, but in practice, chamfering is provided from the viewpoint of insertion into the mold hole, assembling into the housing, and the like. Even if there is chamfering, there is no difference in the functions and effects of the present invention.
[0026]
【The invention's effect】
As described above, according to the present invention, when a bearing having a two-point support structure is formed by forming a shaft support surface together with the throttle portion, the end portion is compressed and densified after the throttle portion is formed. The density of the shaft support surface can be made uniform, and as a result, the support force of the rotating shaft can be stabilized and the waste of the lubricating oil can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a shape of a bearing and a molding apparatus according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a shape of a bearing and a molding apparatus according to another embodiment of the present invention.
FIG. 3 is a longitudinal sectional view showing a state in which a bearing material according to an embodiment of the present invention is inserted into a molding apparatus.
4 is an enlarged vertical cross-sectional view of the aperture portion of FIG. 3 in the embodiment of the present invention.
FIG. 5 is a longitudinal sectional view showing an end face compressed state in the embodiment of the present invention.
FIG. 6 is a longitudinal sectional view showing a molding process according to another embodiment of the present invention.
FIG. 7 is a longitudinal sectional view showing a molding process according to another embodiment of the present invention.
FIG. 8 is a longitudinal sectional view showing a molding process according to another embodiment of the present invention.
FIG. 9 is a longitudinal sectional view showing another embodiment of the bearing material according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Bearing material 11 Inner diameter small diameter part 12 Inner diameter large diameter part 13 Outer diameter large diameter part 14, 15 Shaft support surface 14a, 15a End part shaft support surface 14b, 15b Back part shaft support surface 16 Middle relief part 17 Restriction part 20 Molding Mold 21 Taper-shaped drawing part 21a Maximum drawing part 30 Core rod 40 Lower punch 50 Upper punch

Claims (2)

軸方向一端部又は両端部にテーパ状絞りを形成した型内に円筒状の軸受素材を圧入して素材端部の外径を縮小させ、その内径面をコアロッドに圧接させて軸支面を形成する軸受の製造方法において、
前記テーパ状絞り形成型に素材を圧入したのち、そのテーパ状絞りにより外径が縮小した素材端部における端面を、下パンチを突き上げることにより、軸方向に加圧、圧縮することを特徴とする軸受の製造方法。
A cylindrical bearing material is press-fitted into a mold with tapered throttles at one or both ends in the axial direction to reduce the outer diameter of the material end, and the inner diameter surface is pressed against the core rod to form a shaft support surface. In the manufacturing method of the bearing
After the material is press-fitted into the tapered drawing die, the end surface of the material whose outer diameter is reduced by the tapered drawing is pressed and compressed in the axial direction by pushing up the lower punch. Manufacturing method of bearing.
前記端面を軸方向に加圧、圧縮する圧縮量が軸受素材の軸方向寸法の1〜5%である請求項1記載の軸受の製造方法。  The bearing manufacturing method according to claim 1, wherein a compression amount for pressing and compressing the end face in the axial direction is 1 to 5% of an axial dimension of the bearing material.
JP34409099A 1999-12-03 1999-12-03 Manufacturing method of bearing Expired - Lifetime JP4095215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34409099A JP4095215B2 (en) 1999-12-03 1999-12-03 Manufacturing method of bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34409099A JP4095215B2 (en) 1999-12-03 1999-12-03 Manufacturing method of bearing

Publications (2)

Publication Number Publication Date
JP2001159424A JP2001159424A (en) 2001-06-12
JP4095215B2 true JP4095215B2 (en) 2008-06-04

Family

ID=18366583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34409099A Expired - Lifetime JP4095215B2 (en) 1999-12-03 1999-12-03 Manufacturing method of bearing

Country Status (1)

Country Link
JP (1) JP4095215B2 (en)

Also Published As

Publication number Publication date
JP2001159424A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
US5282688A (en) Sintered oil impregnated bearing and its manufacturing method
US7211219B2 (en) Oil-impregnant sintered bearing and manufacturing method thereof, and motor
JP4095215B2 (en) Manufacturing method of bearing
JPH07332363A (en) Inside diameter intermediate cavity shaped bearing and manufacture thereof
JP2934470B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP3818626B2 (en) Method for producing sintered oil-impregnated bearing
JP3856363B2 (en) Manufacturing method of bearing
JP4049351B2 (en) Manufacturing method of bearing
JP3698352B2 (en) Manufacturing method of bearing
JP3507666B2 (en) Manufacturing method of sintered oil-impregnated bearing with internal groove
JP3173398B2 (en) Powder molding method
JP2841190B2 (en) Sintered bearing material and its manufacturing method
JP3797465B2 (en) Manufacturing method of bearing
JP2001032838A (en) Manufacture of bearing
JP7346318B2 (en) Insert sintered parts and their manufacturing method
JP4141280B2 (en) Method for producing sintered oil-impregnated bearing
JPH1162974A (en) Manufacture of sintered oil retaining bearing with inside diameter groove
JP2001041244A (en) Manufacture of bearing
JPH108101A (en) Manufacture of oil-containing bearing integrally sintered
JP2001059106A (en) Manufacture of bearing
JP3734130B2 (en) Method for producing sintered oil-impregnated bearing
JP2001056028A (en) Manufacture of bearing
JPH0788521B2 (en) Sintered oil-impregnated bearing manufacturing method
JP2001059105A (en) Manufacture of bearing
JP2001020956A (en) Manufacture method of bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060614

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4095215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term